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Abstract. In this paper, we present a technique for the discovery of hy-
brid process models that combine imperative and declarative constructs.
In particular, we first employ the popular Inductive Miner to generate
a fully imperative model from a log. Like most imperative miners, the
Inductive Miner tends to return so-called flower models for the less struc-
tured parts of the process. These parts are often imprecise. To counter
these imprecise parts, we replace them with declarative models to in-
crease the precision since declarative models are good at specifying which
behavior is disallowed. The approach has been implemented in ProM and
tested on several synthetic and real-life event logs. Our experiments show
that hybrid models can be found to be more precise without overfitting
the data.

Keywords: Hybrid Process Model, Process Mining, Process Discovery,
Process Tree, Declare

1 Introduction

In recent years, different comparative investigations have been conducted to bet-
ter understand the distinctive characteristics of imperative and declarative pro-
cess modeling languages and to support the choice of the most suitable paradigm
to be used in different scenarios [25,26]. While advantages and limitations of the
two paradigms are still a matter of investigation, both in academic research and
in industry [12,21], a trend has emerged to consider hybrid approaches combining
a mixture of imperative and declarative specifications. The motivations behind
this trend rely on the surmise that many real-life processes are characterized by
a mixture of (i) less structured processes with a high level of variability, which
can usually be described in a compact way using declarative languages such as
Declare [24], SCIFF [23], or DCR Graphs [10], and (ii) more stable processes
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with well-structured control flows, which are more appropriate for traditional
imperative languages such as Petri nets and BPMN.

As a result, there have been several recent efforts to fully develop and for-
malize such hybrid modeling notations and methodologies. These hybrid ap-
proaches can be categorized based on how tightly the imperative and declara-
tive paradigms are integrated, with each approach falling in one of three mayor
categories: (i) a complementary approach, where imperative and declarative no-
tations are used in separate models, without any semantic interaction, but with
the aim of representing different aspects of the same process (see, e.g., [11]).
(ii) A hierarchical approach, where both imperative and declarative notations
are used in the same overall model, but the model is separated into several sub-
processes and each sub-process uses a single uniform notation. To our knowledge
most existing proposals for hybrid approaches fall within this category (see,
e.g., [1,27,30]). (iii) A fully mixed approach, where imperative and declarative
constructs fully overlap in the same model. While this approach can be con-
sidered the most flexible, it is also the most complex since the modeler needs
to consider and understand in minute detail how the elements of the different
notations interact. An example of such an approach is the one proposed in [36].

One field where the hybrid approach may lead to significant advances is that
of automatic process discovery [5], which aims at generating useful process mod-
els from real-life event logs. Many imperative and declarative process discovery
algorithms (usually referred to as miners) exist, and it remains an open chal-
lenge to determine a suitable discovery approach given the characteristics of the
event logs [7]. When faced with very variable logs, imperative miners have a
tendency to create “spaghetti models”, or “flower models”. The former are gen-
erally unreadable, the latter allow any behavior and therefore contain very little
useful information about the process. Declarative miners, on the other hand, are
not well-suited to dealing with very structured logs: when faced with such a log
they will often generate an abundance of constraints, which makes the model
unreadable for human users. Hybrid process discovery approaches aim at provid-
ing a middle way between these two extremes, generating an imperative model
for the structured parts of the log and declarative constraints for the unstruc-
tured ones. Two primary approaches to hybrid discovery have been considered:
(i) a model-driven approach, where first an imperative or a declarative model is
created, from which “bad” parts are identified (e.g., flower sub-models in imper-
ative models, or over-constrained activities in declarative models) and secondly
these “bad” parts are re-mined with a more suitable mining algorithm. (ii) A
log-driven approach where an up-front analysis of the log is used to identify
structured and unstructured parts, which are then separated into sub-logs. Each
sub-log is mined with the most suitable discovery algorithm.

We can categorize the full spectrum of hybrid miners by orthogonally con-
sidering their overall mining technique and the type of models that they output.
The current paper falls within the Hierarchical/Model-driven section of this cate-
gorization. In particular, we propose a hybrid miner that builds on the Inductive
Miner [16] by Leemans et al., which, for a given input log, generates an impera-



tive process model in the form of a process tree. The Inductive miner guarantees
a fitness of 1. This guarantee sometimes comes at the cost of precision, e.g., when
no structure can be found in the log, the Inductive miner defaults to a flower
loop, which is able to capture all behavior and much more. Being hierarchical in
nature, process trees can be easily adopted into a hierarchical hybrid approach.
To do so, we take the process tree returned from the Inductive miner and iden-
tify nodes from the process tree to be replaced with Declare models. We have
used Declare since there are several well accepted mining algorithms for this
notation, whereas support to process discovery for other declarative notations is
either non-existent or in a very early stage.

In this paper, we primarily focus on the precision of the model. There are
two main reasons for this: (1) precision, contrary to other quality dimensions like
simplicity, has widely accepted metrics for measuring it, and (2) flower loops tend
to be very imprecise since they allow for any possible behavior, thus giving an
opportunity to have a more accurate understanding of the process captured in
the event log by replacing them with declarative models.

The approach has been implemented as a plug-in of the process mining tool
ProM and tested on both synthetic and real-life logs. The evaluation shows posi-
tive results for both synthetic and real-life logs, with up to 52.18% improvement
in the precision of the mined models for synthetic logs and up to 3471% increase
in precision for the real-life logs.

The rest of the paper is structured as follows: in Section 2, we discuss the
related work. In Section 3, we introduce the hybrid models we use. In Section 4,
we describe the proposed approach. In Section 5, we report on our evaluation.
Section 6 concludes the paper and spells out directions for future work.

2 Related Work

In the literature, there are different families of approaches that have been pro-
posed for the discovery of imperative process models. The first family of ap-
proaches extracts some footprint from the event log and uses this footprint to
directly construct a process model (see, e.g., [5,34]). The second family of process
discovery approaches first constructs an intermediate model and then converts
it into a more refined model that can express concurrency and other advanced
control-flow patterns (e.g., [4]). The third family of approaches tries to break
the discovery problem into smaller problems. For example, the Inductive miner
[16] aims at splitting the event log recursively into sub-logs, which are eventually
mined. Techniques originating from the field of computational intelligence form
the basis for the fourth family of process discovery approaches. An example of
this type of approaches is the genetic mining approach described in [22].

In the area of declarative process discovery, Maggi et al. [18,19] first proposed
an unsupervised algorithm for mining Declare models. They base the discovery
of constraints on the replay of the log on specific automata, each accepting only
those traces that are compliant with one constraint. In [8,14,15], the authors
use inductive logic programming techniques for the supervised learning of con-



straints expressed using SCIFF [6]. The approach for the discovery of Declare
constraints presented in [13] is divided in two steps. The first step computes
statistic data describing the occurrences of activities and their interplay in the
log. The second step checks the validity of Declare constraints by querying the
statistic data structure built in the previous step. In [28], the authors present
a mining approach that works with RelationalXES, a relational database ar-
chitecture for storing event log data. The relational event data is queried with
conventional SQL.

Recent research has put into evidence synergies between imperative and
declarative approaches [25,26]. Accordingly, hybrid process modeling notations
have been proposed. In particular, in [9], the authors provide a conservative
extension of BPMN for declarative process modeling, namely BPMN-D, and
show that Declare models can be transformed into readable BPMN-D models.
In [36], the authors propose to extend Colored Petri nets with the possibility
of linking transitions to Declare constraints directly. The notion of transition
enablement is extended to handle declarative links between transitions. A recent
implementation of this technique has been made available in CPN Tools 4.0 [35].
In [31], the authors extend the work in [36] by defining a semantics based on
mapping Declare constraints to R/I-nets and by proposing modeling guidelines
for the mixed paradigm. In [32], a discovery approach based on this paradigm
is proposed. Differently from these approaches devoted to obtain a fully mixed
language, in [30], a hybrid process model is hierarchical, where each of its sub-
processes may be specified in either a procedural or declarative fashion. In [20],
an approach for the discovery of hybrid process models based on this semantics
is presented. In contrast to the approach of the current paper, which is model-
driven, the approach in [20] is log-driven. In addition, our approach guarantees
that the resulting hybrid model has 100% fitness.

3 Hybrid Models

As discussed in the introduction, we use the hierarchical approach to hybrid
models. In our previous work [30], we have formalized the execution semantics
of any combination of different formalisms used in a hierarchical hybrid model,
e.g., Petri nets, BPMN, Declare, DCR Graphs, and process trees. In the mining
approach presented here, we limit ourselves to hybrid models consisting of pro-
cess trees and Declare models, and, in particular, to hybrid models where the
top-level model is a process tree and some sub-processes can be Declare models.

In Fig. 1, we show an example of a hybrid model. The top-level model is a
process tree, and there are two declarative sub-processes. The top-level process
tree has the regular activities a, b, c, d , e and o and two abstract activities X 1
and X 2, each mapping to a declarative sub-process. The declarative sub-process
X 1 contains activity s and the sub-process X 2 contains activities p q , r and t .
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Fig. 1: Example of a Hybrid Model

3.1 Process trees

Process trees are a tree-structured modeling formalism. The branches of the
trees represent control-flow constructs and the leaves of the tree represent atomic
activities (e.g., a), including silent activities (τ). Various dialects exist for process
trees (see, e.g., the ones used in [16,29]). We adopt the one from [16], which has
four types of control-flow nodes: (i) the sequential composition (→) denotes that
the child nodes should occur in sequence, (ii) the exclusive choice (×) denotes
that (exactly) one of the child nodes should occur, (iii) the parallel composition
(+) denotes that the child nodes should occur in parallel, and (iv) the redo loop
(	), which contains a do part (the first child) and a redo part (all subsequent
children), and denotes a kind of looping behavior where the do is the main body
of the loop and one can repeat the loop after doing one of the redo children.

We can define the semantics of process trees in terms of the formal lan-
guages (sets of sequences) that they represent. We reuse the definition from [2],
but extend it to handle sub-process nodes. In the definition, we use two spe-
cial operators on languages: (i) the concatenation operator (·) concatenates
the languages, e.g., {〈a〉} · {〈b〉} · {〈c〉, 〈d〉} = {〈a, b, c〉, 〈a, b, d〉}, and (ii) the
shuffle operator (�) returns all possible interleavings of the languages, e.g.,
{〈a〉} � {〈b, c〉, 〈d , e〉} = {〈a, b, c〉, 〈b, a, c〉, 〈b, c, a〉, 〈a, d , e〉, 〈d , a, e〉, 〈d , e, a〉}.

Definition 1 (Process Tree Semantics). For a process tree Q with alphabet
A, the language L(Q) of the process tree is defined recursively over its nodes as:

1. L(τ) = {〈〉};
2. L(a) = {〈a〉}, if a ∈ A;
3. L(X ) = L(MX ), where MX is the model of the sub-process X ;
4. L(→ (Q1,Q2, . . . ,Qn)) = L(Q1) · L(Q2) · . . . · L(Qn);
5. L(×(Q1,Q2, . . . ,Qn)) = L(Q1) ∪ L(Q2) ∪ . . . ∪ L(Qn);
6. L(+(Q1,Q2, . . . ,Qn)) = L(Q1) � L(Q2) � . . . � L(Qn);
7. L(	 (Q1,Q2, . . . ,Qn)) = {σ1 · σ′1 · σ2 · σ′2 . . . σm ∈ A∗ | m ≥ 1∧ ∀1≤j≤m σj ∈
L(Q1) ∧ ∀1≤j<m σ′j ∈ ∪2≤i≤nL(Qi)}.



Table 1: Semantics of Declare templates

Template Semantics Notation

existence(a) a must occur at least once

absence2(a) a can occur at most once

init(a) a must occur in the first position

responded existence(a, b) If a occurs, b must occur as well

response(a, b) If a occurs, b must eventually follow

alternate response(a, b)
If a occurs, b must eventually follow,
without any other a in between

chain response(a, b) If a occurs, b must occur next

precedence(a, b) b can occur only if a has occurred before

alternate precedence(a, b)
b can occur only if a has occurred before,
without any other b in between

chain precedence(a, b) b can occur only immediately after a

not chain succession(a, b) If a occurs, b cannot occur next

not succession(a, b) If a occurs, b cannot eventually follow

not co-existence(a, b) If a occurs, b cannot occur

Given this semantics, the language of the process tree in Fig. 1 is: {〈a, b,X 1,
X 2, o, c, d , e〉, 〈a, b,X 2,X 1, o, c, d , e〉, 〈a, b,X 2, o,X 1, c, d , e〉, 〈a, b,X 1,X 2, c, d ,
e〉, 〈a, b,X 2,X 1, c, d , e〉}.

3.2 Declare

Declare [24] is a declarative process modeling language that encodes a set of
declarative templates into a formal logic. Encodings into several different logics
have been proposed, such as a linear temporal logic (LTL) and regular expres-
sions. When using Declare in the context of process mining, it is most sensible to
use one of their finite variants, as event logs contain only finite traces. Therefore,
we employ the encoding into the finite variant of LTL (LTLf ) for the current
paper. Table 1 shows an overview of the core relations used in Declare models.
For the existence and absence templates, the language supports all countable
variations, e.g., 0..2, 0..3, 4..∗, etc.

Definition 2 (Declare Model). A Declare model is a pair M = (A,C ), where
A is a set of activities and C is a set of constraints over the activities in A.

The language of a Declare model M = (A,C ) is the set of all traces that
satisfy every constraint in C . Formally:

Definition 3 (Declare Semantics). The language L(M ) of a Declare model
M = (A,C ) is defined as: L(M ) = {σ ∈ A∗ | ∀c∈C σ |= c}.



Fig. 2: Overview of the Approach

Sub-processes X 1 and X 2 in Fig. 1 are examples of Declare models. X 1
is very simple and contains three constraints: absence3(s), existence2(s) and
init(s), indicated by the two boxes on activity s, one containing the text 2..2,
and the other the text init . These constraints together indicate that s is ex-
pected to occur exactly 2 times, and is always the first activity in that sub-
process to be executed. Therefore, the language of the Declare model X 1 is
L(X 1) = {〈s, s〉}. Model X 2 is a bit more complex. It contains an absence2(x )
constraint for each activity x ∈ {p, q , r , t}, but no existence constraints, mean-
ing that all activities can occur either once or not at all. In addition, there is
a chain precedence(q , r) constraint indicating that r can only occur immedi-
ately after q and a chain response(r , t) constraint indicating that after r , t must
happen immediately. Note that “immediately” is interpreted in the context of
the Declare model, so while neither p or q may happen between them, other
activities in the hybrid model that can happen in parallel with X 2 may still
occur between them. This means that the language of the Declare model X 2 is:
L(X 2) = {〈〉, 〈t〉, 〈q〉, 〈q , t〉, 〈t , q〉, 〈q , r , t〉, 〈p〉, 〈p, t〉, 〈t , p〉, 〈q , p〉, 〈p, q〉, 〈p, q , t〉,
〈p, t , q〉, 〈q , p, t〉, 〈q , t , p〉, 〈t , p, q〉, 〈t , q , p〉, 〈p, q , r , t〉, 〈q , r , t , p〉}.

Now that we have introduced its component notations, we can give the lan-
guage of the entire hybrid model in Fig. 1. Because of the many possible inter-
leavings, giving the full set of all possible traces would be fairly cumbersome,
so instead we provide it by using the operators used in Definition 1: {〈a, b〉} ·
(L(X 1) � (L(X 2) · {〈〉, 〈o〉})) · {〈c, d , e〉}.

4 Hybrid Model Discovery

Our approach is inspired by two observations: (1) imperative miners in general,
and the Inductive miner in particular, have difficulties in dealing with unstruc-
tured behavior without sacrificing precision (while maintaining a high fitness
value), and (2) declarative models are aimed at describing unstructured behav-
ior in a concise way. This led us to an approach where we first mine an imperative
model (a process tree). Afterwards, we try to substitute various sub-processes
with declarative models to improve precision without sacrificing fitness. Fig. 2
gives a broad overview of the approach, consisting of 4 steps. To exemplify our
approach, we use the example log L1.
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Fig. 3: Intermediate outcomes of the proposed approach

Definition 4 (L1: Running example). Recall that the multiset [a4, b6] is
a set containing four times element a and six times element b. L1 = [〈a,
b, s, s, c, d , e〉5, 〈a, b, o, s, s, c, d , e〉5, 〈a, b, s, o, s, c, d , e〉5, 〈a, b, q , s, r , s, t , c, d , e〉5,
〈a, b, s, s, q , p, c, d , e〉5, 〈a, b, s, q , s, r , t , c, d , e〉5, 〈a, b, s, t , p, s, c, d , e〉5, 〈a, b, s, s,
t , q , c, d , e〉5, 〈a, b, p, t , s, q , s, c, d , e〉5, 〈a, b, s, s, p, t , c, d , e〉5, 〈a, b, p, s, q , s, r , t , c,
d , e〉5, 〈a, b, s, s, q , t , o, c, d , e〉5].

4.1 Step 1: Mine process tree

For the first step of our approach, we use the Inductive miner [16] to generate
a process tree from the input log. The Inductive miner builds a directly-follows-
graph for the unique activities of the log and uses it to find structures and
construct a process tree. If the Inductive miner cannot find any structure, it will
return a flower model where any behavior is allowed. This makes the Inductive
miner ideal for our approach: not only is it one of the most popular mining
algorithms, but also it avoids finding structures when none exists and instead
simply returns a pocket-of-flexibility, which can then be mined declaratively. We
use the standard Inductive miner with a noise threshold of 0. In this way, the
generated model is guaranteed to have 100% fitness and we can make a fair
comparison between a pure imperative and a hybrid approach, where we only
consider improvements on the precision of the model. For our example log, the
Inductive miner creates the process tree shown in Fig. 3a.

4.2 Step 2: Select Unstructured Nodes

Once we have mined the process tree, we determine which parts should be re-
placed with a declarative sub-process. For every permutation of nodes, we replace
those nodes with Declare sub-processes, determine the precision of the model,
and return the most precise permutation. If a node is selected to be replaced
with a declarative sub-process and also a higher node in the tree is selected,



then we only substitute the higher node in the tree, i.e., the node and all its
descendants are replaced.

Note that, when we apply our approach to the example log and process tree
from Fig. 3a by replacing the loop sub-processes with declarative sub-processes,
this results in an increase of precision. This is because the loops allow for any
number of occurrences of s and p, q , r , t , while, in reality, the allowed number of
occurrences is bound. This bound can be found by the Declare miner.

4.3 Step 3: Mine Declarative Models

For each permutation of nodes to be replaced, we extract the sub-logs corre-
sponding to these nodes. Afterwards, we run a declarative miner on each sub-log
to generate a declarative model corresponding to the selected node and its de-
scendants. In our particular case, we use the Declare miner [17] for this task,
but we have also made a wrapper for MINERful [13]. The sub-log corresponding
to the first loop sub-process is [〈s, s〉60]. Passing this log to the Declare miner
generates the Declare model in Fig. 3b on the left. The sub-log corresponding to
the second loop sub-process is [〈〉5, 〈o〉10, 〈q , r , t〉10, 〈q , p〉5, 〈t , p, 〉5, 〈t , q〉5, 〈p, t ,
q〉5, 〈p, t〉5, 〈p, q , r , t〉5, 〈q , t , o〉5]. Passing this log to the Declare miner generates
the Declare model in Fig. 3b on the right.

4.4 Step 4: Construct Hybrid Model

Once we have a Declare model corresponding to each selected node, we replace
these nodes and their descendants with an abstract activity representing a sub-
process. The sub-process is then defined by the declarative model mined from the
sub-log for that node. Applying this technique to the process tree from Fig. 3a
and the Declare models from Fig. 3b, we can derive the hybrid model in Fig. 1.

5 Evaluation

Our approach has been implemented in the Hybrid package in ProM. The main
plug-in for mining is called “Mine Hybrid Model”. Fig. 4 shows the visualization
of a hybrid model in the plug-in.

We evaluated our approach on both synthetic and real-life logs. We use the
synthetic examples to show that the algorithm is able to detect and construct
hybrid models when these are clearly present in the log. We use the real-life logs
to demonstrate how well the approach works on actual logs coming from indus-
trial settings, and to discover if any of these have a clear hybrid structure. We
have evaluated the output of the Hybrid miner (HM) in terms of precision. This
in order to show that a hybrid model indeed can help in making the unstructured
parts of the process tree resulting from the Inductive miner (IM) more precise.
To show this increase in precision, we introduce the relative increase in precision
(RIiP) as the percentage of increase in precision.



Fig. 4: Hybrid model for log L3

5.1 Precision

We use a metric based on escaping edges [3] for the computation of precision.
Our main consideration for choosing this metric is that the precision is defined
based on a transition system, a formalism that both a process tree and a Declare
model can be transformed into. For every visited state in the transition system,
the outgoing transitions used by the log are compared to the total number of
possible outgoing transitions. Transitions that are never visited by the log, the
escaping edges, are counted against the precision of the model. The metric takes
into account the frequencies of states, i.e., a frequently visited state has a higher
impact on the precision than an infrequently visited state, and states that are
never visited by the log are not taken into consideration.

5.2 Synthetic Logs

In order to show the possible gains of using a hybrid approach over solely using
the Inductive miner, we have created four different synthetic logs, each serving
as a representative for an interesting class of hybrid behavior.

L1: Running example. The first log we examined was that of the running exam-
ple, which is an example of a log where part of the behavior is very structured
(events a, b, c, d and e), and part is unstructured (events o, p, q , r , s and t)
that always occurs in a specific location (between events b and c). The most
precise model for L1 is more complex than the simplified Hybrid model used
for illustrative purposes in Fig. 1. By mining the log with the Hybrid miner, we
achieve a precision improvement of +0.194 with respect to the Inductive miner.
The relative improvement (how much the precision of the hybrid model improved
when compared to the precision of the imperative model) RIiP is of 29.59%. The
resulting model is clearly hybrid, consisting of a process tree with 7 nodes and
a declarative sub-process of 30 constraints.

L2: Running example unbalanced. In the running example, the traces of the
log are balanced (they occur equally frequently). In the second example, we



experimented with making the traces exhibiting unstructured behavior more
frequently, with the aim of discovering if this increased the relative precision of
the hybrid model. Definition 5 shows the log used.

Definition 5 (L2: Running example unbalanced). L2 = [〈a, b, s, s, c, d ,
e〉1, 〈a, b, o, s, s, c, d , e〉1, 〈a, b, s, o, s, c, d , e〉1, 〈a, b, q , s, r , s, t , c, d , e〉100, 〈a, b, s,
s, q , p, c, d , e〉1, 〈a, b, s, q , s, r , t , c, d , e〉1, 〈a, b, s, t , p, s, c, d , e〉1, 〈a, b, s, s, t , q , c, d ,
e〉1, 〈a, b, p, t , s, q , s, c, d , e〉100, 〈a, b, s, s, p, t , c, d , e〉5, 〈a, b, p, s, q , s, r , t , c, d , e〉100,
〈a, b, s, s, q , t , o, c, d , e〉5].

For this log, the Hybrid miner provides an improvement from 0.543 to 0.827
with respect to the Inductive miner. Compared to L1, the hybrid model accounts
for the unstructured parts of the log being more pronounced by adding 2 ad-
ditional constraints to the declarative sub-process. Note that, while there is an
absolute improvement that is slightly better (+0.284) than the one obtained for
L1, the relative improvement RIiP is much higher (52.18%).

L3: Abstract structure. For the third experiment, we used log L3.

Definition 6 (L3: Abstract structure). L3 = [〈a, c, c, d , g , h, e, g , g〉5, 〈c, b,
c, d , g , g , f , g , h〉5, 〈c, a, c, d , d , g , h, g , h, g , h, e〉5, 〈d , c, c, a, g , h, g , f , g〉5, 〈c, a, c, g ,
g , f , g , h〉5, 〈c, c, d , g , h, g , e, g , h〉5, 〈c, b, c, d , g , g , g , f 〉5, 〈d , c, b, c, d , g , g , g , e〉5, 〈b,
c, c, b, d , g , f , g , g〉5, 〈c, c, g , g , g , e〉5].

The log exhibits an abstract structure, i.e., while all the activities of the log
occur in an unstructured manner, they can be separated in two sets {a, b, c, d}
and {e, f , g , h}, where events of the second set always occur after the events of
the first set. As expected the Hybrid miner finds a hybrid model consisting of a
sequence flow and two declarative sub-processes, one containing 14 constraints,
the other 15. The hybrid model results in a precision improvement from 0.459
to 0.616.

L4: Unstructured sequences. For the fourth experiment, we used log L4.

Definition 7 (L4: Unstructured sequences). L4 = [〈a, b, c, f , g〉5, 〈f , g , a, b,
c, d , e〉5, 〈a, b, c, h, i , d , e〉5, 〈a, b, c, f , g , d , e〉5, 〈h, i , a, b, c, h, i , h, i〉5, 〈h, i , a, b, c,
d , e, a, b, c〉5, 〈a, b, c, a, b, c, f , g , d , e〉5, 〈f , g , a, b, c, a, b, c, d , e〉5, 〈h, i , a, b, c〉5, 〈h,
i , h, i , a, b, c, d , e〉5].

This log contains four strict sequences, 〈a, b, c〉, 〈d , e〉, 〈f , g〉 and 〈h, i〉, which
themselves occur in an unstructured manner. This example can be seen as being
in the inverse class as L3, i.e., while all activities occur in a structured manner,
there is a very clear unstructured abstract behavior in the log. Since the best
way of representing this process would be by using a declarative model with
imperative sub-processes, mining the log with the Hybrid miner (which is de-
veloped to build imperative models with declarative sub-processes) results in a
fully declarative model. The declarative model provides a precision improvement
from 0.743 to 0.897 with respect to the Inductive miner.



Table 2: Evaluation Results of the Hybrid miner
Precision Hybrid Miner

IM HM RIiP #nodes #sub-processes #constraints

L1 0.6552 0.8491 29.59% 7 1 30

L2 0.5432 0.8266 52.18% 7 1 30

L3 0.4595 0.6165 34.17% 3 2 14,15

L4 0.7428 0.8966 20.70% 1 1 101

BPIC 2012 0.2401 0.6068 152.74% 1 1 1286

BPIC 2013 0.4044 0.4044 0.00% 44 0 0

BPIC 2017 0.0601 0.0601 0.00% 72 1 1

WABO2 0.0049 0.1673 3347% 1 1 78 100

WABO3 0.0059 0.2101 3471% 1 1 75 893

Sepsis cases 0.1905 0.3762 97.47% 1 1 211

RTFM 0.8181 0.9625 17.65% 1 1 73

5.3 Real-Life Logs

We also experimented on a number of real-life logs, in particular the BPI Chal-
lenge (BPIC) 2012, 2013 (incidents) and 2017, WABO 2 and 3, Sepsis cases and
Road Traffic Fine Management (RTFM). Each of these logs was retrieved from
the 4TU repository.1 As mentioned, in order to find the most precise model, the
Hybrid miner tries all permutations of nodes resulting in models ranging from
fully imperative via hybridity to fully declarative. In most cases, a fully declar-
ative model was returned as being the most precise. The only exception are the
BPIC 2013 and 2017 logs. The latter returns a hybrid model that contains only
one Declare constraint that gives no noticeable precision improvement. For the
WABO logs, the models found by the Hybrid miner show a precision improve-
ment of over 30 times even if these models are extremely large, consisting of over
75 000 constraints. The BPIC 2012 and Sepsis cases logs also show a significant
increase in precision and return more reasonably sized declarative models.

5.4 Discussion

Table 2 shows the detailed results of all the experiments we ran. Overall the
Hybrid miner performed quite well on both synthetic and real-life examples.
However, in the case of the real-life logs this was mostly due to the fact that
the Hybrid miner was able to determine that a fully declarative model would
have the highest precision and provided such a model. Granted, this increase
in precision came at the cost of simplicity since more than 75 000 constraints
cannot be comprehended by an end-user. This is also one of the limitations of
our current approach: getting the right settings on the used miners to give a
precise and comprehensible result.

In future work, we would like to investigate why the Hybrid miner did not
generate any particularly interesting hybrid models from real-life logs. One par-
ticularly promising hypothesis is that these logs fit into the category represented

1 https://data.4tu.nl/repository/

https://data.4tu.nl/repository/


by L4, which would be better represented by a hybrid model where the top-level
is declarative, and sub-processes are imperative. Another explanation could be
that the structure of the process tree returned by the Inductive miner hinders
further improvements. After all, we take the structure of the process tree as-is
without considering other structures that are language equivalent to the returned
process tree.

In addition, it should be noted that, while we are using one of the most widely
accepted precision metric, there is still an ongoing search for better metrics [33].
For example, for a log containing at most 2 occurrences of an activity, the current
metric gives only a small benefit to an absence3 constraint over a process tree
loop, even though, from a language inclusion perspective, the absence3 constraint
is infinitely more precise. Improvements to the way precision is calculated for
hybrid models may also lead to different results.

6 Conclusion

We presented a novel technique for mining hybrid models, which combine the
strengths of the imperative and declarative process modeling paradigms. We
implemented our technique as a ProM plug-in and evaluated the approach on
several synthetic and real-life logs. Compared to the Inductive miner, the miner
showed significant improvements in precision for both synthetic and real-life logs.
In the case of real-life logs, it mostly found that purely declarative models were
the most precise, whereas in the case of synthetic logs, proper hybrid models
were found. Precision improvements ranged up to 52.18% for synthetic logs and
up to 3471% for real-life logs.

The presented approach is easily extendible and customizable. For example,
we can already plug any other miner that provides a process tree as output
into our implementation and it is also possible to extend the general approach
to other types of imperative models and miners. It is also possible to apply
different metrics for precision and to use various declarative miners.

As future work, we would like to implement and experiment with different
variants of the approach (e.g., different miners and ways to partition behavior
in logs into declarative and imperative parts). Moreover, we also plan to use an
approach opposite to the one proposed here: we could first attempt to mine a
log declaratively, analyze the resulting model to detect parts which are overly
constrained, and replace these with imperative sub-processes.
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