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Abstract

While many work
ow management systems have emerged in recent years, few of them

provide any form of support for veri�cation. Consequently, most work
ows become opera-

tional before they have been thoroughly checked. This frequently results in runtime errors

which need to be corrected on-the-
y at, typically, prohibitive costs. This paper shows how

veri�cation of a typical process control speci�cation, which is at the heart of most work
ow

speci�cations, can bene�t from state-of-the-art Petri-net based analysis techniques. To il-

lustrate the applicability of the approach, a veri�cation tool has been developed. This tool

can download and verify the correctness of process de�nitions designed with Sta�ware, one

of the leading work
ow management systems.

1 Introduction

Recent years have seen the proliferation of work
ow management systems developed for dif-

ferent types of work
ows and based on di�erent paradigms (see e.g. [Aal98a, EN93, EKR95,

GHS95, JB96, Kou95, Law97, Sch96, WFM96]). Despite the abundance of such tools, the

critical issue of work
ow veri�cation is virtually neglected. Few tools provide any form of

veri�cation support.

This lack of support can be explained from the fact that the veri�cation of work
ows is hard

from a computational as well as an algorithmic point of view (see e.g. [Aal97, AAH98, HOR98]).

The consequences, however, are that few work
ows are thoroughly checked before they are

�Part of this work was done at AIFB (University of Karlsruhe, Germany) and CTRG (University of Colorado,

USA) during a sabbatical leave.
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deployed in practice, which often results in errors having to be corrected in an ad hoc fashion

often at prohibitive costs.

Work
ow speci�cations address many issues including data 
ow, exception handling, recov-

ery etc. Hence, veri�cation of a full work
ow speci�cation is typically not feasible. However,

typically the speci�cation of process control is at the heart of most work
ow speci�cations.

Work
ow speci�cation languages need to support the speci�cation of moments of choice, se-

quential execution, parallelism, synchronization, and iteration.

In this paper we focus on Task Structures (see e.g. [HN93]) which is a powerful language for the

speci�cation of process control. Task structures can be seen as a good general representative

of process control speci�cation languages used in work
ow management. The speci�cation lan-

guage as used in [CCPP98] is essentially the same as Task Structures. In [BHP97, BH97] Task

Structures were extended with advanced work
ow concepts and used for a real-life work
ow ap-

plication involving road closures in Queensland. There are also work
ow management systems

that use a language close to Task Structures. In fact, we show that there is a one-to-one corre-

spondence between Task Structures and the diagramming technique used in Sta�ware [Sta97].

Sta�ware is one of the leading work
ow management systems with more than 550,000 users

worldwide. In fact, according to the Gartner Group, Sta�ware is the market leader with 25

percent of the global market [Cas98].

Petri nets have been around since Carl Adam Petri's PhD thesis in the early sixties [Pet62] and

have found many applications in computer science. Petri nets have a rigorous mathematical

foundation and a substantial body of theory for their formal analysis has been developed. In

this paper this theory is exploited and state-of-the-art Petri-net based techniques are used for

the veri�cation of Task Structures. The results provide an important impetus for the further

automation of work
ow veri�cation, in particular as many sophisticated automated tools for

the analysis of Petri nets exist. One such tool, Wo
an [AHV97], and its application, will be

brie
y discussed in this paper. In particular, it will be demonstrated how Wo
an can be used

for the veri�cation of work
ow speci�cations in Sta�ware.

The organization of this paper is as follows. In section 2 the various perspectives of work-


ow modeling are discussed. In Section 3, Task Structures are introduced. In Section 4 Task

Structures are �rst mapped to Petri nets and then an extension of this mapping is described

to a particular form of Petri nets, WF-nets, particularly suitable for work
ow modeling. Sec-

tion 5 then applies formal Petri net analysis techniques to the results of such mappings. In

Section 6 we describe the functionality of Wo
an and in particular the implementation of the

link between Sta�ware and Wo
an. Section 7 provides a concrete case study highlighting the

main aspects of the approach presented. Section 8 gives pointers to related work and Section 9

provides conclusions and some topics for future research.
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2 Work
ow perspectives

The primary task of a work
ow management system is to enact case-driven business processes

by joining several perspectives. The following perspectives are relevant for work
ow modeling

and work
ow execution: (1) control 
ow (or process) perspective, (2) resource (or organization)

perspective, (3) data (or information) perspective, (4) task (or function) perspective, (5) op-

eration (or application) perspective. (These perspectives are similar to the perspectives given

in [JB96].) In the control-
ow perspective, work
ow process de�nitions (work
ow schemas)

are de�ned to specify which tasks need to be executed and in what order (i.e., the routing or

control 
ow). A task is an atomic piece of work. Work
ow process de�nitions are instantiated

for speci�c cases (i.e., work
ow instances). Examples of cases are: a request for a mortgage

loan, an insurance claim, a tax declaration, an order, or a request for information. Since a

case is an instantiation of a process de�nition, it corresponds to the execution of concrete

work according to the speci�ed routing. In the resource perspective, the organizational struc-

ture and the population are speci�ed. The organizational structure describes relations between

roles (resource classes based on functional aspects) and groups (resource classes based on or-

ganizational aspects). Thus clarifying organizational issues such as responsibility, availability,

and authorization. Resources, ranging from humans to devices, form the organizational pop-

ulation and are allocated to roles and groups. The data perspective deals with control and

production data. Control data are data introduced solely for work
ow management purposes,

e.g., variables introduced for routing purposes. Production data are information objects (e.g.,

documents, forms, and tables) whose existence does not depend on work
ow management. The

task perspective describes the elementary operations performed by resources while executing

a task for a speci�c case. In the operational perspective the elementary actions are described.

These actions are often executed using applications ranging from a text editor to custom build

applications to perform complex calculations. Typically, these applications create, read, or

modify control and production data in the information perspective.

This paper addresses the problem of work
ow veri�cation. Although each of the perspectives

is relevant, we focus on the control 
ow perspective. In fact, we focus on the life cycle of one

case in isolation. In the remainder of this section, we will motivate why it is reasonable to

abstract from the other perspectives when verifying a work
ow.

The resource perspective can only restrict the routing of cases, i.e., it does not enable execution

paths excluded in the control 
ow perspective. Therefore, it suÆces to focus on deadlocks as

a result of restrictions imposed by the resource perspective. A potential deadlock could arise

(1) when multiple tasks try to allocate multiple resources at the same time, or (2) when there

are tasks imposing such demanding constraints that no resource quali�es. The �rst type of

deadlock often occurs in 
exible manufacturing where both space and tools are needed to

complete operations thus potentially resulting in locking problems [SV90]. However, given

today's work
ow technology, such deadlocks cannot occur in a work
ow management system:

At any time there is only one resource working on a task which is being executed for a speci�c
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case. In today's work
ow management systems it is not possible to specify that several resources

are collaborating in executing a task. Note that even if multiple persons are executing one task,

e.g., writing a report, only one person is allocated to that task from the perspective of the

work
ow management system: This is the person that selected the work item from the in-

basket (i.e., the electronic worktray). Since a person is working on one task at a time and each

task is eventually executed by one person (although it may be allocated to a group a people),

it suÆces to check for the presence of suÆcient resources. Therefore, from the viewpoint of

veri�cation, i.e., analyzing the logical correctness of a work
ow process, it is reasonable to

abstract from these locking problems. (Nevertheless, if in the future collaborative features are

explicitly supported by the work
ow management system, then these problems should be taken

into account.) The second type of deadlock occurs when there is no suitable resource to execute

a task for a given case, e.g., there is not a single resource with the speci�ed role. Generally,

such problems can be avoided quite easily by checking whether all role/group expressions

yield a non-empty set of resources. However, there may be more subtle errors resulting from

case management (a subset of tasks for a given case is required to be executed by the same

resource) and function separation (two tasks are not to be executed by the same resource to

avoid security violations). For example: Task 1 should be executed by the same person as task

2 and task 2 should be executed by the same person as task 3. However, task 3 should not be

executed by the person who executed task 1. Clearly, there is no person quali�ed to execute

task 3. Such problems highly depend on the work
ow management system being used and are

fairly independent of the routing structure. Therefore, we think it is reasonable to abstract

from these resource-driven deadlocks.

We partly abstract from the data perspective. The reason we abstract from production data

is that these are outside the scope of the work
ow management system. These data can be

changed at any time without notifying the work
ow management system. In fact their exis-

tence does not even depend upon the work
ow application and they may be shared among

di�erent work
ow processes, e.g., the bill-of-material in manufacturing is shared by produc-

tion, procurement, sales, and quality control processes. The control data used by the work
ow

management system to route cases are managed by the work
ow management system. How-

ever, some of these data are set or updated by humans or applications. For example, a decision

is made by a manager based on intuition or a case is classi�ed based on a complex calculation

involving production data. Clearly, the behavior of a human or a complex application cannot

be modeled completely. Therefore, some abstraction is needed to incorporate the data per-

spective when verifying a given work
ow. The abstraction used in this paper is the following.

Since control data (i.e., work
ow attributes such as the age of a customer, the department

responsible, or the registration date) are only used for the routing of a case, we incorporate

the routing decisions but not the actual data. For example, the decision to accept or to reject

an insurance claim is taken into account, but not the actual data where this decision is based

on. Therefore, we consider each choice to be a non-deterministic one. There are other reasons

for abstracting from the work
ow attributes. If we are able to prove soundness (i.e., the cor-

rectness criterion used in this paper) for the situation without work
ow attributes, it will also
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hold for the situation with work
ow attributes. Last but not least, we abstract from triggers

and work
ow attributes because it allows us to use ordinary Petri nets (i.e., P/T nets) rather

than high-level Petri nets. From an analysis point of view, this is preferable because of the

availability of eÆcient algorithms and powerful analysis tools.

For similar reasons we (partly) abstract from the task and operation perspectives. We consider

tasks to be atomic and abstract from the execution of operations inside tasks. The work
ow

management system can only launch applications or trigger people and monitor the results. It

cannot control the actual execution of the task. Therefore, from the viewpoint of veri�cation,

it is reasonable to focus on the control-
ow perspective. In fact, it suÆces to consider the life

cycle of one case in isolation. The only way cases interact directly, is via the competition for

resources and the sharing of production data. (Note that control data are strictly separated.)

Therefore, if we abstract from resources and data, it suÆces to consider one case in isolation.

The competition between cases for resources is only relevant for performance analysis.

Note that we do not explicitly consider transactional work
ows [GHS95]. There are several

reasons for this. First of all, most work
ow management systems (in particular the commercial

ones) do not support transactional features at the work
ow modeling language (e.g., Sta�ware,

the system considered in this paper, has no such facilities). Second, as is shown in [AAH98]

the various transactional dependencies can easily be modeled in terms of Petri nets. Therefore,

we can straightforwardly extend the approach in this paper to transactional work
ows.

3 Work
ow modeling using Task Structures

The speci�cation of work
ows in general is known to be quite complex and many issues are

involved. Work
ow speci�cations should incorporate execution dependencies between tasks,

information 
ow between tasks, access to distributed databases, temporal constraints, excep-

tion handling etc. In this paper though, focus is solely on control 
ow aspects in work
ow

speci�cations. (See previous section.) Any conceptual work
ow speci�cation language should

at least be capable of capturing moments of choice, sequential composition, parallel execution,

and synchronization. Task Structures are capable of modeling these task dependencies. More-

over, Task Structures are very close to the diagramming languages used by today's work
ow

management systems. As mentioned in the introduction, Sta�ware uses a diagramming lan-

guage corresponding to Task Structures. Compared to diagramming languages based on Petri

nets, e.g., the modeling technique used by COSA (Software Ley/COSA Solutions) or Income

(Promatis), the expressive power is limited. However, compared to Petri-net-based languages,

Task Structures result in a more compact representation and termination is implicit, i.e., there

is no need to identify a �nal task or �nal state. Section 3.1 introduces Task Structures. A

formal de�nition of Task Structures is given in Section 3.2.
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3.1 Informal explanation of Task Structures

Task Structures were introduced in [Bot89] to describe and analyze problem solving processes.

In [WH90, WHO92] they were extended and used as a meta-process modeling technique for de-

scribing the strategies used by experienced information analysts. In [HN93] they were extended

again and a formal semantics in terms of Process Algebra was given [BW90].

In Figure 1, the main concepts of Task Structures are graphically represented. They are dis-

cussed subsequently.

A

B

C G

H

B

FE

task

non-terminating
decision

trigger

synchronizer

initial item

terminating
decision

decomposition

Figure 1: Graphical representation of Task Structure concepts

The central notion in Task Structures is the notion of a task. In a work
ow context, tasks are

basic work units that collectively achieve a certain goal. A task can be de�ned in terms of

other tasks, referred to as its subtasks. This decomposition may be performed repeatedly until

a desired level of detail has been reached. Tasks with the same name have the same decom-

position, e.g. the tasks named B in Figure 1. Performing a task may involve choices between

subtasks, decisions represent these moments of choice. Decisions coordinate the execution of

tasks. Two kinds of decisions are distinguished: terminating and non-terminating decisions. A
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decision that is terminating, may lead to termination of the execution path of that decision. If

this execution path is the only active execution path of the supertask, the supertask terminates

as well.

Triggers, graphically represented as arrows, model sequential order. In Figure 1 the task with

name G can start after termination of the top task named B. Initial items are those tasks

or decisions, that have to be performed �rst as part of the execution of a task that has a

decomposition. Due to iterative structures, it may not always be clear which task objects are

initial. Therefore, this has to be indicated explicitly. Finally, synchronizers deal with explicit

synchronization. In Figure 1 the task named H can only start when the tasks with names C

and G have terminated. It is important to note that tasks have XOR-join/AND-split semantics

[Law97], i.e., a task can be triggered via any of the ingoing arcs (XOR-join) and triggers

subsequent tasks via all of the outgoing arcs (AND-join). Decisions have an XOR-join/XOR-

split semantics and synchronizers have an AND-join/AND-split semantics. There is no need

for an explicit XOR-join building block or an explicit AND-split building block, because these

routing constructs are already provided by normal tasks.

As a simple example of a Task Structure, consider Figure 2, which models an example taken

from [CCPP98]. The example concerns a simple assembly line for desktop computers. The

construction begins by preparing a cabinet, which may be either a tower or a minitower. At

the same time, the motherboard is prepared, its CPU is inserted followed by the disk controller.

When both cabinet and motherboard are ready, the motherboard is inserted in the cabinet

and then step by step all other components are added. After the FDD is inserted, a CD-ROM

is added if the cabinet is a tower. The assembly ends with the insertion of a hard drive and

video ram.

3.2 Formal de�nition of Task Structures

In this paper we translate Task Structures into Petri nets. To allow for an unambiguous

translation and to prove the correctness of the veri�cation technique, we provide a formal

de�nition of Task Structures. In this paper, we will only give the formal semantics implicitly

(via the mapping onto Petri nets).

De�nition 3.1

Formally, a Task StructureW = (X ;U ; T ;S;D;Dt
;Trig;Name; I) without decomposition

consists of the following components:

1. A set X of task objects. X is the union of a set of synchronizers S, a set of tasks T
and a set of decisions D. In D we distinguish a subset Dt

consisting of the terminat-

ing decisions. For convenience, we de�ne the set U , the set of non-synchronizers,

as T [D.

2. A relation Trig � X �X of triggers, capturing which task object can start which

other task object(s) (if any).
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ASSEMBLE PC

Insert FDD

tower
minitower

Get Cabinet

Prepare
Motherboard

Insert CPU

Insert Disk

Controller

Motherboard

Plug

1.44 MB

Insert Cd-Rom
BestCD 4x

Add 1.6 GB HD

Plug Video
Ram

Figure 2: Main task for desktop assembly line

3. A function Name: T ! N yielding the name of a task, where N is a set of names.

4. A subset I of the set of non-synchronizers U , consisting of the initial items.

2

In this paper decomposition of Task Structures in not considered. Hierarchical decomposition

can be incorporated in a trivial way, but recursive decomposition increases the expressive power

of Task Structures to such an extent that veri�cation becomes computationally intractable

(see [HO99]).

Example 3.1 The Task Structure of Figure 3 is formally captured by

X = ft1; t2; t3; t4; t5; t6; t7; t8; s1; d1; d2g;
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t1

t2 t3 t4

t5

t6 t7 t8

d1 d2

s1

A

B C D

E

F G H

Figure 3: Example Task Structure

T = ft1; t2; t3; t4; t5; t6; t7; t8g;

S = fs1g;

D = fd1; d2g;

Dt
= fd1g:

Further, t1Trigt2, t1Trigt3, t1Trigt4, t2Trigt5, t3Trigt5 etc, and Name(t1) = A, Name(t2) =

B, etc. Finally, I = ft1g. 2

At this point it is important to emphasize an important di�erence between Task Structures

and a special class of Petri nets, called work
ow nets, which will be used as the basis for their

formal veri�cation. Task Structures do not have a unique �nal task as opposed to work
ow

nets. Therefore, it is diÆcult to identify the point where a Task Structure terminates. Hence,

a major challenge in the mapping from Task Structures to work
ow nets is to ensure that the

result of the mapping indeed has a unique �nal place. The notions of outdegree and indegree

play an important role in this mapping as they facilitate keeping track of the number of parallel

streams at any point in time.

De�nition 3.2

The outdegree of a task or synchronizer u is the number of task objects u triggers upon

termination.

out(u) = #fx 2 X j uTrigxg

The indegree of a synchronizer s is the number of its input task objects:

in(s) = #fx 2 X j xTrigsg
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2

Example 3.2 In Figure 3, the task named A has outdegree 3 indicating that three parallel

streams are started after its termination. 2

4 Mapping Task Structures onto WF-nets

In this section we consider the formal mapping of Task Structures to work
ow nets, which

are a special class of Petri nets. First, we introduce some standard concepts and notations

for Petri nets. Then, we provide the mapping which is used to verify Task Structures using

state-of-the-art Petri net technology.

4.1 Introduction to Petri nets

This section introduces the basic Petri net terminology and notations used in the remainder.

Readers familiar with Petri nets can skip this section. Readers interested in more background

material are referred to [DE95, Jen96, Mur89, Rei85].

The classical Petri net is a directed bipartite graph with two node types called places (graphi-

cally represented by circles) and transitions (graphically represented by thick lines). The nodes

are connected via directed arcs. In this paper we consider Petri nets with arc weights. Arc

weights represent the number of connections between a certain place and a certain transition.

De�nition 4.1 (Petri net with arc weights)

A Petri net with arc weights is a quadruple (P; T; F;W ):

- P is a �nite set of places,

- T is a �nite set of transitions (P \ T = ?),

- F � (P � T ) [ (T � P ) is a set of arcs (
ow relation),

- W :F ! IN
+
is a function assigning weights to arcs.

2

A place p is called an input place of a transition t i� there exists a directed arc from p to t.

Place p is called an output place of transition t i� there exists a directed arc from t to p. We

use �t to denote the set of input places for a transition t. The notations t�, �p and p� have

similar meanings, e.g., p� is the set of transitions sharing p as an input place.

At any time a place contains zero or more tokens, drawn as black dots. The state M , often

referred to as marking, is the distribution of tokens over places, i.e., M 2 P ! IN. We will

represent a state as follows: 1p1 + 2p2 + 1p3 + 0p4 is the state with one token in place p1, two
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tokens in p2, one token in p3 and no tokens in p4. We can also represent this state as follows:

p1+2p2+ p3. To compare states, we de�ne a partial ordering. For any two states M1 and M2,

M1 �M2 i� for all p 2 P : M1(p) �M2(p).

The number of tokens may change during the execution of the net. Transitions are the active

components in a Petri net: they change the state of the net according to the following �ring

rule:

(1) A transition t is said to be enabled i� each input place p of t contains at least W (p; t)

tokens.

(2) An enabled transition may �re. If transition t �res, then t consumes W (p; t) tokens from

each input place p of t and produces W (t; p) tokens for each output place p of t.

G1

O1

R1

W1

R2

O2

G2

W2

t2

t1

t3 t4

t6

t5

Figure 4: A Petri-net modeling two traÆc lights.

Example 4.1 The Petri-net in Figure 4 models two traÆc lights for the same intersection.

The initial state is such that the light of the �rst traÆc light is red (token in place

R1) and the light of the second traÆc light is green (token in place G2). Note that the

moment a traÆc light turns red, control is transferred (via places W1 and W2) to the

other traÆc light. In the initial state the only transition that is enabled is transition t6.

Firing transition t6 would lead to the consumption of the token in G2 and the production

of a token for O2. In this example all arc weights are equal to 1. Throughout this paper,

we will only depict arc weights not equal to 1. Therefore, no arc weights are portrayed

in Figure 4. 2

Given a Petri net with arc weights PN = (P; T; F;W ) and a state M1, we have the following

notations:

- M1[tiPNM2: transition t is enabled in state M1 and �ring t in M1 results in state M2
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- M1[ iPNM2: there is a transition t such that M1[tiPNM2

- M1[�iPNMn
: the �ring sequence � = t1t2t3 : : : tn�1 2 T � leads from state M1 to state

M
n
, i.e., M1[t1iPNM2[t2iPN :::[tn�1iPNMn

A state M
n
is called reachable from M1 (notation M1[�iMn

) i� there is a �ring sequence

� = t1t2 : : : tn�1 such that M1[�iMn
. The subscript PN is omitted if it is clear which Petri net

is considered. Note that the empty �ring sequence is also allowed, i.e., M1[�iM1.

We use (PN ;M) to denote a Petri net PN with an initial state M . A state M 0 is a reachable

state of (PN ;M) i� M [�iM 0. Let us de�ne some standard properties for Petri nets (cf. [DE95,

Jen96, Mur89, Rei85]). These de�nitions have been added to make the paper self-contained.

Liveness and boundedness correspond to the dynamic behavior of a Petri net in a given state.

De�nition 4.2 (Live)

A Petri net (PN ;M) is live i�, for every reachable state M 0
and every transition t there

is a state M 00
reachable from M 0

which enables t. 2

De�nition 4.3 (Bounded, safe)

A Petri net (PN ;M) is bounded i�, exists a natural number n such that for every reach-

able state and every place p the number of tokens in p is less than n. The net is safe i�

for each place the maximum number of tokens does not exceed 1. 2

Connectedness, the free-choice property, and place invariants are static properties which do

not depend on some initial marking.

De�nition 4.4 (Strongly connected )

A Petri net is strongly connected i�, for every pair of nodes (i.e. places and transitions)

x and y, there is a path leading from x to y. 2

De�nition 4.5 (Free-choice)

A Petri net is a free-choice Petri net i�, for every two transitions t1 and t2, �t1\�t2 6= ?

implies �t1 = �t2. 2

De�nition 4.6 (Semi-positive place invariant)

A semi-positive place invariant Z is a function mapping places onto natural numbers,

i.e., Z:P ! IN, such that for any transition t 2 T ,
P

p2�t
W ((p; t))Z(p) =

P
p2t�

W ((t; p))Z(p). 2

If for every place there is a semi-positive place invariant which assigns a positive weight to

that place, then the Petri net is bounded for any initial marking [DE95, Mur89, Rei85]. This

well-known property will be used to prove one of the main results presented in this paper.
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Example 4.2 The Petri net shown in Figure 4 is live, bounded, safe, strongly connected,

and free-choice. The net is live because from any of the 6 reachable states it is possible

to enable any transition. The net is safe because the number of tokens in any of the 8

places in each of the 6 reachable states is either 0 or 1. Since the net is safe, it is also

bounded. The net is strongly connected, because there is a directed path between any

pair of nodes. The Petri net shown in Figure 4 is con
ict free, i.e., no two transitions are

sharing an input place. Therefore, it is also free-choice. Examples of semi-positive place

invariants are: R1 + O1 + G1, R2 + O2 + G2, and W1 + O1 + G1 +W2 + O2 + G2.

(Note that we use a notation similar to states.) Since every place is covered by some

semi-positive place invariant, the net is bounded for any initial state. 2

4.2 The mapping

Mapping Task Structures to classical Petri nets is relatively straightforward. Each task t 2 T
is mapped onto a place E

t
, and a transition C

t
is created which has as input place E

t
and as

output places all places corresponding to the task objects triggered by that task (if such places

exist!). An exception is the treatment of synchronizers. For each synchronizer s 2 S and each

task object x 2 X such that xTrigs, a place with the name �
x;s

is created. Synchronization is

now achieved by creating a transition H
s
which has all these places as input places and has as

output places the places corresponding to the task objects triggered by that synchronizer.

Each decision d 2 D is mapped to a place E
d
and has for each of its choices e 2 X an arc to

a unique transition G
d;e

which has an outgoing arc to place E
e
. If d is terminating as well,

there is an arc from the place corresponding to that decision to a transition F
d
without output

places (if that transition �res it will simply consume a token from that place).

Finally, the initial marking of the net is a marking with exactly one token in each of the places

E
i
with i an initial item. The following de�nition captures this mapping formally.

De�nition 4.7

Given a Task Structure W = (X ;U ; T ;S;D;Dt
;Trig;Name;I) the corresponding Petri

net PW = (P
W
; T

W
; F

W
;W

W
) and its initial marking M0 are de�ned by:

P
W

= fE
x
j x 2 T [Dg[f�x;s j xTrigs ^ s 2 Sg

T
W

= fC
t
j t 2 T g[fFd j d 2 Dt

g[fG
d;e
j dTrige ^ d 2 Dg[fHs

j s 2 Sg

F
W

= f(E
t
; C

t
) j t 2 T g[

f(E
d
; F

d
) j d 2 Dt

g[

f(E
d
; G

d;e
) j d 2 D^dTrigeg[

f(�
x;s
;H

s
) j s 2 S ^xTrigsg

f(C
t
; E

x
) j t 2 T ^tTrigx ^ x =2 Sg[

f(C
t
; �

t;s
) j t 2 T ^tTrigs ^ s 2 Sg[
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f(G
d;x
; E

x
) j d 2 D^dTrigx ^ x =2 Sg[

f(G
d;x
; �

d;x
) j d 2 D^dTrigx ^ x 2 Sg[

f(H
s
; E

x
) j s 2 S ^sTrigx ^ x =2 Sg[

f(H
s
; �

s;s
0) j s 2 S ^sTrigs

0 ^ s0 2 Sg

W
W

= �t 2 F
W
:1

M0 = �p 2 P
W
:if p 2 fE

i
j i 2 Ig then 1 else 0 �

2

The above de�nition uses the �-notation which is the standard notation for unnamed functions,

i.e., W
W

is a function which maps every arc onto weight 1 and M0 is a function which maps

places onto either 1 or 0 tokens (depending on whether they correspond to an initial item or

not).

Fd1

Ct5 Hs1

Ct4C t2

E t2 Et3
Et4

E t1

Et5

Ed1

E t6

Ct6

E

G G

E E

C C

d2

d2,t7 d2,t8

t7 t8

t7 t8

Gd1,t5

d1,t6G

σ t3,s1 σt4,s1

Ct3

C t1

Figure 5: Mapping of Task Structure of Figure 3 to Petri net

Example 4.3 Figure 5 contains the result of applying the previously described translation

to the Task Structure of Figure 3. Note that all arc weights are 1. Therefore, they are

not depicted. 2

A Petri net which models the process aspect of a work
ow, is called a WorkFlow net (WF-

net, [Aal98c, Aal97]). It should be noted that a WF-net speci�es the dynamic behavior of a

14



single case in isolation. For the veri�cation of Task Structures we consider the mapping of Task

Structures to WF-nets.

De�nition 4.8 (WF-net)

A Petri net PN = (P; T; F;W ) is a WF-net (Work
ow net) if and only if:

(i) PN has two special places: i and o. Place i is a source place: �i = ?. Place o is a

sink place: o� = ?.

(ii) If we add a transition t� to PN which connects place o with i (i.e. �t� = fog and

t�� = fig), then the resulting Petri net is strongly connected.

2

A WF-net has one input place (i) and one output place (o) because any case handled by the

procedure represented by the WF-net is created if it enters the work
ow management system

and is deleted once it is completely handled by the work
ow management system, i.e., the

WF-net speci�es the life-cycle of a case. The second requirement in De�nition 4.8 (the Petri

net extended with t� should be strongly connected) states that for each transition t (place p)

there should be a path from place i to o via t (p). This requirement has been added to avoid

`dangling tasks and/or conditions', i.e., tasks and conditions which do not contribute to the

processing of cases.

The readers familiar with [Aal98c, Aal97] will note that, in contrast to earlier de�nitions, De�-

nition 4.8 allows for arbitrary arc weights. This extension is needed to allow for the translation

of Task Structures to WF-nets.

Mapping a Task Structure to a WF-net is slightly more complex as the result of the fact that

a WF-net should have a unique output place. This is achieved through the introduction of a

\shadow place" S which keeps track of the number of parallel streams at any point in time

(this will be inversely proportional to the number of tokens in S). Every transition C
t
with n

output arcs (n > 1) has an input arc from S with weight n� 1. This is a situation where the

original task t starts n task objects in parallel upon termination, hence we have n � 1 extra

parallel streams at that point in time.

Every transition H
s
corresponding to a synchronizer with m input arcs and p output arcs has

an output arc to S with weight p � m if m > p, as this re
ects m parallel streams coming

together and p new streams being generated; the nett result of this being m � p less parallel

streams. Similarly, if p > m there will be an arc from S to H
s
with weight p �m as in that

case the nett result of the synchronizer is that p �m new parallel streams are generated. In

addition, every transition C
t
with no output arcs and every transition F

d
(which never has an

output arc) have an arc to S. Such transitions re
ect termination of a stream.

There is a transition t
init

with an input arc from the input place i and an output arc to S with

weight c� jIj. The number c is the maximal number of parallel streams that could be active
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at any point in time. jIj represents the number of initial items, each of which will initially

generate a parallel stream. From t
init

there are also output arcs to all places corresponding to

initial items. There is also a transition t
end

with an output arc to output place o and an input

arc from S with weight c.

The constant c corresponds to the maximal number of parallel streams in the Task Structure.

As it turns out, it is very hard to statically determine this constant for a particular given Task

Structure. However, it is not necessary to have a precise estimation of c. The number c has to

be chosen in such a way that no transition (except t
end

) will ever get blocked because place

S does not contain suÆcient tokens. Therefore, any upperbound will do. For the moment, it

suÆces to know that for correct Task Structures such an upperbound exists (see Sections 4.3

and 5). It is important to note that during the execution of the Task Structure (i.e., after

�ring t
init

and before �ring t
end

), the number of active parallel streams is equal to c minus the

number of tokens in S.

De�nition 4.9

Given a Task Structure W = (X ;U ;T ;S;D;Dt
;Trig;Name;I), the corresponding WF-

net NW
= (P

WN
; T

WN
; F

WN
;W

WN
) and its initial marking M0 are de�ned as follows.

P
WN

= P
W
[fi; o; Sg

T
WN

= T
W
[ft

init
; t

end
g

F
WN

= F
W
[f(i; t

init
); (t

init
; S); (S; t

end
); (t

end
; o)g[

f(S;C
t
) j t 2 T ^out(t) > 1g[f(H

s
; S) j s 2 S ^out(s) < in(s)g[

f(S;H
s
) j s 2 S ^in(s) < out(s)g[fi 2 I j (tinit; Ei

g[

f(C
t
; S) j t 2 T ^out(t) = 0g[f(F

d
; S) j d 2 Dt

g

The arc weight function W
WN

assigns 1 to every arc with the following exceptions:

W
WN

((S;C
t
)) = out(t)� 1 if out(t) > 1

W
WN

((S;H
s
)) = out(t)� in(s) if out(s) > in(s)

W
WN

((H
s
; S)) = in(s)� out(s) if in(s) > out(s)

W
WN

((t
init

; S)) = c� jIj

W
WN

((S; t
end

)) = c

where c is an upperbound for the maximal number of parallel streams. In the initial

marking place i has a token and no other place has a token.

M0 = �p 2 P
WN

:if p = i then 1 else 0 �

2
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Figure 6: Mapping of Task Structure of Figure 3 to WF-net

Example 4.4 Figure 6 shows the result of applying the previously de�ned mapping to the

Task Structure of Figure 3. Since the maximal number of parallel streams in the Task

Structure is 4, the constant c has to be at least 4. Note that place S contains exactly

four tokens the moment the Task Structure terminates, i.e., t
end

�res the moment the

Task Structure of Figure 3 terminates. 2

4.3 An upperbound for the number of parallel streams

Place S, the shadow place, has been added to keep track of the number of parallel streams.

This place is crucial for deciding whether a Task Structure has terminated but is not part of

the semantics. Therefore, it is of the utmost importance that S does not change the behavior.

Consider for example the WF-net shown in Figure 6. If c = 2, then C
t1 is blocked right from

the start. If c = 3, then C
t3 is blocked until F

d1 or C
t6 �res. These examples show that, if we

choose a value for c which is too small, the behavior changes. Adding a new place will never

extend the behavior of a Petri net. (An additional place can only restrict the behavior because

the place can block transitions but it cannot enable transitions which are not enabled in the

net without the place, see [DE95].) Therefore, it suÆces to choose c in such a way that place
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S can never block a transition (other than t
end

). If the number of maximal parallel streams is

assumed to be �nite, which seems to be a reasonable assumption, then it is always possible to

�nd such a c. However, the fact that such a c exists is not very helpful, because it does not

give us a concrete value.

Fortunately, there is a very pragmatic solution. Set c to maxint, the largest integer value that

can be handled by the application or programming language that is used for veri�cation. It is

reasonable to assume that the maximum number of parallel streams does not exceed this value.

Moreover, during the veri�cation phase (see next section) it is possible to check whether c was

not too small. Since the complexity of the veri�cation algorithm does not depend upon c, it is

possible to choose such a large value without any harm. From a practical point of view, it is no

problem to choose maxint as an upperbound for the number of parallel streams. Nevertheless,

more elegant solutions are possible using the rich theory of Petri nets. In fact, a place which

does not restrict the �ring of transitions is called an implicit place and this notion has been

studied quite well in Petri-net literature, cf., [CS90, Ber86, Ber87].

An implicit place, also called a redundant place, is a place which always contains suÆcient

tokens to allow for the �ring of the transitions connected to it. The constant c in the WF-net

constructed using De�nition 4.9, should be chosen in such a way that place S is implicit in

the net without t
end

. Several authors have investigated techniques to �nd so-called structural

implicit places ([CS90, Ber86, Ber87]). A structural implicit place is a place which is guaranteed

to be implicit by the structure of the Petri net. Every structural implicit place is an implicit

place, but there may be implicit places which are not structurally implicit. Since structural

implicit places can be found without constructing the reachability graph (polynomial time), it

is possible to use these techniques for eÆciently establishing a suitable value for c.

5 Veri�cation of soundness

The correctness, e�ectiveness, and eÆciency of the business processes supported by the work-


ow management system are vital to the organization (cf. [Aal98c, GHS95, JB96]). A work
ow

process de�nition which contains errors may lead to angry customers, back-log, damage claims,

and loss of goodwill. Flaws in the design of a work
ow de�nition may also lead to high through-

put times, low service levels, and a need for excess capacity. This is why it is important to

analyze a work
ow process de�nition before it is put into production. Basically, there are three

types of analysis:

� validation, i.e., testing whether the work
ow behaves as expected,

� veri�cation, i.e., establishing the correctness of a work
ow, and

� performance analysis, i.e., evaluating the ability to meet requirements with respect to

throughput times, service levels, and resource utilization.
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Validation can be done by interactive simulation: a number of �ctitious cases are fed to the

system to see whether they are handled well. For veri�cation and performance analysis more

advanced analysis techniques are needed.

Today's work
ow management systems give limited support to performance analysis. Most

work
ow management systems provide a rudimentary simulator or provide a gateway to a sim-

ulation tool. Simulation can be used to estimate key performance indicators by experimenting

with the speci�ed work
ow under the assumption of a speci�c behavior of the environment.

Examples of key performance indicators are: average throughput time of cases, average waiting

time, occupation rates of resources, service levels, and the average number of pending cases.

Most work
ow management systems do not give any support for the veri�cation of work
ows.

As a result, work
ow process de�nitions become operational before they are thoroughly checked

for correctness. This often results in runtime errors, which need to be repaired on-the-
y at

high costs. Examples of such errors are:

� Deadlock: A case gets stuck in some state where it is not possible to execute any tasks.

� Livelock: A case is trapped in an in�nite loop where it is possible to execute tasks but

no real progress is possible.

� Dead task: A task can never be executed for any case.

The above errors can be detected without knowing anything about the particular application,

i.e., the errors correspond to domain independent anomalous behavior. There are also errors

which can only be detected with knowledge about the application. An example of such an error

could be the scenario where a customer receives goods but not the bill (or receives the bill

twice). Another example is the situation where tasks are executed in wrong order (e.g., the bill

is sent before the goods). In this paper, we focus on domain or application independent errors

because we are interested in a general-purpose veri�cation tool which can be applied without

adding additional information for the purpose of veri�cation.

Both manufacturers and users of work
ow management systems see the need for analysis tools

which take care of the veri�cation of work
ows. Unfortunately, most manufacturers do not have

the technology to build such tools. In this section, we will show that work
ows speci�ed in terms

of Task Structures can be veri�ed using state-of-the-art Petri-net-based analysis techniques.

5.1 Sound Task Structures

Before we focus on veri�cation techniques, we need establish the correctness criteria we want

to use. In our opinion any Task Structure should satisfy the following four properties:

1. The Task Structure should be connected, i.e., there should be a path between any two task

objects ignoring the direction of triggers.
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2. Every task object should be on a path from some initial item to a terminating task object

(i.e., a task object with no outgoing triggers or a terminating decision).

3. There are no dead tasks, i.e., any task can be executed by choosing the appropriate route

through the Task Structure.

4. From any reachable state, it is possible to reach a terminal state.

These requirements are quite reasonable. Task Structures composed out of parts which are not

connected or task objects which are not on a path from an initial item to a �nal task object do

not make any sense. Moreover, dead tasks or Task Structures which cannot terminate clearly

correspond to design errors.

Since we use Petri nets (in particular WF-nets) to verify the correctness of Task Structures,

we have to map the four requirements onto WF-nets. The �rst two requirements correspond

to the properties that were already stated in the de�nition of WF-nets (Def. 4.8). These two

properties can be veri�ed statically, i.e., they only relate to the structure of the corresponding

WF-net. In the remainder of this paper, we will assume that every Task Structure satis�es

these two properties. The third requirement corresponds to the property that no transition is

dead in the corresponding WF-net, i.e., starting in state i it is possible to �re any transition

at least once. The last requirement corresponds to the property that from any state reachable

in the WF-net (starting from state i), it is possible to reach a state with a token in o and

the moment a transition puts a token in o all other places should be empty. These last two

requirements correspond to the so-called soundness property.

De�nition 5.1 (Sound )

A Task Structure W mapped onto a WF-net NW
= (P; T; F;W ) is sound if and only if:

(i) For every state M reachable from state i, there exists a �ring sequence leading from

state M to state o. Formally:

8
M
(i[�iM)) (M [�io)

(ii) State o is the only state reachable from state i with at least one token in place o.

Formally:

8
M
(i[�iM ^ M � o)) (M = o)

(iii) There are no dead transitions in (NW
; i). Formally:

8
t2T 9

M;M
0 i[�iM [tiM 0

2
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Note that there is an overloading of notation: the symbol i is used to denote both the place i

and the state with only one token in place i (see Section 4). The soundness property relates to

the dynamics of the corresponding WF-net. The �rst requirement in De�nition 5.1 states that

starting from the initial state (state i), it is always possible to reach the state with one token

in place o (state o). If we assume a strong notion of fairness, then the �rst requirement implies

that eventually state o is reached. Strong fairness means in every in�nite �ring sequence,

each transition �res in�nitely often. The fairness assumption is reasonable in the context of

work
ow management: All choices are made (implicitly or explicitly) by applications, humans

or external actors. Clearly, they should not introduce an in�nite loop. Note that the traditional

notions of fairness (i.e., weaker forms of fairness with just local conditions, e.g., if a transition

is enabled in�nitely often, it will �re eventually) are not suÆcient. See [KA99] for more details.

The second requirement states that the moment a token is put in place o, all the other places

should be empty. Sometimes the term proper termination is used to describe the �rst two

requirements in De�nition 5.1 [GCEV72]. The last requirement states that there are no dead

transitions (tasks) in the initial state i.

For the WF-net shown in Figure 6, which corresponds to the Task Structure shown in Figure 3,

it is quite easy to see that it is sound. However, for complex Task Structures it is far from

trivial to check the soundness property.

5.2 A necessary and suÆcient condition for soundness

Given a Task Structure which corresponds to the WF-net NW
= (P; T; F;W ), we want to

decide whether it is sound. In the remainder of this section, we will talk about the soundness

of the WF-net, rather than the Task Structure, because all proofs will be done in a Petri net

setting. Since a Task Structure can be mapped onto a WF-net using De�nition 4.9, there is

a clear correspondence between the Task Structure W and the WF-net NW
= (P; T; F;W ).

Note that a Task Structure can be mapped onto a WF-net in polynomial time.

Since most of the results presented in this section hold for arbitrary WF-nets, we use N rather

than NW
. Only for the results speci�c for WF-nets originating from a Task Structure W

(De�nition 4.9), we will use the notation NW
.

For veri�cation purposes, we de�ne an extended net N = (P ; T ; F ;W ). N is the Petri net that

we obtain by adding an extra transition t� which connects o and i. The extended Petri net

N = (P ; T ; F ;W ) is de�ned as follows: P = P , T = T [ ft�g, F = F [ fho; t�i; ht�; iig, and for

hx; yi 2 F , W (hx; yi) =W (hx; yi), W (ho; t�i) = 1, and W (ht�; ii) = 1.

For an arbitrary WF-net N and the corresponding extended Petri net N we will prove the

following result:

N is sound if and only if (N ; i) is live and bounded.

First, we prove the `if' direction.
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Lemma 5.1 If (N ; i) is live and bounded, then N is a sound WF-net.

Proof:

(N ; i) is live, i.e., for every reachable state M there is a �ring sequence which leads to a

state in which t� is enabled. Since o is the input place of t�, we �nd that for any state M

reachable from state i it is possible to reach a state with at least one token in place o.

Consider an arbitrary reachable state M 0+o, i.e., a state with at least one token in place

o. In this state t� is enabled. If t� �res, then the state M 0 + i is reached. Since (N ; i) is

also bounded, M 0 should be equal to the empty state. Hence requirements (i) and (ii)

hold and proper termination is guaranteed. Requirement (iii) follows directly from the

fact that (N ; i) is live. Hence, N is a sound WF-net. 2

To prove the `only if' direction, we �rst show that the extended net is bounded.

Lemma 5.2 If N is sound, then (N ; i) is bounded.

Proof:

Assume that N is sound. The set of reachable markings of (N ; i) is equal to the set

of reachable markings of the extended net (N ; i), because if transition t� in N �res,

the net returns to the initial state i which was already reachable. Therefore, (N ; i)

is bounded if and only if (N ; i) is bounded. Now assume that (N ; i) is not bounded.

Since N is not bounded there are two states M
i
and M

j
such that i[�iM

i
, M

i
[�iM

j
and

M
j
> M

i
. (See for example the proof that the coverability tree is �nite in Peterson [Pet81]

(Theorem 4.1)). However, since N is sound we know that there is a �ring sequence �

such that M
i
[�io. Therefore, there is a state M such that M

j
[�iM and M > o. Hence,

it is not possible that N is both sound and not bounded and the lemma holds. 2

Now we can prove that (N ; i) is live.

Lemma 5.3 If N is sound, then (N ; i) is live.

Proof:

Assume N is sound. By Lemma 5.2 we know that (N ; i) is bounded. Because N is sound

we know that state i is a so-called home-marking of N , i.e., for every state M 0 reachable

from (N ; i) it is possible to return to state i. In the original net (N ; i), it is possible to

�re an arbitrary transition t (requirement (iii)). This is also the case in the extended net.

Therefore, (N ; i) is live because for every state M 0 reachable from (N ; i) it is possible to

reach a state which enables an arbitrary transition t. 2

Theorem 5.1 A WF-net N is sound if and only if (N ; i) is live and bounded.
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Proof:

Follows directly from Lemmas 5.1, 5.2 and 5.3. 2

Theorem 5.1 is an extension of the results presented in [Aal97, Aal98c]. In [Aal97, Aal98c] we

restrict ourselves to WF-nets with arc weights 1. The extension to WF-nets with arbitrary

arc weights is straightforward. Theorem 5.1 holds for any WF-net. However, if the WF-net N
originates from a Task Structure, then (N ; i) is bounded by de�nition.

Lemma 5.4 Let W be a Task Structure and let NW
be the WF-net constructed using De�-

nition 4.9. (NW
; i) is bounded.

Proof:

To prove boundedness, we construct a semi-positive place invariant (see Def. 4.6) by

assigning weight c (see Def. 4.9) to the places i and o and assigning weight 1 to all other

places. To prove that this is a place invariant, we consider all types of transitions that

can be constructed using De�nition 4.9. Let t be a task, d be a (terminating) decision, s

a synchronizer, and e be a task object. Transitions of type C
t
consume one token from

E
t
and out(t) � 1 tokens from S and produce one token for each of the out(t) output

places of C
t
. Transitions of type F

d
consume one token from E

d
and produce one token

for S. Transitions of type G
d;e

consume one token from E
d
and produce one token for E

e

or �
d;e
. A transition of type H

s
consumes one token from each of the in(s) input places

of predecessor task objects and produces one token for each of the out(s) successor task

objects. If in(s) > out(s), then the transition of type H
s
will also produce in(s)� out(s)

tokens for S. If in(s) < out(s), then the transition will consume out(s)� in(s) tokens from

S. Hence, for transitions of type C
t
, F

d
, G

d;e
, and H

s
, the number of tokens consumed

is equal to the number of tokens produced, i.e., the input/output behavior of these

transitions is consistent with the place invariant. Transition t
init

consumes one token

with weight c from i and produces one token for each of the jIj initial items and c� jIj

tokens for place S. Transition t
out

consumes c tokens of weight one from place S and

produces one token with weight c for place o. Transition t� consumes 1 token of weight

c from place o and produces one token with weight c for place i. Hence, the remaining

transitions t
init

, t
out

, and t� also do not invalidate the place invariant. Since the place

invariant assigns a positive weight to all places in the extended WF-net NW
, the net is

structurally bounded. 2

Since the (NW
; i) is bounded by de�nition, it suÆces to check liveness to verify that a Task

Structure is sound.

Corollary 5.1 Let W be a Task Structure and let NW
be the WF-net constructed using

De�nition 4.9. W is sound, if and only if, (NW
; i) is live.
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Perhaps surprisingly, the veri�cation of the soundness property boils down to checking whether

the extended Petri net is live! This means that we can use standard Petri-net-based analysis

tools to decide soundness. At the moment there are about 25 tools available for the analy-

sis of liveness properties (see [Mor98]). Most of these tools construct the coverability graph

[Pet81]. Although some of these tools are implemented very eÆciently and use state-of-the-art

state-space reduction techniques such as BDD's and stubborn sets, the complexity of the al-

gorithm to construct the coverability graph can be worse than primitive recursive space. This

is consistent with the observations in [HOR98], where it is shown that the problem of deciding

whether a given Task Structure terminates is DSPACE(exp)-hard. Therefore, only `brute-force'

approaches to check soundness are possible to verify an arbitrary Task Structure. However, for

many subclasses, see [Aal98c], it is possible to use more sophisticated techniques which exploit

the structure of the WF-net. Some of the Petri-net-based tools (cf. [Mor98]) support structural

techniques, i.e., for speci�c subclasses of Petri nets it is possible to avoid using a `brute-force'

approach. In fact many work
ow management systems only allow for work
ow processes which

are in essence free-choice [DE95] and for free-choice nets the soundness property can be veri�ed

in polynomial time [Aal98c]. In free-choice nets it is not possible to mix choice and synchro-

nization into one routing construct, i.e., either a choice is preceded by a synchronization or a

synchronization is preceded by a choice. Since in many work
ow management systems choices

are only allowed inside tasks and synchronization is done outside tasks, the resulting work
ow

process de�nitions correspond to free-choice nets. See [Aal98c] for more details. Note that any

Petri net constructed using De�nition 4.7 is free-choice, i.e., Task Structures also correspond

to free-choice nets. However, to verify soundness we need to introduce place S which in many

cases violates the free-choice property.

It is interesting to observe that the value c in De�nition 4.9 (i.e., the upperbound for the number

of parallel streams) does not in
uence the eÆciency of the veri�cation process. If a `brute-

force' approach is used, the coverability graph is constructed and the number of reachable

states should not be in
uenced by the value of c. (If the value of c in
uences the number

of reachable states, then c was too small or the number of parallel streams is unbounded.

Note that both situations can be detected by inspection of the coverability graph.) If more

sophisticated techniques are used, the structure of the WF-net is exploited and the value of c

is irrelevant.

In this section, we have shown that for the veri�cation of Task Structures we can bene�t from

Petri-net theory and tools. This will be illustrated by the case study presented in Section 7.

The starting point of this case study is a work
ow process speci�ed in Sta�ware. This process

de�nition is automatically translated into a format readable by Wo
an as is described in the

next section.
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6 Implementation based on Sta�ware and Wo
an

To put the approach presented in this paper to work, we have developed a link between

Sta�ware and Wo
an. In this section we brie
y describe both tools and the link between

them.

Wo
an (WOrkFLow ANalyzer, [Aal98c, AHV97, VBA99]) is an analysis tool which can be

used to verify the correctness of a work
ow process de�nition. The analysis tool uses state-

of-the-art techniques to �nd potential errors in the de�nition of a work
ow process. Wo
an

is designed as a WFMS-independent analysis tool. In principle it can interface with many

work
ow management systems. At the moment, Wo
an can interface with the WFMS COSA

(Software Ley [SL96]), the WFMS METEOR (LSDIS [SKM]), the WFMS Sta�ware (Sta�ware

[Sta97]), and the BPR-tool Protos (Pallas Athena [Pal97]). In the future we hope to extend

the set of work
ow management systems which can interface with Wo
an. Wo
an uses Petri-

net-based analysis routines to analyze the work
ows at hand. One of the central issues which

is analyzed by Wo
an is the soundness property (see De�nition 5.1). Wo
an uses a brute

force approach by constructing the coverability graph to decide soundness. This turns out

to be satisfactory from a practical point of view. Even complex work
ows contain less than

100 tasks and have less than 200:000 states. This is no problem for Wo
an. The only way

to deal with larger work
ows from a managerial point of view, is to split the work
ow into

sub
ows which can be veri�ed in a compositional way. Thus, the brute force approach is quite

acceptable. However, deciding whether the work
ow de�nition is sound is not suÆcient. In

many cases more requirements need to be satis�ed. Moreover, if the work
ow de�nition is

not sound, then the user should be guided in detecting the source of the error and support

should be given to repair the error. This is the reason Wo
an o�ers a large selection of analysis

methods:

� Syntactical checks, e.g., detection of tasks without input or output condition.

� Detection of potential errors by listing suspicious constructs, e.g., constructs violating the

free-choice property, AND-split's complemented by OR-join's, OR-split's complemented

by AND-join's, and parts of the net which are not S-coverable.

� Detection of dynamic errors by listing unbounded places, non-safe places, dead transitions

and non-live transitions.

� Place and transition invariants. The absence or presence of certain invariants indicates

the source of an error.

� Veri�cation of the soundness property.

Wo
an has an on-line help-facility which guides the user in using the tool and helps to un-

derstand the analysis results. A screenshot of Wo
an showing the on-line help and some di-

agnostics is given in Figure 7. A detailed description of the analysis routines supported by
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Wo
an is outside the scope of this paper. For more information the reader is referred to

[AHV97, VBA99, VA99].

Figure 7: A screenshot of Wo
an.

Sta�ware is one of the leading work
ow management systems. There are two reasons for using

Sta�ware. First, we selected Sta�ware because the diagramming technique used is very close

to Task Structures. Second, the large installed base makes Sta�ware an interesting platform

to test our approach. We have used the current version of Sta�ware, i.e., Sta�ware 97 [Sta97].

This version of Sta�ware is used by more than 550,000 users worldwide and runs on more than

4500 servers. In 1998, it was estimated by the Gartner Group that Sta�ware has 25 percent of

the global market [Cas98]. The routing elements used by Sta�ware are the Start, Step, Wait,

Condition, and Stop. These routing elements correspond to respectively initial items, tasks,

synchronizers, non-terminating decisions and terminating decisions. In the next section, we will

give an example of a Sta�ware process de�nition and the corresponding Task Structure. For

more information about the technical aspects of Sta�ware, the interested reader can download

product information from http://www.sta�ware.com.

The link between Sta�ware andWo
an is realized as follows. The Sta�ware Graphical Work
ow

De�ner (GWD) stores work
ow process de�nitions in a �le-based repository. For each work
ow

process de�nition, a so-called GWD �le is created. This �le contains all information relevant for

the control-
ow perspective. This �le is converted into a format readable by Wo
an (a so-called

TPN �le). The translation is essentially the same as the one described by De�nition 4.9. Wo
an

26



reads the resulting �le and generates the diagnostics mentioned before. The translation is based

on Sta�ware 97, i.e., the current version. The new version of Sta�ware, named Sta�ware 2000,

is being rolled out throughout the year 1999. Sta�ware 2000 has essentially the same features

with respect to the modeling of work
ow processes. Therefore, we expect little problems in

upgrading the link from Sta�ware 97 to Sta�ware 2000.

Both Wo
an and the link with Sta�ware can be downloaded from http://www.win.tue.nl/ ~wo
an.

7 Case: travel agency

To illustrate the approach presented in this paper, we consider a small work
ow process in

a travel agency. The work
ow process is used to illustrate modeling of Task Structures and

veri�cation via WF-nets. Moreover, we will also use the example to present Sta�ware, Wo
an,

and the link between these two systems.

Figure 8: Screenshot of Sta�ware.

Example 7.1 A travel agency receives requests from customers interested in booking a trip.

Each request is registered by an employee of the travel agency. During this �rst step in
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the work
ow process, the destination and the desired departure and arrival date of the

planned journey are registered. Other constraints and preferences are also collected by

the employee. All registered information is used to search for transport and accommo-

dation. Then, a number of alternatives are proposed to the customer. There are three

possibilities: (1) the customer selects a trip, (2) the customer requests for more alterna-

tives, or (3) the customer is not interested anymore. If the customer requests for more

alternatives, an employee will start looking for other alternatives which are again pro-

posed to the customer. If the customer selects a trip, some preparations are made. After

these preparations, the business partners (airline company, hotel, etc.) are informed and

the trip is booked. During the preparation step, the customer indicates whether some

insurance is needed. If the customer requests for insurance, the insurance is e�ected. Note

that the tasks inform, book and insurance can be executed in parallel. After completing

the tasks inform and book the appropriate documents are sent to the customer. 2

register search propose
d1

s1

d2

prepare

inform

book

insurance

send

Figure 9: The Task Structure corresponding to the Sta�ware work
ow process de�nition shown

in Figure 8.

We have used the work
ow management system Sta�ware ([Sta97]) to realize the work
ow pro-

cess. Figure 8 shows the work
ow process in Graphical Work
ow De�ner (GWD) of Sta�ware.

There is a one-to-one correspondence between the graphical diagramming technique used by

Sta�ware and Task Structures. Figure 9 shows the work
ow process of the travel agency in

terms of a Task Structure. Comparing Figure 8 and Figure 9 shows that the diagramming

techniques are very similar. Sta�ware uses the following work
ow objects:

� Start.

The start object, represented by a traÆc light, corresponds to the initial state and points
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to the initial item.

� Step.

A step corresponds to a task and is represented by a form symbol. The input/output

behavior is identical to tasks in a Task Structure.

� Wait.

A wait is used to synchronize parallel 
ows and is represented by a sand timer. The

semantics of a wait corresponds to a synchronizer in a Task Structure.

� Condition.

A condition is represented by a diamond and is used for conditional routing. A condition

in Sta�ware corresponds to a decision between two alternatives in a Task Structure (i.e.

a decision with outdegree 2).

� Stop.

A stop is represented by a stop sign and signi�es that no further processing is required.

The stop can be used to indicate that steps or conditions are terminating.

Although there is a one-to-one correspondence between the work
ow objects used by Sta�ware

and the objects present in Task Structures, there are some subtle di�erences. First of all,

Sta�ware is more restrictive in the sense that there is just one initial item (i.e., jIj = 1)

and decisions can have just one preceding task and just two outcomes (i.e., in(d) = 1 and

out(d) = 2 for any d 2 D). Note for example that decision d1 in Figure 9 corresponds to two

conditions in Figure 8. Second, Sta�ware distinguishes between normal steps, automatic steps,

steps with a deadline, priority steps, and event steps. In this paper, we do not consider these

aspects and assume all steps to be normal steps. For the control-
ow perspective, the di�erent

types of steps are not relevant. Similarly, we abstract from other, non-control-
ow related

aspects, such as work queues, form de�nitions, and application wrappers. Third, Sta�ware

allows for a construct which withdraws work items from a work queue, i.e., it is possible to

cancel an enabled task. This construct is not considered in this paper and is also not used in

Figure 8. However, the link between Sta�ware and Wo
an takes this additional control-
ow-

related feature into account. Finally, tasks (called steps in Sta�ware) have OR-join semantics

rather than XOR-join semantics. This subtle di�erence is only relevant if multiple preceding

tasks can enable a task at the same time. In a good design, such a situation should not occur

because a design exploiting the di�erence between the OR-join semantics and the XOR-join

semantics cannot be sound. Consider for example a task C with two preceding tasks A and B.

Suppose that both A and B are enabled at a certain point in time. If one of these two tasks

is executed, then C is enabled. If C is executed before the other preceding task is executed,

then C will be executed twice (e.g., the occurrence sequence ACBC). However, if the execution

of C is delayed until the other preceding task is executed, then C is only executed once (e.g.,

the occurrence sequence ABC). Since only the temporal ordering of tasks determines whether

task C will be executed once or twice, the corresponding work
ow process de�nition can never
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satisfy the requirements stated in De�nition 5.1. Either the environment expects C to �re once

resulting in a potential dangling stream or the environment expects C to �re twice resulting in

a potential deadlock. Therefore, it is reasonable to assume XOR-join semantics for the purpose

of veri�cation.

tinit

tend

cSc-1

2

E register Cregister E search Csearch

Csend
E sendHs1

E book

E

E prepare

E inform

G

F d1

Epropose proposeC

Cprepare

d2

Cinform

Cbook

σinform,s1

σbook,s1

Fd2

E C insuranceinsurance
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Ed1

d1,prepare

Gd2,insurance

o

i

Figure 10: The work
ow net corresponding to the Task Structure shown in Figure 9.

We can map the Task Structure shown in Figure 9 onto a WF-net using De�nition 4.9. Figure 10

shows the result. Since the maximal number of parallel tasks is three we set c to three. We use

the Petri-net-based analysis tool Wo
an to verify the correctness of the Task Structure shown

in Figure 9.

If we use Wo
an to analyze the WF-net shown in Figure 10, Wo
an will report that the WF-

net is sound. Therefore, the corresponding Task Structure in Figure 9 is also sound. Figure 7

shows a screenshot of Wo
an during the analysis of the WF-net shown in Figure 10. The

screenshot shows two of the ten windows containing diagnostics generated by Wolfan. One of

the windows visible in Figure 7 shows that the WF-net is live, bounded, and sound, has 15

places, 16 transitions, 42 connections, and that the coverability graph has 25 states. The other

window gives information about invariants. The �rst invariant in this window is the invariant

constructed in the proof of Lemma 5.4. The screenshot also shows a fragment of the on-line

help-facility of Wo
an.
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If the Task Structure is sound, there is no need to look at all the diagnostics generated by

Wo
an. However, if the Task Structure is not sound, it is worthwhile to browse through the

diagnostics provided by Wo
an. To illustrate this we introduce the following error. We add a

trigger connecting the task insurance and the synchronizer s1 in Figure 9. In the corresponding

WF-net shown in Figure 10 the connection between Cinsurance and S is replaced by a place

and two arrows, connecting Cinsurance and Hs1. If we analyze this WF net, Wo
an points

out that the Task Structure is not sound because the WF-net is not live. The Task Structure

deadlocks the moment the customer decides not to take insurance. Next, we introduce another

error. A trigger connecting the task send and the task search is added to the Task Structure

shown in Figure 9 and the decision d1 is made non-terminating. In the corresponding WF-net,

transition Fd1 is removed and Csend is connected to Esearch instead of S. If analyze the WF-net

with Wo
an, Wo
an points out that the Task Structure is not sound because transition t
end

is dead, i.e., it cannot �re. This indicates that the Task Structure in Figure 9 is not able to

terminate, i.e., it contains an in�nite loop. Figure 11 shows some of the diagnostics generated

by Wo
an for this Task Structure. Wo
an reports that t
end

is dead. Wo
an also points out

that there are three semi-positive transition invariants not containing t
start

nor t
end

. These

invariants correspond to the three in�nite loops cases cannot escape from.

Figure 11: A screenshot showing some of the diagnostics generated by Wo
an.

The examples given in this section show that the results obtained by the automatic transla-

tion from work
ow scripts in Sta�ware to a format readable by Wo
an and the subsequent
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analysis using Wo
an are valuable. The current problem is that the results are not presented

in the Sta�ware Graphical Work
ow De�ner but in separate windows. Therefore, the most

challenging problem is to translate the output generated by Wo
an to diagnostic information

understandable by Sta�ware users not familiar with Petri nets. At the moment, we are working

on a new release of Wo
an with a completely new user interface to overcome these (and other)

problems.

8 Related work

Petri nets have been proposed for modeling work
ow process de�nitions long before the term

\work
ow management" was coined and work
ow management systems became readily avail-

able. Consider for example the work on Information Control Nets, a variant of the classical

Petri nets, in the late seventies [Ell79, EN93]. For the reader interested in the application of

Petri nets to work
ow management, we refer to the two most recent workshops on work
ow

management held in conjunction with the annual International Conference on Application and

Theory of Petri Nets [MEM94, AME98] and an elaborate paper on work
ow modeling using

Petri nets [Aal98c].

Many researchers have proposed languages speci�cally for work
ow modeling. Task Structures

are an example of such a language. Task Structures were introduced in the late eighties [Bot89]

and have been extended in several ways [WH90, WHO92, HN93].

Only a few papers in the literature focus on the veri�cation of work
ow process de�nitions. In

[HOR98] some veri�cation issues have been examined and the complexity of selected correct-

ness issues has been identi�ed, but no concrete veri�cation procedures have been suggested. In

[Aal97] and [AAH98] concrete veri�cation procedures based on Petri nets have been proposed.

This paper builds upon the technique presented in [Aal97]. This technique was not immedi-

ately applicable since it assumes explicit termination in a given sink place and is restricted to

Petri nets with arc weights equal to one (i.e., ordinary P/T nets). The technique presented in

[AAH98] has been developed for checking the consistency of transactional work
ows includ-

ing temporal constraints. However, the technique is restricted to acyclic work
ows and only

gives necessary conditions (i.e., not suÆcient conditions) for consistency. In [SO99a] a reduc-

tion technique has been proposed. This reduction technique uses a correctness criterion which

corresponds to soundness and the class of work
ow processes considered are in essence free-

choice Petri nets. This approach is not applicable to Task Structures or Sta�ware, because the

approach requires explicit termination and does not allow for iteration. Moreover, it is not pos-

sible to extend the approach presented in [SO99a] using the concept of the so-called \shadow

place": Such an addition requires non-free-choice behavior (i.e., merging choice and synchro-

nization) and the ability to handle multiple tokens in one place. Some researchers worked on

the compositional veri�cation of work
ows [Aal98b, Bas98, Voo98] using well-known Petri-net

results such as the re�nement rules in [Val79]. In contrast to the approach presented in this

paper, these compositional approaches also assume explicit termination.
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As far as we know only two tools have been developed to verify work
ows: Wo
an [VA99]

and FlowMake [SO99b]. Wo
an is the tool used in this paper. FlowMake is a tool based on

the reduction technique described in [SO99a] and can interface with the IBM MQSeries Work-


ow product. FlowMake requires explicit termination and can only handle acyclic work
ows,

therefore it can not be used to verify Sta�ware models.

The work presented in this paper builds on previous research reported by the authors [Aal97,

HOR98]. The main contribution of this paper is a concrete technique for verifying work
ows

which do not have a uniquely identi�ed point of termination. All other approaches reported

in the literature assume a �nal node, i.e., a terminal state or an end task. The construction

given in Section 4 is used to make implicit termination explicit. Some of the leading work
ow

management systems allow for implicit termination, because it simpli�es the design (i.e., there

is no need to join parallel and alternative paths at the end). Therefore, the results presented in

this paper are very relevant. The paper also extends the results presented in [Aal97], because

WF-nets with arbitrary arc weights are considered. To demonstrate the applicability of our

approach we have established a link between Sta�ware and Wo
an. Although Sta�ware repre-

sents 25 percent of the global work
ow market, no such veri�cation facility has been presented

before.

9 Conclusion

In this paper, we have mapped Task Structures onto Petri nets. For veri�cation purposes we

added information about the number of parallel 
ows to the net by introducing a \shadow

place" S and adding a start place/transition and an end place/transition. The resulting Petri

net corresponds to the class of WF-nets de�ned in [Aal97, Aal98c] extended with arc weights.

Since Task Structures are similar to diagramming techniques used in leading work
ow man-

agement systems, the translation from Task Structures to Petri nets constitutes a basis for

bridging the gap between the diagramming techniques in commercial systems and Petri-net-

based analysis techniques. To illustrate this, we showed that Sta�ware, the worlds leading

work
ow management system, has a diagramming technique which is very similar to Task

Structures.

The fact that we can map Task Structures onto WF-nets, allows for the veri�cation of Task

Structures using state-of-the-art Petri-net-based analysis techniques. In this paper, we showed

that soundness property (a set of minimal requirements any Task Structure should satisfy)

for Task Structures corresponds to liveness of the corresponding extended WF-net. Therefore,

we can use standard Petri-net analysis tools to verify the correctness of a Task Structure. To

illustrate the applicability of our approach, we developed a link between Sta�ware and Wo
an,

a Petri-net-based work
ow analyzer, to enable the automatic veri�cation of work
ow processes

speci�ed in Sta�ware.
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