
Improving merging conditions for recomposing
conformance checking

Wai Lam Jonathan Lee1, Jorge Munoz-Gama1, H.M.W. Verbeek2,
Wil M.P. van der Aalst3, and Marcos Sepúlveda1

1 Pontificia Universidad Católica de Chile (Chile)
{walee,jmun}@uc.cl, marcos@ing.puc.cl,

2 Eindhoven University of Technology, (The Netherlands)
h.m.w.verbeek@tue.nl

3 RWTH Aachen University, (Germany)
wvdaalst@pads.rwth-aachen.de

Abstract. Efficient conformance checking is a hot topic in the field of pro-
cess mining. Much of the recent work focused on improving the scalability of
alignment-based approaches to support the larger and more complex processes.
This is needed because process mining is increasingly applied in areas where
models and logs are “big”. Decomposition techniques are able to achieve signif-
icant performance gains by breaking down a conformance problem into smaller
ones. Moreover, recent work showed that the alignment problem can be resolved
in an iterative manner by alternating between aligning a set of decomposed sub-
components before merging the computed sub-alignments and recomposing sub-
components to fix merging issues. Despite experimental results showing the gain
of applying recomposition in large scenarios, there is still a need for improving
the merging step, where log traces can take numerous recomposition steps be-
fore reaching the required merging condition. This paper contributes by defining
and structuring the recomposition step, and proposes strategies with significant
performance improvement on synthetic and real-life datasets over both the state-
of-the-art decomposed and monolithic approaches.

Keywords: Recomposition, Conformance Checking, Process Mining

1 Introduction

In today’s organizations, it is important to ensure that process executions follow the
protocols prescribed by process stakeholders so that compliance is maintained. Confor-
mance checking in process mining compares event data with the corresponding process
model to identify commonalities and discrepancies [2]. Detailed diagnostics provide
novel insights into the magnitude and effect of deviations. The state-of-the-art in con-
formance checking are alignment-based techniques that provide detailed explanations
of the observed behavior in terms of modeled behavior [4].

However, one of the limitations of alignment-based approaches is the explosion
of state-space during the alignment computation. For example, the classic cost-based
alignment approach [4] in the worst case is exponential with respect to the model size
[5].

2 Lee, Munoz-Gama, Verbeek, van der Aalst, and Sepúlveda

One research line focuses on decomposition techniques which break down a con-
formance problem into smaller sub-problems [1]. Experimental results have shown that
decomposed approaches can be several times faster than their monolithic counterparts
and can compute alignments for datasets that were previously infeasible. But until re-
cently, decomposition techniques have been limited to resolving the decision problem
of deciding if a log trace is perfectly fitting with the model. As a result, reliable diagnos-
tics are missing. However, recent work has shown that overall alignment results can be
computed under decomposed conformance checking by using the so-called recomposi-
tion approach. A framework that computes overall alignment results in a decomposed
manner was presented in [10, 11].

A key result of the work is in defining and proving the border agreement condition
which permits the merging of sub-alignment results as an overall result. If the condition
is not met, the decomposed sub-components are “recomposed” to encourage the merg-
ing condition in the next alignment iteration. Experimental results have shown signifi-
cant performance gains using recomposition, but they have also shown that the merging
aspect of the framework can become a performance bottleneck where log traces may
require numerous recompositions to reach the merging condition. Under this context,
this paper is a step towards that direction by defining and structuring the recomposi-
tion step, proposing different recomposition strategies, and evaluating their impact to
the overall computation time. The experimental results show that by applying the pre-
sented recomposition strategies, exact alignment results can be computed on synthetic
and real-life datasets much faster.

The remainder of the paper is structured as follows: Section 2 introduces the re-
quired notations and concepts. In particular, Section 2.2 presents the recomposition
approach as the focus of the paper. Section 3 defines and structures the recomposition
step and sheds light on the limitations of the existing recomposition strategies. Sec-
tion 4 presents four recomposition strategies that can be used in the recomposition step.
Section 5 details the experimental setup for the evaluation of the proposed strategies,
and Section 6 analyzes the experimental results. Section 7 presents the related work.
Finally, Section 8 presents some conclusions and future work.

2 Preliminaries

This section introduces basic concepts related to process models, event logs, and align-
ment-based conformance checking techniques.

Let X be a set. B(X) denotes the set of all possible multisets over set X , and X∗

denotes the set of all possible sequences over set X . 〈〉 denotes the empty sequence.
Concatenation of sequences σ1 ∈ X∗ and σ2 ∈ X∗ is denoted as σ1 · σ2. Given a tuple
x = (x1, x2, . . . , xn) ∈ X1 × X2 × . . . × Xn, πi(x) = xi denotes the projection
operator for all i ∈ {1, . . . , n}. This operator is extended to sequences so that given
a sequence σ ∈ (X1 × X2 × . . . × Xn)

∗ of length m with σ = 〈(x11 , x21 , . . . ,
xn1), (x12 , x22 , . . . , xn2), . . . , (x1m , x2m , . . . , xnm)〉, πi(σ) = 〈xi1 , xi2 , . . . , xim〉 for
all i ∈ 1, . . . , n. Projection is also defined over sets and functions recursively. Given
Y ⊆ X and a sequence σ ∈ X∗, 〈〉�Y= 〈〉, and (〈x〉 · σ)�Y= 〈x〉 · σ�Y if x ∈ Y , and

Improving merging conditions for recomposing conformance checking 3

Fig. 1. System net S that models a loan application process (adapted from [6])

(〈x〉 · σ)�Y= σ�Y if x /∈ Y . Similarly, given a function f : X → Y and a sequence
σ = 〈x1, x2, . . . , xn〉 ∈ X∗, f(σ) = 〈f(x1), f(x2), . . . , f(xn)〉.

2.1 Preliminaries on Petri net, event log, and net decomposition

In this paper, Petri nets are used to represent process models.

Definition 1 (Labeled Petri net). Let P denote a set of places, T denote a set of tran-
sitions, and F ⊆ (P × T) ∪ (T × P) denote the flow relation. A labeled Petri net
N = (P, T, F, l) is a Petri net (P, T, F) with labeling function l ∈ T 9 UA where UA
is some universe of activity labels.

In a process setting, there is typically a well-defined start and end to an instance of
the process. This can be denoted with the initial and final marking of a system net.

Definition 2 (System net). A system net is a triplet S = (N, I,O) where N = (P, T,
F, l) is a labeled Petri net, I ∈ B(P) is the initial state and O ∈ B(P) is the final state.
φf (S) is the set of transition sequences that reach the final state when started in the
initial state. If σ is a transition sequence, then l(σ�dom(l)) is an activity sequence.

Tv(S) = dom(l) is the set of visible transitions in S. Tuv (S) = {t ∈ Tv(S) |
∀t′∈Tv(S)l(t) = l(t′)⇒ t = t′} is the set of unique visible transitions in S.

Figure 1 presents a system net S that models a loan application process (ignore the
grey boxes in the background for now). [i] is the initial marking and [o] is the final
marking. An example activity sequence is 〈a, b, c, d, f, g, h, i, k〉 which corresponds to
the occurred events of a successful loan application. The process executions in real-life
are recorded as event data and can be expressed as an event log.

Definition 3 (Trace, Event log). Let A ⊆ UA be a set of activities. A trace σ ∈ A∗ is
a sequence of activities. An event log L ∈ B(A∗) is a multiset of traces.

Figure 2 presents an event log L corresponding to the system net in Figure 1. Log L
has 20 cases in total with 5 cases following trace σ1, 10 cases following trace σ2, and
5 cases following trace σ3. In cost-based alignment conformance checking, a trace is
aligned with the corresponding system net to produce an alignment.

4 Lee, Munoz-Gama, Verbeek, van der Aalst, and Sepúlveda

L = [

σ1︷ ︸︸ ︷
〈a, b, c, d, f, g, h, i, k〉 5,

σ2︷ ︸︸ ︷
〈a, c, b, d, f, g, i, h, k〉 10,

σ3︷ ︸︸ ︷
〈a, c, b, d, f, g, j, k〉 5]

Fig. 2. Running example: Event log L

Definition 4 (Alignment [4]). Let L ∈ B(A∗) be an event log with A ⊆ UA , let
σL ∈ L be a log trace and σM ∈ φf (S) a complete transition sequence of system net
S. An alignment of σL and σM is a sequence of pairs γ ∈ ((A∪{�})× (T ∪{�}))∗
where π1(γ)�A= σL, π2(γ)�T= σM , ∀(a,t)∈γ a 6=� ∨ t 6=�, and ∀(a,t)∈γ a 6=�
∧ (t =� ∨ a = l(t)).

Each pair in an alignment is a legal move. There are four types of legal moves: a
synchronous move (a, t) means that the activity matches the activity of the transition,
i.e., a = l(t), a log move (a, �) means that there is a step in the log that is not matched
by a corresponding step in the model, a model move (�, t) where t ∈ dom(l) means
that there is a step in the model that is not matched by a corresponding step in the log,
and an invisible move (�, t) where t ∈ T \ dom(l) means that the step in the model
corresponds to an invisible transition that is not observable in the log.

Definition 5 (Valid decomposition [1] and Border activities [11]). Let S = (N, I,O)
with N = (P, T, F, l) be a system net. D = {S1, S2, . . . , Sn} is a valid decomposition
if and only if the following properties are fulfilled:

– Si = (Ni, Ii, Oi) is a system net with Ni = (Pi, Ti, Fi, li) for all 1 ≤ i ≤ n.
– li = l�Ti

for all 1 ≤ i ≤ n.
– Pi ∩ Pj = ∅ and Ti ∩ Tj ⊆ Tuv (S) for all 1 ≤ i < j ≤ n.
– P =

⋃
1≤i≤n Pi, T =

⋃
1≤i≤n Ti, and F =

⋃
1≤i≤n Fi.

D(S) is the set of all valid decompositions of S.
Ab(D) = {l(t) | ∃1≤i<j≤n t ∈ Ti ∩ Tj} is the set of border activities of the valid

decomposition D. To retrieve the sub-nets that share the same border activity, for an
activity a ∈ rng(l), Sb(a,D) = {Si ∈ D | a ∈ rng(li)} is the set of sub-nets that
contain a as an observable activity.

Figure 1 presents a valid decomposition D of net S where sub-nets are marked by
the grey boxes. For example, sub-net S1 consists of the transitions t1, t2, t3, t4, t5, and
t6. Border activities can be identified as the activities of the transitions that are shared
between two sub-nets. They are t4, t5, t6, t8, t11, and t12. Under the recomposition
approach framework, overall alignments can be computed in a decomposed manner.

2.2 Recomposing conformance checking

Figure 3 presents an overview of the recomposing conformance checking framework
[11, 10] which consists of the following five steps: (1) The net and log are decomposed
using a decomposition strategy, e.g., maximal decomposition [1]. (2) Alignment-based

Improving merging conditions for recomposing conformance checking 5

Fig. 3. Recomposing conformance checking framework with the recomposition step highlighted
in dark blue

conformance checking is performed per sub-net and sub-log to produce a set of sub-
alignments for each log trace. (3) Since sub-components overlap on border activities,
the set of sub-alignments for each log trace also overlap on moves involving border
activities. In [11], it was shown that if the sub-alignments synchronize on these moves,
then they can be merged as an overall optimal alignment using the merging algorithm
presented in [18]. This condition was formalized as the total border agreement condi-
tion. Log traces that do not meet the requirement are either rejected or left for the next
iteration. As such, only border activities can cause merge conflicts. (4) User-configured
termination conditions are checked at the end of each iteration. If the framework is ter-
minated before computing the overall optimal alignments for all log traces, then an ap-
proximate overall result is given. The results of the framework consist of a fitness value
and a set of alignments corresponding to the log traces. In the case of an approximate
result, the fitness value would be an interval bounding the exact fitness value and the
set of alignments would have pseudo alignments. (5) If there are remaining log traces
to be aligned and the termination conditions are not reached, then a recomposition step
is taken to produce a new net decomposition and a corresponding set of sub-logs. The
next iteration of the framework then starts from Step (2).

While experimental results have shown significant performance gains from the re-
composition approach over its monolithic counterpart, large scale experimentation has
shown that recomposition is a potential bottleneck. In particular, the strategies used
at the recomposition step can have a significant impact. The following section takes a
more detailed look at the recomposition step and discusses the limitations of the current
recomposition strategies.

3 Recomposition step

The recomposition step refers to Step (5) of the framework overview presented in Fig-
ure 3 and is highlighted in dark blue. We formalize the step in two parts: the production
of a new net decomposition and a corresponding set of sub-logs.

Definition 6 (Recomposition step). LetD ∈ D(S) be a valid decomposition of system
net S and let L = B(A∗) be an event log. For 1 ≤ i ≤ n, where n = |D|, let

6 Lee, Munoz-Gama, Verbeek, van der Aalst, and Sepúlveda

Mi = (Ai∪{�})×(Ti∪{�}) be the possible alignment moves for a sub-component
so that ΓD = [(γi1 , . . . , γin) ∈M∗1 × . . .×M∗n | ∃σi∈L∀j∈{1,...,n}π1(γij)�Aj

= σi�Aj
]

contains the latest sub-alignments for all log traces. Given the valid decomposition,
and the latest sub-alignments, RS : D(S) × B(M∗1 × . . . ×M∗n) → D(S) creates a
new valid decomposition D′ ∈ D(S) where m = |D′| < |D|. Then, given the new
and current net decompositions, the event log, and the latest sub-alignments, RL :
D(S)×D(S)×B(A∗)×B(M∗1 × . . .×M∗n) 9 B(A′1∗)× . . .×B(A′m∗) creates a set
of sub-logs to align in the following iteration of the recomposition approach. Overall,
the recomposition step R creates a new net decomposition and a corresponding set of
sub-logs,R : D(S)×B(A∗)×B(M∗1 × . . .×M∗n) 9 D(S)×B(A′1∗)× . . .×B(A′m∗).

The current recomposition strategy involves recomposing on the most frequent con-
flicting activities (MFC) and constructing sub-logs that contains to-be-aligned traces
which carry conflicting activities that have been recomposed upon (IC).

Most frequent conflict (MFC) recomposes the current net decomposition on the ac-
tivity set Ar = {a ∈ Ab(D) | a ∈ arg maxa′∈Ab(D)

∑
γi∈Supp(ΓD) C(γi)(a

′)} where
ΓD ∈ B(M∗1 ×. . .×M∗n) are the latest sub-alignments andC :M∗1 ×. . .×M∗n → B(A)
is a function that gives the multiset of conflicting activities of sub-alignments. Hence,
Ar contains the border activities with the most conflicts.

Inclusion by conflict (IC) then creates a log Lr = [σi ∈ L | ∃a∈Ab(D) C(γi)(a) >
0∧ a ∈ Ar] where γi ∈ ΓD are the sub-alignments of trace σi ∈ L and net decomposi-
tion D ∈ D(S). As such, log Lr includes to-be-aligned log traces which have conflicts
on at least one of the border activities that have been recomposed upon. Later, log Lr is
then projected onto the new net decomposition to create the corresponding sub-logs.

3.1 Limitations to the current recomposition strategies

To explain the limitations, we refer to the set of optimal sub-alignments in Figure 4
from aligning net decomposition D in Figure 1 and log L in Figure 2. We first note
that for the conflicting activities which are highlighted in grey:

∑
γ∈ΓD

C(γ)(c) = 2,∑
γ∈ΓD

C(γ)(i) = 1, and
∑
γ∈ΓD

C(γ)(j) = 1, where ΓD = {γ1,γ2,γ3}. With ac-
tivity c being the most frequent conflicting activity, MFC recomposes the current net
decomposition on Ar = {c} and IC creates the corresponding sub-logs containing
Lr = {σ2, σ3} since both traces have activity c as a conflicting activity. The new net
decomposition will contain three sub-nets rather than four where sub-net S1 and sub-net
S2 are recomposed upon activity c as a single sub-net. The corresponding sub-log set is
created by projecting log Lr onto the new net decomposition.

While one merge conflict is resolved by recomposing on activity c, the merge con-
flicts at activity i and j will remain in the following iteration. In fact, under the current
recomposition strategy, trace σ2 and σ3 have to be aligned three times each to reach
the required merging condition to yield overall alignments. This shows the limitation of
MFC in only partially resolving merge conflicts on the trace level and IC in leniently in-
cluding to-be-aligned log traces whose subsequent sub-alignments are unlikely to reach
the necessary merging condition.

Improving merging conditions for recomposing conformance checking 7

Fig. 4. Sub-alignments γ1 = (γ11 , γ12 , γ13 , γ14), γ2 = (γ21 , γ22 , γ23 , γ24), and γ3 = (γ31 ,
γ32 , γ33 , γ34) of log L1 and net decomposition D1 with merge conflicts highlighted in grey

As such, the key to improving the existing recomposition strategies is in lifting
conflict resolution from the individual activity level to the trace level so that the net re-
composition strategy resolves merge conflicts of traces rather than activities and the log
recomposition strategy selects log traces whose merge conflicts are likely to be fully
resolved with the latest net recomposition. In the following section, three net recom-
position strategies and one log recomposition strategy are presented. These strategies
improve on the existing ones by looking at merge conflict sets, identifying co-occurring
conflicting activities, and minimizing the average size of the resulting recomposed sub-
nets. The later experimental results show that the strategies lead to significant perfor-
mance improvements in both synthetic and real-life datasets.

4 Recomposition strategies

In this section, three net recomposition strategies and one log recomposition strategy
are presented.

4.1 Net recomposition strategies

As previously shown, resolving individual conflicting activities may only partially re-
solve the merge conflicts of traces. This key observation motivates the following net
recomposition strategies which target conflicts at the trace level.

Top k most frequent conflict set (MFCS-k) constructs a multiset of conflict setsAcs =
[Supp(C(γ)) ⊆ Ab(D) | γ ∈ ΓD ∧ |C(γ)| > 0]. Then the top k most frequent conflict
set Acs,k ⊆ {acs ⊆ Ab(D)|Acs(acs) > 0} is selected. If |Acs| < k, then all conflict
sets are taken. Afterwards, the recomposing activity set Ar = ∪(Acs,k) ⊆ Ab(D) is
created. We note that in the case where two conflict sets have the same occurrence
frequency, a random one is chosen. This secondary criterion avoids bias, and gives
better performances empirically than any other straightforward criteria.
Merge conflict graph (MCG) recomposes on conflicting activities that co-occur on the
trace level by constructing a weighted undirected graph G = (V,E) where E = {{a1,
a2} | ∃γ∈ΓD a1 ∈ C(γ)∧ a2 ∈ C(γ)∧ a1 6= a2} with a weight function w : E → N+

such that w((a1, a2)) = |{γ ∈ ΓD | C(γ)(a1) > 0 ∧ C(γ)(a2) > 0}| and V =
{a ∈ Ab(D) | ∃(a1,a2)∈E a = a1 ∨ a = a2}. Then, with a threshold t ∈ [0, 1], edges

8 Lee, Munoz-Gama, Verbeek, van der Aalst, and Sepúlveda

are filtered so that Ef = {e ∈ E | w(e) ≥ t × wmax} where wmax is the maximum
edge weight in E. The corresponding vertex set and filtered graph can be created as
Vf = {a ∈ Ab(D) | ∃(a1,a2)∈Ef

a = a1 ∨ a = a2} and Gf = (Vf , Ef). Finally, the
current net decomposition is recomposed on activity set Ar = Vf .
Balanced. This recomposition strategy extends the MFCS-k strategy but also tries to
minimize the average size of the sub-nets resulting from the recomposition. For a border
activity a ∈ Ab(D), |(a,D)| = | ∪Si∈Sb(a,D) Av(Si)| approximates the size of the
recomposed sub-net on activity a. The average size of the recomposed sub-nets for a
particular conflict set can then be approximated by |(Ac, D)| =

∑
a∈Ac

|(a,D)|
|Ac| . The

score of the conflict set can be computed as a weighted combination β(Ac, D) = w0 ×
m(Ac)

maxA′
c∈Acs

m(A′
c)

+w1 × (1− |(Ac,D)|
maxA′

c∈Acs
|(A′

c,D)|) where higher scores are assigned to

frequent conflict sets that do not recompose to create large sub-nets. The activities of the
conflict sets with the highest score, Ar = {a ∈ Ac | Ac ∈ arg maxA′

c∈Acs
β(A′c, D)},

are then recomposed upon to create a net decomposition.

4.2 Log recomposition strategy

Similar to the net recomposition strategies, the existing IC strategy can be too lenient
in including log traces which have conflicting activities that are unlikely to be resolved
in the following decomposed replay iteration.

Strict include by conflict (SIC) increases the requirement for a to-be-aligned log trace
to be selected for the next iteration. This addresses the limitation of IC which can in-
clude log traces whose merge conflicts are only partially covered by the net recomposi-
tion. Given the recomposed activity set Ar, SIC includes log traces as Lr = [σi ∈ L |
∀a∈C(γi) a ∈ Ar] with merge conflict if the corresponding conflict set is a subset of set
Ar. However, this log strategy only works in conjunction with the net strategies that are
based on conflict sets, i.e., MFCS-k and Balanced, so that at least one to-be-aligned log
trace is included.

5 Experiment setup

Both synthetic and real-life datasets are used to evaluate the proposed recomposition
strategies. Dataset generation is performed using the PTandLogGenerator [8] and infor-
mation from the empirical study [9]; it is reproducible as a RapidProM workflow [3].
The BPIC 2018 dataset is used [16] as the real-life dataset. Moreover, two baseline net
recomposition strategies are used: All recomposes on all conflicting activities, and Ran-
dom recomposes on a random number of conflicting activities. Similarly, a baseline log
recomposition All which includes all to-be-aligned log traces is used. For the sake of
space, the full experimental setup and datasets are available at the GitHub repository4

so that the experimental results can be reproduced.

4 See https://github.com/wailamjonathanlee/Characterizing-recomposing-replay

Improving merging conditions for recomposing conformance checking 9

Fig. 5. Bar chart showing fitness and overall time per net recomposition strategy (including the
monolithic approach). The time limit is shown as a dashed red line and indicates infeasible re-
plays. Best performing approaches and their time gains from the second fastest times are specified
by black arrows.

6 Results

The results shed light on two key insights: First, the selection of the recomposition
approach may lead to very different performances. Second, good performance requires
both selecting appropriate conflicting activities and well-grouped to-be-aligned log traces.

Figure 5 presents the experimental results for both synthetic and real-life datasets.
For each of the synthetic models, there are three event logs of different noise profiles
described as netX-noise probability-dispersion over trace where X ∈ {1, 2, 3}. For
the sake of readability, we only show the results of three out of five synthetic datasets,
but the results are consistent across all five synthetic datasets). Readers interested in
more details are referred to the GitHub link for a detailed explanation on noise genera-
tion and the rest of the experimental results. For the MFCS-k and Balanced strategies,
only configurations using the SIC log strategy are shown; results showed that the SIC
log strategy provides a better performance. For the others where SIC is not applica-
ble, only configurations using the IC log strategy are shown as results indicated better
performances. Overall, the results show that for both the monolithic and recomposition
approach, it is more difficult to compute alignment results for less fitting datasets.
Different approaches give different performances. Comparing the monolithic and
recomposition approach, it is clear that the recomposition approach provides a better
performance than the monolithic counterpart under at least one recomposition strategy
configuration. Furthermore, performance can vary significantly across different recom-
position approaches. For example, the existing MFC strategy is the worst performing
strategy where it is not able to give exact results for the real-life dataset and both the
netX-10-60 and netX-60-10 noise scenarios of the synthetic datasets. The MFCS-k and
Balanced strategies are shown to be the best performing strategies. While for high fit-
ness scenarios, i.e., netX-10-10, MFCS-k give better performances with a high k = 10.
This is because when there is little noise, it becomes simply a “race” to aligning traces
with similar merge conflicts. Conversely, for low fitness scenarios, because merge con-

10 Lee, Munoz-Gama, Verbeek, van der Aalst, and Sepúlveda

Fig. 6. Comparing log strategies by showcasing the number of aligned traces (left) and percentage
of valid alignments (right) per iteration on the real-life dataset BPIC18.

flicts are potentially much more difficult to resolve, the Balanced strategy avoids quickly
creating large sub-components that take longer to replay. In these cases, the time dif-
ferences between the different feasible strategies can go up to three minutes. For all
the experiments, the proposed recomposition strategies outperform the baseline strate-
gies. Lastly, for the real-life dataset BPIC18, only the MFCS-1, Balanced, and MCG
recomposition strategies are able to compute exact alignment results and the Balanced
strategy outperforms MFCS-1 by more than three minutes.
Both net and log recomposition strategies matter. Figure 6 presents the number of
aligned traces and percentage of valid alignments per iterations under All, IC, and SIC
log strategies with net strategy fixed as Balanced on BPIC18. We first note that only
the SIC log strategy resulted with exact alignment results. While all strategies start with
aligning all traces in the first iteration, there are significant differences in the number
of aligned traces across iterations. Similar to the All strategy, the existing IC strategy
includes a high number of traces to align throughout all iterations; the number of aligned
traces only tapered off in the later iterations as half of the traces have resulted as valid
alignments. This confirms the hypothesis that the existing IC strategy can be too lenient
with the inclusion of traces to align. Furthermore, up until iteration 13, none of the
aligned traces reaches the necessary merging condition to result as a valid alignment;
this means that both the All and IC strategies are “wasting” resources aligning many
traces. Conversely, the SIC strategy keeps the numberof traces to align per iteration
comparatively lower. Moreover, at the peak of the number of traces to align at iteration
21, almost 80% of the∼300 aligned traces resulted as valid alignments. These are likely
to explain why only the SIC log strategy is able to compute an exact result.

7 Related work

Performance problems related to alignment-based conformance checking form a well-
known problem. A large number of conformance checking techniques have been pro-
posed to tackle this issue. Approximate alignments have been proposed to reduce the
problem complexity by abstracting sequential information from segments of log traces
[14]. The notion of indication relations has been used to reduce the model and log

Improving merging conditions for recomposing conformance checking 11

prior to conformance checking [15]. Several approaches have been proposed along the
research line of decomposition techniques. This include different decomposition strate-
gies, e.g., maximal [1], and SESE-based [12]. Moreover, different decomposed replay
approaches such as the hide-and-reduce replay [17] and the recomposition approach
[11] have also been investigated. Compared to the existing work, this paper investi-
gates different strategies for the recomposition approach in order to improve the overall
performance in computation time.

Other than the alignment-based approach, there are also other conformance check-
ing approaches. This includes the classical token replay [13], behavioral profile ap-
proaches [19] and more recently approaches based on event structures [7].

8 Conclusions and Future work

This paper investigated the recomposition aspect of the recomposing conformance check-
ing approach which can become a bottleneck to the overall performance. By defining
the recomposition problem, the paper identifies limitations of the current recomposi-
tion strategy in not fully resolving merge conflicts on the trace level and also being too
lenient in the inclusion of log traces for the subsequent decomposed replay iteration.
Based on the observations, three net recomposition strategies and one log recomposi-
tion strategy have been presented. The strategies were then evaluated on both synthetic
and real-life datasets with two baseline approaches. The results show that different re-
composition strategies can significantly impact the overall performance in computing
alignments. Moreover, they show that the presented approaches provide a better perfor-
mance than baseline approaches, and both the existing recomposition and monolithic
approaches. While simpler strategies tend to provide a better performance for synthetic
datasets, a more sophisticated strategy can perform better for a real-life dataset. How-
ever, the results show that both the selection of activities to recompose on and log traces
to include are important to achieve superior performances.
Future work. The results have shown that the recomposition strategy has a significant
impact on performance. We plan to extend the evaluation of the presented approaches
to a larger variety of models, noise scenarios, initial decomposition strategies, and other
real-life datasets. For the current and presented approaches, new net decompositions are
created by recomposing the initial decomposition on selected activities. Entirely differ-
ent net decompositions can be created using the merge conflict information from the
previous iteration; however, our preliminary results showed that this may be difficult.
Lastly, in the current framework, the same strategies (both decomposition and recom-
position) are used in all iterations; higher level meta-strategies might be useful. For
example, it might be good to switch to the monolithic approach for a small number of
log traces that cannot be aligned following many iterations.

Acknowledgments. This work is partially supported by CONICYT-PCHA / Doctorado
Nacional / 2017-21170612, FONDECYT Iniciación 11170092, CONICYT Apoyo a la
Formación de Redes Internacionales Para Investigadores en Etapa Inicial REDI170136,
the Vicerrectorı́a de Investigación de la Pontificia Universidad Católica de Chile / Con-
curso Estadı́as y Pasantı́as Breves 2016, and the Departamento de Ciencias de la Com-

12 Lee, Munoz-Gama, Verbeek, van der Aalst, and Sepúlveda

putación UC / Fond-DCC-2017-0001. The authors would like to thank Alfredo Bolt for
his comments on the data generation details.

References

1. van der Aalst, W.M.P.: Decomposing Petri nets for process mining: A generic approach.
Distributed and Parallel Databases 31(4), 471–507 (2013)

2. van der Aalst, W.M.P.: Process Mining - Data Science in Action. Springer (2016)
3. van der Aalst, W.M.P., Bolt, A., van Zelst, S.J.: Rapidprom: Mine your processes and not

just your data. CoRR abs/1703.03740 (2017)
4. Adriansyah, A.: Aligning Observed and Modeled Behavior. Ph.D. thesis, Technische Uni-

versiteit Eindhoven (2014)
5. van Dongen, B.F., Carmona, J., Chatain, T., Taymouri, F.: Aligning modeled and observed

behavior: A compromise between computation complexity and quality. In: CAiSE 2017,
Essen, Germany, June 12-16, 2017, Proceedings. pp. 94–109 (2017)

6. Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals of Business Process
Management. Springer (2013)

7. Garcı́a-Bañuelos, L., van Beest, N., Dumas, M., Rosa, M.L., Mertens, W.: Complete and
interpretable conformance checking of business processes. IEEE Trans. Software Eng. 44(3),
262–290 (2018), https://doi.org/10.1109/TSE.2017.2668418

8. Jouck, T., Depaire, B.: Ptandloggenerator: A generator for artificial event data. In: BPM
(Demos). CEUR Workshop Proceedings, vol. 1789, pp. 23–27. CEUR-WS.org (2016)

9. Kunze, M., Luebbe, A., Weidlich, M., Weske, M.: Towards Understanding Process Modeling
— the Case of the BPM Academic Initiative. In: International Workshop on Business Process
Modeling Notation. pp. 44–58. Springer (2011)

10. Lee, W.L.J., Verbeek, H.M.W., Munoz-Gama, J., van der Aalst, W.M.P., Sepúlveda, M.: Re-
play using recomposition: Alignment-based conformance checking in the large. In: Proceed-
ings of the BPM Demo Track and BPM Dissertation Award, Barcelona, Spain, September
13, 2017. CEUR Workshop Proceedings, vol. 1920. CEUR-WS.org (2017)

11. Lee, W.L.J., Verbeek, H., Munoz-Gama, J., van der Aalst, W.M.P., Sepúlveda, M.: Re-
composing Conformance: Closing the Circle on Decomposed Alignment-Based Confor-
mance Checking in Process Mining. (under review) (2017), processmininguc.com/
publications

12. Munoz-Gama, J., Carmona, J., van der Aalst, W.M.P.: Single-Entry Single-Exit decomposed
conformance checking. Inf. Syst. 46, 102–122 (2014)

13. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on monitoring
real behavior. Inf. Syst. 33(1), 64–95 (2008)

14. Taymouri, F., Carmona, J.: A Recursive Paradigm for Aligning Observed Behavior of Large
Structured Process Models. In: BPM 2016, Rio de Janeiro, Brazil, September 18-22, 2016.
Proceedings. pp. 197–214 (2016)

15. Taymouri, F., Carmona, J.: Model and Event Log Reductions to Boost the Computation of
Alignments. In: SIMPDA 2016, Graz, Austria, December 15-16, 2016. pp. 50–62 (2016)

16. van Dongen, B.F., Borchert, F.: BPI Challenge 2018 (2018)
17. Verbeek, H.M.W.: Decomposed replay using hiding and reduction as abstraction. LNCS

Transactions on Petri Nets and Other Models of Concurrency (ToPNoC) XII, 166–186 (2017)
18. Verbeek, H.M.W., van der Aalst, W.M.P.: Merging Alignments for Decomposed Replay. In:

Kordon, F., Moldt, D. (eds.) PETRI NETS 2016, Toruń, Poland, June 19-24, 2016. Proceed-
ings. Lecture Notes in Computer Science, vol. 9698, pp. 219–239. Springer (2016)

19. Weidlich, M., Polyvyanyy, A., Desai, N., Mendling, J., Weske, M.: Process compliance anal-
ysis based on behavioural profiles. Inf. Syst. 36(7), 1009–1025 (2011)

