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ABSTRACT

A framework for the modelling and specification of logistic systems is presented. This
framework is based on a hierarchical high-level Petri net model. Within this framework we
developed a language, called ExSpect, to specify systems in terms of this Petri net model.
This specification language is supported by a software package, also called ExSpect, which
facilitates the modelling and analysis of complex dynamic systems.

We have modelled and analysed many logistic systems with ExSpect ([5]). Most of these
applications resulted from the TASTE project ([3]). These practical experiences show that
there is a need for a method to facilitate the modelling of complex logistic systems. We
propose a systematic method, which is presented in this paper. This method is based on
a complete taxonomy of the goods and information flows inside a logistic system. Based
on this taxonomy we have developed a toolkit of standard logistical components that can
be combined graphically, thus yielding an ExSpect specification which can be used to
analyse the logistic system under consideration.

1 INTRODUCTION

High-level Petri nets have been used in many application areas, e.g. flexible manufac-
turing, computer architecture, distributed information systems, protocols, etc. In [12]
there are a number of papers describing applications of high-level nets. ExSpect is a
specification language based on a timed high-level Petri net model. ExSpect also has a
hierarchical construct called system. This construct can be used to structure large and
complex specifications, e.g. we describe a complex system in terms of its subsystems.

Although our specification language is very powerful, it is difficult to model large and
complex logistic systems. In this paper we propose a method to facilitate the modelling
of logistic systems. This method is based on principles of systems analysis and experiences
gained in the TASTE project.



The TASTE (The Advanced Studies of Transport in Europe) project started in 1986,
when the Dutch organisation for Applied Scientific Research (TNO) established a fund
for a systematic approach in the field of transport and logistics. The goal of the TASTE
project is to develop a tool to enable non-programmers to model and analyse problems in
the field of interindustrial logistics. The project emphasizes the modelling and analysis of
the flow of goods at an aggregated level in and between, production, assembly, distribution
and transport. The aim of the tool is to support strategic decision making. A number
of pilot projects showed that simulation is the most likely analysis method because of
the complexity of a real logistic system. Furthermore, the pilot projects showed that
existing simulation tools are either to specific (special purpose simulation packages) or to
general (general purpose simulation languages). Since ExSpect combines the advantages
of special purpose simulation packages and general purpose simulation languages, TASTE
started to use ExSpect in 1988. See [3] for more information.

The TASTE project faced the fact that research in the field of logistics developed along
two separate lines.

The first line concentrates on solving mathematical problems related to logistics. Often
the problem statement is simplified to allow for analytical solutions. This is the reason
that many results in this area cannot be applied to real problems encountered in practice.
Examples of this line are the application of queueing networks to scheduling problems
and the application of linear programming to transport planning. Although these analysis
methods help us gain insight in the problem, they can only be applied in a rather specific
situations.

The second line of research concentrates on practical logistic problems. The results are
often qualitative and informal. The approaches used in this area are mainly discipline
oriented, i.e. they focus on a specific aspect of logistics. Examples are the research on
customer service, storage equipment, communication facilities (EDI), personnel require-
ments, etc.

Both of these lines did not lead to a complete and comprehensive model of logistics.
Recent literature in the field of production control stresses the need for a systematic ap-
proach to production planning and control (e.g. [6],[7]). In Biemans [7] an attempt was
made to structure manufacturing planning and control using a ‘reference model’; i.e. a
representation of an idealized production organization, defining the tasks of the compo-
nents as well as the interactions between the components. In [6], Bertrand, Wortmann
and Wijngaard provide a number of general concepts for the design of production control
systems.

This paper presents a “systems view of logistics” to be able to deal with the growing
complexity of the control problems in logistics. The growing complexity is a result of the
“total cost concept”, which forces us to consider the entire logistic chain. Another reason
for the increased complexity is the progress in information technology allowing for more
sophisticated management systems.

The systems view of logistics we have developed includes a complete taxonomy of the
goods and information flows inside a logistic system. Based on this taxonomy we distin-
guish four types of systems: physical systems, information systems, control systems and
mixtures of the previous three types. Other topics are: decomposition, aggregation and
typical control structures. Furthermore, we show that for the modelling of large com-
plex logistic systems we are in need of a hierarchical construct. ExSpect provides such a



construct.

Based on these observations, we have specified a number of generic building blocks. Build-
ing blocks are parameterized subsystems (subnets) representing a typical activity. There
are about 20 of these building blocks including a production unit, a distribution centre and
a transport system. It is our belief that many practical logistic systems can be modelled
using these building blocks. This modelling process is supported by software (ExSpect)
and results in a specification that can be analysed using simulation or one of the analysis
methods described in [1] and [2].

2 A SYSTEMS VIEW OF LOGISTICS

A logistic process consists of the flow of goods and services and the monitoring and control
of these flows. Typical activities include: transportation, inventory management, order
processing, warchousing, distribution and production. Logistic management is concerned
with the development of functions to support these activities. A simplified definition of
logistics is: “The process of having the right quantity of the right item in the right place
at the right time” (Hutchinson [10]).

In the area of logistics many books are available, nearly all of which deal with the control
and design of production, inventory and transport systems.

Some of these books concentrate on solving mathematical problems related to logistics.
Often the problem statement is simplified to allow for analytical solutions. This is the
reason that many results in this area only yield partial solutions.

Nearly all other books concentrate on practical logistic problems. The results are often
qualitative and informal.

To model and analyse large and complex logistic systems we need a complete and com-
prehensive model of logistics. Therefore we use a systems oriented approach to structure
the field of logistics.

Another reason to present a systems view of logistics is the growing complexity of the
control problems in logistics. The total cost concept, an approach to minimize the over-
all costs, forces us to consider the entire logistic chain. Another reason for the increased
complexity is the progress in information technology allowing for more sophisticated man-
agement systems.

To clarify our approach we start we a number of concepts adopted from systems analysis.
We define a system as a group of elements working in an interrelated fashion toward
a set of objectives. These elements are the smallest parts to be considered, sometimes
referred to as entities or objects. Each element can be characterized by the relations
with its environment. Examples of elements are humans, machines, goods or information
processing equipment. The systems boundary defines which “part of the (logistic) world”
is considered and which part is out of scope. It is possible to compose a number of
systems into a new system. It is also possible to decompose a system into a number of
sub-systems. This process can be repeated until we reach the level of elements. A closed
system is a system without any interactions with “some” environment. An open system,
however, has a certain (external) interaction structure. Note that it is always possible to
construct a closed system from an open system by explicitly modelling its environment.
This is expressed in figure 1.
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Figure 1: A closed system composed of the target system and its environment

Systems are represented by rectangles. We use arrows to denote relations between systems.
Nearly all “real-life” systems are open. Consider for example a human-machine system,
i.e. a person interacting with a machine. From a modelling point of view we can consider
such a system a closed system. This is often useful for analysis. Yet, the human needs
food and beverage and the machine needs electricity and maintenance. Note that the
environment of a system can only be defined after the system boundary has been defined.
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Figure 2: The difference between composition and aggregation

There are a lot of ways to decompose (compose) a system into (from) a number of smaller
subsystems without changing the set of elements (entities). Decomposition is a way to
deal with the complexity of system, because it allows for the consideration of only a
small part of the system at the same time. The level of abstraction remains the same,
because the set of entities is not changed. If a system X is decomposed into a number of
subsystems Xy, Xs,..X,,, then the proper composition of X, X»,..X,, yields the original
system. If we use another set of elementary objects (elements) to model a system we
speak about aggregation (disaggregation) rather than composition (decomposition). An



alternative term for aggregation is abstraction, i.e. an aggregation step decreases the level
of detail. Figure 2 shows the difference between composition and aggregation. Note that
the decomposed system is equal to the original system. However, the aggregated system
is different from the original system, because some of the details are omitted. There are
a number of ways to decompose a system:

Functional decomposition : a system is split up in a number of subsystems each
representing a set of related activities.

Spatial decomposition : a system is decomposed into a number of subsystems at dif-
ferent locations.

There are also a number of ways to disaggregate a system:

Functional disaggregation : some functional part of the system is modelled in more
detail.

Spatial disaggregation : some geographical part of the system is modelled in more
detail.

Disaggregation of an aspect : some aspect of the system is modelled in more detail.
For a logistic system we can disaggregate the physical aspect of the goods flow. In
this case we add, for instance, weight and volume to the description of the product.

Disaggregation of time : the dynamical behaviour of a system is modelled more pre-
cisely. For example, we model the state of a system every hour instead of every day.
Note that the timescale has changed.

We can use the same classification for composition and aggregation respectively.

Several methods to develop a model of a system have been proposed. Top down develop-
ment starts with a model at a high abstraction level, this model is refined by a number of
disaggregation steps until the desired level of detail has been reached. To deal with the
increasing size and complexity of the model a disaggregation step often coincides with a
decomposition step. Bottom up development starts with a model for each of the subsys-
tems. These models are detailed descriptions of some aspect or part of the systems, i.e.
they have a low abstraction level. These submodels are composed into a model of the
entire system. If the overall model becomes to complex, an aggregation step is applied
to abstract from some of the details. Pure top down development is often impractical.
Pure bottom up development would be a mess. In our opinion, a mixture a top down and
bottom up development is the most sensible way to build a model.

The elements in a system interact with each other via relations. Such a relation is directed
or undirected. If a relation is directed one element influences the other but the reverse
does not happen. An undirected relationship can be represented by two directed relations.
In this paper we use the terms flow and channel instead of relation because these terms
are more suitable in the field of logistics. Note that there is a flow between two subsystems
A and B if and only if there is a flow between some element of A and some element of B.

To structure the field of logistics we start with a classification of the flows inside a logistic
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Figure 3: A taxonomy of the flows inside a logistic system

system. Figure 3 shows our taxonomy, the arrows should be interpreted as “is subtype
of”. For example, the flow of goods is a subtype of the flow of resources.

Resources (1) are the physical or abstract objects in a system. We distinguish between
goods (1.1) and means (1.2). Goods are materials, components and products in a logistic
chain. In general these goods are physical objects. Examples of non-physical goods are
bank accounts or reservations, we call these objects ‘abstract objects’. The resources
needed to create, maintain or distribute these goods are called means, e.g. machines,
tools, trucks, manpower, etc. Means are employed , but not consumed like materials.
Sometimes we use the term capacity resources to refer to these means. It is hard to draw
a strict dividing line between goods and means, think for example of a tool in a machine
that wears off significantly when it is used.

We use the term information (2) for all other kinds of interaction. Information can be
characterized by: “all the messages needed to get the right quantity of goods at the right
time at the right place”. Information itself is not an object to pursue. In most cases
information is kept to a minimum. We divide the class of information flows into four
subclasses: master/slave interactions (2.1), server/client interactions (2.2), reports (2.3)
and administrative information (2.4).

Master/slave interactions are the messages exchanged between a control system (master)
and a subordinate system (slave). The master sends commands to the slave and the slave
sends some status information to the master. Essential is the fact that their relationship
is not based on equality. Examples of such interactions are: real-time production control
(2.1.1), production planning (2.1.2), inventory control (2.1.3), inventory planning (2.1.4),
transport routing (2.1.5) and transport planning (2.1.6). For the moment this classification
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Figure 4: A logistic system

is self-explanatory. We will return to this subject in section 4.

Client/server interactions are based on the equality of both parties involved. An alterna-
tive term for client/server interactions is coordination. We have requests and responses
instead of commands and status information. The client sends a request (2.2.1) to a server.
This is always followed by a response (2.2.2) from the server to the client. There are two
kinds of requests and responses, with and without a “commit”. A request without a
commit means that the client only inquires about some service or goods. Otherwise (with
commit), the request is satisfied by the server if possible. In this case there is response
with a commit indicating that the server will deliver the requested service or goods. In all
other cases there is a response without a commit. Note that this classification conforms
with the ideas emerging from the field of Electronic Data Interchange (EDI).

Finally, we have the flows of reports and administrative information. These are the
information flows not covered by the flows (2.1) and (2.2). A detailed description is
beyond the scope of this paper.

We introduce a graphical convention to denote these flows, flows of resources are repre-
sented by a double arrow and flows of information are represented by single arrows. To
distinguish flows of means from flows of goods we represent flows of means by dashed dou-
ble arrows. Client/server interactions are also represented by dashed arrows. All other
kinds of information flow are represented by an ordinary arrow. Figure 4 shows these
graphical notations. This concludes our taxonomy of the flows inside a logistic system.
In section 4 we will show how to model these flows in terms of ExSpect types.

Figure 4 shows the general form of a logistic system. Such a system is composed of a
number of subsystems. It is possible to repeat this process until the lowest level is reached.
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At the lowest level there are three kinds of systems:
- physical elementary systems (PES)
- information elementary systems (IES)
- control systems (CS)

Physical elementary systems (PES) are systems dealing with resources and are controlled
by master /slave interactions. Examples of PES are machines, automated guided vehicles
and people doing manual work.

Information elementary systems (IES) are systems dealing only with information. An IES
is also controlled by master/slave interactions.

Examples of IES are demand forecast and order entry systems. An IES is controlled by
some higher authority and communicates with other (information) systems via requests
and responses (client /server interactions).

Elementary systems (PES and IES) are controlled by a control system (CS). A control
system controls subordinate systems via master/slave interactions and is controlled by
master/slave interactions. Examples of CS are: real-time controllers, MRP-modules and
managers. In general an incoming command is translated in a number of commands for
the subordinate systems.

Figure 5 shows a graphical description of these three kinds of elementary systems, i.e.
PES, IES and CS.

Now we can give a recursive definition of a logistic system (LS): a logistic system is an
elementary system (PES or IES) or a set of logistic systems controlled by a control system
(CS). Figure 6 shows an example of a logistic system.

Note that there is a hierarchy of systems. This approach allows us to decompose a logistic
system into a control system and a number of logistic sub-systems. This decomposition
process is repeated until the logistic sub-systems are considered elementary.

Our definition of a logistic system (LS) is summarized in the box. Physical elementary
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Figure 6: A logistic system

system and information elementary system are logistic systems. A group of logistic sys-
tems is a logistic system. An aggregate of one or more logistic systems controlled by some
control system is also a logistic system.

PES physical elementary system

IES information elementary system

CS = control system

LS = PES | IES | LS-list | CS,LS-list

Using this framework we have modelled typical control structures encountered in the
field of logistics. With our approach it is possible to express the recent developments in
logistics (JIT, MRP, BSC, Kanban), see [2].

3 EXSPECT

At Eindhoven University a specification language, called ExSpect, has been developed (see
van Hee et al. [8], [9] and van der Aalst and Waltmans [5], [4]). This specification language
has been developed to describe discrete dynamic systems ([8]). We use this language to
specify logistic systems. ExSpect is based on a timed coloured Petri net model, i.e. a
Petri net model extended with time and “coloured” tokens.

The classic (or basic) Petri net is a directed labelled bipartite graph with two node types
called places and transitions (see Murata [14]). The nodes are connected via labelled ares.
Connections between two nodes of the same type are not allowed. Places are represented
by circles, transitions by bars. A place p is called an input place of a transition t if there
exists a directed arc from p to t. A place p is called an output place of a transition t if
there exists a directed arc from t to p. Places may contain zero or more tokens, drawn
as black dots. The number of tokens may change during the execution of the net. A



transition is called enabled if there are enough tokens on each of its input places. In other
words, a transition is enabled if all input places contain (at least) the specified number of
tokens. An enabled transition can fire. Firing a transition means consuming tokens from
the input places and producing tokens for the output places. The state of a Petri net is
the distribution of tokens over the places. Many authors use the term marking to denote
the state of a basic Petri net. A firing sequence is a sequence of states, such that any
state s; is followed by a state s;,1, resulting from the firing of some enabled transition in
state s;.

Many authors have extended the basic Petri net model with coloured or typed tokens (e.g.
Jensen [11], van Hee et al. [8]). In these models tokens have a value, often referred
to as colour. There are several reasons for such an extension. One reason is the fact
that (uncoloured) Petri nets tend to become too large to handle. Another reason is the
fact that tokens often represent objects or resources in the modelled system. As such,
these objects may have attributes, which are not easily represented by a simple Petri net
token. These “coloured” Petri nets allow the modeller to make much more succinct and
manageable descriptions, therefore they are called “high-level” nets.

To specify complex logistic systems it is useful to extend the Petri net model with time.
We use a rather new timing concept, where “time” is in tokens. See van Hee et al. [8] and
van der Aalst [1], [2] for more information. An important advantage of using a formalism
based on Petri nets, is the fact that we can use all kinds of analysis methods developed
for Petri nets.

Existing techniques which can be used to analyse timed coloured Petri nets, may be
subdivided into four classes:

Simulation is a technique to analyse a system by conducting controlled experiments (see
Shannon [15]). These experiments are used to verify the correctness of the model and
to predict the behaviour of the system under consideration. Because simulation does
not require difficult mathematical techniques, it is easy to understand for people with
a non-technical background. Simulation is also a very powerful analysis technique,
since it does not set additional restraints.

Recent developments in computer technology stimulate the use of simulation for the
analysis of timed coloured Petri nets. The increased processing power allows for the
simulation of large nets. Modern graphical screens are fast and have a high resolution.
Therefore, it is possible to visualize a simulation graphically (i.e. animation).

Markovian analysis For timed coloured Petri nets with certain types of stochastic de-
lays it is possible to translate the net into a continuous time Markov chain. This
Markov chain can be used to calculate performance measures like the average num-
ber of tokens in a place and the average firing rate of a transition (see Ajmone Marsan

[13]).

Structural analysis There are several kinds of structural analysis, by which it is possible
to prove that a given Petri net has a set of desired properties (e.g. absence of traps
and deadlocks, boundedness, liveness, invariance, etc.).

An interesting way to analyse a coloured Petri net is to calculate (or verify) place and
transition invariants (P and T-invariants). Place and transition invariants can be
used to prove properties of the modelled system (see Jensen [11]). Intuitively, a place



invariant assigns a weight to each token such that the weighted sum of all tokens in
the net remains constant during the execution of any firing sequence. By calculating
these place invariants we find a set of equations which characterizes all reachable
states. Transition invariants are the duals of place invariants and the main objective
of calculating transition invariants is to find firing sequences with no ‘effects’.

Reachability analysis is a technique which constructs a reachability graph, sometimes
referred to as reachability tree or occurrence graph (Jensen [11], Murata [14]). Such a
reachability graph contains a node for each possible state and an arc for each possible
state change. Reachability analysis is a very powerful method in the sense that it can
be used to prove all kinds of properties. Another advantage is the fact that it does
not set additional restraints.

Obviously, the reachability graph needed to prove these properties may, even for small
nets, become very large (and often infinite). If we want to inspect the reachability
graph by means of a computer, we have to solve this problem. This is the reason we
have developed several reduction techniques, see [1] and [2].

The language ExSpect consists of two parts: a functional part and a dynamic part. The
functional part is used to define types and functions needed to describe operations on
the value of a token. The type system consists of some primitive types and a few type
constructors to define new types. A ‘sugared lambda calculus’ is used to define new
functions from a set of primitive functions. ExSpect is a ‘strong typed’ language since
it allows all type checking to be done statically. A strong point of the language is the
concept of type variables: it provides the possibility of polymorphic functions.

The dynamic part of ExSpect is used to specify a network of transitions and places and
therefore the interaction structure of a system. The behaviour of a transition, i.e. the
number of tokens produced and their values, is described by functions. The language
also has a hierarchical construct called system. A system is a subnet, i.e. an aggregate
of places and transitions. A system can also contain other (sub) systems. The system
concept supports both top-down and bottom-up design. A system can have a number of
parameters. As a result, a system can be customized or fine-tuned for a specific situation.
This way it is possible to specify generic system specifications, that are easy to reuse.

The language ExSpect is supported by a software package, also called ExSpect. This
software package consists of a number of tools. These tools are integrated in a shell,
from which the different tools can be started. The design interface is a graphical mouse
driven editor, which is used to construct or to modify an ExSpect specification. Such a
specification is stored in a source file (module). This source file is checked by the type
checker for type correctness. If the specification is correct the type checker generates
an object file, otherwise the errors are reported to the design interface. The interpreter
uses the object file to simulate the specification. This interpreter is connected to one
or more run-time interfaces. These interfaces allow one or more users to interact with
the running simulation. It is also possible to interact with some external applications,
for example presentation software. Recently we added the ITPN Analysis Tool (IAT) to
ExSpect. This tool translates a specification into an interval timed Petri net which is
analysed using the methods described in [1]. The tool also allows for more traditional
kinds of analysis such as the generation of place and transition invariants.



4 A LOGISTIC LIBRARY

We have modelled (specified) many logistic systems. These practical experiences show
that these logistic systems have subsystems which have a lot in common. For example,
a distribution centre and a production unit have transportation subsystems for internal
transport, from a modelling point of view these subsystems are (often) similar. Especially
when we structure the logistic system as described in section 2, we encounter typical
subsystems. To support the modelling process it is useful to reuse these subsystems, often
called components or building blocks. Reusing these components reduces the modelling
effort.

In this section we describe a small logistic library containing a number of powerful prede-
fined components. These components are inspired by work done in the TASTE-project.
To structure the library and to support the modelling process we use the approach pre-
sented in section 2. We start by identifying a number of useful data-types using the
classification given in section 2. Then we describe a number of logistic building blocks.
It is our belief that a library like this one is useful when modelling “real world” logistic
systems. A building block (component) is considered to be useful if it is:

easy to use

powerful

flexible

robust

A component is easy to use if it is easy to understand its semantics and there is a straight-
forward relation with the world we want to model. The modelling power of a library de-
pends on the expressive power of the building blocks (is it possible to model something?)
and the average size of a model in terms of the building blocks. Note that it is possible to
have building blocks allowing for the modelling of a large class of systems but in a round-
about way. Compare this to programming in assembler, i.e. it is possible to program
anything but it takes a lot of effort. The flexibility of a component also depends on two
aspects: (1) is it easy to adapt the component and (2) are the important characteristics
of a component parameterized. Parameterized building blocks are useful, because they
are tailored for a specific situation. Finally, a building block has to be robust in the sense
that it can handle various inputs, i.e. the number of assumptions about the environment
of the component is as small as possible.

The logistic library we have developed, is an attempt to maximize the four objectives:
easy to use, powerful, flexible and robust. Note that some of these objectives may be con-
tradictory. Our goal is not to present an exhaustive list of logistic components covering
all situations encountered in logistics, but to show that it is possible to create a compre-
hensive set of generic logistic building blocks. Our aim is to capture logistic knowledge
in this library and to validate the “80/20-situation”, where 80 percent of the components
needed are already available in standard libraries and take up only 20 percent of your
time. But the 20 percent you have to create yourself take up 80 percent of your time.

The library we propose is hierarchical, i.e. some of the building blocks are composed



of other building blocks. ExSpect supports the user of this library to make his own
building blocks from already existing ones. This way the user is enabled to make complex
hierarchical models with a lot of levels. Therefore we provide some guidelines: (1) the
number of levels in the hierarchy (visible to the user) should be smaller than 5, (2) the
number of different building blocks at the same level (in a subsystem) should be smaller
than 10. Note that these figures a only guidelines, they depend on the system to be
modelled.

4.1 The type definitions

In this section 2 we presented a classification of the flows inside a logistic system. We
will use this to classify the type definitions used by the logistic building blocks. A list of
basic type definitions is given in table 1. The type material is a mapping from products

type id from num;

type location from str;

type prod from str;

type operation from str;

type capacity from real;

type timewindow from real >< real;
type commit from bool;

type conditions from real;

type age from real;

type material from prod -> real;

type task from operation >< capacity;
type route from (num -> (location >< $task)) >< num;

Table 1: Some basic type definitions

(prod) to reals representing the quantity of each product. The type timewindow is used
to denote an interval of time. Another interesting type is the type route. A route is a
list of pairs and a pointer pointing to a pair in the list. Each pair is formed of a location
and a set of tasks. The pointer is used to identify the current location and the tasks to
be executed at this location. Note that the list is implemented as a mapping from num to
location >< $task. Table 2 shows a value of type route. All other types definition in
table 1 are self-explanatory.

route
num location $ task num
operation ‘ capacity
1 | ’EindhovenDC’
2 "ParisPUS&’ "drillingFAS’ 2.55
"grindingDR7’ 1.08
"grindingRT6’ 1.29 2
3 "LyonPUY’ 'paintHGY’ 4.93
‘polishIR7’ 0.08
4 "MadridDC’

Table 2: A wvalue of type route



-1.1
type goods from id >< route >< material;
-1.2
type means from id >< (operation -> capacity) >< age;
-211
type realtimeprodcommand from $goods >< means >< task >< $goods;
type realtimeprodsignal from $goods >< $means;
-2.1.2
type aggprodcommand from (prod >< timewindow) -> real;
type aggprodsignal from (prod >< timewindow) -> real;
-2.1.3
type delivercommand from goods;
type receivesignal from goods;
type stocklevel from material;
type acceptedorder from goods;
type replenishcommand from (prod >< timewindow) -> real;
type replenishsignal from material;
type ordervolume from ((prod >< timewindow) -> real) >< (material);
type orderlimit from (prod >< timewindow) -> (real >< conditions);
-214
type replenishmentstrategy from prod -> (str >< real >< real >< real);
type inventorylevels from prod -> (real >< real >< real);
-2.15
type routecommand from (num -> (location >< $goods >< $goods)) >< means;
type routesignal from means >< location;
type availabletranscap from timewindow -> (operation -> (capacity >< conditions));
type acceptedtransorder from goods;
-2.1.6
type transportstrategy from str >< real >< real >< real;
type transportperformance from real >< real >< real;
-2.2
type request from id >< route >< material >< timewindow >< conditions >< commit;
type response from id >< route >< material >< timewindow >< conditions >< commit;
- 23
type report from str;
-24
type admin from str;

Table 3: Some logistic type definitions

Table 3 shows some type definitions, each corresponding to a specific kind of flow in
a logistic system. The flow of goods is represented by the type goods. Goods flowing
through the network have an identification, some routing information and some materials
associated to it. Examples of objects of type goods are, a pallet, a parcel or a single
product. Table 4 shows a value of type goods representing a set of parts, needed to
produce a car, with identification 897654. Note that currently the parts are located in
Paris, where they have to be assembled.

Objects of type means have an identification, an age and a capacity for each kind of



goods

id route material
num location $ task num prod real
operation ‘ capacity
1 | "EindhovenDC’ "chassisX19’ 1
"ParisPU8’ "drillingFA8’ 2.55 'wheelT'45’
"erindingDR7’ 1.08 ‘'engineFM 11’ 1
897654 "assembleRT6’ 1.29 2
3 "LyonPUY’ 'paintHGY’ 4.93
'polishIR7’ 0.08
4 "MadridDC’

Table 4: A wvalue of type goods

operation the object can perform. This type is used to specify capacity resources, such
as machines, trucks, etc.

Client /server interactions are represented by objects of the type request and response.
A request has an identification, a route, a contents (material), a time window, a condition
and a commit field. The usual interpretation of a request is: “can you deliver me some
materials within a time window, given some conditions”. If the commit field is “true” the
request is automatically satisfied if possible. The conditions field is used to specify the
requested conditions, for example maximal price or minimal quality. In all cases a request
signal is followed by a response signal having the same identification.

The other types (mainly master /slave interactions) will be discussed when we describe the
corresponding building blocks. Note that we chose “the easy way out” to model reports
and administrative information.

4.2 The stock point

In this section we describe a building block: the sp system, where sp stands for stock
point. This building block is composed of a number of other building blocks. All of
these building blocks can be used to model inventories. Examples of stock points (i.e.
sp systems) are a regional warehouse, a distribution centre or a storage area containing
supplies and raw materials. The main characteristic of our stock point is that it has a
more or less autonomous behaviour.

ExSpect system definitions are split in a header and a contents part. The header part
(sometimes called signature) contains the system name, its interaction structure and its
parameters. The interaction structure is given by (possibly empty) lists of input places
and output places. The contents part describes the internal structure of the system. For
more information, see [5] or [8].

The header of the sp system is:

sys splin incommand:replenishmentstrategy, responsein:response,
ingoods:goods, requestin:request,
out outstatus:inventorylevels, requestout:request,
outgoods:goods, responseout:response,
val reporttime:real,



location:location,
suppliertable: (prod->((location->num)><conditions)),
expectedorderleadtime:real,
expectedhandlingtime:real,
fun replenish[s:replenishmentstrategy,physicalstock:material,
demand: ((prod><timewindow)->real),
ordered: ((prod><timewindow)->real)
] :replenishcommand,
orderlimit[s:replenishmentstrategy,physicalstock:material,
demand: ((prod><timewindow)->real),
ordered: ((prod><timewindow)->real)
]:orderlimit,
handleintime[x:material] :real,
handleouttime[x:material] :real

There are four input pins and four output pins. The pins ingoods and outgoods represent
the flow of goods in and out of the stock point. If some external party needs some products
it can send a request to the stock point via the place connected to requestin. The stock
point responds via responseout. The main objective of a stock point is to keep inventories
of certain products, if the inventory level of a product falls below a certain level or we want
to anticipate on future developments a replenishment is needed. To order the products
necessary for such a replenishment we have the pins requestout and responsein. The
replenishment strategy can be altered by some “higher” authority via the incommand and
outstatus pins. The meaning of the value and function parameters will be discussed
when we describe the subsystems of sp shown in figure 7.

The system stockcontrol controls the other two logistic subsystems replenish and
distribute:

sys stockcontrol[in incommand:replenishmentstrategy, rs:replenishsignal,
ov:ordervolume,
out outstatus:inventorylevels, rc:replenishcommand,
ol:orderlimit,
val reporttime:real,

fun replenish[s:replenishmentstrategy,physicalstock:material,

demand: ((prod><timewindow)->real),
ordered: ((prod><timewindow)->real)
] :replenishcommand,

orderlimit[s:replenishmentstrategy,physicalstock:material,

demand: ((prod><timewindow)->real),
ordered: ((prod><timewindow)->real)
]:orderlimit

1;

This system has an interface with some higher authority which tells the system to change
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Figure 7: The stock point

its replenishment strategy. This strategy is defined for each product, see table 3. A
strategy has a name and a number of parameters. Based on this strategy and the func-
tion parameter replenish the system issues replenishment commands via output pin
rc. The parameters of the function replenish are the strategy (s), the current stock
(physicalstock), the backorders and expected demand (demand) and the products al-
ready ordered (ordered). The input pin rs keeps the stockcontrol system informed
about the (physical) replenishments. The output pin ol of type orderlimit is used to pass
the upper bounds for the quantity of distributed goods in each period to the distribute
system. The input pin ov keeps the stockcontrol system informed about the physical
stock (material) and the actual demand for products ((prod><timewindow)->real).
The upper bounds are determined using the function parameter orderlimit. The pa-
rameters of this function are identical to the parameters of the replenish function. From
time to time the system reports the physical stock level, the demand level and the amount
of ordered products using the output pin outstatus. The time between two successive
reports is set using the reporttime parameter.

The system replenish takes care of the ordering of goods to replenish the stock:

sys replenish[in incommand:replenishcommand, response:response, ingoods:goods,
out outsignal:replenishsignal, request:request, outgoods:goods,
val reporttime:real,
location:location,
suppliertable: (prod->((location->num)><conditions)),
expectedorderleadtime:real



The meaning of the input and output pins follows directly from figure 7. The replenish
system accepts all goods addressed to the location parameter and sends them to the place
connected to outgoods. Periodically the total quantity of accepted goods is reported. The
time between two successive reports is specified by the value parameter reporttime. The
value parameters suppliertable and expectedorderleadtime are used to order the
products.

The system distribute accepts orders, stores products and distributes them:

sys distribute[in incommand:orderlimit, request:request, ingoods:goods,
out outstatus:ordervolume, response:response, outgoods:goods,
val location:location,
reporttime:real,
expectedhandlingtime:real,
fun handleintime[x:materiall]:real,
handleouttime [x:material] :real

The meaning of the pins is straightforward given figure 7. The distribute system re-
ports the current inventory level and the accepted orders from time to time (as specified by
reporttime) via the output pin outstatus. The value parameter expectedhandlingtime
is used to determine whether it is possible to deliver within the requested time window.
An upper bound for the number of products that can be supplied in each period is given
via the input pin incommand. The two function parameters represent the time it takes to
store and the time to pick some material.

Now it is time to take a closer look at the logistic subsystems replenish and distribute.
Figure 8 shows the internal structure of the replenish system. It contains three sub-
systems: replenishcontrol, procurement and acceptgoods. The replenishcontrol
system passes the replenishment commands to the procurement system and reports
the total amount of received goods for each period. The procurement system orders
goods requested by the replenishcontrol system. The acceptgoods system informs
the replenishcontrol system about the actual replenishments. Note that procurement
is an IES, acceptgoods is a PES and replenishcontrol is a CS.

The internal structure of the distribute system is shown in figure 9. The subsys-
tem acceptorders handles the incoming requests for goods and reports all accepted
orders to the distributioncontrol system. The control system distributioncontrol
passes the maximum order quantity for each period to the acceptorders system. It also
controls the stockholding system by issuing commands via the output pin dc of type
delivercommand.
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This concludes our description of the building blocks related to stock holding. We realize
that this description is far from complete, but is gives the reader a impression of the mo-
delling capabilities of such a library. We also specified building blocks for other logistical
processes, such as, transportation, demand, supply and production. The total number
of building blocks available is about 20, see [2] for a more extensive description of this
library.

5 CONCLUDING REMARKS

We described a framework for the modelling and specification of logistic systems. This
framework consists of a language, a software package and the method presented in this
paper. The method has been used to develop a number of standard logistical components.
These components reduce the time needed to model a complex logistic system.

The modelling effort depends on the availability of these building blocks. We aim at a
“80/20”-situation, where 80 percent of the components needed are already available in
standard libraries and take up only 20 percent of your time. But the 20 percent you have
to create yourself take up 80 percent of your time.

Practical experiences give us the confidence that this approach is powerful and easy to
apply.

In further research the following subjects are of our interest. First, we want to extend
our modelling approach to a well-defined method. We also want to improve the logistic
library and create new ones (e.g. a library for information systems). Finally, we want to
improve the existing analysis tools.
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