
Repairing Outlier Behaviour in Event Logs

Mohammadreza Fani Sani1, Sebastiaan J. van Zelst2, Wil M.P. van der Aalst1

1 Process and Data Science Chair, RWTH Aachen University
Ahornstraße 55, Erweiterungsbau E2, 52056 Aachen, Germany

2 Department of Mathematics and Computer Science
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{fanisani,wvdaalst}@pads.rwth-aachen.de,{s.j.v.zelst}@tue.nl

Summary. One of the main challenges in applying process mining on real event
data, is the presence of noise and rare behaviour. Applying process mining algo-
rithms directly on raw event data typically results in complex, incomprehensible,
and, in some cases, even inaccurate analyses. As a result, correct and/or impor-
tant behaviour may be concealed. In this paper, we propose an event data repair
method, that tries to detect and repair outlier behaviour within the given event
data. We propose a probabilistic method that is based on the occurrence frequency
of activities in specific contexts. Our approach allows for removal of infrequent
behaviour, which enables us to obtain a more global view of the process. The
proposed method has been implemented in both the ProM- and the RapidProM
framework. Using these implementations, we conduct a collection of experiments
that show that we are able to detect and modify most types of outlier behaviour
in the event data. Our evaluation clearly demonstrates that we are able to help to
improve process mining discovery results by repairing event logs upfront.

Key words: Process Mining · Data Cleansing · Log Repair · Event Log Prepro-
cessing · Conditional Probability · Outlier Detection

1 Introduction

Process Mining bridges the gap between traditional data analysis techniques like data
mining and business process management analysis [1]. It aims to discover, monitor,
and enhance processes by extracting knowledge from event data, also referred to as
event logs, readily available in most modern information systems [2]. In general, we
identify three main branches of process mining being process discovery, conformance
checking, and process enhancement. In process discovery, we try to discover a process
model that accurately describes the underlying process captured within the event data.
In conformance checking we try to assess to what degree a given process model (possi-
bly the result of a process discovery algorithm) and event data conform to one another.
Finally, process enhancement aims at improving the view on a process by improving its
corresponding model based on the related event data.

Most process mining algorithms, in any of these branches, work under the assump-
tion that behaviour related to the execution of the underlying process is stored correctly
within the event log. Moreover, completeness of the behaviour, i.e., each instance of the
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process as stored in the event log is already finished, is assumed as well. However, real
event data often contains noise, i.e., behaviour that is/should not be part of the process.
Furthermore, it often contains data related to infrequent behaviour, i.e., behaviour that
is rather rare due to the handling of exceptional cases. The presence of such behaviour,
which we subsequently refer to as outlier, makes most process mining algorithms return
complex, incomprehensible or even inaccurate results. To reduce these negative effects,
process mining projects often comprise of a pre-processing phase in which one tries to
detect and remove traces that contain such undesired behaviour. This cleaning phase is
usually performed manually and is therefore rather costly and time consuming.

Despite the negative impacts of the presence of noisy, incomplete and infrequent
behaviour, little research has been done towards automated data cleansing techniques
that improve process mining results. Recently, research has been performed aiming at
filtering out traces that contain outlier behaviour from an event log [3, 4]. Even though
both techniques show improvements in process mining results, in particular w.r.t. pro-
cess discovery, only a little fragment of outlier behaviour within a trace of event data
leads to ignoring the trace as a whole. This potentially leads to a distortion of the gen-
eral distribution of common behaviour of the process, yielding potentially inaccurate or
even wrong process mining results.

Therefore, we propose a general purpose event log repairing technique that, given
event potentially containing outlier behaviour, identifies and modifies such behaviour
in order to obtain a more reliable input for all possible process mining algorithms. In
particular, we use a probabilistic method to detect outlier behaviour according to the
context of a process i.e., fragments of activity sequences that occur before and after the
potential outlier behaviour. After outlier identification, the corresponding behaviour is
replaced with another fragment of behaviour that is more probable to occur according
to the context in which the outlier behaviour occurs.

Using the ProM [5] based extension of RapidMiner, i.e., RapidProM [6], we
study the effectiveness of our approach, using both synthetic and real event data. The
obtained results show that our approach adequately identifies and repairs outlier be-
haviour and as a consequence increases the overall quality of process model discovery
results. Additionally, we show that our method achieves better results compared to one
of the best performing existing filtering techniques in the process mining domain.

The remainder of this paper is structured as follows. Section 2 motivates the need for
data cleansing and repair methods in context of process mining. In Section 3, we discuss
related work. We present our proposed outlier repair method in Section 4. Evaluation
details and corresponding results are given in Section 5. Finally, Section 6 concludes
the paper and presents directions for future work.

2 Motivation

Real event logs often contain noise/anomalous behaviour. The presence of such be-
haviour causes many problems for process mining algorithms. In particular, most pro-
cess discovery algorithms incorporate all behaviour in event logs as much as possible.
As a result, most outlier behaviour is incorporated as well which decreases the overall
accuracy of the discovered model. Therefore, it is essential to accurately pre-process
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Table 1: Event log with 11 traces and 10 different trace-variants.

Variant Frequency
〈a, b, c, d, e, f, h〉 2
〈a, b, d, c, e, f, h〉 1
〈a, b, c, d, e, g, h〉 1
〈a, b, d, c, e, g〉 1
〈b, d, c, e, g, h〉 1
〈a, b, c, d, e〉 1
〈a, b, c, d, g, h〉 1
〈a, b, b, c, d, e, f, h〉 1
〈a, b, c, d, g, h〉 1
〈a, b, d, c, a, e, g, f, h〉 1

event data. In fact, according to the process mining manifesto [7], cleaning event logs
is one of the main challenges in the process mining field.

It is possible to define outlier behaviour in a variety of ways. For example, in [2],
infrequent behaviour is considered as outlier behaviour. In turn, infrequent behaviour
relates to rare behaviour that is supposed to be part of the process, yet severely hampers
the feasibility of process mining results. In practice, behaviour that is not part of the
process, i.e. caused by logging exceptions, faulty execution of the process, is infrequent
by its sheer nature. So, in this paper we define both infrequent behaviour that is part of
the process and (infrequent) faulty execution behaviour, i.e. noise, as outlier behaviour.

An example event log with some outlier behaviour is shown in Table 1. In this
event log there are 74 events belong to 11 traces. Except for the first variant (unique
behaviour of a process instance) each variant has just one corresponding trace, note
that this is customary in some application domains, e.g. medical treatment process [8].
The first three traces contain no outlier behaviour. However, the next seven variants
have different types of outlier behaviour. For example, in the fourth and fifth rows the
activities ”h” and ”a” are missing. Some process discovery algorithms like the Alpha
miner [9] are sensitive to such outlier behaviour and yield inferior process discovery
results when applied directly to such event logs. Other process discovery algorithms
like the Inductive Miner [10], have embedded filtering mechanisms to deal with some
types of outliers. The results of applying various process discovery algorithms on this
event log are shown in Figure 1. If we apply filtering method of [4] on this event log,
variants 1− 5 are retained. A resulting process model using these traces combined with
the Inductive Miner is shown in Figure 1e. As it is shown in this figure, all mentioned
process discovery algorithms have problem to discover an accurate model from the
given event log. However, if we first repair the event log and then apply the Alpha miner
(or any other mentioned process discovery methods), we obtain an accurate process
model, i.e. as presented in Figure 1f. It is because there is no outlier behaviour in the
repaired event log and the resulted process model is more accurate and understandable.

So, it seems that we need an approach to overcome outlier behaviour in event data.
A naive approach to solve data quality related issues is to remove traces that seem to
contain outlier behaviour [3, 4]. However, for many businesses, all process instances in
an event log are valuable and ignoring them potentially jeopardizes the trustworthiness
of the analysis performed. For example, in a patient treatment in a hospital, recorded
over several years, it is undesirable to remove all process related records of a patient just
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(a) Result of the Alpha Miner on event log of Table 1

(b) Result of the Inductive Miner on event log of Table 1

(c) Result of the Inductive Miner with integrated filtering (IMi) on event log of Table 1

(d) Result of the ILP Miner on event log of Table 1

(e) Result of the Inductive Miner on the filtered event log by [4]

(f) Applying Alpha miner on the even log of Table 1 after repairing outlier behaviour in it.

Fig. 1: Resulting process models of applying different process discovery techniques
(with and without filtering/repair) on the event log that is presented in Table 1

because there exists a small portion of wrongly logged behaviour. In such scenarios,
after detecting outlier, it is more desirable to repair that behaviour. Note that, if there
is no noise in an event log, by repairing infrequent behaviour in it and removing too
detailed patterns, we are able to alter infrequent behaviour into more frequent behaviour
which allows us to discover more general views on the process. Therefore, by repairing,
rather than removing outlier behaviour we believe that quality of discovered process
models improves.

3 Related Work

Some process mining algorithms are designed to/have been extended to be able to han-
dle outliers as well [11–14]. However, these filtering techniques are tailored towards the
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internal working of the corresponding algorithms and cannot be used for general pur-
pose event log cleansing. Additionally, they typically focus on a specific type of noise,
e.g. incompleteness.

Most of filtering techniques present in commercial tools are based on just the fre-
quency of activities and variants. However, the presence of parallelism and loops often
hampers the applicability of such filtering techniques. There are also some basic filter-
ing plug-ins developed in ProM [5] based on activity frequencies and users inputs.

Outlier detection for general temporal data is addressed in some research, e.g. in
[15] a survey on different methods of detecting outliers in sequential data is presented.
Also, there are some related techniques that specifically proposed for process mining
domain. In [16, 17] the authors propose filtering techniques that use additional infor-
mation such as training event data or a reference process model. In reality, providing
a sufficiently complete set of training traces or having a reference process model is
impractical. Recently, some general purpose filtering techniques are proposed in the
process mining domain. In [3] by constructing an Anomaly Free Automaton (AFA)
based on the whole event log and a given threshold, all non-fitting behaviour, w.r.t. the
AFA, is removed from the event log. In [4], we propose a filtering method that detects
outliers based on conditional probabilities of subsequences and their possible following
activities. In [18],an adjustable on-line filtering method is proposed that detect outlier
behaviour for streaming event logs that also works based on conditional probabilities.

All aforementioned methods, after detecting outlier behaviour, try to remove such
behaviour. As motivated in Section 2, modifying outlier behaviour or repairing it is
more valuable than just removing it. There is some research [19, 20] that tries to repair
process models based on event logs. Moreover, [21] uses process model to repair event
logs. However, as we aim to design a general purpose repairing method, we assume
there does not exist a process model as an input of our proposed algorithm.

4 Repairing Outliers in Event Data

In this section we present our outlier repair method. Prior to this, we briefly introduce
basic process mining terminology and notations that ease readability of the paper.

4.1 Terminology and Notation

Given a set X , a multiset M over X is a function M : X → N≥0, i.e. it allows certain
elements of X to appear multiple times. We write a multiset as M = [ek11 , e

k2
2 , ..., e

kn
n ],

where for 1 ≤ i ≤ n we have M(ei) = ki with ki ∈ N>0. If ki = 1, we omit its
superscript, and if for some e ∈ X we have M(e) = 0, we omit it from the multiset
notation. Also, M = [ ] denotes an empty multiset, i.e. ∀e ∈ X , M(e) = 0. We let
M = {e ∈ X |M(e) > 0}, i.e. M ⊆ X . The set of all possible multisets over a set X
is written asM(X).

Let X∗ denote the set of all possible sequences over a set X . A finite sequence σ
of length n over X is a function σ : {1, 2, ..., n} → X , alternatively written as σ =
〈x1, x2, ..., xn〉 where xi = σ(i) for 1 ≤ i ≤ n. The empty sequence is written as
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Table 2: Fragment of a fictional event log (each line corresponds to an event).

Case-id Activity Resource Time-stamp
... ... ... ...
1 register request (a) Sara 2017-04-08:08.10
1 examine thoroughly (b) Ali 2017-04-08:09.17
2 register request (a) Sara 2017-04-08:10.14
1 check resources (c) William 2017-04-08:10.23
1 check ticket (d) William 2017-04-08:10.53
2 check resources (b) Ali 2017-04-08:11.13
1 Send to manager(e) Ava 2017-04-08:13.09
1 accept request (f ) Fatima 2017-04-08:16.05
1 mail decision(h) Anna 2017-04-08:16.18
... ... ... ...

ε. Concatenation of sequences σ and σ′ is written as σ · σ′. We let function hd : X∗ ×
N≥0 9 X∗, represents the “head” of a sequence, i.e., given a sequence σ ∈ X∗ and k ≤
|σ|, hd(σ, k) = 〈x1, x2, .., xk〉, i.e., the sequence of the first k elements of σ. In case
k = 0 we have hd(σ, 0) = ε. Symmetrically, tl : X∗×N≥0 9 X∗ represents the “tail”
of a sequence and is defined as tl(σ, k) = 〈xn−k+1, xn−k+2, ..., xn〉, i.e., the sequence
of the last k elements of σ, with, again, tl(σ, 0) = ε. Sequence σ′ is a subsequence of
sequence σ, which we denote as σ′ ∈ σ, if and only if ∃σ1, σ2 ∈ X∗(σ = σ1 · σ′ · σ2).
Let σ, σ′ ∈ X∗. We define the frequency of occurrence of σ′ in σ by freq : X∗×X∗ →
N≥0 where freq(σ′, σ) = |{1 ≤ i ≤ |σ| | σ′1 = σi, ..., σ

′
|σ′| = σi+|σ′|}|. Given an

example event log that presented in Table 1, freq(〈b〉, 〈a, b, b, c, d, e, f, h〉) = 2 and
freq(〈b, d〉, 〈a, b, d, c, e, g〉) = 1, etc.

Event logs describe sequences of executed business process activities, typically in
context of some cases (or process instances), e.g., a customer or an order-id. The execu-
tion of an activity in context of a case is referred to an event. A sequence of events for a
specific case is also referred to a trace. Thus, it is possible that multiple traces describe
the same sequence of activities, yet, since events are unique, each trace itself contains
different events. An example event log, adopted from [2], is presented in Table 2.

Consider the events related to Case-id value 1. Sara registers a request, after which
Ali examines it thoroughly. William checks the ticket and checks resources. Ava sends
the request to manager and Fatima accept the request. Finally, Anna emails the decision
to the client. The example trace is written as 〈a, b, c, d, e, f, h〉 (using short-hand activity
names). In the context of this paper, we formally define event logs as a multiset of
sequences of activities (e.g., Table 1).

Definition 1 (Event Log). Let A be a set of activities. An event log is a multiset of
sequences over A, i.e. L ∈M(A∗).

Observe that each σ ∈ L describes a trace-variant whereas L(σ) describes how many
traces of the form σ are present within the event log.

4.2 Repairing Event Logs Using Control-Flow Oriented Contexts

Here, we present our methodology to identify and repair outlier behaviour in an event
log. We first present our repair method by means of an example after which we for-
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malize and discuss it in more detail. We first present two central control-flow oriented
concepts which form the basis of the repair method. Given a trace, a context is defined
as the surrounding behaviour of a certain sequence of activities. For example, in trace
〈a, b, c, d, e, f, h〉, 〈a, b〉 and 〈e〉 are surrounding 〈c, d〉, hence, the pair (〈a, b〉, 〈e〉) is a
context of 〈c, d〉.

Definition 2 (Context, Covering). Let σ, σ′ ∈ X∗. We define the context of σ′ w.r.t. σ
as a function con : X∗ ×X∗ × N≥0 × N≥0 → P(X∗ ×X∗) where con(σ′, σ, l, r) =
{(σ1, σ2) ∈ X∗ ×X∗ | σ1 · σ′ · σ2 ∈ σ ∧ |σ1| = l ∧ |σ2| = r}.

Furthermore, let σ′1, σ
′
2 ∈ X∗, cov : X∗ × X∗ × X∗ : → P(X∗) is a func-

tion that returns all subsequences in a trace that occur within a given context, i.e.
cov(σ, σ′1, σ

′
2) = {σ′ ∈ X∗|(σ′1, σ′2) ∈ con(σ′, σ, |σ′1|, |σ′2|)}.

A context describes, given a subsequence, its two neighbouring subsequences of
length l and r respectively, i.e. σ′1 is the left neighbour with length l and σ′2 is
the right neighbor with length r. For example, if σ = 〈a, b, c, d, e, f, h〉, we have
con(〈c〉, σ, 1, 2) = (〈b〉, 〈d, e〉). Note that l and r may differ, and, may even have value
equal to 0 which implies a neighboring subsequence ε. Furthermore, cov(σ, 〈a, b〉, 〈e, f〉) =
{〈c, d〉} and cov(σ, 〈b〉, 〈d〉) = {〈c〉}.

We aim to detect and replace outlier behaviour based on the occurrence probability
of a subsequence among a specific context. If this probability is lower than a given
threshold, we consider that behaviour as outlier. To obtain these probabilities we define
covering probability as follows.

Definition 3 (Covering Probability). Given σ′, σ′1, σ
′
2 ∈ X∗, maximum subsequences’

length K and a multiset of sequences L ∈M(X∗). We define CP : X∗ ×X∗ ×X∗ ×
N>0 ×M(X∗) → [0, 1] as the empirical conditional probability of σ′ being covered
by σ1 and σ2 in event log L, i.e.

CP (σ
′
, σ
′
1, σ
′
2, K, L) =


∑
σ∈L

(
L(σ)freq(σ′1·σ

′·σ′2,σ)
)

∑
σ∈L

(
L(σ)

∑
|σ′′|≤K

freq(σ′1·σ
′′·σ′2,σ)

) if ∃σ ∈ L(cov(σ′, σ′1, σ
′
2) 6= ∅)

0 otherwise

The numerator computes how many times σ′ is covered by the context (σ′1, σ
′
2) in

whole event log. The denominator computes how many times context (σ′1, σ
′
2) covers

different substrings with length lower or equal than K. Clearly, the resulting value is a
real number in [0, 1]. A higher value implies that it is more probable that subsequence σ′

occurs among context (σ′1, σ
′
2). So, CP (σ′, σ′1, σ

′
2, 1, L) = 1, indicates that if context

(σ′1, σ
′
2) occurs, subsequence σ′ always happens among it. According to the event log

that is presented in Table 1, CP (ε, 〈b〉, 〈c〉, 1, L) = 7
12 and CP (〈b〉, 〈b〉, 〈c〉, 1, L) =

1
12 .

The main idea of our approach is that if the covering probability of a subsequence
among a significant context is lower than the given threshold, the covered subsequence
is considered as outlier. A significant context is simply a context that occurs signif-
icantly often, where the significance of occurrence is a user-defined threshold. Sub-
sequently, we substitute the outlier subsequence with another subsequence that has a
higher covering probability among the given context.
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Fig. 2: A simple example of repairing an event log L with our proposed method. Sig-
nificant contexts and their probable subsequences are shown in the table for K = 1.

In context of our example, in the trace 〈a, b, b, c, d, e, f, h〉, if we consider (〈b〉, 〈c〉)
as a frequent context, by replacing subsequence 〈b〉 with ε, which is more probable to
happen among this context, we obtain 〈a, b, c, d, e, f, h〉, which is not an outlier any
more. As another example, consider trace σ = 〈a, d, b, d, c, f, h〉. By having a sig-
nificant context (〈a〉, 〈b〉), according to the whole event log, we expect that ε occurs
among it rather than 〈d〉. Therefore, by this replacement we will have 〈a, b, d, c, f, h〉.
Similarly, for 〈a, b, c, d, g, h〉 by considering context (d, g) and considering covering
probabilities, we will replace ε by 〈e〉 and we obtain 〈a, b, c, d, e, g, h〉 which is not
outlier any more.

The user decides which contexts are significant by setting a corresponding signifi-
cance threshold. Contexts with a frequency of at least the number of traces in the event
log times the given threshold are considered as significant contexts. Also, the maximum
length of covered subsequence (K) and context’s subsequences (CL) respectively are
specified by the user. Note that CL describes two values, i.e. a maximal length for σ′1
and σ′2.

The input of our proposed method is an event log L, a context frequency threshold
TC , a context’s subsequence lengths CL(l, r) and an upper bound for length of covered
subsequence K. At first, all traces are scanned to compute covering probabilities of
all contexts and their possible covered subsequences. Next, for each trace and each
subsequence in it (with length ≤ K), we check its context frequency and covering
probability (according to TC). If the context is significant and the covering probability is
low, we replace the subsequence with a better one according to that context. Otherwise,
if a context is insignificant it is not able to be used for repairing outlier behaviour.

A simple visual example of how the proposed method works is given in Figure 2.
In this example, we consider K = 1 as a maximum subsequence length and also

context lengths are equal to 1 to repair an event log with 100 traces. First, by scan-
ning the event log, significant contexts and their probable subsequences are specified.
If the corresponding context is significant and the subsequence is not probable for that
context, we detect a noisy/infrequent behaviour. For example, the occurrence of 〈b〉 is
improbable among significant context (〈a〉, 〈b〉).
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After detecting outlier behaviour, we try to replace improbable subsequences with
more probable ones. For substitution, we are searching for a subsequence with a length
as close as possible to the outlier subsequence. Among all candidate subsequences we
are interested in the subsequence with the highest probability. For example, if the outlier
subsequence has length 2 we first search for a subsequence with the same length. If
there is not any significant subsequence with length 2 for that context, we try to find
a subsequence σ′′ with length 1 or 3. Then, among the candidate subsequences we
choose one that has the highest probability among that context. According to Figure 2
there are two possible subsequences to substitute with 〈b〉, i.e. ε and 〈c〉. Because the
length of 〈c〉 is similar to the outlier subsequence we choose it and the trace is changed
into 〈a, c, b〉. For the other outlier trace in this example, among the context (ε, 〈b〉), it is
more probable that 〈a〉 occurs. So, by replacing ε with 〈a〉, it changes to 〈a, b, c〉.

To avoid having infinitive loops, after each replacement, the starting point of the
next scanned subsequence will be the first point of the right subsequence of the previous
context. For example, after replacement of 〈a〉 with ε and having 〈a, b, c〉, we will not
check 〈a〉 again as a subsequence as we consider 〈b〉 as the next subsequence.

5 Evaluation

To evaluate our proposed method we conducted several experiments with both artificial
and real event data. To simplify the evaluation, in all the experiments we just consider
contexts’ subsequences length equal to 1.

To apply the proposed repairing method, we implemented the Repair Log plug-in
(RL) in the ProM framework1. The plugin takes an event log as an input and outputs a
repaired event log. Also, the user is able to specify threshold TC , the maximum subse-
quence length K, and the length of left and right sequences of context CL.

In addition, to apply our proposed method on various event logs with different
thresholds and applying different process mining algorithms with various parameters,
we ported the Repair Log plugin to RapidProM. RapidProM is an extension of
RapidMiner that combines scientific workflows [22] with a range of (ProM-based)
process mining algorithms.

To evaluate discovered process models, we use fitness and precision. Fitness com-
putes how much behaviour in the event log is also described by the process model.
However, precision measures how much of behaviour described by the model is also
presented in the event log. Low precision means that the process model allows for
much more behaviour compared to the event log. Note that, there is a trade off between
these measures [23]. Sometimes, putting aside a small amount of behaviour causes a
slight decrease in fitness, whereas precision increases much more. Therefore, to evalu-
ate discovered process models, we use the F-Measures metric that combines fitness and
precision: 2×Precision×Fitness

Precision+Fitness . Note that, in many applications, fitness has more im-
portance. We therefore also use the notion of conditional precession, in which we only
consider precision values of those process models that have fitness ≥ 0.95. Further-
more, as shown in [4], Matrix Filter has a good performance on event logs with outlier
1 Repair Log plugin svn.win.tue.nl/repos/prom/Packages/LogFiltering

svn.win.tue.nl/repos/prom/Packages/LogFiltering
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behaviour. Hence, we compare the results of the proposed repairing method with this
filtering method.

Table 3: Details of real event logs that are used in the experiment

Event Log Activities Count Traces Count Events Count Variants Counts
BPIC−2017−Offer 8 42995 193849 16
BPIC−2013 13 7554 65533 2278
BPIC−2012−Application 10 13087 60849 17
BPIC−2012−Workflow 6 9658 72413 2263
BPIC−2012−Offer 7 5015 31244 168
Road−Fines 11 150370 561470 231
Hospital−Billing 18 100000 451359 1020
Sepsis−Cases 16 1050 15224 846
Credit 15 10035 150525 1

In the first experiment, we try to investigate the effect of using the proposed method
on real event logs. Basic information of these event logs is presented in Table 3. We also
add different percentages of noise to these event logs. As noise we consider addition of
random activities at random positions in traces, random removal of activities, and swap-
ping of activities within traces. For example, we added 5% of all these three mentioned
types of noise to Road−Fines and refer to it as Road−Fines−05. Note that, in all
experiments, we just used the modified (filtered or repaired) event logs for discover-
ing process models. For conformance checking and quality assessment of discovered
process models we used original event logs (without added noise).

We try to discover the best process models according to the F-Measure for these
event logs using four different methods. In the first method, we apply IMi [11] with 51
different noise filtering thresholds (that is embedded in the Inductive Miner) from 0 to
1 and we call it N&IMi (N means that event logs are not filtered beforehand). In the
second method, we apply the basic Inductive Miner (without its embedded filtering) on
an event log that is previously filtered with Matrix Filter method and call it as M&IM
(M means event logs are filtered with Matrix Filter beforehand). We also apply the
basic Inductive Miner on event logs that are repaired beforehand and name it as R&IM
(R means event logs are repaired with the proposed method beforehand). In the last
method, the Inductive Miner with four different noise filtering thresholds (from 0.1 to
0.4) is applied on repaired event logs (R&IMi).

The results of applying these methods to aforementioned event logs and their best
F-Measure values are given in Figure 3 and Figure 4. These figures show that when
there is outlier behaviour in the event log, just using the Inductive Miner (N&IMi) does
not yield a proper process model. However, in some event logs that do not contain
outlier behaviour, the Inductive Miner discovers a process model with a suitable F-
Measure. It is also notable that for most event logs, R&IM outperforms M&IM and
allows us to obtain better results. But, for the Hospital−Billing event log, the result
of M&IM is slightly better in the previous experiments. This is because there are lots
of variants in this event log, but 94% of traces are placed in just 1% of variants and in
this type of event logs, filtering works perfect. The best results are achieved when we
apply Inductive Miner on cleaned event logs or R&IMi. Moreover, in most of cases,
M&IM and the Inductive Miner (here N&IMi) are achieving their best possible process



Repairing Event Logs 11

model according to F-Measure, by sacrificing a lot in term of fitness. In Figure 5 and
Figure 6, we see the result of different methods according to their conditional precision.
According to these figures, the R&IM method helps the Inductive Miner to discover
process models with high precision without sacrificing the fitness. However, we see
that for event logs with lots of outlier behaviour the Inductive Miner does not able to
discover a process model with high fitness and precision at the same time.

Fig. 3: Best F-Measure of applying different methods on BPIC event logs.

Fig. 4: Best F-Measure of applying different methods on other real event logs.

Fig. 5: Best conditional precision of applying different methods on BPIC event logs.

Fig. 6: Best conditional precision of applying different methods on other real event logs.
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(a) Results of Applying R&IM

(b) Results of applying M&IM

(c) Results of applying N&IMi

Fig. 7: The best discovered process models on BPIC−2017−Offer−05 using RL, MF
and NF methods.

Fig. 8: Best F-Measure of applying different methods on synthetic event logs.

Fig. 9: Best conditional precision of applying different methods on synthetic event logs.

Note that for some event logs like the Sepsis−Cases neither M&IM nor R&IM al-
low us to discover an outstanding process model, i.e, having high conditional precision.
The reason is for this is related to the fact that the discovered process model of this
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event log is not precise and there is some behaviour that possible to happen anywhere
during execution of the process. We have shown the best discovered process model for
this event log to a business expert which indicated that the process model is acceptable
(but not perfect).

In Figure 7, the best process model of each methods for theBPIC−2017−Offer−05
are shown. It is obvious that Figure 7a that is discovered on the repaired event log is the
best process model among them.

Note that, in the previous experiments, the original event log that is used to compute
F-Measures (our ground truth) potentially also contains noisy and infrequent behaviour.
Therefore, in another experiment, we create six artificial process models with different
behaviour. These process models consequently describe different types of behaviour,
i.e. one model just contains sequence constructs (Sequence), one contains sequence and
choice constructs (Xor), one contains sequence and parallel constructs (Parallel), one
contains sequence and loop constructs (Loop), one contains all possible behavioural
constructs (All) and we use a process model with locally structured subprocesses that
has lots of variants (High Variants). Based on these reference process models, we gen-
erated six event logs that each contains 5000 traces. Similar to the previous experiment,
5%,10%,20% and 50% of noise inserted to these original event logs. Note that, an event
log with 10% inserted noise not necessary has 90% original traces. Similarly, we apply
N&IMi, M&IM, R&IM and R&IMi to these event logs. Results of this experiment are
given in Figure 8 and Figure 9.

As shown in these figures, for all event logs if we insert some noisy behaviour (even
just 5%), the Inductive Miner has problems to discover a process model with a high F-
Measure. This means the embedded noise filtering method mechanism in this algorithm
is not able to deal with all types of outlier. Furthermore, Matrix Filter always works
better than the embedded noise filtering method in the Inductive Miner. Compared to
these filtering methods, the proposed repaired method performs better especially when
there probability of noise is low. Only for the Parallel event log, results of applying
M&IM slightly outperforms our proposed method. Like the previous experiment, the
best results are achieved when we apply the Inductive Miner with its filtering method
to the repaired event logs (R&IMi). Except for the Parallel event logs, for all others
this method finds the underlying process models, i.e. almost equal to the reference pro-
cess models. For the High Variants event log that has local structured subprocesses,
our proposed repair method works perfectly and accurately detects and repairs outlier
behaviour. The reason for this is related ot the fact that our method is able to detect and
repair outlier behaviour locally.

Table 4: The percentage of remaining traces in event logs for the best process model

Event Log
Noise Percentage 0 5 10 20 50

Sequence 1 95 90 81 52
Xor 1 95 90 42 52
Parallel 1 52 48 41 23
Loop 1 95 90 80 0,51
ALL 83 95 90 9 5
High Variants 1 95 90 81 20
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Finally, note that filtering methods achieve the best results by removing a lot of
behaviour in event logs. The percentages of remaining traces in each event log for the
best model in M&IM are given in Table 4. In some cases the best process model is
discovered just with 5% of the traces. This means that we need to remove a lot of
behaviour from the event log. However, in the repair method all the traces remain in the
event log but they may be modified.

Note, for all methods we use a grid search on different parameters and show the best
results obtained. However, in reality like other state-of-the-art process mining specific
data cleansing methods, adjusting these thresholds is a challenging task for users.

6 Conclusion

Process mining provides insights into the actual execution of business processes, by
exploiting available event data. Unfortunately, most process mining algorithms are de-
signed to work under the assumption that the input data is outlier free. However, real
event logs contain outlier (noise and infrequent) behaviour that typically leads to in-
accurate/unusable process mining results. Detecting such behaviour in event logs and
correcting it helps to improve process mining results, e.g. discovered process models.

To address this problem, we propose a method that takes an event log and returns a
repaired event log. It uses the occurrence frequency of a control-flow oriented context
pattern and the probabilities of different subsequences appearing in middle of it to detect
outlier behaviour. If such probability be lower than a given threshold, the subsequence
is substituted with a more probable one according to the context.

To evaluate the proposed repairing method we developed a plug-in in the ProM plat-
form and also offer it through RapidProM. As presented, we have applied this method
on several real event logs, and compared it with other state-of-the-art process min-
ing specific data cleansing methods. Additionally, we applied the proposed method on
synthetic event logs. The results indicate that the proposed repair approach is able to
detect and modify outlier behaviour and consequently is able to help process discovery
algorithms to return models that better balance between different behavioural quality
measures. Furthermore, using these experiments we show that our repair method out-
performs one of the best state-of-the-art process mining filtering techniques as well as
the Inductive Miner algorithm with its embedded filtering mechanism.

As future work, we want to evaluate the proposed method on other process mining
results and also other process discovery algorithms. We also plan to develop techniques
to automatically set adjustable filtering and repairing parameters based on characteris-
tics of the input event log to guide users and speed-up analysis.
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