
Conceptual Schema Transformation
in Ontology-based Data Access

Diego Calvanese1, Tahir Emre Kalayci2,1, Marco Montali1, Ario Santoso3,1, and
Wil van der Aalst4

1 KRDB Research Centre for Knowledge and Data, Free University of Bozen-Bolzano (Italy)
{calvanese,tkalayci,montali,santoso}@inf.unibz.it

2 Virtual Vehicle Research Center, Graz (Austria)
emre.kalayci@v2c2.at

3 Department of Computer Science, University of Innsbruck (Austria)
ario.santoso@uibk.ac.at

4 Process and Data Science (PADS), RWTH Aachen University (Germany)
wvdaalst@pads.rwth-aachen.de

Abstract. Ontology-based Data Access (OBDA) is a by now well-established
paradigm that relies on conceptually representing a domain of interest to provide
access to relational data sources. The conceptual representation is given in terms of
a domain schema (also called an ontology), which is linked to the data sources by
means of declarative mapping specifications, and queries posed over the conceptual
schema are automatically rewritten into queries over the sources. We consider
the interesting setting where users would like to access the same data sources
through a new conceptual schema, which we call the upper schema. This is
particularly relevant when the upper schema is a reference model for the domain,
or captures the data format used by data analysis tools. We propose a solution to
this problem that is based on using transformation rules to map the upper schema
to the domain schema, building upon the knowledge contained therein. We show
how this enriched framework can be automatically transformed into a standard
OBDA specification, which directly links the original relational data sources to
the upper schema. This allows us to access data directly from the data sources
while leveraging the domain schema and upper schema as a lens. We have realized
the framework in a tool-chain that provides modeling of the conceptual schemas,
a concrete annotation-based mechanism to specify transformation rules, and the
automated generation of the final OBDA specification.

Keywords: Conceptual schema transformation, ontology-based data access,
ontology-to-ontology mapping

1 Introduction

During the last two decades, (structural) conceptual schemas have been increasingly
adopted not only to understand and document the relevant aspects of an application do-
main at a high level of abstraction, but also as live, computational artifacts. In particular,
the paradigm of Ontology-Based Data Access (OBDA) exploits conceptual schemas
(also called ontologies) as an intermediate layer for accessing and querying data stored

inside legacy information systems [23]. In the context of OBDA, the conceptual schema
provides end-users with a vocabulary they are familiar with, at the same time masking
how data are concretely stored, and enriching those (incomplete) data with domain
knowledge. In this light, we call such a conceptual schema domain schema. The abstrac-
tion mismatch between the domain schema and the underlying data sources is covered by
a second conceptual component, namely a mapping specification that declaratively links
such two layers, expressing how patterns in the data correspond to domain concepts and
relationships. Once an OBDA specification is in place, end-users may inspect the data
sources by expressing high-level queries over the domain schema. An OBDA system
handles this challenging setting by automatically rewriting such queries into correspond-
ing low-level queries that are directly posed over the data sources, and by automatically
reformulating the so-obtained answers into corresponding answers expressed over the
domain schema. This supports domain experts in autonomously interacting with legacy
data without the manual intervention of IT savvy. Notably, the actual data storage is
completely transparent to end-users, who see the data in the form of conceptual objects
and relations, even though no actual materialization takes place. From the foundational
point of view, this is made possible by carefully tuning the expressive power of the
conceptual modeling and mapping specification languages, and by exploiting key for-
mal properties of their corresponding logic-based representations [4]. On top of these
foundations, several OBDA systems have been engineered, ontop being one of the main
representatives in this spectrum [3].5

OBDA has been subject of extensive research, and its advantages have been con-
cretely shown in a plethora of application domains (see, e.g., [11,15,17]). Surprisingly,
though, no research has been carried out on how to suitably extend the OBDA approach
to handle the common situation where a higher-level conceptual schema (which we
call upper schema) is needed to further abstract the knowledge captured by the domain
schema. This happens when there is the need of viewing the domain schema and, in turn,
the underlying data, according to a predefined structure, described by a reference model
or an interchange format. In addition, different users may need to generate different
views on the data, possibly using different upper schemas.

There are in particular two situations where the need for such a multi-level approach
to data access is apparent. The first is when an OBDA specification is already in place,
but certain types of users adopt reference models as an upper schema to understand
the organization, create reports, and exchange information with external stakeholders.
For example, the manager of an e-commerce company needs to reconstruct the state of
contractual relationships and mutual commitments with customers, on top of the domain
concepts of orders, payments, and deliveries. In this setting, which we discuss later on in
the paper, the main objective is to reuse the available OBDA specification.

The second is the one where data analysis applications are exploited to extract
insights from legacy data. Here, the main problem is that the actual input for such
applications consists of specific abstractions that may not be explicitly present in the
legacy data, and that have to be represented according to the expected input data format.
E.g., the application of process mining techniques to discover, monitor, and improve
business processes [1] requires structured event data as input using key notions such

5 http://ontop.inf.unibz.it

http://ontop.inf.unibz.it

data

map

domain schema

transform

upper schema

query/answer

OBDA

(a) 2-level OBDA

data

map

domain schema

identify services and commitments

UFO-S

inspect contract states

OBDA

(b) 2OBDA framework
for service management

data

map

domain schema

identify cases and events

event log format

fetch cases and events

process mining tool

OBDA

(c) 2OBDA framework for pro-
cess mining

Fig. 1: The 2OBDA framework, and two relevant concrete instantiations

as case (process instance), event, timestamp, activity, etc. Only event data that meet
these requirements can be mapped onto input formats like XES [14] and used by process
mining tools. This is especially challenging in the common case where the organization
relies on legacy information systems and/or general-purpose management systems (such
as ERP or CRM applications) [1]. Previous approaches [8,6] tackled this problem by
hard-coding the XES format inside the log extraction framework. While XES is supported
by a wide range of tools (such as Disco by Fluxicon, Celonis Process Mining by Celonis,
minit by Gradient ECM, and many more), it does not provide native support for important
aspects such as durative and hierarchical events (such as those naturally provided by
enterprise systems like SAP, and consequently supported in process mining tools like
Celonis Process Mining). Accounting for these aspects would require flexibility in the
event log format, that is, the possibility of tuning the upper event schema based on the
application context and needs.

To tackle such challenging but common scenarios, we propose to suitably extend
the OBDA framework so as to take into account multiple conceptual layers at once. We
focus on the case where two conceptual layers are present, accounting for the domain
and upper schemas, and call the resulting setting 2-level OBDA (2OBDA for short).
However, all our results seamlessly extend to the case where more layers are present.

Specifically, our contribution is threefold. First, in Section 4, we introduce the
2OBDA model as an elegant extension of OBDA. The core part of the framework is the
conceptual transformation of concepts and relations in the domain schema into corre-
sponding concepts and relations in the upper schema. This is specified in a declarative
way, similarly to OBDA mappings but in this case accounting for ontology-to-ontology
correspondences. The resulting framework (sketched in Figure 1a) is different from
well-known approaches for ontology matching [12] and ontology/schema mapping [9],
the first being focused on overlapping conceptual schemas that work at the same level of
abstraction, the second neglecting the presence of underlying data.

Second, we show how a 2OBDA specification can be automatically compiled into a
classical OBDA specification that directly connects the legacy data to the upper schema,

fully transparently to the end-users. Consequently, these can query the legacy data
through the upper schema, by resorting to standard OBDA systems like ontop.

Finally, in Section 5, we report on how the approach has been realized in a tool-chain
that supports end-users in modeling the domain and upper schema, and in specifying
the corresponding transformations as annotations of the domain schema, whose types
and features are derived from the concepts present in the upper schema. Notably, the
tool-chain fully implements the compilation technique described above.

2 Motivation

In this section, we motivate the need for a multi-level OBDA approach, discussing
scenarios in service management. We concentrate on the situation where the upper
schema takes the form of a reference model, used by certain users to understand the
business relationships existing between an organization and its external stakeholders.
This is, e.g., the case of business managers and analysts, who often need to see the
organization as an element of a bigger value chain, which consumes and provides services.
To illustrate the challenges, we provide a concrete order scenario. In this scenario, the
domain schema provides the basis to understand legacy data in terms of key concepts
and relationships related to the notion of order. At the same time, managers employ
the commitment-based core reference ontology for services (UFO-S) [20] as an upper
schema, to understand and monitor the state of commitments that contractually relate the
company and its customers. While the conceptual modeling community has made major
advancements in the creation of reference models for services and commitments (as
witnessed by UFO-S itself), no systematic approach to query organizational data through
such reference models has been proposed so far. At the same time, recent attempts in
formalizing relational, data-aware commitments, have either neglected the presence of
legacy data [18] or the role of reference models [10].

2.1 The Order Scenario

In our order scenario, an organization called OHub acts as a hub between companies
selling goods and persons interested in buying those goods. In particular, OHub takes care
of an order-to-delivery process that supports a person in placing an order, allows her to
pay for the order, and finally deliver the paid goods where the person desires. We assume
that each order contains items that are all provided by the same company, but different
orders may be about goods offered by different companies. Domain experts operating
within OHub understand (some of) the key concepts and relations in this domain as
specified by the UML class diagram of Figure 2, where the three subclasses of Order
represent three distinct order states (for simplicity, we do not consider cancellation).

At the same time, the employees of OHub use a legacy management system to
handle orders, and are unaware of how the actual data about orders and their involved
stakeholders are stored. Such a management system relies on a relational database,
whose schema is shown in Figure 3 together with some sample data. The schema
consists of three tables, respectively keeping track of the stakeholders of OHub, of
the orders managed by OHub, and of the respective money transfers. Specifically, the

{disjoint}{disjoint}

makes ◁ 1..10..*supplies ▷1..1 0..*

Closed

Person

name: STRING

Paid

pTime: DATE_TIME

Company

title: STRING

Open

Order

address: STRING

oTime: DATE_TIME

Fig. 2: UML class diagram of the order domain schema

id name addr type

pa alice bz-4 p

ce eDvd na-1 c

pb bob tn-3 p

Stakeholders

id ctime from to dest final

o1 5 pa ce bz-5 0

o2 10 pb ce null 1

o3 20 pa ce null 1

OrderData

id order ttime

t1 o2 15

MTransfers

type = p type = c
final = 1

Fig. 3: Legacy schema of the order database, with some sample data. Directed edges
denote foreign keys, contextualized to those tuples that satisfy the filter on the edge

Stakeholders table stores the main information about companies selling and delivering
goods, and persons who buy such goods trough OHub. These two kinds of stakeholders
are distinguished by the type attribute (which corresponds to string p for persons, and
c for companies). The OrderData table stores the active and past orders managed by
OHub. For each order, the table stores the creation time, the person who made it, the
company responsible for the order, the destination address, and a flag indicating whether
the order has been finalized by the person, or is still in the creation phase. It is intended
that if the destination address is not specified (i.e., it is null), then the address of the
person (as specified in the Stakeholders table) should be used for delivery. Finally, table
MTransfers keeps track of monetary transfers related to finalized orders, for simplicity
only recalling the transaction id, its time, and the order to which the transaction refers.

Managers of OHub often need to understand orders and their states in contractual
terms, that is, as business objects and relationships that contractually bind OHub with
its suppliers and customers. This is crucial, in turn, to assess the quality of service of
OHub, and to detect whether the mutual commitments induced by order contracts are
indeed honored or not. To do so, they adopt UFO-S as a reference model to define which
services are offered by OHub, and which commitments relate to those services [20].
A portion of this reference model is shown in Figure 4. We only included the parts
relevant for this small case study. We also incorporated explicit state attributes into
the commitment classes, accounting for the different phases in which a commitment
can be at a given time (pending, discharged, canceled, etc.) [10,18]. With UFO-S at
hand, managers would like to inspect the negotiations and agreements established by

sn_resultsin_sa ▽

1..1

1..1

sp_participates_sn ▷
1..1 0..1

sa_contains_soc ◁
0..*0..*

tc_participates_sn ◁
1..10..1

tc_bindedby_scc ▽

1..1

0..*

sa_contains_scc ▷
0..* 0..*

sp_bindedby_soc ▽

1..1

0..*

ServiceNegotiation

ServiceOfferingCommitment

socName: STRING

socState: STRING

ServiceProvider

spName: STRING

ServiceCustomerCommitment

sccName: STRING

sccState: STRING

TargetCustomer

tcName: STRING

ServiceAgreement

Fig. 4: Fragment of UFO-S used as upper schema extracted from UFO-S

companies and persons via OHub. We consider for simplicity only the following two
commitments. Contractually, when a person makes an order, she becomes obliged to
issuing a corresponding payment. In turn, upon payment the selling company becomes
committed towards the actual delivery of the order.

2.2 Challenges

The OHub scenario presents a series of very interesting challenges in conceptual mod-
eling and data access. Let us consider the need of OHub managers to inspect which
commitments currently exist, and in which state they are. Obviously, they cannot directly
formulate queries of this form on top of the legacy data, due to a vocabulary mismatch.
A possible solution would be to create a dedicated OBDA specification that directly
connects the legacy data to the UFO-S upper schema. However, this is unrealistic from
the conceptual modeling point of view, for a twofold reason. First and foremost, linking
data directly to concepts and relations in the upper schema requires to first understand
the data in terms of domain notions, and only then to establish suitable connections
between the domain and the upper level. For example, to inspect the contractual rela-
tionships between OHub’s stakeholders, one has to clarify how orders, payments, and
deliveries are reflected in the data, before identifying how mutual commitments about
payments and deliveries are established and evolved. In addition, an OBDA specification
connecting data to the domain schema could already be in place independently on these
UFO-S related needs. It is well-known that creating an OBDA specification, especially
for what concerns the understanding of the legacy data structures and the construction of
corresponding mappings, is a labor-intensive and challenging task, similarly to alterna-
tive approaches to data access and integration [8]. If such a specification is already in
place, it would be beneficial to build on it so as to gracefully integrate the upper schema
into the picture, instead of creating another OBDA specification from scratch.

A second issue is related to the fact that reference models and upper ontologies are
typically meant to capture a plethora of concepts and relations spanning over a wide range
of application domains, with the purpose of resolving ambiguities and misunderstandings
[20,22,13]. In a specific application domain such as that of OHub, only a small portion
of the whole reference model is needed to capture the commitments of interest.

To attack these issues, we propose to ground the paradigm shown in Figure 1a into
the concrete framework of Figure 1b. Here, a standard OBDA approach is adopted to
make sense of the legacy data in terms of the domain schema. This can be used, e.g., to
declare that each entry in the OrderData table corresponds to an order, whose supplying
company is obtained from the entry in Stakeholders pointed by the to column, and
whose making person is obtained from the entry in Stakeholders pointed by the from
column. The state of the order is, in turn, declared as follows: the order is open if the
corresponding entry in OrderData has final = 0; closed if the corresponding entry
in OrderData has final = 1, but no monetary transfer exists in MTransfers for the
order; paid if the corresponding entry in OrderData has final = 1, and there exists an
entry in MTransfers pointing to the order. Once this OBDA specification is in place,
domain experts can forget about the schema of the legacy data, and work directly at the
level of the domain schema. The domain schema is then employed to declare which
concepts and relations define the UFO-S notions of service provider, target customer,

and corresponding offering and customer commitments. This identification step is seen
as a declarative specification of how the domain schema of orders can be transformed
into (a portion of) the UFO-S upper schema. Here, one could declaratively specify
that: (i) Each closed order gives rise to a pending customer commitment binding its
making person (i.e., its target customer) to paying it. (ii) Each paid order corresponds to a
discharged customer commitment related to the order payment, and to a pending offering
commitment binding its supplying company (i.e., its service provider) to delivering it.

Once the mapping and transformation rules are specified, OHub managers can
express queries over UFO-S, and obtain answers automatically computed over the legacy
data. For example, upon asking about all the pending commitments existing in the state of
affairs captured by the data in Figure 3, one would get back two answers: one indicating
that company eDvd has a pending commitment related to the delivery of order o2, and
one telling that person Alice is committed to pay order o3.

This approach favors modularity and separation of concerns, since the mapping
and the transformation rules can vary independently from each other. In particular, if
the underlying data storage changes, only the mapping to the domain schema needs
to be updated, without touching the definition of commitments. If instead the contract
is updated, the domain-to-upper schema transformation needs to change accordingly,
without touching the OBDA specification. In addition, the approach is driven by the
actual querying requirements, that is, only the aspects of the upper schema that are
relevant for querying need to be subject of transformation rules. The transformation rules
themselves also provide a way to customize the view over the data. Even with the same
upper schema, two different sets of transformation rules might provide different views
over the data represented by the domain schema. We might even go beyond that, and
consider situations where several upper schemas are provided, each with different sets of
transformation rules. We do not explicitly consider this latter scenario in the following,
since it can be obtained by multiple instantiations of the 2OBDA scenario.

3 Ontology-Based Data Access

We adopt a variant of Description Logics (DLs) [2] as a conceptual modeling language in
which to express conceptual schemas. Specifically, we rely on DL-LiteA [4], a prominent
member of the DL-Lite family [5] of lightweight DLs, which have been specifically de-
signed for efficiently accessing large amounts of data through an ontology. We introduce
now such DL, and recall then the standard formalization of OBDA [21,4,23].
DL-LiteA [21]. In DL-LiteA, the domain of interest is modeled through concepts, repre-
senting sets of (abstract) objects, roles, representing binary relations between objects,
and attributes, representing binary relations between objects and values. Values belong
to concrete datatypes, such as strings, integers, etc., but, for simplicity, we do not dis-
tinguish between different datatypes, and use a unique datatype instead (e.g., STRING)
for all values in the system. The syntax of DL-LiteA concept expressions B and role
expressions R is given by the grammar

B −→ N | ∃R | δ(U), R −→ P | P−,
where N , P , and U (here and in the following) denote a concept name, a role name,
and an attribute name, respectively. The role P− denotes the inverse of role P , and

the concept ∃R, also called unqualified existential restriction, denotes the domain of a
role R, i.e., the set of objects that R relates to some object. Similarly, the concept δ(U)
denotes the domain of an attribute U , i.e., the set of objects that U relates to some value.
Notice that the domain ∃P− of the inverse of role P actually represents the range of
role P . Instead, since we have adopted a unique datatype for all values, there is no need
to refer to the range of an attribute (since it is always, e.g., STRING).

A DL-LiteA Knowledge Base (KB) K = 〈T ,A〉 consists of a TBox T , modeling
intensional information, and an ABox A, modeling extensional information.

The TBox consists of a finite set of TBox assertions of the following forms:

B1 v B2,
R1 v R2,
U1 v U2,

B1 v ¬B2,
R1 v ¬R2,
U1 v ¬U2,

(funct R),
(funct U).

From left to right, assertions of the first column respectively denote inclusions between
concepts, roles, and attributes; assertions of the second column denote disjointness
between concepts, roles, and attributes; assertions of the last column denote functionality
of roles and attributes. In order to ensure the desired computational properties of DL-
LiteA that make it suitable as an ontology language in the context of OBDA, we impose
that in a TBox, the roles and attributes occurring in functionality assertions cannot be
specialized (i.e., they cannot occur in the right-hand side of inclusions) [5,4].
Example 1. We give some of the DL-Lite TBox assertions that capture the conceptual
schema in Figure 2, where intuitively concepts correspond to classes, roles to binary
associations, and DL attributes to UML attributes:

Open v Order,
Paid v Order,

Paid v ¬Open,
δ(name) v Person,

∃makes v Person,
∃makes− v Order,

Order v ∃makes−,
(funct makes−), . . .

These assertions state that Open and Paid are sub-concepts of Order and that Paid and
Open are disjoint. They further specify the domain of name and makes and the range of
makes, that orders are made by someone, and that the inverse of makes is functional.

The Abox consists of a finite set of ABox assertions of the form N(t1), P (t1, t2),
or U(t1, v), where t1 and t2 denote individuals (representing abstract objects) and v
denotes a value. A constant is an individual or a value. The domain of an ABox A,
denoted by ADOM(A), is the (finite) set of constants appearing in A.

For the semantics of DL-LiteA, we note that we interpret objects and values over
disjoint domains, and that for both we adopt the Unique Name Assumption, i.e., different
terms denote different objects (or values). The various types of TBox assertions (i.e.,
inclusion, disjointness, and functionality) are satisfied when the corresponding condition
holds for the interpretation of the involved concepts, role(s), or attribute(s). We refer to [4]
for details. We also adopt the usual notions of satisfaction, model, and entailment [4].

We point out that DL-LiteR, which is the sublanguage of DL-LiteA obtained by
dropping functionality assertions, is the formal counterpart of the OWL 2 QL language
standardized by the W3C [19] as a profile of the Web Ontology Language OWL 2.

Queries. We consider queries that are formulated over the conceptual schema elements,
and whose answers are formed by terms of the ABox. A conjunctive query (CQ) q(~x)
over a TBox T is a first-order logic (FOL) formula of the form ∃~y.conj (~x, ~y), whose

free variables (a.k.a. answer variables) are ~x. The formula conj (~x, ~y) is a conjunction of
atoms of the form N(z), P (z, z′), and U(z, z′) where N , P and U respectively denote
a concept, a role, and an attribute name of T , and z, z′ are constants, or variables in ~x or
~y. If q has no answer variables, then it is called boolean. A union of conjunctive queries
(UCQ) q(~x) over T is a disjunction of CQs with the same answer variables ~x, i.e., a
FOL formula of the form: ∃~y1.conj 1(~x, ~y1) ∨ · · · ∨ ∃~yn.conjn(~x, ~yn).

The (certain) answers to a (U)CQ q(~x) over a KB K = 〈T ,A〉 is the set cert(q,K)
of substitutions6 σ of the answer variables ~x with constants in ADOM(A), such that
the closed FOL formula qσ evaluates to true in every model of K. The answer to a
boolean query is either true (i.e., the empty substitution) or false (i.e., no substitution).
Computing cert(q,K) of a UCQ q over a DL-LiteA KB K = 〈T ,A〉 is polynomial in the
size of T and in AC0 in the size of A. This is a consequence of the fact that DL-LiteA
enjoys FOL rewritability, which in our setting means that for every UCQ q, one can
compute cert(q,K) by evaluating the UCQ rew(q, T) over A considered as a database,
where rew(q, T) is the so-called perfect rewriting of q w.r.t. T [5,4,23].
Ontology-Based Data Access (OBDA). An OBDA specification is a triple S =
〈R,M, T 〉, where: (i) R is relational database schema, consisting of a finite set of
relation schemas, possibly with constraints, (ii) T is a domain schema, formalized as
a DL-LiteA TBox; and (iii)M is an OBDA mapping, consisting of a set of mapping
assertions. These specify how to extract data from the underlying database and how
to use them to instantiate the elements of the domain schema. To denote instances of
the domain schema, we consider a countably infinite set Λ of (uninterpreted) functions,
and apply them to the values retrieved from the database. Specifically, each mapping
assertion has the form ϕ(~x) ψ(~y,~t), where ϕ(~x) is an arbitrary SQL query overR
with ~x as output variables, and ψ(~y,~t) is a conjunction of atoms over T using variables
~y ⊆ ~x and terms ~t, where each term in ~t has the form f(~z), with f ∈ Λ and ~z ⊆ ~x.
Example 2. In our running example, the following mapping assertion is used to populate
the concept Person and the corresponding attribute name, by selecting in the table
Stakeholders entries for which the value of type equals ’p’:

SELECT id as pid, name FROM Stakeholders WHERE type = ’p’

 Person(person(pid)) ∧ name(person(pid), name)

The following mapping assertion is used to populate the role makes with all pairs
consisting of an order and the corresponding person who made the order:

SELECT OD.id as oid, S.id as pid FROM OrderData OD, Stakeholders S

WHERE OD.from = S.id makes(person(pid), order(oid))

Given an OBDA specification S = 〈R,M, T 〉 and a database instance D that con-
forms toR, the pair J = 〈S,D〉 is called an OBDA instance (for S). Each mapping as-
sertionm = ϕ(~x) ψ(~y,~t) inM generates fromD a setm(D) =

⋃
~c∈eval(ϕ,D) ψ[~x/~c]

of ABox assertions, where eval(ϕ,D) denotes the evaluation of ϕ(~x) over D, and where
ψ[~x/~c] is the set (as opposed to the conjunction) of atoms obtained by substituting in
ψ(~y,~t) each variable x ∈ ~x with the corresponding constant c ∈ ~c. Then, the (virtual)
ABox7 generated byM from D isM(D) =

⋃
m∈Mm(D). Given an OBDA instance

6 As customary, we view a substitution of ~x as a tuple of constants, one for each variable in ~x.
7 Such ABox is called virtual because in general it is not actually materialized.

J = 〈S,D〉 with S = 〈R,M, T 〉, a model for J is a model of the KB 〈T ,M(D)〉.
We say that J is satisfiable if it admits a model.

A UCQ q over an OBDA specification S = 〈R,M, T 〉 is simply a UCQ over T ,
and given an OBDA instance J = 〈S,D〉, the certain answers to q over J , denoted
cert(q,J), are defined as cert(q, 〈T ,M(D)〉). To compute cert(q,J), instead of mate-
rializing the virtual ABoxM(D), we can apply the following three-step approach [21]:
(i) rewrite q to compile away T , obtaining qr = rew(q, T); (ii) use the mappingM to
unfold qr into a query over R, denoted by qu = unf(qr,M), which turns out to be an
SQL query; (iii) evaluate qu over D, obtaining eval(qu,D). It has been shown in [21]
that cert(q, 〈〈R,M, T 〉,D〉) = eval(unf(rew(q, T),M),D).
Example 3. Recall our example, and consider the query q(x) = Person(x) that retrieves
all persons. Since T contains ∃makes v Person and ∃name v Person, the rewriting of
q(x) w.r.t. T gives us the UCQ qr(x) = Person(x) ∨ ∃y.makes(x, y) ∨ ∃z.name(x, z),
and the unfolding of qr(x) w.r.t.M gives us the following SQL query qu(x):

SELECT id as x FROM Stakeholders WHERE type = ’p’ UNION

SELECT S.id as x FROM OrderData OD, Stakeholders S WHERE OD.from = S.id

4 2-Level Ontology Based Data Access

Within an OBDA specification S = 〈R,M, T 〉, the TBox T provides a specific concep-
tual view, which we called domain schema, of the domain of interest, through which
the data sources R are accessed. However, as illustrated in Section 2, users might be
interested in accessing the same data sources through a different conceptual schema T ′,
which we called upper schema, without the need to redefine from scratch the relationship
between T ′ and R. Thus, we need a mechanism to relate the upper schema T ′ to the
domain schema T , and to exploit this connection, together with the information on T
andM encoded in S, for answering queries over the upper schema.

Here we introduce a solution based on transformation rules that declaratively map the
domain schema T to the upper schema T ′ and that are based on so-called GAV mappings.
Such form of mappings have been widely used in the data integration setting (cf. [16])
as a natural means to connect a global schema used for querying a data integration
system to the schemas of the underlying data sources. Formally, given two TBoxes T
and T ′, a schema transformation from T to T ′, is a set N of transformation rules,
each of the form ϕ(~x) ψ(~y,~t), where ϕ(~x) is a UCQ over T with answer variables
~x, and ψ(~y,~t) is a conjunction of atoms over T ′ over variables ~y ⊆ ~x and terms ~t.
Similarly to the case of OBDA mappings, the terms in ~t have the form f(~z), with
f ∈ Λ and ~z ⊆ ~x, and they are used to construct the identifiers of individuals for T ′.
However, such identifiers might also be returned directly by the query ϕ. Essentially,
such a schema transformation populates the elements of the upper schema T ′ with the
information obtained from the answers to queries over the domain schema T . Formally,
given an ABox A for T , a transformation rule r = ϕ(~x) ψ(~y,~t) in N generates
a set r(T ,A) =

⋃
~c∈cert(ϕ,〈T ,A〉) ψ[~x/~c] of ABox assertions for T ′, where ψ[~x/~c] is

defined as for OBDA mapping assertions. Notice that since a transformation rule is
applied to a KB (and not to a database instance), the query in the left-hand side of the

rule is interpreted under certain-answer semantics. Then, the ABox generated byN from
〈T ,A〉 is defined as N (T ,A) =

⋃
r∈N r(T ,A).

Example 4. The transformation rule Person(x) TargetCustomer(tc(x)) maps
each instance of the domain schema concept Person into the upper schema concept
TargetCustomer.

We are now ready to formalize the setting of 2-level OBDA, or 2OBDA for short. A
2OBDA specification is a tuple S〈2〉 = 〈S,N , T ′〉 , where S = 〈R,M, T 〉 is an OBDA
specification, T ′ is an upper schema (expressed as a DL-LiteA TBox), andN is a schema
transformation from T to T ′. Given an OBDA instance J = 〈S,D〉 for S, the tuple
J〈2〉 = 〈J ,N , T ′〉 is called a 2OBDA instance for S〈2〉. The notions of virtual ABox
and query answering in OBDA can be lifted to 2OBDA as well. Let J = 〈S,D〉, with
S = 〈R,M, T 〉, be a satisfiable OBDA instance. The (virtual) ABox N (J) generated
by N from J is defined as N (J) = N (T ,M(D)). Moreover, a model for J〈2〉 is a
model of the KB 〈T ′,N (J)〉, and J〈2〉 is satisfiable if it admits a model. A UCQ q over
a 2OBDA instance J〈2〉 is simply a UCQ over the upper schema T ′, and the certain
answers to q over J〈2〉, denoted cert(q,J〈2〉), are defined as cert(q, 〈T ′,N (J)〉).

To compute cert(q,J〈2〉), instead of materializing the intermediate and final virtual
ABoxes, we can use the following 5-step approach: (i) rewrite q to compile away the
upper schema T ′, obtaining q′r = rew(q, T ′), which is a UCQ over T ′; (ii) use the
schema transformation N to unfold q′r into a query over the domain schema T , denoted
by q′u = unf(q′r,N), which turns out to be a UCQ; (iii) rewrite q′u to compile away
the domain schema T , obtaining qr = rew(q′u, T); (iv) use the mappingM to unfold
qr into a query over R, denoted by qu = unf(qr,M), which turns out to be an SQL
query; (v) evaluate qu overD, obtaining eval(qu,D). The correctness of this approach for
computing the certain answers cert(q,J〈2〉) can be shown by considering that essentially
it combines two rewriting and unfolding phases for computing certain answers, and that
both combinations are correct since they are based on standard OBDA [21]. We get:

Theorem 1. Given a 2OBDA instance J〈2〉 = 〈J ,N , T ′〉, where J = 〈S,D〉 and
S = 〈R,M, T 〉, and a UCQ q over T , we have that

cert(q,J〈2〉) = eval(unf(rew(unf(rew(q, T ′),N), T),M),D).
This result provides a way for answering queries in 2OBDA, but at the cost of an ah-

hoc solution for query translation. We present now an alternative approach based on deriv-
ing from a 2OBDA specification an equivalent standard OBDA specification. Specifically,
we show how to compile away from a 2OBDA specification S〈2〉 = 〈S,N , T ′〉, where
S = 〈R,M, T 〉, the domain schema T , and synthesize from S〈2〉 a standard OBDA
specification S ′ = 〈R,M′, T ′〉 in which the elements of the upper schema T ′ are di-
rectly mapped to the sources. To construct the OBDA mappingM′ of S ′, we first rewrite
w.r.t. T and then unfold w.r.t.M each query over the domain schema in each transforma-
tion rule inN . Formally, for each transformation rule ϕ(~x) ψ(~y,~t) inN , the mapping
M′ contains a mapping assertion ϕ′(~x) ψ(~y,~t), where ϕ′ = unf(rew(ϕ, T),M).

Example 5. Continuing Example 4, by applying the steps above, we get the OBDA
mapping qu(x) TargetCustomer(tc(x)), where qu(x) is the SQL query in Example 3.

To show the correctness of this approach, consider a source database D conform-
ing to R, and the corresponding OBDA instance J = 〈S,D〉 and 2OBDA instance

J〈2〉 = 〈J ,N , T ′〉. By the correctness of the rewriting and unfolding approach to
OBDA (cf. [21]), for each transformation rule r = ϕ(~x) ψ(~y,~t) in N , we have that
cert(ϕ,J) = cert(ϕ, 〈T ,M(D)〉) = eval(ϕ′,D), where ϕ′ = unf(rew(ϕ, T),M).
Hence, ϕ(~x) in r and ϕ′(~x) in the mapping assertion m ofM′ derived from r return the
same answers, and in both r and m these instantiate the same atoms in ψ(~y,~t). It follows
that N andM′ populate the elements of the TBox T ′ with the same facts. We get:
Theorem 2. Let S〈2〉 = 〈S,N , T ′〉 be a 2OBDA specification, where S = 〈R,M, T 〉,
and let S ′ = 〈R,M′, T ′〉 be the OBDA specification derived from S〈2〉 as specified
above. Then S〈2〉 and S ′ have the same models.

By relying on this result, query answering over a 2OBDA instance can be delegated
to a traditional OBDA system, and we can use for it existing implementations (e.g., [3]).

5 Using Annotations for Specifying Schema Transformations

To specify the schema transformation rules between the domain ontology and the upper
ontology, we propose an approach based on annotations, which are then used to actually
generate the rules. We employ UML class diagrams as a concrete language for conceptual
data modeling, and we rely on their logic-based encoding in terms of OWL 2 QL [4,6].
Therefore, we assume to work with OWL 2 QL compliant ontologies. The available
types of annotations are automatically deduced from the upper ontology based on this
assumption. In fact, we have developed an editor for annotating the domain ontology
with upper ontology concepts that dynamically builds the annotation types accordingly.

Every class/concept in the ontology is considered to be an annotation type. Data
properties having this class as domain are considered as fields of this annotation and they
will be populated from the fields available in the domain ontology. Object properties
are instead populated in their range class. It is possible to select any data property of
the domain ontology or enter a static value to the data properties. For object properties,
it is necessary to select an annotation instance defined over the domain ontology. For
both data and object properties, the user can exploit navigational access, which provides
the knowledge of how to access any field or annotation over the UML diagram using
relations between classes as paths. After the selection of the corresponding fields, values,
or navigational paths for each element in the annotation, queries for the transformation
rules are automatically generated and actually used for rule generation (cf. Section 4).

The different annotations enrich the domain schema S by indicating which
classes/concepts, associations/roles, and attributes in S contribute to the identification
of different attributes of the annotations extracted from T ′. Towards the automated pro-
cessing of such annotations, and the consequent automated generation of transformation
rules, the first step is to formally represent the annotations using a machine-processable
language. To this end, we rely on conjunctive queries encoded in SPARQL, which are used
to extract objects/values targeted by the annotations. In this way, we can represent GAV
mappings that go well beyond one-to-one correspondences between classes/associations.

We provide a tool-chain that supports the various phases of the 2OBDA design and in
particular implements the automated processing technique for annotations. It is available
as a stand-alone software, or as a set of plugins running inside the ProM process mining

Fig. 5: Annotating the domain ontology using concepts from the upper ontology

(a) Payment pending service customer comm. (b) Payment discharged service customer comm.

(c) Shipment service offering commitment

Fig. 6: Forms of commitment annotations showing the values

framework8. Specifically, it consists of the following components: (i) A UML Editor, to
model the domain and upper ontologies as UML class diagrams, and to import from and
export to OWL 2 QL. (ii) A Dynamic Annotation Editor, to enrich the domain ontology
with annotations extracted from the upper ontology. The editor supports navigational
selections over the diagram via mouse-click operations to simplify the annotation task.
The annotations are automatically translated into corresponding SPARQL queries by
the editor. (iii) A Transformation Rule Generator, which automatically processes the
annotations, and generates rules between the domain and upper ontologies. It implements
the mapping synthesis technique described in Section 4, leveraging the state-of-the-art
framework ontop9 [3] for mapping management and query rewriting and unfolding.

Currently we do not have native tool support for specifying the mapping between the
domain ontology and the data sources, and we assume that it is realized manually or by
exploiting third-party tools, such as the mapping editor in the ontop plugin for Protégé.9

To use the Dynamic Annotation Editor to annotate the domain ontology with the
concepts of the upper ontology, a user first defines the upper ontology as the target
ontology, and then loads the file with the domain ontology to annotate. For example,
if we use the partial UFO-S ontology as our upper ontology, and use it to annotate the
order ontology, we can easily extract commitments available in the system. Figure 5

8 http://onprom.inf.unibz.it
9 http://ontop.inf.unibz.it

http://onprom.inf.unibz.it
http://ontop.inf.unibz.it

shows example annotations for extracting the commitments required by the company
from the order system and Figure 6 shows the forms of corresponding annotations. Note
that Figure 2 and Figure 4 are image exports taken from the UML Editor, and Figure 5 is
an image export taken from the Dynamic Annotation editor.

According to the annotations defined in Figure 5, the TargetCustomers are extracted
from the Person concept and ServiceProviders from the Company. The Order concept
defines a ServiceNegotiation and a ServiceAgreement between a Company and a
Person. Two ServiceCustomerCommitments for the Payment are extracted when a
Person gives an Order over the Closed (for pending payment commitment) and Paid
(for discharged payment commitment) specializations of Order. After the Payment
is successfully discharged, a ServiceOfferingCommitment for the Shipment will be
available in the system. Figure 5 depicts the commitment extraction requirements of the
company regarding their order system, and their presentation in the form of a diagram
allows users to understand the relations and the requirements in a more intuitive way.

The tool-chain provides an easy annotation mechanism to the users with diagrams,
forms, and point-and-click actions, so they don’t have to deal with any text processing
or ETL kind of approaches. The mapping generator of the tool-chain automatically
generates the mapping between the underlying data sources and the upper ontology,
using the domain ontology, the mapping specification between data sources and domain
ontology, the upper ontology, and the annotations defined over the domain ontology.

6 Conclusions

In this paper, we proposed a framework for accessing data through different conceptual
schemas, e.g., a domain schema and an upper schema acting as a reference model for the
domain. We have formalized the framework in terms of 2-level OBDA, and have shown
how to exploit an existing OBDA specification for the domain schema, together with
conceptual mappings between the domain and the upper schema, to automatically derive
an new OBDA specification for the upper schema. We have shown how the framework
can be realized through schema annotations, and we have implemented a tool-chain
supporting such approach. We have illustrated our approach on a use case adopting as
upper schema a commitment-based core reference ontology for service (UFO-S).

Another interesting and highly relevant setting that calls for a multi-level approach to
data access, is that of process mining, sketched in Figure 1c [1]. In [8,6,7], a framework
for extracting event logs using OBDA has been proposed, considering the XES standard
for event logs [14] as a fixed, upper schema that is hard-coded in the framework. The
2OBDA approach presented here allows us to overcome the rigidity of XES and use
instead a customized upper schema that can account e.g., for events with start and end
time, or for hierarchical process instances. Finally, we observe that the framework of
2-level OBDA and the results in Section 4, can be easily generalized to multiple-levels,
where schema transformations are specified between multiple conceptual schemas.

Acknowledgements. This research is supported by the Euregio IPN12 KAOS (Knowledge-
Aware Operational Support) project, funded by the “European Region Tyrol-South Tyrol-Trentino”
(EGTC), and by the UNIBZ internal project OnProm (ONtology-driven PROcess Mining).

References

1. van der Aalst, W., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S.
(eds.) Proc. of the BPM Int. Workshops. LNBIP, vol. 99, pp. 169–194. Springer (2012)

2. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The
Description Logic Handbook: Theory, Implementation and Applications. CUP (2003)

3. Calvanese, D., Cogrel, B., Komla-Ebri, S., Kontchakov, R., Lanti, D., Rezk, M., Rodriguez-
Muro, M., Xiao, G.: Ontop: Answering SPARQL queries over relational databases. Semantic
Web J. 8(3), 471–487 (2017)

4. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodríguez-Muro, M.,
Rosati, R.: Ontologies and databases: The DL-Lite approach. In: Tessaris, S., Franconi, E.
(eds.) RW Tutorial Lectures, LNCS, vol. 5689, pp. 255–356. Springer (2009)

5. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. JAR 39(3) (2007)

6. Calvanese, D., Kalayci, T.E., Montali, M., Santoso, A.: OBDA for log extraction in process
mining. In: RW Tutorial Lectures, LNCS, vol. 10370, pp. 292–345. Springer (2017)

7. Calvanese, D., Kalayci, T.E., Montali, M., Santoso, A.: The onprom toolchain for extracting
business process logs using ontology-based data access. In: Proc. of the BPM Demo Track
and BPM Dissertation Award, co-located with BPM 2017. CEUR, vol. 1920 (2017)

8. Calvanese, D., Kalayci, T.E., Montali, M., Tinella, S.: Ontology-based data access for extract-
ing event logs from legacy data: The onprom tool and methodology. In: Proc. of BIS. LNBIP,
vol. 288, pp. 220–236. Springer (2017)

9. Catarci, T., Lenzerini, M.: Representing and using interschema knowledge in cooperative
information systems. JICIS 2(4), 375–398 (1993)

10. Chopra, A.K., Singh, M.P.: Custard: Computing norm states over information stores. In: Proc.
of AAMAS. pp. 1096–1105 (2016)

11. Daraio, C., et al.: The advantages of an ontology-based data management approach: Openness,
interoperability and data quality. Scientometrics 108(1), 441–455 (2016)

12. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, 2nd edn. (2013)
13. Guizzardi, G.: On ontology, ontologies, conceptualizations, modeling languages, and

(meta)models. In: Proc. of DB&IS. pp. 18–39. IOS Press (2006)
14. IEEE Computational Intelligence Society: IEEE standard for eXtensible Event Stream (XES)

for achieving interoperability in event logs and event streams. Std 1849-2016, IEEE (2016)
15. Kharlamov, E., et al.: Ontology based data access in Statoil. J. of Web Semantics 44 (2017)
16. Lenzerini, M.: Data integration: A theoretical perspective. In: Proc. of PODS (2002)
17. Mehdi, G., et al.: Semantic rule-based equipment diagnostics. In: Proc. of ISWC. LNCS, vol.

10588, pp. 314–333. Springer (2017)
18. Montali, M., Calvanese, D., De Giacomo, G.: Verification of data-aware commitment-based

multiagent systems. In: Proc. of AAMAS. pp. 157–164 (2014)
19. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web Ontology

Language profiles (second edition). W3C Recommendation, W3C (Dec 2012)
20. Nardi, J.C., de Almeida Falbo, R., Almeida, J.P.A., Guizzardi, G., Pires, L.F., van Sinderen,

M.J., Guarino, N., Fonseca, C.M.: A commitment-based reference ontology for services.
Information Systems 54, 263 – 288 (2015)

21. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Linking
data to ontologies. J. on Data Semantics X, 133–173 (2008)

22. Scherp, A., Saathoff, C., Franz, T., Staab, S.: Designing core ontologies. Applied Ontology
6(3), 177–221 (2011)

23. Xiao, G., Calvanese, D., Kontchakov, R., Lembo, D., Poggi, A., Rosati, R., Zakharyaschev,
M.: Ontology-based data access: A survey. In: Proc. of IJCAI. AAAI Press (2018)

	Conceptual Schema Transformationin Ontology-based Data Access

