
VVS, 2000. Published by Blackwell Publishers, 108 Cowley Road, Oxford OX4 1JF, UK and 350 Main Street, Malden, MA 02148, USA.

Analysis of discrete-time stochastic Petri
nets

W. M. P. van der Aalst1,2, K. M. van Hee1,3 and H. A. Reijers1,3

1Eindhoven University of Technology, Department of Mathematics and

Computing Science, P.O. Box 513, NL-5600 MB, Eindhoven, The

Netherlands
2Eindhoven University of Technology, Department of Technology

Management, P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands
3Deloitte & Touche Bakkenist, Management and ICT Consultants,

P.O. Box 23103, NL-1100 DP, Amsterdam, The Netherlands

The Petri net formalism is widely applied in both theoretical and practical
settings. For the sake of performance analysis, the original Petri net
model has been extended with the notion of time. This paper addresses
the different issues involved with this extension. Also, it provides a state-
of-the-art overview of different analysis techniques for timed Petri nets. A
new analysis technique is presented, which combines the freedom of
choosing arbitrary time distributions within a Petri net model on the one
hand and ef®cient computation means on the other.

Key Words and Phrases: Petri nets, performance analysis.

1 Introduction

We are happy to contribute to the special issue in honor of Jaap Wessels. Directly

or indirectly each of us was a scholar of Jaap. Kees van Hee was one of the ®rst

Ph.D. students of Jaap (1978). Wil van der Aalst was a Ph.D. student of both Jaap

and Kees (1992). Hajo Reijers is currently a Ph.D. student of both Kees and Wil.

The three of us are working in Computer Science on the theory and application of

Petri nets, while Jaap's research is in stochastic processes. There is a strong

relationship between both ®elds: each Petri net determines the incidence matrix of a

discrete, possibly in®nite, Markov chain. If random variables are associated to non-

deterministic choices in a Petri net, we obtain a Markov process. Computer

scientists use Petri nets to model complex systems and to verify if the modeled

systems satisfy some correctness criterions (invariant properties and reachability of

states). Petri nets are a powerful modeling technique because they provide a way to

decompose the states of a system. (Note that a ®nite Petri net may correspond to an

in®nite Markov chain.) There is a growing interest in Computer Science to study

performance of systems. Stochastic Petri nets extend the traditional Petri net with

timing and probability features. As a result, a stochastic Petri net describes a

237

Statistica Neerlandica (2000) Vol. 54, nr. 2, pp. 237±255

stochastic process. Clearly we did not deviate that much from Jaap's research

interests.

The classical Petri net is a directed bipartite graph. The two types of nodes are

called places and transitions. In a Petri net, places and transitions are connected via

arcs. Places are graphically represented by circles, transitions by boxes or bars.

Places can store tokens, represented by black dots. A distribution of tokens on the

places of a net is called a marking, and corresponds to the `̀ state'' of the Petri net. A

transition of a net is enabled at a marking if all its input places (the places from

which some edge leads to it) contain at least one token. An enabled transition can

®re: it removes one token from each of the input places, and adds one token to each

of its output places. This is called the ®ring rule.

In Figure 1, a Petri net example is depicted. As a matter of coincidence, the Petri

net has just as many transitions as places. The places have labels p1, p2 . . . p11; the

transitions t1, t2 . . . t11. In the particular notation that is used for this example, two

types of transitions are used. Transitions that are drawn as bars are timeless when

®red; the transitions that are depicted as boxes consume time. As will be discussed in

the next section, this is one of the many ways to add time behavior to Petri nets. Note

that both types of transitions respect the ®ring rule. In the Petri net depicted in Figure

1, places p8 and p10 are marked. The transitions that are enabled are t7 and t10. In

particular, transition t11 is not enabled. If transition t10 would ®re on basis of the

token in p8, then t11 becomes enabled as a token would be added to p9. As a ®nal

remark, transitions t7 and t10 are said to be in con¯ict, as they compete for the same

token to ®re.

This paper focuses on timed Petri nets. Because there are many ways to

incorporate time in Petri nets, we present in Section 2 an up-to-date overview of the

different timing mechanisms. In Section 3, we discuss the state-of-the-art analysis

techniques for the various timed Petri net models. Based on this discussion, we

motivate the analysis technique presented in this paper in Section 4. The technique

differs from existing techniques in the sense that it combines the use of arbitrary

stochastic timing with ef®cient means of computation and the rich expressiveness of

the Petri net model.

Fig. 1. A Petri net.

238 W. M. P. van der Aalst, K. M. van Hee and H. A. Reijers

VVS, 2000

2 Time in Petri nets

Petri nets were originally proposed as a causal model without any notion of time or

probability. In fact, the concept of time was intentionally avoided in the original

work by Carl Adam Petri (1962). The addition of time restricts the behavior of the

net, i.e., the dynamic behavior of the Petri net is only partially re¯ected by the

network structure. However, for many practical applications, the addition of time is

a necessity. Without an explicit notion of time it is not possible to analyze the

performance (e.g., throughput and utilization) of the modeled system. Since the

early seventies there has been a discussion within the Petri net community on the

addition of time. More theory-oriented researchers oppose or simply ignore timing

issues. More application-oriented researchers advocate and investigate different

timing mechanisms and analysis techniques. We typically use a mixed approach,

i.e., we start with a Petri net extended with time. In fact, we often use high-level

Petri nets extended with color (data), time, and hierarchy as described by Van der

Aalst (1993), Chiola et al. (1990), Ghezzi et al. (1991), Van Hee (1994), Jensen

(1996), Lin and Marinescu (1987), Morasca et al. (1991), and Zenie (1985). For

analysis purposes we abstract from some of these extensions. The reason for such

abstractions is the need to make analysis tractable: many properties are undecidable

for Petri nets extended with data and/or time. In the next paragraphs, we will

discuss the different aspects of incorporating time in Petri nets.

2.1 Location of delay

There are many ways to introduce time into Petri net models. As explained in the

introduction, a Petri net consists of places and transitions connected via arcs.

Therefore, time can be associated with places, transitions, or arcs. In most timed

Petri net models, transitions determine time delays. In only a few models, time

delays are determined by places and/or arcs. It seems that it is more natural to

associate time to transitions: Transitions represent activities and activities take time.

However, authors such as Sifakis (1977, 1980) argue that it is more convenient to

associate time to places since this leaves the original ®ring rule intact, i.e., enabling

and ®ring are instantaneously. For high-level Petri nets with colored tokens (i.e.,

tokens carry a data value), it is most natural to attach timestamps to tokens, as done

by Van der Aalst (1993), Van Hee (1994), and Jensen (1996). The timestamp

indicates the time a token becomes available for consumption. In the models

presented by Van der Aalst (1993), Van Hee (1994), and Jensen (1996) transitions

set the timestamps of produced tokens, i.e., time delays are determined by

transitions.

2.2 Type of delay

Independent of the choice where to put the delay (i.e., transitions, places, or arcs),

several types of delays can be distinguished. In this paper, we distinguish between

deterministic, non-deterministic, and stochastic delays. Many of the older timed

Discrete-time stochastic Petri nets 239

VVS, 2000

Petri net models by authors such as Van Hee et al. (1989), Ramchandani (1984),

Sifakis (1977), Wong et al. (1985), and Zuberek (1980) use deterministic delays,

i.e., the delay assigned by a transition, place, or arc is ®xed. Deterministic delays

allow for simple analysis methods but have limited applicability. In real

applications, delays correspond to the duration of activities which are typically

variable. Therefore, ®xed delays are often less appropriate. There are two ways to

describe the intrinsic variability. One way is to assume constraints on delays (e.g., it

takes less than 15 minutes to type a letter), i.e., non-deterministic delays. Another

way is to assume a probability distribution for each delay, i.e., stochastic delays.

Most of the models handling non-deterministic delays use time intervals to specify

the duration of the delay. Merlin (1974, 1976) introduced such a model in the early

1970's. Other models using interval timing have been proposed by Van der Aalst

(1993, 1994), Van der Aalst and Odijk (1995), Berthomieu and Diaz (1991), and

Berthomieu and Menasche (1993). However, most of the timed Petri net models use

stochastic delays. In these models each delay is described by a probability

distribution. To make analysis tractable typically only a restricted set of probability

distributions is allowed. In the SPN model by Florin and Natkin (1982), only

exponential delays (i.e., delays described by a negative exponential probability

density function) are allowed. The widely used GSPN model by Marsan et al.

(1984) allows for both immediate transitions (i.e., transitions with no delay) and

timed transitions (i.e., transitions with exponential delays). Models allowing for

arbitrary probability distributions typically defy exact analytical analysis. Another

way to classify the types of delay used in a timed Petri net model is to distinguish

between discrete and continuous delays. Most discrete models use the natural

numbers as the time domain. Continuous models typically use the set of non-

negative real numbers as the time domain. Nearly all timed Petri nets allow for

continuous delays. The analysis method described in the second part of the paper

assumes discrete delays. This is not a real limitation since a ®ne-grained discrete

time domain can be used to approximate a continuous time domain.

2.3 Preselection versus race semantics

Adding time to Petri nets requires a rede®nition of the enabling and ®ring rules. In

a classical Petri net a transition is enabled if each of the input places contains

enough tokens (typically 1), only enabled transitions can ®re, and ®ring is

instantaneously (i.e., the moment tokens are consumed from the input places,

tokens are added to the output places). Transitions are in con¯ict if they share input

places. Note that ®ring a transition in con¯ict with other transitions may disable

some or all of these transitions. The choice between several enabled transitions in

con¯ict with each other is resolved in a non-deterministic manner. When adding

time to a Petri net the enabling and ®ring rules need to be modi®ed to specify how

con¯icts are resolved (i.e., the relation between enabling and ®ring) and whether

®ring is instantaneous or not (the semantics of the ®ring rule). Clearly, these two

issues are related. Assume that transitions determine the delays. If ®ring is

240 W. M. P. van der Aalst, K. M. van Hee and H. A. Reijers

VVS, 2000

instantaneous (i.e., does not take any time), then it is necessary to associate time to

the enabling of a transition. If time is associated to the enabling, there is no need to

explicitly de®ne how con¯icts are resolved, i.e., enabled transitions `̀ race'' against

each other and the one that is scheduled to ®re ®rst will ®re. This ®ring/enabling

semantics is called the race semantics. It is also possible to specify the way

con¯icts are resolved explicitly. This ®ring/enabling semantics is called the

preselection semantics. For example, priorities or probabilities are used to resolve

con¯icts. In the preselection semantics there is no race between enabled transitions:

The moment transitions become enabled one of the enabled transitions is selected.

Race semantics are typically combined with instantaneous ®ring, i.e., time is in the

enabling of transitions. Therefore, we also use the term enabling delays to refer to

these semantics. Preselection semantics are typically combined with holding times,

i.e., tokens reside for some time inside a place or transition. Note that for race

semantics the resolution of con¯icts and the delay are handled by the same

mechanism. For preselection semantics the mechanism to resolve con¯icts is

separated from the actual delay. Most of the stochastic Petri nets by authors such as

Balbo and Silva (1998), Florin and Natkin (1982), Ajmone Marsan (1990), and

Ajmone Marsan et al. (1984, 1985, 1986, 1995) use race semantics. As established

by Van der Aalst (1992), race semantics allow for a more direct translation to

Markov chains and timed Petri nets using race semantics are more expressive than

timed Petri nets using preselection semantics. For example, race semantics allow for

a compact representation of time-outs. Preselection semantics are more intuitive

and easier to use. Therefore, most of the high-level Petri nets such as the ones

described by Van der Aalst (1993), Van Hee (1994) and Jensen (1996) support

preselection semantics. Other authors such as Razouk and Phelps (1984) propose a

mixture of race and preselection semantics.

For preselection semantics the delays (i.e., holding times) can be associated to the

®ring of a transition (e.g. described by Berthomieu and Diaz 1991) or the minimal

time a token spends in a place (e.g. described by Sifakis 1980).

For race semantics the delays are associated to the enabling time. Note that an

enabled transition can be disabled by another transition in case of a con¯ict. Such a

transition loses the race and will not ®re. If the transition becomes enabled again, a

new race starts. In this new race there are several possibilities for the new enabling

time of this transition. Authors such as Balbo and Silva (1984), Ajmone Marsan et

al. (1985, 1995) typically distinguish three so-called memory policies: age memory,

enabling memory, and reset memory. For age memory, the remaining enabling time is

frozen the moment the transition becomes disabled and is resumed the moment the

transition becomes enabled again. For enabling memory, a new enabling time is

sampled every time a transition becomes enabled, i.e., previously interrupted transi-

tions have to start from scratch. For reset memory, a new enabling time is sampled

every time a transition ®res, i.e., also transitions not in con¯ict with the transition that

®red are interrupted and have to resample a new enabling time. It is interesting to

note that for stochastic Petri nets with just exponential delays the three memory

Discrete-time stochastic Petri nets 241

VVS, 2000

policies coincide. The memoryless property of the negative exponential probability

density function makes the residual enabling time statistically equivalent to the

originally sampled enabling time.

2.4 Capacity, priority, and queuing policy

For timed Petri nets, the capacity of places and transitions is relevant. Places can

have a limited capacity to restrict the number of tokens residing in a place at the

same moment in time. Transitions can have a capacity to limit the number of

concurrent enablings/®rings of the same transition. Consider a transition with one

input place containing three tokens. Is this transition enabled three times under race

semantics? Can the transition ®re concurrent with itself under preselection

semantics? To answer these questions, we identify three types of capacity related

semantics: single server semantics, multiple server semantics, in®nite server

semantics. For single server semantics the capacity of a place/transition is 1, for

multiple server semantics the capacity of a place/transition is some integer k, and

for in®nite server semantics there are no capacity restrictions. Most timed Petri net

models assume in®nite server semantics.

Several timed net models allow for a priority mechanism, i.e., if multiple

transitions compete for the same token, the transition with the highest priority ®res.

Note that the priority mechanism can be used for preselection purposes. In the widely

used GSPN model by Marsan et al. (1984) immediate transitions (i.e., transitions

with no delay) have priority over timed transitions.

Some Petri net models allow for the speci®cation of queuing policies. However,

since tokens in the same place (of the same color) are indistinguishable, it often does

not make any sense to choose a queuing discipline. In general priorities (i.e., not

transition priorities but token priorities), random selection (RS), and processor

sharing (PS) are easy to handle in a stochastic Petri net, as established by Balbo and

Silva (1984). State-dependent queuing disciplines such as ®rst-come-®rst-served,

last-come-®rst-served, longest-job-®rst, and earliest-due-date-®rst are more dif®cult

to represent and analyze.

In this section we presented an overview of the various ways time can be

incorporated in Petri nets. In the second part of this paper, we will use a timed Petri

net model with time in transitions using preselection semantics, i.e., ®ring a transition

takes time and con¯icts are resolved independent of the ®ring time using probabil-

ities. The type of delay is stochastic. However, unlike most stochastic Petri nets, we

use a discrete time domain. On this discrete time domain, we allow arbitrary, but

®nite, probability distributions. The model used in this paper does not support

priorities. However, transition priorities could easily be added. Since the Petri nets

considered in this paper are safe (i.e., the maximum number of tokens in a place is

one), capacity and queuing policy are not relevant.

242 W. M. P. van der Aalst, K. M. van Hee and H. A. Reijers

VVS, 2000

3 Analysis of timed nets

As indicated in the previous section, there are many ways to introduce time in Petri

nets. All timed Petri net models are executable, i.e., it is possible to construct a

trace of the modeled system by playing the token game. Therefore, simulation can

be used to analyze the model. If all non-determinism is replaced by stochastic

measures (i.e., delays and con¯ict resolution), then simulation can be used to obtain

con®dence intervals for performance measures such as utilization and throughput.

Because simulation does not require dif®cult mathematical techniques, it is easy to

understand for people with a non-technical background. Simulation is also a very

¯exible analysis technique, since it does not set additional constraints. However,

sometimes simulation is expensive in terms of the computer time necessary to

obtain reliable results. Another drawback is the fact that (in general) it is not

possible to use simulation to prove that the modeled system has the desired set of

properties. In the remainder, we discuss alternative analysis techniques to overcome

the limitations of simulation approaches. Since analysis techniques are typically

restricted by the type of delay, we ®rst consider timed Petri nets with deterministic

timing, then timed Petri nets with non-deterministic timing, and ®nally timed Petri

nets with stochastic timing.

3.1 Deterministic timing

There are several methods to calculate upper and lower bounds for the cycle time of

a timed Petri net with deterministic delays. For example, check authors such as

Murata (1992), Ramamoorthy and Ho (1980), Ramchandani (1984), and Sifakis

(1939). The cycle time is a criterion for the performance of the system. For a

speci®c class of deterministic timed Petri nets, the so-called Timed Event Graphs,

the exact cycle time can be computed quite ef®ciently, see Ramamoorthy and Ho

(1980) and Chretienne (1983). Other researchers such as Zuberek (1980) analyze

deterministic timed Petri nets by building the reachability graph. Although this

requires a lot of computing effort, such a graph can be used to answer a variety of

questions. A serious drawback of these methods is the fact that in many real

systems the activity durations are not ®xed, i.e., they vary because of disturbances

and other interferences. Assuming deterministic delays often results in inaccurate

results.

3.2 Non-deterministic timing

Most timed Petri nets models using non-deterministic delays, such as described by

Van der Aalst (1993, 1994), Van der Aalst and Odijk (1995), Berthomieu and Diaz

(1991), Berthomieu and Menasche (1993), Merlin (1974), and Merlin and Faber

(1976), use intervals to describe lower bounds and upper bounds for the duration of

activities. The method presented by Berthomieu, Diaz and Menasche (1983, 1991)

uses Merlin's (1974) timed Petri net model. The method generates a reachability

graph where nodes represent state classes instead of states. Sets of linear equations

Discrete-time stochastic Petri nets 243

VVS, 2000

are solved to calculate these state classes. The method is able to reduce the number

of states by using a relative time scale. Another method using interval timed

colored Petri nets was presented by Van der Aalst (1993). This method uses an

absolute time scale and allows for colored tokens. The method also generates a

reachability graph where nodes represent state classes. The number of states is

reduced by exploiting `̀ timed'' specialization and generalization properties. Van der

Aalst and Odijk (1995) describe an application of this method and Van der Aalst

(1992) gives two additional analysis methods based on interval timing.

3.3 Stochastic timing

The majority of stochastic Petri nets models uses a continuous time domain. In

these models, each delay is described by a probability density function. For

arbitrary probability density functions, only simulation or approximation are

feasible analysis techniques. Therefore, many stochastic Petri nets models impose

restrictions on the type of delay distribution. In the SPN (Stochastic Petri Net)

model as described by Florin and Natkin (1982) and Molloy (1981) only

exponential delays are allowed. Due to the memoryless property of the exponential

distribution and the race semantics, Florin and Natkin (1982) and Molloy (1981)

show that SPN's are isomorphic to continuous time Markov chains. The number of

states of the Markov chain corresponds to the number of reachable markings of the

SPN. The GSPN (Generalized Stochastic Petri Net) model extends the SPN model

with immediate transitions. Immediate transitions ®re without any enabling time

and have priority over timed transitions (i.e., transitions with exponential enabling

times under the race semantics). A marking is vanishing if an immediate transition

is enabled. A marking is tangible if only timed transitions are enabled. The GSPN

model distinguishes between these two types of markings: only tangible markings

consume time, i.e., the average sojourn time of vanishing states is zero and the

average sojourn time of tangible states is positive. The dynamics of a GSPN

corresponds to a semi-Markov process: The embedded Markov chain which ignores

the sojourn time in each state is a discrete time Markov chain. By using the

embedded Markov chain, it is fairly straightforward to calculate various perform-

ance measures. Note that only the tangible states consume time. Therefore, the

vanishing markings are not relevant for most performance measures. Therefore, as

shown by Balbo and Silva (1984) and Ajmone Marsan et al. (1985, 1995), it is

possible to reduce the number of states by eliminating the vanishing markings in

the embedded Markov chain.

The GSPN model has been extended in various directions. First of a the GSPN

model has been extended with marking dependent transition probabilities and

enabling delays. It is easy to see that such an extension can be handled by using an

embedded Markov chain as long as immediate and timed transitions do not interfere.

Second, the GSPN model has been extended to allow for other types of delay

distributions (i.e., non-exponential). Basically there are two ways to incorporate non-

exponential delays. First of all, it is possible to introduce transitions with arbitrary

244 W. M. P. van der Aalst, K. M. van Hee and H. A. Reijers

VVS, 2000

delay distributions as long as none of these transitions can be enabled concurrently.

The work of Ajmone Marsan and Chiola (1987) is an example of the DSPN model

which allows for timed transitions which have either ®xed (i.e., deterministic) or

exponential enabling times. The DSPN model can be analyzed as a semi-Markov

process as long as only one deterministic transition is enabled at the same time and

the enabling memory policy is assumed. Several variations and re®nements of the

DSPN have been proposed in literature (Balbo and Silva 1998 give pointers). Another

approach to incorporate non-exponential delays is to allow for delay distributions

which can be represented by a continuous time Markov chain. Examples of such

delays are the Erlang, the hyperexponential, and the phase-type distribution. The

possibility to incorporate such delays was already mentioned by Florin and Natkin

(1982) and Molloy (1981). The relation between the various memory policies and

phase-type distributed transitions is discussed by Balbo and Silva (1984) and Ajmone

Marsan et al. (1995). Using non-exponential delays which are expanded to multiple

phases in the corresponding Markov chain typically results in Markov chains which

are dif®cult to analyze. (In worst case, the size of the Markov chain grows

exponentially in the number of phases.)

Nearly all stochastic Petri net models described in literature use a continuous time

domain and are analyzed using Markov-chain analysis. For most applications, the

GSPN model and its extensions are a convenient and practical tool. However, these

models have two potential drawbacks. First of all, the size of the Markov chain

typically grows exponentially in the size of the corresponding Petri net. Second, the

use of non-exponential delays is restricted: Only by restricting the topology of the

Petri net or by expanding the Markov chain to encode the phases of a phase-type

distribution it is possible to allow for non-exponential delays. Net-driven decomposi-

tion techniques can be used to partially alleviate the state-explosion problem, as

shown by Balbo and Silva (1984). Unfortunately, it is almost impossible to handle

arbitrary delay distributions. Therefore, we propose an alternative analysis technique.

The technique uses a discrete time domain instead of a continuous time domain. An

arbitrary probability distribution can be used for specifying the ®ring delays. (Recall

that the stochastic Petri net used in this paper uses preselection and holding durations

for transition ®rings.) The constraints on the topology are quite acceptable: Typical

routing constructs such as sequencing, parallelism, choice, and iteration are sup-

ported. Since the method allows for arbitrary distributions, the algorithm is poten-

tially inef®cient, i.e., distributions over the discrete time domain are represented

explicitly. However, the Fast Fourier Transform is used to improve the ef®ciency of

several analysis routines. Moreover, the method allows for ef®cient construction rules

and decomposition techniques.

4 Discrete time stochastic nets

The analysis method presented in this section is applicable to a subclass of the so-

called discrete time nets. As a matter of fact, this subclass coincides with the

Discrete-time stochastic Petri nets 245

VVS, 2000

process-algebraic expressions that can be constituted with the merge (k), choice

(�), sequential (.), and star (�) operators in the process algebra ACP, as described

by Bergstra and Klop (1984). From a practical viewpoint, its is possible to model

the majority of typical business processes as found in organizations as banks,

insurance companies, and governmental agencies with this particular subclass.

The nets under consideration in this section are composed out of smaller blocks. In

the next paragraph, we will start to describe the composition method (synthesis).

Next, the notion of throughput is introduced, so that the computation of the

throughput time can be explained. An example is added to illustrate the approach.

Finally, possible extensions of the approach are discussed in this section.

4.1 Synthesis

The models on which we will apply the analysis technique are based on the

classical Petri net.

DEFINITION (PETRI NET) A Petri net is a triplet (P, T, F):

± P is a ®nite set of places,

± T is a ®nite set of transitions (P \ T � �),

± F � (P 3 T) [(T 3 P) is a set of arcs (¯ow relation).

A place is called an input place of a transition t iff there exists a directed arc from

p to t. Place p is called an output place of transition t iff there exists a directed arc

from t to p. We use dt to denote the set of input places for transition t. The

notations td, d p and pd have similar meanings, e.g. pd is the set of transitions

sharing p as an input place.

Using the notion of a classical Petri net, we can introduce the discrete time

stochastic nets. Our approach is applicable to a sub-class of these nets (cf. Van der

Aalst 1998).

DEFINITION (DISCRETE TIME STOCHASTIC NETS, DTS-NET). A Petri net PN � (P, T,

F) is a discrete time stochastic net, or dts-net for short, iff:

1. PN has two special places i and o; place i is a source place: di � Æ; place o is a

sink place: od � Æ;

2. if transition t� would be added to the set of transitions T and the arcs (o, t�) and

(t�, i) would be added to the ¯ow relation F of PN, for every two places

(transitions) x and y, there is a directed path leading from x to y.

The ®rst requirement in the de®nition of a dts-net re¯ects the beginning and

termination of the process. That event is to be handled in such a way that a desired

end situation is reached. The second requirement in the de®nition ensures that there

are no dangling transitions or places. In other words, transitions or places are not

permitted to be part of a Petri net model if they do not contribute to the dynamic

246 W. M. P. van der Aalst, K. M. van Hee and H. A. Reijers

VVS, 2000

behavior of the model. A dts-net speci®es the dynamic behavior of a single case in

isolation. Note that the net in Figure 1 is a dts-net.

The synthesis method to construct a dts-net is comparable with the top-down

synthesis technique as used by Valette (1979) and Van der Aalst (2000) in which a

transition is substituted by a block. We will use four blocks that can be used to

substitute transitions. These are: sequence, choice, parallelism, and iteration. The

blocks that express these constructs are depicted in Figure 2.

Arc labels occur in the (b) iteration and (d) choice blocks. They represent the

values of a Bernoulli-distributed random variable that is associated with these blocks.

An independent draw from its distribution function determines the route of the ¯ow

of tokens through the net. In other words, con¯icts in the blocks are resolved using

preselection semantics. Each new application of a block is accompanied by the

introduction of a new, independent random variable. Furthermore, two types of

transitions are distinguished. Immediate or timeless transitions are depicted in the

blocks as black bars; the rectangular blocks are transitions to which transitions delays

(i.e., holding times) are associated for the ®ring of a transition.

As the starting point of each Petri net model construction we will take a simple

start net. This net is depicted in Figure 3.

The net consists of one transition, a source place, a sink place, relations between

them, and an initial marking of the source place. It is easy to see that this Petri net is

a dts-net. We will refer to this speci®c Petri net as SN, for start net. Net synthesis,

then, is straightforward. The timed transitions in the start-net can be substituted by

one of the blocks, after which in a recursive fashion each of the resulting timed

transitions may again be replaced by a block. For a formal description of this

substitution, the reader is referred to Valette (1979). Note that the nets that can be

constructed in the described fashion coincide with the process algebraic expressions.

A net synthesis of the dts-net as introduced in Figure 1, is depicted in Figure 4. As

the start net is a dts-net, it is easy to verify that the resulting net is a dts-net too.

The delay or holding time of each transition ®ring is called the service time. As

Fig. 2. Sequence (a), iteration (b), parallelism (c), and choice (d).

Fig. 3. The start net SN.

Discrete-time stochastic Petri nets 247

VVS, 2000

stated before, in our approach a delay characteristic is associated with each timed

transition. All service times for one speci®c timed transition are independently

sampled on basis of this probability distribution. We will call this distribution the

service distribution. Its matching probability density is the service density.

DEFINITION (SERVICE TIME, SERVICE DENSITY, SERVICE DISTRIBUTION, UPPER

BOUND). The time which is taken by a service of transition t 2 T within a dts-

net W � (P, T, F) is called the service time. The service time is a discrete random

variable t. Its matching probability density f t : N ! R is called the service density

(N is the set of natural numbers and R is the set of non-negative reals):

f t(k) � P(t � k), for k 2 N:

Its matching probability distribution Ft : N ! R, is called the service distribution:

Ft(k) � P(t < k), for k 2 N:

The service time t is bounded: there is an upper bound ut 2 N which is the smallest

value such that for all j 2 N and j > ut holds that f t(j � 0.

Our assumption of the service time to be discrete is no real constraint: for practical

purposes it is always possible to ®nd an appropriate representation. As we will see,

we do need the boundedness of the service time to perform some of the computations

to come.

For each dts-net the throughput time is now de®ned as the time that elapses

between the arrival of a token at the source place and the corresponding arrival of a

token in the sink place. Similar to the service time notions, it is possible to

distinguish the throughput distribution and throughput density of a dts-net. Assuming

the service densities to be known of each of the transitions within a block, we will

show how the throughput density of an entire block can be computed. Each of the

blocks requires a speci®c algorithmic approach. For the computations to come, we

assume a source and a sink place to be added to each of the blocks, so that our notion

of throughput time is applicable to these blocks.

SEQUENCE. Consider the sequence block B in Figure 2 with two transitions t and u.

We want to compute throughput density f B, given f t and f u.

Fig. 4. Synthesis of a dts-net from the start net.

248 W. M. P. van der Aalst, K. M. van Hee and H. A. Reijers

VVS, 2000

Let y 2 N, f B(y) �
Xy

i�0

P(t � i ^ u � yÿ i)

�
Xy

i�0

P(t � i)P(u � yÿ i) � f t
 f u(y):

To constrain the computation effort drastically, the convolution f t
 f u can be

computed with the Fast Fourier Transform and its inverse. Therefore, we can

compute a vector representation of f t
 f u in è(n log n) time, with n the smallest

power of two that is at least twice as large as the maximum of the upper bounds of

tasks s and t.

ITERATION. Now consider the iteration block B as depicted in Figure 2. We want to

compute throughput density f B, given f s and f t.

Let y 2 N then f B(y) �
X1
n�0

(1ÿ á)ánP
Xn�1

j�1

t j �
Xn

j�1

u j � y

0@ 1A
�
X1
n�0

(1ÿ á)ánP
n�1

j�1
f t

n

j�1
f u(y)

� �
,

with notation
n
j�1

a j � a1
 a2 . . .
an:

Now consider ~B, the vector representation of f B. Its Discrete Fourier Transform is:

DFTl(~B) � DFTl

X1
n�0

(1ÿ á)án
n�1

j�1

~t

n
j�1
~u

� � !

�
X1
n�0

(1ÿ á)án DFT n�1
l (~t)DFT n

l (~u) � (1ÿ á)DFTl(~t)

1ÿ áDFTl(~t)DFTl(~u)

with yet unknown l:

We do not know yet an approximated, proper size l of the vectors we have to

`̀ feed'' the DFT. We cannot expect fB to have an exact upper bound. After all, t and

u can be executed in®nitely often if á is non-zero. We will show how an approxi-

mated, relevant length of ~B can be determined before actually computing ~B. We

would be happy to ®nd a value í such that for some very small å holds that

P(B > í) < å. Using Chebyshev's inequality ± for any random variable x for which

Ex2 exists holds that P(jxÿ Exj > c) < var x=c2 ± and the mean and variance of

the throughput density fB, it can be determined which probability part of the density

falls before or after a hypothetical border. As the service time for any transition t is

denoted by t we will denote its mean by Et and its variance by var t. The mean and

variance of B are:

Discrete-time stochastic Petri nets 249

VVS, 2000

EB � Et � áEu

1ÿ á
, var B � var t � á var u

1ÿ á
� á

Eu� Et

1ÿ á

� �2

,

so that we can derive using Chebyshev and our desired value å that:

í > EB�
�����������
var B

å

r
:

Concluding, given f t and f u, we can compute a vector representation of fB for the

iteration block by using the DFT:

DFTí(~B) � (1ÿ á)DFTí(~t)

1ÿ áDFTí(~t)DFTí(~u)
,

with í the smallest power of two such that í > EB� ���������������
var B=å

p
.

With the DFT we can compute a vector representation of fB in (í log í) time, with

í as speci®ed. To appreciate its ef®ciency we have to establish the computing time of

calculating fB in a straightforward manner. The complexity of this calculation

depends on the maximal number of successive times that transitions t and u can be

executed. We know that if both f t(0) and f u(0) are equal to zero, at most í executions

of these transitions are of interest. Any more executions of transitions t and u would

result in throughput times that we do not take into consideration. As a result, a

straightforward approach requires the convolution of í times the function f t and f u.

This is an operation requiring è(ní) time, with n the maximum of upper bounds of

transitions t and u. A comparison with the è(í log v) time required by our newly

found computation method illustrates the ef®ciency of the latter.

PARALLELISM. The block we will consider next is the parallel block. Consider the

parallel block B in Figure 2 with transitions t and u. Due to the structure of B,

transitions t and u can be executed in parallel. We want to compute throughput

density fB, given f t and f u.

Let y 2 N, f B(y) � P(t max u � y) � f t(y)
Xy

i�0

f u(i)� f u(y)
Xyÿ1

j�0

f t(j)

�
f t(y)Fu(y)� f u(y)Ft(yÿ 1), y . 0

f t(y) f u(y), y � 0

(
The computation of the distribution function Ft can be performed in ut steps, just

as the distribution function Fu can be done in uu steps. Therefore, the total

computation of fB can be done in è(t) time, with t equal to the maximum of ut and

uu.

CHOICE. The ®nal block we will consider in this section is the choice block.

Initiating choice block B in Figure 2 results in either the execution of transition t or

250 W. M. P. van der Aalst, K. M. van Hee and H. A. Reijers

VVS, 2000

transition u, with respective probabilities á and 1ÿ á. We would like to compute

throughput density fB, given f t and f u.

Let y 2 N, f B(y) � á f t(y)� (1ÿ á) f u(y)

From this expression follows that we can compute f B in è(n) time, with n equal to

the maximum of us and ut.

4.2 Computation

Now that for each block it is clear how the overall service time characteristics can be

computed, the computation of the throughput time of a complete synthesized dts-net is

rather straightforward. If the reverse direction is taken of the synthesis route, the

service time characteristic for each specialized transition can be computed, which ± in

its turn ± can be used to compute the service characteristic of a transition that has been

specialized earlier during the synthesis. Finally, the service time characteristic of the

transition in the start net can be computed. As a result, the throughput time

characteristic of the complete dts-net is known.

To illustrate the presented algorithms we have computed the throughput density of

the synthesized dts-net depicted in Figure 5. Each of the ®ve timed transitions in the

dts-net has been modeled to behave in accordance with a distinct, quirky service

density. These service densities, together with the dts-net under consideration, are

depicted in Figure 5. The service densities in this example are bounded by 64 time

units.

The probabilities á and â of the model have been set on 0.3 and 0.15 respectively.

For the computation of the throughput density of the iteration block an inaccuracy (å)
of 1 percent has been allowed. The resulting throughput density for the entire dts-net

is depicted in Figure 6.

Fig. 5. Dts-net with service time distributions.

Discrete-time stochastic Petri nets 251

VVS, 2000

4.3 Extensions of the approach

The approach that is presented in this section can be extended in at least two

directions. The ®rst and most straightforward direction is to add more blocks to the

current set of synthesis blocks. The subclass of dts-nets that can be synthesized thus

becomes larger, and the application domain grows. At the time of writing, the

authors are working on several complex blocks to be added.

We will sketch another interesting direction of extension informally. Intuitively, it

seems possible to compute the throughput time of each free-choice, acyclic and

sound dts-net. A dts-net is free-choice iff, for every two places p and q either

(pd \ qd) � Æ or pd � qd. A dts-net is acyclic if there is no directed path within

the net leading from either a place or a transition to itself. Lastly, a dts-net is sound if

it is ensured that a token in the source place will always lead to a token in the sink

place, while the rest of the net is empty. On basis of Petri net theory it can be proven

that, starting with one token in the source place, each place will contain at most one

token during execution. Moreover, the outcome of each con¯ict can be modeled as a

random variable that is independent of the execution order of the net. As a result, it is

possible to de®ne an arrival function for each single place in the net. That function

expresses the time that elapses between the marking of the source net and the arrival

of a token in the particular place. Of course, the arrival function of the sink place is

equal to the throughput distribution of the net. Note that this informally sketched

method is stochastically feasible on basis of formal reasoning about the structure and

behavior of the net.

If we mix both approaches ± the one presented in this paper and the one

described above ± we have a powerful toolbox to analyze hybrid nets. Suppose we

have a hierarchical dts-net, such that each transition in the net (recursively) can be a

larger Petri net in itself. Considered on the highest level, a dts-net may be free-

choice, acyclic and sound, but it cannot be constructed by our block synthesis. On a

Fig. 6. Resulting throughput time density.

252 W. M. P. van der Aalst, K. M. van Hee and H. A. Reijers

VVS, 2000

second level, the Petri nets that determine the behavior of the transitions may be

synthesized out of blocks including cyclic constructions such as the iteration block.

Yet a following, deeper level in the nets may be free-choice, sound and acyclic again

or constructed from blocks, etc. On each level of the net we can apply the feasible

approach, until the throughput behavior of the entire net is determined. This hybrid

approach is illustrated in Figure 7.

The method works, as the transitions on each level of consideration are `̀ black

boxes'' for the analysis approach that is applied. As a result of the mixed approach,

the analyzable class of dts-nets has grown signi®cantly. In a forthcoming paper, we

will describe this approach in detail.

Acknowledgement

The authors are grateful to Fred Steutel, Eindhoven University of Technology, for

his hint to use the Fast Fourier Transform.

References

VAN DER AALST W. M. P. (1992), Timed coloured Petri nets and their application to logistics, PhD
thesis, Eindhoven University of Technology, Eindhoven.

VAN DER AALST W. M. P. (1993), Interval timed coloured petri nets and their analysis, in: Ajmone
Marsan (ed.), Application and theory of Petri nets 1993, volume 691 of Lecture Notes in

Computer Science, Springer-Verlag, Berlin, 453±472.
VAN DER AALST W. M. P. (1994), Using interval timed coloured Petri nets to calculate performance

bounds, in: G. Haring and G. Kotsis (eds.), Proceedings of the 7th International Conference of

Modelling Techniques and Tools for Computer Performance Evaluation, volume 794 of Lecture

Notes in Computer Science, Springer-Verlag, Berlin, 425±444.

VAN DER AALST W. M. P. (1998), The application of Petri nets to work¯ow management, The

Journal of Circuits, Systems and Computers 8, 21±66.

VAN DER AALST W. M. P. (2000), Work¯ow veri®cation: ®nding control-¯ow errors using Petri-net-

Fig. 7. A hybrid approach.

Discrete-time stochastic Petri nets 253

VVS, 2000

based techniques, in: Business Process Management: Models, Techniques, and Empirical Stud-

ies, Springer-Verlag, Berlin.
VAN DER AALST W. M. P. and ODIJK M. A. (1995), Analysis of railway stations by means of interval

timed coloured Petri nets, Real-Time Systems 9, 241±263.
BALBO G. and SILVA M. (eds.) (1998) Performance models for discrete event systems with

synchronisations: formalisms and analysis techniques, Zaragoza, Kronos.
BERGSTRA J. A. and KLOP J. W. (1984), Process algebra for synchronous communication,

Information and Control 60, 109±137.
BERTHOMIEU B. and DIAZ M. (1991) Modelling and veri®cation of time dependent systems using

Time Petri Nets, IEEE Transactions on Software Engineering 17, 259±273.
BERTHOMIEU B. and M. MENASCHE (1983), An enumerative approach for analyzing time Petri nets,

in: R. E. A. Mason (ed.), Information Processing: proceedings of the IFIP congress 1983,
volume 9 of IFIP congress series, Elsevier Science Publishers, Amsterdam, 41±46.

CARLIER J. and P. CHRETIENNE (1988), Timed Petri net schedules, in: G. Rozenberg (ed.), Advances

in Petri nets 1988, volume 340 of Lecture Notes in Computer Science, Springer-Verlag, Berlin,

62±64.
CHIOLA G., C. DUTHEILLET, G. FRANCESCHINIS and S. HADDAD (1990), On well-formed coloured

nets and their symbolic reachability graph, in: Proceedings of the 11th International Conference

on Applications and Theory of Petri Nets, Paris, 307±411.

CHRETIENNE P. (1983), Les reÂseaux de petri temporiseÂs, PhD thesis, Univ. Paris VI, Paris, 1983.
DUTHEILLET C. and S. HADDAD (1989), Regular stochastic Petri nets, in: Proceedings of the 10th

International Conference on Applications and Theory of Petri Nets, Bonn.
ELLIS C. A. and G. J. NUTT (1993), Modelling and enactment of work¯ow systems, in: Ajmone

Marsan (ed.) Application and theory of Petri nets 1993, volume 691 of Lecture Notes in

Computer Science, Springer-Verlag, Berlin, 1±16.

FLORIN G. and S. NATKIN (1982), Evaluation based upon stochastic Petri nets of the maximum

throughput of a full duplex protocol, in: C. Girault and W. Reisig (eds.), Application and theory

of Petri nets: selected papers from the ®rst and the second European workshop, volume 52 of

Informatik Fachberichte, Berlin, Springer-Verlag, Berlin, 280±288.
GHEZZI C., D. MANDRIOLI, S. MORASCA and M. PEZZE (1991), A uni®ed high-level Petri

net formalism for time-critical systems, IEEE Transactions on Software Engineering, 17,
160±172.

VAN HEE K. M. (1994), Information system engineering: a formal approach, Cambridge University
Press.

VAN HEE K. M., L. J. SOMERS and M. VOORHOEVE (1989), Executable speci®cations for distributed
information systems, in: E. D. Falkenberg and P. Lindgreen, Proceedings of the IFIP TC 8/WG

8.1 Working Conference on Information System Concepts: An in-depth analysis, Namur,
Belgium, Elsevier Science Publishers, Amsterdam, 139±156.

HOLLIDAY M. A. and M. K. VERNON (1987), A Generalised timed Petri net model for performance
analysis, IEEE Transactions on Software Engineering 13, 1279±1310.

JABLONSKI S. and C. BUSSLER (1996), Work¯ow management: modeling concepts, architecture,

and implementation, International Thomson Computer Press, London, UK.

JENSEN K. (1996), Coloured Petri nets. Basic concepts, analysis methods and practical use, EATCS
monographs on Theoretical Computer Science, Springer-Verlag, Berlin.

LAWRENCE P., (ed.) (1997), Work¯ow handbook 1997, work¯ow management coalition, John Wiley
and Sons, New York.

LIN C. and D. C. MARINESCU (1987), On stochastic high-Level Petri nets, in: Proceedings of the

International Workshop on Petri Nets and Performance Models, IEEE Computer Society Press,

Madison, 34±43.
AJMONE MARSAN M. (1990), Stochastic Petri nets: an elementary introduction, in: G. Rozenberg,

(ed.), Advances in Petri nets 1989, volume 424 of Lecture Notes in Computer Science, Springer-
Verlag, Berlin, 1-29.

AJMONE MARSAN M., G. BALBO, A. BOBBIO, G. CHIOLA, G. CONTE and A. CUMANI. (1985), On

254 W. M. P. van der Aalst, K. M. van Hee and H. A. Reijers

VVS, 2000

Petri nets with stochastic timing, in: Proceedings of the International Workshop on Timed Petri

Nets, Torino, IEEE Computer Society Press, 80±87.
AJMONE MARSAN M., G. BALBO and G. CONTE (1984), A class of generalised stochastic Petri nets

for the performance evaluation of multiprocessor systems, ACM Transactions on Computer

Systems 2, 93±122.

AJMONE MARSAN M., G. BALBO and G. CONTE (1986), Performance models of multiprocessor

systems, The MIT Press, Cambridge.

AJMONE MARSAN M., G. BALBO and G. CONTE et al (1993), Modelling with generalized stochastic

Petri nets, Wiley series in parallel computing. Wiley, New York.

AJMONE MARSAN M. and G. CHIOLA (1987), On Petri nets with deterministic and exponentially
distributed ®ring times, in: G. Rozenberg (ed.), Advances in Petri nets 1987, volume 266 of

Lecture Notes in Computer Science, Springer-Verlag, Berlin, 132±145.
MERLIN P. (1974), A Study of the recoverability of computer systems, PhD thesis, University of

California, Irvine, California, 1974.
MERLIN P. and D. J. FABER (1976), Recoverability of communication protocols, IEEE Transactions

on Communications 24, 1036±1043.
MOLLOY M. K. (1981), On the integration of delay and throughput measures in distributed

processing models, PhD thesis, University of California, Los Angeles.
MORASCA S., M. PEZZEÁ and M. TRUBIAN (1991), Timed high-level nets, The Journal of Real-Time

Systems 3, 165±189.
MURATA T. (1989), Petri nets: properties, analysis and applications, Proceedings of the IEEE, 77,

541±580.
PETRI C. A. (1962), Kommunikation mit Automaten, PhD thesis, Institut fuÈr instrumentelle

Mathematik, Bonn.
RAMAMOORTHY C. V. and G. S. HO (1980), Performance evaluation of asynchronous concurrent

systems using Petri nets, IEEE Transactions on Software Engineering 6, 440±449.

RAMCHANDANI C. (1973), Performance evaluation of asynchronous concurrent systems by timed

Petri nets. PhD thesis, Massachusetts Institute of Technology, Cambridge.

RAZOUK R. R. and PHELPS C. V. (1984), Performance analysis using timed Petri nets, in:
Proceedings of the 1984 International Conference on Parallel Processing, IEEE Computer

Society Press, Ohio, 126±128.
REISIG W. and G. ROZENBERG (eds.) (1998), Lectures on Petri nets I: basic models, volume 1491

of Lecture Notes in Computer Science. Springer-Verlag, Berlin.
REISIG W. and G. ROZENBERG, (eds.) (1998), Lectures on Petri nets II: applications, volume 1492

of Lecture Notes in Computer Science, Springer-Verlag, Berlin.
SIFAKIS J. (1977), Use of Petri nets for performance evaluation, in: Beilner and E. Gelenbe,

Proceedings of the Third International Symposium IFIP W.G. 7.3., Measuring, modelling and

evaluating computer systems (Bonn-Bad Godesberg, 1977), Elsevier Science Publishers, Am-

sterdam.
SIFAKIS J. (1980), Performance evaluation of systems using nets, in: W. Brauer (ed.) Net theory and

applications: Proceedings of the advanced course on general net theory, processes and systems

(Hamburg, 1979), volume 84 of Lecture Notes in Computer Science, Springer-Verlag, Berlin,

307±319.
VALETTE R. (1979), Analysis of Petri nets by stepwise re®nements. Journal of Computer and

System Sciences 18, 35±46.
WONG C. Y., T. S. DILLON and K. E. FORWARD (1983), timed places Petri nets with stochastic

representation of place time, in: Proceedings of the International Workshop on Timed Petri Nets,
Torino, IEEE Computer Society Press (96±103).

ZENIE A. (1985), Coloured stochastic Petri nets, in: Proceedings of the International Workshop on

Timed Petri Nets, Torino, IEEE Computer Society Press (262±271).

ZUBEREK W. M. (1980), Timed Petri nets and preliminary performance evaluation, in: Proceedings

of the 7th annual Symposium on Computer Architecture, volume 8(3) of Quarterly Publication of

ACM Special Interest Group on Computer Architecture, 62±82.

Discrete-time stochastic Petri nets 255

VVS, 2000

