
Linking Data and Process Perspectives for Conformance
Analysis

Mahdi Alizadeh∗, Xixi Lu, Dirk Fahland, Nicola Zannone, Wil M. P. van der Aalst

Eindhoven University of Technology, Eindhoven, Netherlands

Abstract

The detection of data breaches has become a major challenge for most organizations.

The problem lies in that fact that organizations often lack proper mechanisms to control

and monitor users’ activities and their data usage. Although several auditing approaches

have been proposed to assess the compliance of actual executed behavior, existing

approaches focus on either checking data accesses against security policies (data

perspective) or checking user activities against the activities needed to conduct business

processes (process perspective). Analyzing user behavior from these perspectives

independently may not be sufficient to expose security incidents. In particular, security

incidents may remain undetected or diagnosed incorrectly. This paper proposes a novel

auditing approach that reconciles the data and process perspectives, thus enabling the

identification of a large range of deviations. In particular, we analyze and classify

deviations with respect to the intended purpose of data and the context in which data

are used, and provide a novel algorithm to identify non-conforming user behavior. The

approach has been implemented in the open source framework ProM and was evaluated

through both controlled experiments and a case study using real-life event data. The

∗Corresponding author
Email addresses: m.alizadeh@tue.nl (Mahdi Alizadeh), x.lu@tue.nl (Xixi Lu),

d.fahland@tue.nl (Dirk Fahland), n.zannone@tue.nl (Nicola Zannone),
w.m.p.v.d.aalst@tue.nl (Wil M. P. van der Aalst)

Preprint submitted to Elsevier September 6, 2017

results show that the approach is able to accurately identify deviations in both data usage

and control-flow, while providing the purpose and context of the identified deviations.

1. Introduction

Large amounts of sensitive data (e.g., customer personal data, corporate secrets) are

often collected and stored by organizations to carry out their businesses. Data are a

valuable asset for organizations and, thus, need to be protected from unauthorized access

and illegitimate usage. Organizations often use process models and security policies

to describe the normative behavior of their IT systems and legitimate usages of data.

However, in practice, organizations may allow users to deviate from the prescribed

behavior in order to efficiently deal with unanticipated circumstances. For example, IT

systems of hospitals often employ the “break-the-glass” functionality to deal with

emergency situations. However, such a functionality can be abused, increasing the risks

of harmful data breaches. Moreover, a user may exploit its credentials to access sensitive

information for personal or financial gain.

Data breaches can have severe financial and legal consequences as well as decrease

a company’s competitive advantages over other companies. For instance, according to a

study conducted by the Ponemon Institute in 350 companies in 2015, the average cost of

data breaches is $3.79 million per incident [42]. Many legal regulations and best practices

such as HIPAA in healthcare, Basel III in finance, and COBIT for IT governance have

been proposed to mitigate the risks of security incidents. These regulations require orga-

nizations to implement internal controls and constantly monitor their business processes

to detect security incidents and respond to them. Moreover, organizations need to learn

from earlier incidents to improve security policies and prevent data breaches in the future.

The continuous monitoring of processes has enabled the collection of event data

that show, for example, which activities users performed, when users accessed certain

2

data and which operations they executed on the data. Alongside process monitoring,

several auditing solutions have been proposed to assist organizations in the analysis

of user behavior (recorded in event logs) with respect to security policies and regulations.

These solutions assess compliance of user behavior either (i) with respect to the access

and usage of sensitive data (data perspective) or (ii) with respect to the activities

performed by users (process perspective). Auditing techniques that operate at the data

level [18, 24, 27, 45] analyze whether a user had the right to perform certain operations

on the data. However, data operations are typically verified individually. This does

not allow for the verification of data protection policies, such as purpose control, that

require analyzing the observed behavior as a whole [39]. On the other hand, techniques

that operate at the process level [11, 12, 19, 39, 46] usually analyze whether a user has

performed the right activity as prescribed by the organization’s processes. In particular,

these techniques focus on the process control-flow and they do not analyze how data

are used within the execution of the process.

Analyzing the observed behavior with respect to the data perspective or the process

perspective alone has therefore two main drawbacks: (i) deviations can remain undetected

and (ii) diagnostics may not provide an understanding of the deviations that occurred,

thus making it difficult for a security analyst to take the measures necessary to respond

to security infringements. These issues are even more critical when considering insider

threats (i.e., security threats originating from within the organization being attacked or

targeted). In fact, without knowing the context in which data are accessed and used, it is

difficult, if not impossible, to discriminate between legitimate and illegitimate behaviors.

In this work, we propose an auditing approach that reconciles the data and process

perspectives, thus enabling the identification of deviations that otherwise would remain

undetected, and providing accurate diagnostics of those deviations. In particular, the

usage of data is analyzed within both the context (defined with respect to the process

control-flow) and the purpose (defined in terms of process activities) for which data were

3

Process
model

 CRUD
matri

x

Compute
inter-level
alignments

System log

Alignments Inter-level
alignments

Observed behaviorModeled behavior

Process
perspective

Data
perspective

a4a2 a5a1

a3

e3e2e1 e5e4

e3e2e1 e5e4

D
c

D
r

M
r

T
c

T
u

a4

a3

0a1 a2 a5

D
c

D
r

T
c

T
u Taxonomy

Diagnose

e4

a3

e3e2e1 e5

D
c

T
cD

r
T

c

M
r T

u

a4a2a1 a5

Compute
control-flow
alignments

Process log

1

3

2

4

5
6

7

Figure 1: An overview of the proposed approach, showing how the data and process perspectives are

reconciled.

used. Fig. 1 shows an overview of our approach together with its inputs and outputs. As

shown in the figure, for the analysis of the process perspective, we rely on the notion

of control-flow alignments (º) and, in particular, partially ordered alignments [33],

which provide a robust way to pinpoint the causes of non-conformity between a process

execution recorded in a process log (·) and a process model (¶). The diagnostics

provided by control-flow alignments show the validity of the context in which operations

on data are executed. Moreover, by linking data operations, recorded in a system log

(¹), to control-flow alignments (º), we can check whether the purpose (i.e., the activity)

of a data operation is valid according to the intended usage of data (modeled using a

CRUD matrix (¸) [23]).

By leveraging this reconciled view of the two perspectives, we introduce the notion

of composite moves, representing pairwise matching between activities recorded in a

log and activities in a process model along with the required operations on the data, and

define a taxonomy of the different sorts of composite moves (¼). This taxonomy provides

the basis for an analysis of the causes of non-conformity. Moreover, we propose an

4

algorithm to construct inter-level alignments (»), i.e. alignments consisting of composite

moves, by linking the operations on data recorded in a system log to activities in the

control-flow alignment. Such inter-level alignments enable the analysis of operations

on the data with respect to the context in which those operations are executed. This way

we can provide more accurate diagnostic information about non-conformity taking into

account the purpose of data operations. To the best of our knowledge, this is the first work

that proposes an auditing technique reconciling both the data and process perspectives.

It is worth noting that in this work we assume that the observed behavior is

recorded at both the data and process level. We argue that this assumption is realistic as

demonstrated by BPM platforms like FLOWer (now called Lexmark Case Management)

[48] and Activiti (http://activiti.org/), which provide such functionality.

Also in many other information systems both database updates and activity executions

are recorded (see the change logs in ERP systems and the redo logs in database systems).

Our technique has been implemented as a plug-in of the open source process-mining

framework ProM and evaluated using both synthetic and real-life datasets.

The remainder of the paper is organized as follows. The next section presents

the basic concepts used to represent the process and data perspectives and introduces

background on alignments. Section 3 investigates data breaches and identifies types

of insider threats relating to the data and process perspectives. Section 4 presents a

taxonomy of composite moves and discuss how the identified threats can be captured

in terms of composite moves. Section 5 formally defines inter-level alignments and

presents our approach to construct such alignments. Experimental results are presented

in Section 6. Finally, Section 7 discusses related work, and Section 8 concludes the

paper and provides directions for future work.

5

2. Preliminaries

In this section, we introduce the main concepts and notation used to model the

process and data perspectives of an IT system. An overview of these perspectives and

their interconnections is shown in Fig. 1. Moreover, we introduce preliminaries on

partially ordered alignments [33], which is the basis of the proposed approach.

2.1. Process Perspective

The normative behavior of a system is often described using process models.

Intuitively, a process model describes the activities to be performed to reach a certain

business goal. In this paper, we represent process models using Petri nets.

Definition 1 (Process model). A process model N = (P, T, F, τi, τf) is a marked

Petri net where P is a set of places; T is a set of transitions; F ⊆ (P × T) ∪ (T × P)

is the flow relation connecting places and transitions; τi is the initial marking; and τf is

the final marking.

The state of a process model is represented by a marking, i.e. a multiset of tokens on

the places of the net. A process model has an initial marking τi and a final marking τf .

A transition is enabled if each of its input places contains at least a token. When an

enabled transition is fired (i.e., executed), a token is taken from each of its input places

and a token is added to each of its output places. The set of transitions represents the set

of activities in the business process.

Let E denote the universe of all identifiable process-events. A process-event can be

endowed with attributes that provide additional information about the event. Hereafter,

U denotes the universe of attribute names. Given an attribute attr ∈ U , we use partial

function πattr : E 9 Domattr to represent the value of attr for a process-event from

its domain Domattr. In this work, we assume that U includes at least the following

attributes for a process-event ε ∈ E : case, which denotes the process instance in which

6

ε was executed; act, which is used to represent the activity (transition) associated to ε;

and start and complete, which denote the start and completion time of ε respectively.

We assume that πstart(ε) ≤ πcomplete(ε).1

A process model formally describes all possible runs (called process-runs) as

intended by the model, whereas actual process executions (called process-traces) are

recorded in process logs. Hereafter, we refer to a process-event in a process-run as

run-event and to a process-event in a process-trace as trace-event. To distinguish these

events, by convention, we use a to represent run-events and e to represent trace-events.

Definition 2 (Process run). A process-run of a process model N = (P, T, F, τi, τf)

is a partial order2 ϕ = (Aϕ, <ϕ) of run-events Aϕ ⊆ E such that, for each event

a ∈ Aϕ, πact(a) ∈ T and transition πact(a) is enabled after firing all its predecessors

{a′ ∈ Aϕ | a′ <ϕ a}, starting in τi. After firing all a ∈ Aϕ following <ϕ, the final

marking τf should be reached. In addition, for all a, a′ ∈ Aϕ, πcase(a) = πcase(a
′).

Given a process model N , we use Σ(N) to denote the (possibly infinite) set of all

possible process-runs of N .3

Fig. 2 shows a process model describing a healthcare process of a hospital for

handling patients. In this net, τi = [p0] and τf = [p11] are the initial and final marking,

respectively. The process starts with the identification of a patient (ip). Then, the patient

is admitted to the hospital (ad). Next, the patient is visited by its treating doctor (vi).

The doctor can request basic lab tests (bt) and advanced tests such as MRI scans (at),

1In a classical setting, events are assumed to be atomic. In this paper, however, a process event

is used to represent an activity instance, which encompasses both the start and complete events of the

activity performed.
2A partial order is a binary relation ≺ over a set S which is reflexive, antisymmetric and transitive.
3In this paper, we are only interested in non-isomorphic runs, i.e. the actual case ids are irrelevant and

just used to group events.

7

rr Synchronous
Process move

r Process move
on model

r Process move
on log

evbt trad di

at

(݁ଵ, ܽଶ)
(݁ସ, ܽହ)

(≫, ܽ଻)

(≫, ܽ଺)

(଼݁,≫)(݁଻, ܽଽ)
(݁ଽ, ܽଵ଴)

ctbtad
in

ditr
ip

(≫, ܽଵ)
(݁ହ,≫)

vi
vi

la
la

vi
vi

(݁ଶ, ܽଷ)
(݁ଷ, ܽସ)

(݁଺, ܽ8)

in

ev
at

ad

bt

co

Admission

Basic
lab test

Consult
request

Inter-colleague
consultation

Evaluate

Advanced
tests

P0 Place

Transition

tr
Treatment
prescription

di
Discharge
and billing

p1

p9

p5

p8

p10

p7 p6

p11ip
Identify
patient

p2 vi
Visit

p3

la
Lab

appointment

p4

Figure 2: An example of healthcare treatment process.

in

ev
at

ad
bt

co

Admission

Basic
lab test

Consult
request

Inter-colleague
consultation

Evaluate

Advanced
tests

P0 Place

Transition tr

Treatment
prescription

di

Discharge
and billing

p1

p7

p10

p8

p9

p11

p5 p6

p12

ip
Identify
patient

p2 vi
Visit

p3 la
Lab

appointment

p4

evbt trad di
ܽଶ ܽହ ܽ଻ ܽଽ ܽଵ଴

ctviad in
݁ଶ ݁ହ ݁଻ ଼݁݁ଵ

di
r
݁௜

Trace-event ei with
activity “r”

Ordering between
trace-events

atܽ଺

tr
݁ଽ

rܽ
௜

Run-event ai labeled
with “r” in run

Ordering between
run-events

ipܽ
ଵ

vi
ܽଷ

laܽ
ସ

vi
଼ܽ

la
݁ଷ

bt
݁ସ ݁଺

vi

ctbtad in di
݁ସ ݁ହ ଼݁݁ଵ ݁ଽ

D
ଵݏ

c
D
ଶݏ

r
M
ଷݏ

r
T
ହݏ

c
T
଺ݏ

u
M
଻ݏ

r
M
ଵ଴ݏ

r
M
ଵସݏ

u
M
ଵଵݏ

r

System-event si accessed data D using crudD
௜ݏ

crud
r
݁௜

Trace-event ei with activity “r”
time

V
ଵଷݏ

c

tr
݁଻

vi
݁ଶ

M
ସݏ

r

la
݁ଷ

vi
݁଺

T
଼ݏ

r
M
ଽݏ

r
D
ଵଶݏ

r

(a) Process-run

in

ev
at

ad
bt

co

Admission

Basic
lab test

Consult
request

Inter-colleague
consultation

Evaluate

Advanced
tests

P0 Place

Transition tr

Treatment
prescription

di

Discharge
and billing

p1

p7

p10

p8

p9

p11

p5 p6

p12

ip
Identify
patient

p2 vi
Visit

p3 la
Lab

appointment

p4

evbt trad di
ܽଶ ܽହ ܽ଻ ܽଽ ܽଵ଴

ctviad in
݁ଶ ݁ହ ݁଻ ଼݁݁ଵ

di
r
݁௜

Trace-event ei with
activity “r”

Ordering between
trace-events

atܽ଺

tr
݁ଽ

rܽ
௜

Run-event ai labeled
with “r” in run

Ordering between
run-events

ipܽ
ଵ

vi
ܽଷ

laܽ
ସ

vi
଼ܽ

la
݁ଷ

bt
݁ସ ݁଺

vi

ctbtad in di
݁ସ ݁ହ ଼݁݁ଵ ݁ଽ

D
ଵݏ

c
D
ଶݏ

r
M
ଷݏ

r
T
ହݏ

c
T
଺ݏ

u
M
଻ݏ

r
M
ଵ଴ݏ

r
M
ଵସݏ

u
M
ଵଵݏ

r

System-event si accessed data D using crudD
௜ݏ

crud
r
݁௜

Trace-event ei with activity “r”
time

V
ଵଷݏ

c

tr
݁଻

vi
݁ଶ

M
ସݏ

r

la
݁ଷ

vi
݁଺

T
଼ݏ

r
M
ଽݏ

r
D
ଵଶݏ

r

(b) Process-trace

Figure 3: An example of process-run and process-trace.

for which the patient has to make an appointment (la). The results of the lab tests are

evaluated by a specialist (ev). Based on this evaluation, the patient’s treating doctor may

request inter-colleague consultation (co followed by in), request more lab tests, or

prescribe a treatment plan (tr). Finally, the patient is discharged, and a bill is created

and sent to the patient’s insurance company (di).

Fig. 3a shows a process-run ϕ = (Aϕ, <ϕ) of the model, in which Aϕ =

{a1, ..., a10} and the <ϕ relation is defined as follows: a1 <ϕ a2, a2 <ϕ a3,

a3 <ϕ a4, a4 <ϕ a5, a4 <ϕ a6, a5 <ϕ a7, a6 <ϕ a7, a7 <ϕ a8, a8 <ϕ a9 and

a9 <ϕ a10 (and their transitive closure). For example, transition ev = πact(a7) is

enabled after firing πact(a5) = bt and πact(a6) = at, which in turn are enabled after

firing πact(a4) = la. Note that in a process-run all choices have been resolved. Such a

process run is also known as a partially ordered run of a marked Petri net [33].

8

The actual recording of a process execution is called a process-trace.

Definition 3 (Process trace, log). A process-trace σ = (Eσ, <σ) is a partial order

of trace-events Eσ ⊆ E related to a single process execution, i.e. for all e, e′ ∈

Eσ, πcase(e) = πcase(e
′), and if e <σ e′, then πcomplete(e) ≤ πstart(e′). A process

log Lp is a set of process-traces.

We assume any two process-traces have disjoint sets of trace-events. Fig. 3b shows

a process-trace σ = (Eσ, <σ), in which Eσ = {e1, ..., e9} and the <σ relation is

defined as follows: e1 <σ e2, e2 <σ e3, e3 <σ e4, e4 <σ e5, e5 <σ e6, e6 <σ e7,

e7 <σ e8 and e8 <σ e9 (and their transitive closure). Note that a process-trace can

deviate from the process model. We will discuss this in more detail in Section 2.3.

2.2. Data Perspective

Data are essential for the execution of business activities. In particular, the execution

of an activity may require performing certain operations on data objects. In this work,

we assume that operations on data objects are always executed in the context of process

activities. This relation is often represented using a CRUD matrix [23]. Intuitively, a

CRUD matrix relates the process logic to the data layer by indicating which operations

on a given data object must or may be executed in order to complete a given activity.

Definition 4 (CRUD). Let T be the set of transitions in a Petri net, Obj a set of data

objects, Op a set of operations on data objects and Mode = {mandatory , optional}

the set of modes. A CRUD matrix Θ consists of a set of CRUD-entries; each entry

q ∈ Θ is a tuple (t, obj, op,mode) ∈ T ×Obj ×Op×Mode.

It is worth noting that certain operations may be required to perform a certain activity

while others may be optional. We capture this using the mode. In particular, the mode

for a CRUD-entry indicates whether a given operation on a data object is “mandatory”

9

Data object

Activity Demographics Lab Test Medical Treatment Invoice Identity

(D) Results (T) History (M) Plan (P) (V) (I)

Identify patient(ip) – – – – – R

Admission (ad) crud – – – – –

Visit (vi) – r r – – –

Lab appointment (la) – – – – – –

Basic lab test (bt) – Cru – – – –

Advanced tests (at) – Cru – – – –

Evaluate (ev) – ru r – – –

Consult request (co) – – – – – –

Inter-colleague consultation (in) – r r – – –

Treatment prescription (tr) – r ru Cru – –

Discharge and billing (di) – – – – Cru –

Clinical trial (ct) – – – – – –

Table 1: CRUD matrix showing the interaction between the activities of the net in Fig. 2 and data objects

with respect to operations create (c), read (r), update (u) and delete (d). Capital letters indicate mandatory

operations and small letters optional operations.

or “optional” to complete a certain activity. Hereafter, we extend the π notation to

CRUD matrices to retrieve the elements of a CRUD-entry, i.e. given a CRUD-entry q =

(t, obj, op,mode), πact(q) = t, πobj(q) = obj, πop(q) = op and πmode(q) = mode.

Table. 1 shows an example of CRUD matrix for the process model in Fig. 2. Four

basic operation types are considered in this matrix, i.e. create (c), read (r), update (u)

and delete (d). Upper-case and lower-case letters indicate whether data operations

are mandatory and optional respectively (i.e., the mode). For instance, when activity

discharge and billing (di) is performed, an invoice must be created for the patient. This

information can be (optionally) read and/or updated during the execution of di.

Operations on data objects are typically recorded by the IT system. Hereafter, we

refer to a recorded operation as system-event and use S to denote the set of all possible

10

evbt trad di
ܽଶ ܽହ ܽ଻ ܽଽ ܽଵ଴

ctviad in
݁ଶ ݁ହ ݁଻ ଼݁݁ଵ

di
r
݁௜

Trace-event ei with
activity “r”

Ordering between
trace-events

atܽ଺

tr
݁ଽ

rܽ
௜

Run-event ai labeled
with “r” in run

Ordering between
run-events

ipܽ
ଵ

vi
ܽଷ

laܽ
ସ

vi
଼ܽ

la
݁ଷ

bt
݁ସ ݁଺

vi

ctbtad in di
݁ସ ݁ହ ଼݁݁ଵ ݁ଽ

D
ଵݏ

c
D
ଶݏ

r
M
ଷݏ

r
T
ହݏ

c
T
଺ݏ

u
M
଻ݏ

r
M
ଵ଴ݏ

r
M
ଵସݏ

u
M
ଵଵݏ

r

System-event si accessed data D using crudD
௜ݏ

crud
r
݁௜

Trace-event ei with activity “r”
time

tr
݁଻

vi
݁ଶ

M
ସݏ

r

la
݁ଷ

vi
݁଺

T
଼ݏ

r
M
ଽݏ

r
T
ଵଶݏ

r

in

ev
at

ad

bt

co

Admission

Basic
lab test

Consult
request

Inter-colleague
consultation

Evaluate

Advanced
tests

P0 Place

Transition

tr
Treatment
prescription

di
Discharge
and billing

p1

p9

p5

p8

p10

p7 p6

p11ip
Identify
patient

p2 vi
Visit

p3

la
Lab

appointment

p4

rr Synchronous
Process move

r Process move
on model

r Process move
on log

evbt trad di

at

(݁ଵ, ܽଶ)
(݁ସ, ܽହ)

(≫, ܽ଻)

(≫, ܽ଺)

(଼݁,≫)(݁଻, ܽଽ)
(݁ଽ, ܽଵ଴)

ctbtad
in

ditr
ip

(≫, ܽଵ)
(݁ହ,≫)

vi
vi

la
la

vi
vi

(݁ଶ, ܽଷ)
(݁ଷ, ܽସ)

(݁଺, ܽ8)

T
ଵଷݏ

u

Figure 4: Example of the process-trace and system-trace recorded for a patient that undergoes the healthcare

process in Fig. 2; the events of the two traces are ordered based on its time of execution.

system-events. System-events can be endowed with a set of attributes from the attribute

universe U . In particular, for a system-event s ∈ S , we consider the following attributes:

pur , which is used to relate s to a purpose (in our case, to a process activity); case, which

indicates the process instance in which s was executed; obj, which denotes the data

object on which the operation was performed; op, which denotes the operation that was

executed; and time , which indicates the time s was executed. Similarly to process-events,

we use notation πattr(s) to represent the value of attribute attr for a system-event s.

Definition 5 (System trace, log). A system-trace β = 〈s1, . . . , sn〉 ∈ S∗ is a se-

quence of system-events related to the same case, i.e., for all s, s′ ∈ Sβ , πcase(s) =

πcase(s
′) where Sβ = {s1, . . . , sn} ⊆ S denotes the set of system-events occurring in

β. A system event log Ls is a set of system-traces.

Fig. 4 exemplifies a process-trace and the corresponding system-trace. The se-

quence of diamonds, i.e. 〈s1, s2, · · · , s14〉, shows a system-trace consisting of fourteen

system-events. System-event s1 records that an instance of demographic information

(D) has been created, i.e. πop(s1) = c and πobj(s1) = D; s2 records that D has been

read, i.e. πop(s2) = r and πobj(s2) = D; s3 records that the corresponding medical

history (M) has been read, i.e. πop(s3) = r and πobj(s3) = M . These operations

were executed while trace-event e1 was performed, e.g. πpur (s3) = πact(e1) = ad .

Similar information is visualized for other system-events and trace-events. It is worth

11

noting that in the system-trace medical history (M) has been read and updated (s7

and s14, respectively), but no activity at the process level was executed concurrently.

2.3. Alignment-based Conformance Checking

Control-flow alignments provide a robust approach to conformance checking. In

this work, we adopt partially ordered alignments [33]. We choose to use partially

ordered alignments rather than sequential alignments [11, 15] because partially ordered

alignments make it possible to explicitly represent concurrency. This allows us to choose

the context for system-events more accurately.

Conceptually, a control-flow alignment relates the events in a process-trace

(Eσ, <σ) to the events in a process-run (Aϕ, <ϕ), thus pinpointing the deviations

causing nonconformity. If a process-trace perfectly fits a Petri net, each “move” in the

process-trace, i.e. an event observed in the process-trace, can be mimicked by a “move”

in the model, i.e. an instance of a transition fired in the net. In cases where deviations

occur, some moves in the process-trace cannot be mimicked by the net or vice versa.

Hereafter, we explicitly denote “no move” by� and use X� = X ∪ {�} to include

the no move in set X . Control-flow alignments consist of three types of process moves

(hereafter called legal moves):

• (e, a) is a synchronous move, if a ∈ Aϕ and e ∈ Eσ;

• (e,�) is a move on log, and e ∈ Eσ;

• (�, a) is a move on model, and a ∈ Aϕ.

Definition 6 (Control-flow alignment). Let σ = (Eσ, <σ) be a process-trace

and ϕ = (Aϕ, <ϕ) a process-run of a process model N . A control-flow alignment

γ = (Mγ , <γ) of σ and ϕ is a partial order, in which Mγ ⊆ E�σ ×A�ϕ \{(�,�)}

is a set of process moves, such that

(1) For all trace-events e ∈ Eσ, there is one and only one (e′, x) ∈Mγ such that

e = e′.

12

rr Synchronous
Process move

r Process move
on model

r Process move
on log

evbt trad di

at

(݁ଵ, ܽଶ)
(݁ସ, ܽହ)

(≫, ܽ଻)

(≫, ܽ଺)

(଼݁,≫)(݁଻, ܽଽ)
(݁ଽ, ܽଵ଴)

ctbtad
in

ditr
ip

(≫, ܽଵ)
(݁ହ,≫)

vi
vi

la
la

vi
vi

(݁ଶ, ܽଷ)
(݁ଷ, ܽସ)

(݁଺, ܽ8)

Figure 5: An example of control-flow alignment between the process-trace in Fig. 3b and the process-run in

Fig. 3a.

(2) For all run-events a ∈ Aϕ, there is one and only one (y, a′) ∈Mγ such that

a = a′.

(3) The ordering <γ respects both <σ and <ϕ, i.e., for each pair of moves

(e, a), (e′, a′) ∈ Mγ , ((e, a) <γ (e′, a′)) ⇔ (((e <σ e
′) ∨ (a <ϕ a

′)) and

(e <σ e
′)⇒ (a′ 6<ϕ a)).

(4) For each synchronous move (e, a) ∈Mγ , πact(e) = πact(a).

A control-flow alignment between a process-trace and a process model is a partial

order of legal moves such that, ignoring all occurrences of�, the projection on the

first element yields the process-run and the projection on the second element yields

the process-trace.

Fig. 5 shows an example of a control-flow alignment between the process-trace in

Fig. 3b and the process-run in Fig. 3a. The alignment comprises: seven synchronous

moves including (e1, a2) and (e2, a3); two model moves, namely (�, a6) and (�, a7);

and two log moves, namely (e5,�) and (e8,�). In this paper, we assume that control-

flow alignments correctly capture the deviations from the specifications and refer

interested readers to [10, 14, 15] for heuristics to compute reliable alignments.

3. Threat Model

In the security research community and industry, there is consensus that a large

percentage of data breaches that occur in organizations is caused by insider threats.

13

An insider is typically defined as an individual who has some privileged access to

an organization’s IT system [22, 30, 40]. Accordingly, an insider can be a current

employee or officer of the organization but can also be a discharged employee whose

system credentials have not yet been revoked, a masquerader who finds a computer

logged in, or a business partner with access to the system. Malicious, negligent and

accidental behaviors of these users are referred to as insider threats. By misusing their

privileges, insiders can pose serious security threats to an organization driven by various

motivations, e.g. for profit, revenge or curiosity. Insider threats are often considered

more critical than external attacks because insiders have more knowledge about the IT

system than external attackers and have direct access to the organization’s sensitive

information through the information systems they daily use. This makes insider threats

more difficult to detect and prevent.

Several taxonomies have been proposed for insiders and insider threats [21, 31, 41,

43]. Bishop et al. [21] categorize insiders based on their access privileges and their

ability to damage an organization. Predd et al. [43] propose four dimensions, namely

the organization (expressed policy), the environment (laws, economics, ethics), the

individual (perceived policy and intent), and the system (embedded policy) to understand

and categorize the risk of insider threats. Phyo and Furnell [41] classify insider threats

based on the system level (i.e., network, operating system, application, and data) these

threats may be detected and/or monitored.

Based on a literature review and notable security incidents from the past, we have

identified different types of insider threats relating to the process and data levels that can

put an organization at risk:

1. Unauthorized data access: Insiders abuse their privileges and access data for

curiosity or malicious purposes [17, 47]. A typical example of this type of threat

is insider snooping into patient records.

14

2. Unauthorized data modification: Insiders replace or alter existing valid data, or

introduce false data into a file or a database for personal or financial gain. An

example of this type of threat is medical fraud, which involves the payment of

treatment never rendered [29].

3. Data update omission: Insiders accidentally or intentionally do not update the data

as required. This type of threat results in outdated data, which has an impact on

the quality of data and, consequently, on the decisions taken based on these data.

4. Security and privacy control bypass: Insiders circumvent the security and privacy

policies and controls currently in place to access sensitive information or to

perform critical activities. These controls can be required to complete an activity

or be a prerequisite for performing other activities; skipping such steps may

indicate that the opportunity for a fraud or a privacy violation (e.g., processing

personal data without the informed consent of the data subject involved) exists.

5. Secondary usage of data (also called data re-purposing): Insiders process data

for purposes other than those for which the data were originally collected without

data subject consent [28, 39]. Note that this threat differs from an unauthorized

data access (insider threat type 1) because the user is authorized to access the

data but uses these data in a way not allowed.

We now exemplify these threats using the healthcare treatment process in Fig. 2 and

the CRUD matrix in Table 1. In order to handle a patient, healthcare workers involved in

the treatment process should execute the prescribed activities and, in order to complete

these activities, they must or may need to perform certain data operations as defined in

the CRUD matrix. The processing of data should be performed according to security

policies and controls in place. Insiders, however, can circumvent these policies and

controls by misusing their privileges as illustrated by the representative scenarios below:

Scenario 1a. A curious receptionist accesses the medical information of a high-profile

15

patient such as a celebrity or a politician while the patient is being admitted to the

hospital (insider threat type 1) [6]. This information might then be transmitted to the

media, thus, violating the patient’s privacy. This unauthorized access to data (typically

called ‘insider snooping’) can be observed in Fig. 4 by noting that the reading of the

patient’s medical history (M), recorded by system-event s3, is not allowed for patient

admission (ad) according to the CRUD matrix.

Scenario 1b. A doctor is persuaded by a marketing or pharmaceutical company to

sell medical information of patients. To this end, the doctor retrieves a massive amount

of patient medical records (insider threat type 1) [7, 8]. To cover his actual intent

and thus avoid detection, he accesses the data (M) for consultation purposes (in),

which is allowed by the CRUD matrix in Tab. 1 and therefore does not raise any

alarm from a data perspective. Nevertheless, this unauthorized access to data can be

detected in Fig. 4 by observing that consultation happened (e8) without being requested

(i.e., a process-event recording the execution of activity ‘in’ can only occur after a

process-event recording the execution of activity ‘co’).

Scenario 2. A nurse intending to harm a patient or obtain reimbursements alters the

patient’s medical record (insider threat type 2) [4]. For example, the nurse may change

blood type and drug allergies or add medical services that were never received by the

patient to the medical records. Such erroneous information could impact care quality or

cause some problems to obtain medical, life or disability insurance. This unauthorized

modification of data can be observed in Fig. 4 by noting that the nurse updates the

medical history (M) of the patient (s14) without an apparent reason (i.e., no process

activities are executed concurrently).

Scenario 3. Hospitals usually require doctors to create a new treatment plan after

visiting a patient, which is stored in the patient’s medical record. A doctor negligently

16

forgets to update a patient’s medical record with the prescribed treatment (insider threat

type 3) [47]. The missing information may cause other doctors to prescribe conflicting

medication to the patient. This omission can be detected in Fig. 4 by observing that

the treatment plan (P) has not been created when the treatment is prescribed (e7) as

required by the CRUD matrix of Table 1.

Scenario 4. A patient without medical insurance intending to get expensive medical

care such as complicated surgeries or organ transplants impersonates a well-insured

individual. A receptionist admits the patient to the hospital without verifying her identity

(insider threat type 4) [5, 3]. The hospital provides full-service care and charges the

victim for all the services obtained by the patient. Beyond financial losses, this can cause

other personal consequences for the victim. In particular, the modification of its medical

record with another patient’s lab test results and prescribed treatments can be life

threatening and difficult to erase, which resembles an insider threat of type 2. This threat

can be detected in Fig. 4 by observing that the patient is admitted (ad) to the hospital

(e1) without being previously identified (ip) as required by the process model (Fig. 2).

Scenario 5. A doctor accesses patient information for providing medical treatment,

but later uses this information to conduct a clinical trial (ct) without patients’ consent

and approval of the ethical medical committee of the hospital (insider threat type 5)

[39]. This case of secondary usage of data can be detected in Fig. 4 by observing that,

after some unjustified access to patient medical history (M), recorded by system-event

s7, the doctor performs a clinical trial (e5), which among others does not contribute

to the fulfillment of the treatment process as defined in Fig. 2.

It is worth noting that the detection and diagnosis of the insider threats described

in the scenarios above requires both control-flow and data perspectives together; one

perspective alone is not sufficient. For instance, the threat in Scenario 1b can only be

17

detected by relating the access to data (recorded by system-events s11 and s12) to activity

in (recorded by trace-event e8). As shown in the next section, looking at control-flow

and data together allows establishing a larger context for deviations, making it possible

to identify richer patterns than when considering each perspective in isolation.

4. Taxonomy of Composite Moves

In order to detect deviations more accurately and provide contextual information for

diagnosis, we relate the four basic elements discussed in Section 2, namely trace-events,

run-events, system-events and CRUD-entries to each other. In particular, we introduce

the notion of composite move, which connects these elements thus reconciling the

process and data perspectives. A trace-event e and a run-event a constitute a control-flow

alignment move (also called process move) that provides the context for a system-event

s, while a CRUD-entry q associates a system-event to a process-event thus providing the

purpose for data operations. Note that different system-events could be associated with

the same context (process move). We define composite moves ((s, q), (e, a)) as follows:

Definition 7 (Composite move). Let Aϕ be the set of run-events in a given process-

run ϕ, Eσ the set of trace-events in a given process-trace σ, Sβ the set of system-events

in a given system-trace β and Θ a CRUD matrix. Let γ = (Mγ , <γ) be a control-flow

alignment defined over Eσ and Aϕ. A composite move is a tuple ((s, q), (e, a)) ∈

(S�β ×Θ�)×M (�,�)
γ (with M (�,�)

γ = Mγ ∪ {(�,�)}) such that:

1. if (e, a) = (�,�), then (s, q) = (x,�) with x ∈ Sβ .

2. if q 6=�, then either (a 6=� and πact(q) = πact(a)) or (e 6=� and πact(q) =

πact(e)).

3. if s =� and q 6=�, then πmode(q) = mandatory.

Note that the first if-statement denotes system-events s that may be unrelated to any

process move, for which we use (�,�) (hereafter called no process move) in the

18

definition of composite moves; thus, ((s,�), (�,�)).

Given a composite move ((s, q), (e, a)), we refer to process move (e, a) as the

context in which s is executed. Moreover, we call the activity associated to the process

move (i.e., πact(a) or πact(e)) the purpose of the system-event s. Intuitively, the

purpose denotes the activity for which the data operation is executed [39].

The purpose and context of an operation on data are used to assess its conformity

with the specification. The (non)conformity at the process level provides contextual

information for system-events. In particular, the context determines whether an operation

on the data occurred in accordance with the expected control-flow as defined by the

process model. On the other hand, the (non)conformity of a system-event with respect

to the CRUD matrix is used to determine the validity of the purpose associated to an

operation on the data, i.e. whether an operation is performed for the intended purpose.

Based on the definition of composite moves above, we can distinguish 13 types of

composite moves. Fig. 6 shows a graphical representation of these moves. Hereafter, we

use the row and column number to refer to move types (e.g., (1,2) refers to the move

type located in row one and column two). It is worth noting that move types (1,4), (2,4),

and (4,4) do not correspond to any legal composite moves, as is indicated by the dashes.

Composite moves can be grouped in three categories with respect to data operations:

Legitimate Operations. This group of move types (denoted by a green full line rectangle

in Fig. 6) indicates fully compliant behavior, i.e. an operation on the data was executed

for a valid purpose under a valid context. This group comprises only moves of type (1,1).

Missing Operations. Move types in this group (denoted by a blue dashed line rectangle

in Fig. 6) capture the cases where a mandatory operation on data expected to accomplish

a certain purpose (activity) was not executed (i.e., a system-event is missing). The

missing operation may correspond to a data update or a security check, indicating that an

insider threat of type 3 or 4 (Section 3) occurred respectively. In particular, skipping a

19

Synchronous

Process Move

(e, a)

Process Move

on Model

(�, a)

Process Move

on Log

(e,�)

No Process

Move

(�,�)

Synchronous

Data Move

(s, q)

Synchronous
Move
(e, a)

Move on
Model
(>>, a)

Move on
Log

(e, >>)

No
Move

(>>, >>)

CRUD
Match
(s, r)

-

Missing
Action
(>>, r)

-

CRUD
Mismatch

(>>, r)

No
Required

Action
-

((s, q), (e, a))

Synchronous
Move
(e, a)

Move on
Model
(>>, a)

Move on
Log

(e, >>)

No
Move

(>>, >>)

CRUD
Match
(s, r)

-

Missing
Action
(>>, r)

-

CRUD
Mismatch

(>>, r)

No
Required

Action
-

((s, q), (�, a))

Synchronous
Move
(e, a)

Move on
Model
(>>, a)

Move on
Log

(e, >>)

No
Move

(>>, >>)

CRUD
Match
(s, r)

-

Missing
Action
(>>, r)

-

CRUD
Mismatch

(>>, r)

No
Required

Action
-

((s, q), (e,�))

—

Data Move

on Model

(�, q)

Synchronous
Move
(e, a)

Move on
Model
(>>, a)

Move on
Log

(e, >>)

No
Move

(>>, >>)

CRUD
Match
(s, r)

-

Missing
Action
(>>, r)

-

CRUD
Mismatch

(>>, r)

No
Required

Action
-

((�, q), (e, a))

Synchronous
Move
(e, a)

Move on
Model
(>>, a)

Move on
Log

(e, >>)

No
Move

(>>, >>)

CRUD
Match
(s, r)

-

Missing
Action
(>>, r)

-

CRUD
Mismatch

(>>, r)

No
Required

Action
-

((�, q), (�, a))

Synchronous
Move
(e, a)

Move on
Model
(>>, a)

Move on
Log

(e, >>)

No
Move

(>>, >>)

CRUD
Match
(s, r)

-

Missing
Action
(>>, r)

-

CRUD
Mismatch

(>>, r)

No
Required

Action
-

((�, q), (e,�))

—

Data Move

on Log

(s,�)

Synchronous
Move
(e, a)

Move on
Model
(>>, a)

Move on
Log

(e, >>)

No
Move

(>>, >>)

CRUD
Match
(s, r)

-

Missing
Action
(>>, r)

-

CRUD
Mismatch

(>>, r)

No
Required

Action
-

((s,�), (e, a))

Synchronous
Move
(e, a)

Move on
Model
(>>, a)

Move on
Log

(e, >>)

No
Move

(>>, >>)

CRUD
Match
(s, r)

-

Missing
Action
(>>, r)

-

CRUD
Mismatch

(>>, r)

No
Required

Action
-

((s,�), (�, a))

Synchronous
Move
(e, a)

Move on
Model
(>>, a)

Move on
Log

(e, >>)

No
Move

(>>, >>)

CRUD
Match
(s, r)

-

Missing
Action
(>>, r)

-

CRUD
Mismatch

(>>, r)

No
Required

Action
-

((s,�), (e,�))

Synchronous
Move
(e, a)

Move on
Model
(>>, a)

Move on
Log

(e, >>)

No
Move

(>>, >>)

CRUD
Match
(s, r)

-

Missing
Action
(>>, r)

-

CRUD
Mismatch

(>>, r)

No
Required

Action
-

((s,�), (�,�))

No Data

Move

(�,�)

Synchronous
Move
(e, a)

Move on
Model
(>>, a)

Move on
Log

(e, >>)

No
Move

(>>, >>)

CRUD
Match
(s, r)

-

Missing
Action
(>>, r)

-

CRUD
Mismatch

(>>, r)

No
Required

Action
-

((�,�), (e, a))

Synchronous
Move
(e, a)

Move on
Model
(>>, a)

Move on
Log

(e, >>)

No
Move

(>>, >>)

CRUD
Match
(s, r)

-

Missing
Action
(>>, r)

-

CRUD
Mismatch

(>>, r)

No
Required

Action
-

((�,�), (�, a))

Synchronous
Move
(e, a)

Move on
Model
(>>, a)

Move on
Log

(e, >>)

No
Move

(>>, >>)

CRUD
Match
(s, r)

-

Missing
Action
(>>, r)

-

CRUD
Mismatch

(>>, r)

No
Required

Action
-

((�,�), (e,�))

—

Figure 6: Taxonomy of composite moves. Yellow diamonds represent system-events (s), green diamonds

CRUD-entries (q), yellow squares trace-events (e), and blue squares run-events (a). The full line linking a

process move to a CRUD-entry indicates that the operation is allowed by the CRUD matrix; the dashed line

linking a process move to a system-event indicates that the operation is not allowed by the CRUD matrix.

Composite moves enclosed in a green full line rectangle represent legitimate operations; composite moves

enclosed in a blue dashed line rectangle represent missing operations; composite moves enclosed in a red

dotted line rectangle represent illegitimate operations; composite moves enclosed in a grey rectangle

represent composite moves not involving data.

security control can signal that the opportunity for a fraud exists, whereas skipping a

data update indicates that data may not be reliable.

A move of type (2,1) indicates that the context, in which the missing operation

should have been executed, is valid, i.e. the expected activity was performed. However,

as the required operation was not executed, the corresponding activity has not been

successfully accomplished. For example, consider the normative behavior defined in the

net of Fig. 2 and the CRUD matrix of Table 1. As specified, whenever activity discharge

and billing (di) is executed, an invoice (V) must be created. Skipping this operation

20

may indicate that the provided treatment has not been paid. Moreover, move type (2,1)

captures the threat described in Scenario 3. Here, the doctor executed activity treatment

prescription (tr) as required by the net in Fig. 2 (represented by synchronous process

move (e7, a9) in Fig. 5). However, at the data level, the treatment plan (P) is not created

as demanded by the CRUD matrix in Table 1, resulting in a data move on model.

Move types (2,2) and (2,3) show that the context, in which the missing operation

should have been executed, is also invalid. In particular, a move of type (2,2) indicates

that the expected activity was not executed. This move type can be used to capture the

threat described in Scenario 4. In this scenario, a receptionist may have skipped activity

patient identification (ip) along with the required data operation (i.e., read Identity (I)).

This behavior is captured as a move on log at both process and data level, which is

encoded by move type (2,2). On the other hand, a move of type (2,3) indicates that the

performed activity should not have been performed. In this case, even if we assume that

the operation on data should have been executed to deal with an exceptional situation,

the executed activity would not have been successfully accomplished, thus raising

suspicion about the execution of that activity.

Illegitimate Operations. This group of move types (denoted by a red dotted line

rectangle in Fig. 6) captures illegitimate data operations. A data operation is illegitimate

if it is executed to accomplish an activity for which the operation is not allowed or it

is executed within an invalid context (or a combination of the two). Move types in

this group can be used to capture unauthorized data accesses (insider threat type 1),

unauthorized data modifications (insider threat type 2) and secondary usage of data

(insider threat type 5).

A move of type (3,1) indicates that an activity was executed as prescribed by the

process model (i.e., the context is valid), but the executed operation on data is not

allowed for that activity according to the CRUD matrix. This corresponds, for instance,

21

to the situation described in Scenario 1a. The recorded behavior in Fig. 4 shows that

the receptionist read the patient’s medical history (M), as indicated by system-event

s3, when admitting the patient to the hospital (trace-event e1). While admission was

performed as expected (denoted by synchronous process move (e1, a2) in Fig. 5), the

data operation recorded by s3 is not allowed for patient admission according to the

CRUD matrix in Table 1. Thus, this move type can reveal cases of insider snooping, in

which a user performs an unauthorized access to data within the execution of its duties.

Move types (1,2) and (1,3) indicate that the context is invalid and, thus, the operation

on data is illegitimate. For example, move type (1,3) can be used to capture the situation

described in Scenario 1b. As shown in Fig. 4, the doctor accessed the medical history

(M) and lab test results (T) of several patients (recorded by system-events s11 and s12

respectively) for inter-colleague consultation (in). These data operations are allowed for

inter-colleague consultation (in) according to the CRUD matrix. However, activity in,

recorded by trace-event e8, was executed illegally as shown by log move (e8,�) of the

control-flow alignment in Fig. 5. Therefore, the context of system-events s11 and s12 is

invalid. The doctor may have faked (a portion of) the process execution, in this case

inter-colleague consultation (in), to justify the data access.

Move type (3,3) captures the cases in which both the context and the purpose of

an operation on the data are invalid. Move type (3,2) is similar to move type (3,3),

but in this case the expected activity has not been executed. In contrast, a move of type

(3,4) indicates that the purpose of the executed operation on the data does not match any

control-flow alignment move. Therefore, this operation was performed out of context.

Move type (3,4) can be used, for instance, to capture what happened in Scenario 2. As

shown in Fig. 4, a patient’s medical history (M) was updated by a nurse (system-event s14)

after the patient was discharged (trace-event e9). This operation cannot be linked to any

process move and, thus, its execution cannot be justified. Move type (3,4) can also provide

evidence of other threats like unauthorized data access and secondary usage of data. For

22

instance, in Scenario 5 a doctor accessed a patient’s medical history (M) without an ap-

parent reason (i.e., out of context) while providing medical treatment, denoted by system-

event s7, and at a later time conducted a medical trial using those data (trace-event e5).

It is worth noting that move types (4,1), (4,2) and (4,3) correspond to situations in

which no operation on data is required to be executed according to the CRUD matrix.

For these composite moves, the observed behavior at the data level coincides with the

specification. At the process level, they correspond to control-flow alignment moves (see

Section 2.3). Specifically, move type (4,1) is a synchronous move not involving data.

Move types (4,2) and (4,3) represent the standard process moves on model and process

moves on log (without any data access) respectively.

One can easily observe that some types of deviations identified in Fig. 6 may remain

undetected if the data and process perspectives are not reconciled. Consider, for instance,

moves of type (2,1). This type of moves encompasses a synchronous process move and,

thus, complies with the specifications from the process perspective. On the other hand,

auditing techniques operating at the data level only assess the compliance of operations

on data that have been executed and are not able to detect that a certain operation was

not executed. Therefore, moves of type (2,1) would remain undetected by considering

the data and process perspectives independently. For similar reasons, the other types of

missing operations (i.e., move types (2,2) and (2,3)) cannot be diagnosed properly

and, in particular, cannot be distinguished from other deviation types (e.g., from move

types (1,2) and (1,3) respectively). More in general, it is easy to observe that auditing

techniques operating at the data level are not able to detect missing operations and some

cases of illegitimate operations, namely moves of types (1,2) and (1,3). On the other

hand, using auditing techniques operating at the process level moves of type (2,1), (3,1)

and (3,4) may be considered as a legitimate behavior. We argue that, only through

identifying the context and purpose in which operations on data are executed, one can

23

gain a clear understanding of the infringements that occurred.

It is worth noting that there is not a one-to-one relation between the insider threats

identified in Section 3 and the composite moves in Fig. 6. Different threat types might

be captured by the same composite move, and a threat of a certain type might be

captured by different composite moves. Moreover, threats can manifest as combination

of composite moves (e.g., Scenario 5). Actually, composite moves pinpoint where

the observed behavior differs from the specification and provide richer diagnostic

information about deviations. The interpretation of non-conforming behavior and, thus,

the identification of the type of threat that occurred, however, requires knowledge of the

application domain and, in particular, of the activities and data operations involved in the

composite moves. For instance, data update omission (insider threat type 3) involves the

skipping of update operations, whereas security and privacy control bypass (insider

threat type 4) requires the skipping of security and privacy controls. In essence, our

approach does not aim to replace the role of the auditors in the auditing process. Rather,

it aims to assist auditors in the analysis of non-conforming behavior by providing a

better understanding of deviations and thus in choosing appropriate mitigation actions.

5. Inter-Level Alignments

Composite moves reconcile the process and data perspectives, thus enabling the

identification of deviations that otherwise would remain undetected, and providing

accurate diagnostics of those deviations. As discussed in the previous section, diagnostic

information provided by composite moves provides a valuable support to analysts in the

identification of several insider threats as the ones described in Section 3. However,

determining which composite moves should be used to capture the actual usage of data

requires knowledge of the process model and of the process execution at hand. To this

end, as illustrated in Fig. 1, we assume that diagnostic information at the process level

24

(in form of control-flow alignments) is available. Intuitively, this information is used to

drive the analysis of system logs. This design choice is motivated by the fact that the

context (represented by control-flow alignment moves) can help establish which data

operations are expected to be executed in order to successfully complete the execution of

the business process.

To check the compliance of system-traces with respect to control-flow alignments

(thus verifying their contexts) and a CRUD matrix (thus verifying their purposes),

we introduce the notion of inter-level alignments and then discuss the approach for

computing them.

5.1. Defining Inter-Level Alignments

An inter-level alignment is a sequence of composite moves, associating the system-

events in a system-trace to the moves of a control-flow alignment and entries in a CRUD

matrix.

Definition 8 (Inter-level alignment). Let β be a system-trace, Sβ a set of system-

events in β, Θ a CRUD matrix and γ = (Mγ , <γ) a control-flow alignment between

a process-trace σ and a Petri net N . An inter-level alignment ψ is a sequence of

composite moves 〈(w1,m1), ..., (wi,mj), ..., (wn,mk)〉, with (wi,mj) = ((si, qi),

(ej , aj)) ∈ (S�β ×Θ�)×M (�,�)
γ , such that

1) for each system-event s ∈ Sβ , there is one and only one composite move

((si, qi), (ej , aj)) ∈ ψ such that si = s;

2) for each process move m ∈ Mγ , there is at least one composite move

((si, qi), (ej , aj)) ∈ ψ such that (ej , aj) = m;

3) for each mandatory CRUD-entry x ∈ Θ, if there is a move (e, a) ∈Mγ such

that πact(x) = πact(e) or πact(x) = πact(a), then there is ((s, q), (e, a)) ∈ ψ

with q = x;

25

4) composite moves respect the ordering of system-events in β;

5) composite moves respect the ordering <γ of Mγ , i.e., for 1 ≤ x < y ≤ k,

my 6<γ mx.

To properly link the data and process perspectives, we introduce a set of criterion

functions Λ and a cost function κ: criterion functions are used to assess the legality of

composite moves, whereas the cost function is used to assess their quality.

Definition 9 (Legal inter-level alignment). A criterion function λ is a Boolean

function of arity at least 1 where the first parameter is a composite move and the other

parameters are additional inputs needed to verify the validity of the composite move

against a given criterion. Let λ be a criterion function of arity m+ 1 (with m ≥ 0);

λ((w,m), x1, . . . , xm) returns true if composite move (w,m) is legal according to

the criterion defined by λ and false otherwise. Let Λ = {λ1, · · ·λn} denote a set

of criterion functions. An inter-level alignment 〈(w1,m1), ..., (wn,mk)〉 is legal if

and only if each of its composite moves (wi,mj) is legal according to every criterion

function in Λ, i.e., for all λk ∈ Λ, λk((wi,mj), x1, . . . , xm) = true (with m+ 1 the

arity of λk).

In essence, we use criterion functions to assess the legality of linked system-events

and process moves. Note that, besides a composite move, a criterion function can

rely on other artifacts (e.g., control-flow alignments) depending on the criterion used

to determine the legality of composite moves. For example, if events have timestamps,

we can define a criterion function λtime to assess whether system-events are associated

with trace-events that happened concurrently. This function takes two parameters:

a composite move and a control-flow alignment. Let w = (s, q) and m = (e, a);

λtime((w,m), γ) = true if πstart(e) ≤ πtime(s) ≤ πcomplete(e), otherwise false .

Here, the control-flow alignment γ is needed to estimate the time attributes of process

26

(e, a) (�, a) (e,�) (�,�)

(s, q) 0 2 2 –

(�, q) 1 2 2 –

(s,�) 3 4 4 5

(�,�) 0 1 1 –

Table 2: An example of a cost function that assigns a cost to each composite move according to the move

types in Fig 6.

moves on model. As no trace-event is associated to these moves, their start and

completion time cannot be derived from any process-event directly. However, we

can assume that these missing activities should have been executed after the previous

trace-event and before the next trace-event. Using this assumption, criterion function

λtime determines the validity of potential links between system-events and these moves.

Moreover, if system-events have attribute pur indicating the purpose (activity) for which

a certain operation on data was executed, we can define a unary criterion function λpur

where λpur ((w,m)) = true if πpur (s) = πact(e) ∨ πpur (s) = πact(a), otherwise

false . Criterion functions will help us select legal composite moves while leveraging

event attributes. The cost function is then used to define optimal inter-level alignments.

Definition 10 (Optimal inter-level alignment). Let Ψ denote the set of all legal

possible inter-level alignments between a system-trace β, a control-flow alignment

γ and a CRUD matrix Θ. A cost function κ assigns a predefined cost to each type

of composite move. An inter-level alignment ψ ∈ Ψ is optimal if and only if for all

ψ′ ∈ Ψ, κ(ψ) ≤ κ(ψ′).

Table 2 exemplifies the standard cost function used in this paper. The number in

each cell represents the cost assigned to the composite move in the same cell in Fig. 6.

Let us consider the control-flow alignment in Fig. 5, the system-traces in Fig. 4 and the

CRUD matrix in Table 1. Fig. 7 shows two inter-level alignments ψ1 and ψ2, proposing

27

ad

rr Synchronous
Process move

r Process move
on model

r Process move
on log

evbt trad di

at

(݁ଵ, ܽଶ)
(݁ସ, ܽହ)

(≫, ܽ଻)

(≫, ܽ଺)

(଼݁,≫)(݁଻, ܽଽ)
(݁ଽ, ܽଵ଴)

ctbtad
in

ditr
ip

(≫, ܽଵ)
(݁ହ,≫)

vi
vi

la
la

vi
vi

(݁ଶ, ܽଷ)
(݁ଷ, ܽସ)

(݁଺, ܽ8)

in

ev
at

ad

bt

co

Admission

Basic
lab test

Consult
request

Inter-colleague
consultation

Evaluate

Advanced
tests

P0 Place

Transition

tr
Treatment
prescription

di
Discharge
and billing

p1

p9

p5

p8

p10

p7 p6

p11ip
Identify
patient

p2 vi
Visit

p3

la
Lab

appointment

p4

ctbt di

,ଵݏ) (2ݍ

c

,ଶݏ) (3ݍ
(≪,ଷݏ)

r

,ହݏ) (5ݍ
,଺ݏ) (6ݍ ,଻ݏ) (8ݍ

,ଵ଴ݏ) (11ݍ
M

(≪,ଵସݏ)

u

trvi

,ସݏ) (4ݍ

la vi

T
,଼ݏ) (9ݍ

,ଽݏ) (10ݍ ,ଵଶݏ) (14ݍ

r

evbtip la vi

D
r

D
r
M cT

u
T

c r
M

ditr
r

T
r
M

c
P

r
M V

c
M

ad
r
M

in
c

T

at

(≫, (7ݍ
(≫, (12ݍ

,ଵଵݏ) (13ݍ
(≫, (15ݍ

(݁ଵ, ܽଶ) (݁ସ, ܽହ) (଼݁,≫)
(݁଻, ܽଽ) (݁ଽ, ܽଵ଴)(≫, ܽଵ) (݁ହ,≫)(݁ଶ, ܽଷ) (݁ଷ, ܽସ) (݁଺, ܽ8)

vi
(≫, ܽ଻)

ad

(≫, ܽ଺)

ctbt

,ଵݏ) (2ݍ

c

,ଶݏ) (3ݍ
(≪,ଷݏ)

r

,ହݏ) (5ݍ
,଺ݏ) (6ݍ ,଻ݏ) (8ݍ

,ଵ଴ݏ) (11ݍ

trvi

,ସݏ) (4ݍ

la vi

T
,଼ݏ) (9ݍ

,ଽݏ) (10ݍ

evbtip la vi

D
r

D
r
M cT

u
T

c r
M

tr
r

T
r
M

c
P

r
MM

ad
c

T

at

(≫, (7ݍ
(≫, (12ݍ

,ଵଵݏ) (13ݍ

(݁ଵ, ܽଶ) (݁ସ, ܽହ) (݁଻, ܽଽ)(≫, ܽଵ) (݁ହ,≫)(݁ଶ, ܽଷ) (݁ଷ, ܽସ) (݁଺, ܽ8)

vi
(≫, ܽ଻)

(a) Inter-level alignment ߰ଵ

(b) Inter-level alignment ߰ଶ

r
I

r
I T

u
T

(≪,ଵଷݏ)

di

,ଵଶݏ) (14ݍ

r

di
cr

M

in
(଼݁,≫)

(݁ଽ, ܽଵ଴)

T
u

T
(≪,ଵଷݏ)

(≫, (1ݍ

(≫, (1ݍ

M
(≪,ଵସݏ)

u
V

(≫, (15ݍ

Figure 7: Construction of two inter-level alignments, each as a sequence of composite moves between the

net in Fig. 2 and the recorded events in Fig. 4; the differences between the two are highlighted using red

rectangles.

a sequence of composite moves.4 For example, for ψ1, system-event s6 can be linked

to synchronous process move (e4, a5) based on the timestamps and then associated with

CRUD-entry q6 = (bt, T, u, optional), which results in ((s6, q6), (e4, a5)), a syn-

chronous composite move on both perspectives with cost 0 according to the cost function

in Table 2. However, it is also legal to associate s6 to model move (�, a6), resulting in

composite move ((s6, q6), (�, a6)). The total cost of ψ1 and ψ2 is 25 and 27 respec-

tively. Let assume πpur (s6) = bt, then criterion function λpur would make ψ2 illegal.

Such inter-level alignments provide for each system-event its purpose and con-

text, allowing for more accurate diagnosis. Consider, for example, composite move

((s3,�), (e1, a2)) ∈ ψ1. This move shows that, although the read operation on M

has a valid context, it is not allowed by the CRUD matrix and, thus was executed

without a legitimate purpose. A possibly more severe deviation is composite move

((s13,�), (e8,�)), which not only is performed for an illegitimate purpose, but also

4The number of the CRUD-entries in Fig. 5 reflects their order of appearance in the alignment and is not

related to their appearance in the CRUD matrix of Table 1.

28

in an invalid context (process move on log). The fact that the activity of e8 (in) was

not allowed during that phase of the process makes s13 more suspicious. In addition

to more accurate diagnosis, leveraging the context, our approach can detect deviations

that otherwise would remain undetected. For example, if we consider composite

move ((s12, q14), (e8,�)), the read operation on T was allowed by the CRUD matrix;

without considering the context (e8,�), one may consider such an operation to be

legitimate. However, the process move on log (e8,�) shows that the context, in which

s12 was executed, is actually invalid as the activity should not have been performed.

5.2. Computing Inter-Level Alignments

This section presents our approach to construct an optimal inter-level alignment of

a system-trace and a control-flow alignment with respect to a given cost function, a set

of criterion functions and a CRUD matrix. Similarly to [11], we translate the problem

of finding an optimal inter-level alignment into a shortest path problem and employ

the A∗ algorithm [26] to find the path with minimum cost. A∗ is a search algorithm

widely used in graph traversal. A∗ aims to efficiently compute the shortest path using

a heuristic function, which under some condition (see below) guarantees that the actual

shortest path is found.

Hereafter, we indicate that a sequence σ′ is a prefix of a sequence σ, denoted

σ′ ∈ prefix (σ), if there exists a sequence σ′′ such that σ = σ′ ⊕ σ′′, where ⊕ denotes

the concatenation operator.

Let G = (V,D) be a directed graph with V a set of nodes and D a set of weighted

edges. The A∗ algorithm aims to find the path with the minimum cost from the source

node v0 ∈ V to a node v in target nodes TN ⊂ V . A cost is assigned to each node

v ∈ V using an evaluation function f(v) = g(v) + h(v) where

• g : V → R+
0 is a function that returns the cost of the smallest path from v0 to v;

29

• h : V → R+
0 is a heuristic function that estimates the cost of the path from v to

its preferred target node.

Function h is said to be admissible if it returns a value that is guaranteed to under-

estimate the cost of a path from a node v′ ∈ V to any target node v′′ ∈ TN , i.e.

g(v′) + h(v′) ≤ g(v′′). If h is admissible, then A∗ guarantees that the path found

by the algorithm has the minimum cost.

The algorithm also requires that the number of paths with zero cost between nodes

in the graph to be finite. To solve this problem, we use a pragmatic approach to ensure

that each edge in the graph has cost greater than zero along the lines suggested in [9].

Given a cost function κ1, a new cost function κ2 is generated by adding a negligibly

small constant ε > 0 to every cost as defined in κ1. Then, the algorithm uses κ2 to find

the path with minimum cost. Note that ε should be significantly lower than all non-zero

costs in the original cost function, otherwise the obtained path may not be the one with

minimal cost. Once the path ν with minimal cost is found, its cost with respect to κ1 can

be simply obtained by subtracting the additional cost introduced by κ2, i.e. |ν| × ε, from

the obtained cost. For the sake of clarity, hereafter, we omit ε and use the cost function

in Table 2 in the example. However, our implementation of the approach automatically

transforms this cost function as described above to find optimal inter-level alignments.

Employing A∗ to find the optimal inter-level alignment between a system-trace and

a control-flow alignment requires defining an appropriate search space:

Definition 11 (Search space). Let β be a system-trace, γ = (Mγ , <γ) the control-

flow alignment between a process-trace σ and a Petri net N , Θ a CRUD matrix and Ψ

be the set of all possible legal inter-level alignments between β and γ. The search space

is a graph G = (V,D) where V is the set of all prefixes of inter-level alignments:

V = {µ | ψ ∈ Ψ ∧ µ ∈ prefix (ψ)}.

and D is the set of edges (µ′, µ′′) ∈ V × V , where µ′′ is obtained by adding one

30

composite move to µ′ such that µ′′ is a prefix of an inter-level alignment:

D = {(µ′, µ′′) | ∃(w,m) ∈ ((S�β ×Θ�)×M (�,�)
γ) s.t.

µ′′ = µ′ ⊕ 〈(w,m)〉 ∧ ψ ∈ Ψ ∧ µ′′ ∈ prefix (ψ)}.

In this search space, the source node is the empty sequence v0 = 〈〉 and the target

nodes are all possible legal inter-level alignments, i.e. TN = Ψ. As each node in the

graph is associated with a prefix of an inter-level alignment and vice versa, we use this

prefix to refer to that node. The cost associated to a path leading from the source node to

µ ∈ V is defined as follows:

g(µ) =
∑

(w,m)∈µ
κ((w,m)).

where κ denotes the cost of each composite move according to the given cost function

(see Table 2).

To guide the state space exploration of theA∗ algorithm, a heuristic function needs to

be defined. We can observe that each system-event in a system-trace must appear in some

composite move associated to a target node. Thus, the number of steps required to reach

an inter-level alignment from a certain state is lower bounded by the number of system-

events that have not been considered in the sequence of composite moves associated

to that state. These remaining system-events may appear in various move types, i.e. the

move types shown in the first and third rows of Fig. 6. The heuristic function employed

in this work estimates the cost of reaching a target node by multiplying the minimum

cost associated to these moves (according to a given cost function) by the number

of system-events that still need to be replayed. (Recall that a heuristic function is only

admissible if it underestimates the cost of a path from a node to a target node.)

Algorithm 1 represents how the A∗ algorithm computes an optimal inter-level

alignment. The algorithm keeps a priority queue of nodes to be visited: higher

priority is given to nodes with lower costs. First, the queue is initialized with the

31

Algorithm 1: Compute an optimal inter-level alignment
Input :control-flow alignment γ, system-trace β, CRUD matrix Θ, set of criterion

functions Λ, cost function k

Output : inter-level alignment with the lowest total cost

1 priorityQueue.enqueue(〈〉, 0);

2 while priorityQueue.size 6= 0 do

3 µ← priorityQueue.dequeue();

4 if µ ∈ Ψ then

5 return µ;

6 foreach µ′ ∈ successorγ,β,Θ,Λ(µ) do

7 f(µ′)← g(µ′) + h(µ′);

8 priorityQueue.enqueue(µ′, f(µ′));

9 end

10 end

source node (line 1). Then, in each iteration, the node µ with the lowest cost is

taken from the priority queue (line 3). If µ belongs to the target set, the algorithm

ends returning node µ (lines 4-6). Otherwise, its direct successors are explored.

We use function successorγ,β,Θ,Λ(µ) to identify the set of all successors of node

µ = 〈((s1, q1), (e1, a1)), . . . , ((sm, qm), (em, am))〉. This set consists of all nodes

µ′ that can be obtained by adding one composite move ((sn, qn), (en, an)) ∈ (S�β ×

Θ�)×M (�,�)
γ to µ such that:

1) the sequence 〈s1, . . . , sm, sn〉, ignoring all occurrences of�, is a prefix of β;

2) (en, an) = (�,�) or, for each ((s, q), (e, a)) ∈ µ, (en, an) 6<γ (e, a) and for

all (e, a) ∈Mγ , if (e, a) <γ (en, an) then (e, a) ∈ {(e1, a1), . . . , (em, am)};

3) (en, an) = (�,�) or, for each ((s, q), (e, a)) ∈ µ such that (e, a) <γ

(en, an) and for each mandatory CRUD-entry q ∈ Θ such that πact(q) = πact(e)

or πact(q) = πact(a), there exists at least one ((si, qi), (e, a)) ∈ µ with qi = q;

32

4) for all λ ∈ Λ, λ(((sn, qn), (en, an)), x1, . . . , xk) = true.

Intuitively, the direct successors of a node is the set of nodes µ′ that can be obtained

by adding one (legal) composite move to µ according to a given set of criterion functions.

After associating a cost to each of these nodes, they are inserted into the priority queue

(lines 7-10) and the search continues until a target node is reached.

Fig. 8 shows the portion of the search space that Algorithm 1 constructs to find

the optimal inter-level alignment of the system-trace in Fig. 4 and the alignment in

Fig. 5 according to the cost function in Table 2. Each node, represented by a circle,

represents the cost assigned to the node itself. The nodes are also associated with

an index, i.e. #0, . . . ,#12, indicating the order in which they are visited. An edge

between two nodes µ′ and µ′′ is labeled with the move ((s, q), (e, a)) with which µ′

has been extended, i.e. µ′′ = µ′ ⊕ 〈((s, q), (e, a))〉.

To speed up the computation, we prune the search space. This optimization follows

from the observation that the same composite moves but with different ordering may

appear in different constructed inter-level alignments. In particular, this happens when

the sequence contains composite moves corresponding to missing operations. In fact,

composite moves indicating missing operations can be observed before, between or after

other composite moves with the same alignment moves. This re-ordering does not change

the cost of inter-level alignments. Hence, it is not necessary to consider all these cases

when we search for the shortest path. Thus, we only consider one of these possibilities,

i.e. the case where the composite moves corresponding to missing operations appear

after other composite moves in a certain order. For instance, consider the search space

in Fig. 8. According to our optimization, as the node associated with #11 contains

((�, q7), (�, a6)), it is not allowed to be extended with ((s6, q6), (�, a6)). A node

with these composite moves is explored if and only if ((s6, q6), (�, a6)) appeared

before ((�, q7), (�, a6)) in the sequence. This way, we avoid exploring the paths

33

f = 0
#0

((�,q1),(�,a1))

��
f = 2

#1

((s1,�),(�,�))

vv

((s1,q2),(e1,a2))

��
f = 7 f = 2

#2

((s2,�),(�,�))

vv

((s2,q3),(e1,a2))

��
f = 7 f = 2

#3

((s3,�),(�,�))

vv

((s3,�),(e1,a2))

��
f = 7 f = 5

#4

((s4,�),(�,�))

vv

((s4,q4),(e2,a3))

��
f = 7 f = 5

#5

((�,�),(e3,a4))

��
f = 5

#6

#9

((�,q5),(e4,a5))

tt

((�,q7),(�,a6))

}} #7

((s5,q5),(e4,a5))

!!
((s5,q7),(�,a6))��

((s5,�),(�,�))

**
f = 6

((�,q7),(�,a6))

��

((s5,�),(�,�))

!!

f = 7 f = 7 f = 5

#10
((s6,q6),(�,a6))

!!#11

((�,q7),(�,a6))

}} #8

((s6,q6),(e4,a5))

��

((s6,�),(�,�))

((

f = 10

f = 8 f = 11 f = 7

((s6,q6),(e4,a5))

vv

((s6,q6),(�,a6))

}}
((s6,�),(�,�))��

f = 5

#12

((�,q7),(�,a6))

��

f = 6

((�,q7),(�,a6))

��

f = 10

f = 7 f = 8 f = 12 f = 7

((s7,q8),(�,a7))

��
((s7,�),(�,�))

""

f = 8

.

Figure 8: Portion of the search space constructed to find an optimal inter-level alignment of the system-trace

in Fig. 4 and the control-flow alignment in Fig. 5 based on the cost function in Table 2. Nodes in the search

space are represented by circles, which are labeled with the cost assigned to them by the evaluation function

f . Numbers associated to nodes represent the order in which they are visited. Gray circles represent pruned

nodes.

consisting of the permutations of composite moves that have already been considered,

speeding up the search for the shortest path.

34

Figure 9: Screenshot of the implemented approach in ProM, showing the inter-level alignment constructed

between the control-flow alignment in Fig. 5 and the system-trace in Fig. 4

6. Evaluation

We implemented the approach illustrated in Fig. 1 as a plug-in named Inter-

Level Replayer for the Security package within the ProM framework (http://

www.promtools.org). The plug-in takes as input control-flow alignments, a

system event log and a CRUD matrix, and computes an inter-level alignment for each

system-trace and its corresponding control-flow alignment. The output of the plug-in

consists of the computed inter-level alignments and can be used by other plug-ins for

visualization or further analysis. Fig. 9 shows a screenshot of the ProM plug-in.

We evaluated the proposed approach using both synthetic and real-life logs. The aim

of the evaluation with the synthetic data is to perform controlled experiments with a

known ground truth and assess the accuracy of the obtained diagnostics. We used a

real-life case study to show that the approach provides useful insights into deviations and

is robust to logs and models with real-life complexity. The experiments were performed

using a machine with 3.4 GHz Intel Core i7 processor and 16 GB of memory.

6.1. Synthetic Data

For the experiments with synthetic data, we designed the process model in Fig. 2

using CPN tools (http://cpntools.org) and generated 10000 process-traces

and 10000 system-traces consisting of 96994 trace-events and 140999 system-events

35

Case 1 Case 7

P: 0% P: 10%

R: 0% R: 0%

Case 8

P: 10%

R: 5%

Case 2 Case 3 Case 4 Case 5 Case 6

P: 0% P: 5% P: 10% P: 15% P: 20%

R: 10% R: 10% R: 10% P: 10% R: 10%

Case 9

P: 10%

R: 15%

Case 10

P: 10%

R: 20%

Figure 10: Experiment Settings. P indicates the percentage of attack patterns and R the percentage of

random noise.

respectively (available at [1]). Trace- and system-events both carry timestamps (ac-

cording to the same global clock in the simulation). Moreover, for system-events we also

recorded the activity of the generating trace-event (i.e., the pur attribute of Section 5.1).

In order to assess the capability of detecting deviations and the accuracy of the obtained

diagnostics, we manipulated the generated process-traces and system-traces. In particular,

we inserted attack patterns corresponding to the threat scenarios 1a, 1b, 2,. . . , 5 described

in Section 3 along with random noise (i.e., adding or removing some events). In a

series of experiments, we varied the percentage of attack patterns in the traces (denoted

by P: 0%, 5%, 10%, 15%, 20%) while leaving the random noise constant (denoted

by R: 10%). In a second series of experiments, we increased the percentage of random

noise (R: 0%, 5%, 10%, 15%, 20%) while leaving the percentage of attack patterns

unchanged (P: 10%). We also considered the case where no attack patterns and random

noise were introduced in the log, which will serve as the reference case. In total, we

analyzed ten cases, which are illustrated in Fig. 10.

36

Control-flow alignments reflecting the noise introduced in the process-traces were

constructed. We computed the inter-level alignments for every constructed control-flow

alignment and its corresponding system-trace. To determine the legality of composite

moves, we considered the two criterion functions described in Section 5.1. The first

criterion function (λtime) links system-events to alignment moves using the time

attribute of system-events ensuring that they fall between the start and completion

time of process moves. The second criterion function (λpur) uses the pur attribute

of system-events to ensure that the purpose of system-events coincides with the activity

associated to the process move. For the experiments, we used two sets of criterion

functions: CF 1 = {λtime , λpur} and CF 2 = {λtime}. In the experiments, we used

the cost function described by Table 2.

To assess the approach’s capability of detecting deviations and the accuracy of

the obtained diagnostics, we computed precision, recall and the F1-measure. Following

standard practice [38], precision is computed as the fraction of the detected deviations that

are actual deviations, whereas recall is computed as the fraction of the inserted deviations

(which is known since deviations were introduced artificially) that are detected. The

F1-measure is the harmonic mean of precision and recall. For each case, the percentage

of the detected attack patterns was assessed. We also measured the time needed to

construct an inter-level alignment (after the control-flow alignment had been computed).

Table 3 reports the results of the experiments for different levels of noise. Overall,

the results show a high precision and recall, varying between 0.98 and 0.99 for CF 1

and between 0.93 and 0.95 for CF 2. We can observe that using both the time and

pur attributes (CF 1) provides more accurate results compared to using only the time

attribute (CF 2). The main reason is that, in the presence of concurrent process moves,

the time of system-events can fall between the start and completion time of more than

one process move. Without the pur attribute, it is easy to establish incorrect links

between system-events and process moves. For example, consider the control-flow

37

CF 1 (time and pur) CF 2 (time)

Noise (P,R) Precision Recall F1-Measure
Detected Computation

Precision Recall F1-Measure
Detected Computation

Patterns (%) Time (ms) Patterns (%) Time (ms)

Case 1 (0%, 0%) 1.00 1.00 1.00 - 0.28 0.97 0.97 0.97 - 0.80

Case 2 (0%, 10%) 0.99 0.99 0.99 - 0.58 0.95 0.95 0.95 - 1.97

Case 3 (5%, 10%) 0.99 0.99 0.99 99 0.36 0.95 0.95 0.95 95 3.08

Case 4 (10%, 10%) 0.99 0.99 0.99 99 0.45 0.94 0.95 0.94 94 4.24

Case 5 (15%, 10%) 0.99 0.99 0.99 99 0.40 0.94 0.95 0.94 94 9.01

Case 6 (20%, 10%) 0.99 0.99 0.99 99 0.46 0.94 0.94 0.94 94 15.12

Case 7 (10%, 0%) 0.99 0.99 0.99 99 0.25 0.97 0.97 0.97 97 1.41

Case 8 (10%, 5%) 0.99 0.99 0.99 99 0.31 0.95 0.96 0.95 96 2.35

Case 9 (10%, 15%) 0.98 0.98 0.98 99 0.42 0.94 0.94 0.94 94 9.80

Case 10 (10%, 20%) 0.98 0.98 0.98 99 0.54 0.93 0.94 0.93 93 16.47

Table 3: Results of experiments on synthetic data.

(a) An example of a control-flow alignment and a system-trace.

(b) Inter-level alignment that can be obtained

using CF 1 and CF 2

(c) Inter-level alignment that can be obtained

using CF2

Figure 11: An example of the constructed inter-level alignments using two different criterion functions.

alignment and process-trace in Fig. 11a. We can observe that s6 occurred between

the start and completion time of m6 and m7. Thus, this event can be linked to either

of these process moves according to CF 2 (Fig. 11b and Fig. 11c). On the other hand,

as the pur attribute of s6 matches with the activity associated to m7, this event can

38

only be linked to m7 using CF 1 (Fig. 11b). It is worth mentioning that, even if CF 1 is

used, a system-event can be linked to different concurrent process moves with the same

activity name. For instance, in Fig. 11a, CF 1 allows linking s2 to either m2 or m3.

In addition to concurrent process moves, the presence of process moves on model may

also increase the complexity of finding actual links between system-events and process

moves. As discussed in Section 5.1, the start and completion time of process moves on

model cannot be derived from any process-event directly. Criterion function λtime finds

potential links between system-events and these moves using the control-flow alignment.

For instance, in Fig. 11a, suppose that we want to identify the purpose of s8 using

CF 2. In this case, as s8 occurs after the completion of m8 and before the start of m11,

either m9 or m10 can be chosen as the purpose of this system-event. This uncertainty

plays an important role when identifying the purpose of system-events and is the reason

that in some cases the approach was not able to identify all the deviations correctly.

Table 4 shows an in-depth analysis of the results for Case 3 (P:5%,R:10%) with

respect to attack patterns representing the threat scenarios presented in Section 3. We can

observe in the table that the threat described in Scenario 1a may not be detected when

CF 2 is used. This is due to the fact that, if a data operation falls between the start and

completion time of two process moves, the system-event may be linked to either of these

process moves. A similar observation applies to the attack pattern corresponding to the

threat of Scenario 1b. We can observe in Table 4 that the recall for Pattern 1b is lower than

for Pattern 1a. This is because moves on log are penalized more than synchronous moves

(i.e., the cost assigned to a move on log is higher than the one assigned to synchronous

moves). Therefore, if another activity expected according to the process model is executed

concurrently (thus resulting in a synchronous process move) and the CRUD matrix allows

the execution of the data operation for that activity, the system-event is linked to the

synchronous move, thus not detecting the violating move type (1,3) described in Section 4

which reveals Pattern 1b. Moreover, threats involving operations executed out of context

39

CF 1 (time and pur) CF 2 (time)

Pattern # Recall Precision F1-Measure Recall Precision F1-Measure

1a 1.00 1.00 1.00 0.99 0.99 0.99

1b 0.98 1.00 0.99 0.89 0.99 0.94

2 1.00 1.00 1.00 0.98 1.00 0.99

3 1.00 1.00 1.00 1.00 1.00 1.00

4 1.00 1.00 1.00 1.00 1.00 1.00

5 1.00 1.00 1.00 0.98 1.00 0.99

Table 4: Analysis of detected attack patterns corresponding to the threat scenarios 1a, 1b, 2,. . . , 5 in

Section 3 for Case 3 (P:5%,R:10%)

may not be detected when the pur attribute is not used as a criterion function. According

to the cost function in Table 2, operations executed out of context have the highest

cost. Therefore, system events are linked to process moves whenever it is possible, i.e.

the employed criterion functions allow linking the system event to a process move. In

particular, if a system event falls between the start and completion time of a process move,

the event is linked to that move. Finally, we can observe that missing operations, which

characterize the threats described in Scenarios 3 and 4 are always detected correctly.

Table 5 presents an overview of the composite moves identified in Case 3

(P:5%,R:10%) when the criterion functions in CF 1 were used. It is worth not-

ing that several deviations would not have been detected or accurate diagnostics obtained

using control-flow alignment techniques (see Section 2.3) like [11, 12, 15, 33]. For

instance, these techniques are not able to distinguish move types (2,1) and (3,1) from

(1,1) and (4,1), and would mark all of them as legal moves. As a consequence, 5714

missing operations and 5166 illegitimate operations would remain undetected. Moreover,

control-flow alignments are not able to capture moves of type (4,4),5 leaving additional

3078 illegal operations undetected. The deviations corresponding to the remaining six

5As discussed in Section 2.3, “no process moves” (�,�) cannot occur in control-flow alignments.

40

Synchronous

Process Move

(e, a)

Process Move

on Model

(�, a)

Process Move

on Log

(e,�)

No Process

Move

(�,�)

Synchronous

Data Move

(s, q)

125507 8087 8512 —

Data Move

on Model

(�, q)

5714 1925 105 —

Data Move

on Log

(s,�)

5166 509 232 3078

No Data

Move

(�,�)

19587 1129 3073 —

Table 5: Overview of identified composite moves data for Case 3 (P:5%,R:10%) and CF 1 as the criterion

functions.

move types can also be identified by only observing the process perspective. However,

this perspective alone provides limited diagnostics on these deviations. For instance,

let us consider deviations involving process moves on model (second column in Table 5).

In this case, we cannot distinguish whether an operation on data was illegitimate (8596

cases), missing (1929 cases) or not required (1129 cases). Similarly for deviations

involving process moves on log (third column in Table 5), looking only at the process

perspective we are not able to distinguish whether an operation on data was illegitimate

(8744 cases), missing (105 cases) or not required (3073 cases). Overall, 23579 cases

would have incomplete diagnostics using control-flow alignments.

The diagnostic information obtained using our plug-in can assist a security analyst

in the analysis and understanding of deviations. Table 6 presents an example of such

diagnostic information indicating the number and type of different operations executed

on Lab Test Results (T) in Case 3 (5%, 10%) and the two criterion functions in CF 1

41

Lab Test Results (T)

Activity Create Read Update Delete

LO IO MO LO IO MO LO IO MO LO IO MO

Identify patient (ip) 0 25 0 0 29 0 0 30 0 0 17 0

Admission (ad) 0 22 0 0 21 0 0 17 0 0 19 0

Visit (vi) 0 41 0 7752 753 0 0 37 0 0 43 0

Lab appointment (la) 0 27 0 0 12 0 0 20 0 0 13 0

Basic lab test (bt) 5688 753 840 3142 411 0 3173 417 0 0 20 0

Advanced tests (at) 5743 745 796 3172 372 0 3200 401 0 0 18 0

Evaluate (ev) 0 18 0 3145 399 0 0 19 0 0 21 0

Consult request (co) 0 12 0 0 8 0 0 10 0 0 15 0

Inter-colleague consultation (in) 0 20 0 3030 416 0 0 13 0 0 21 0

Treatment prescription (tr) 0 31 0 4587 580 0 0 22 0 0 35 0

Discharge and billing (di) 0 28 0 0 24 0 0 32 0 0 22 0

Clinical trial (ct) 0 3 0 0 5 0 0 2 0 0 5 0

No activity (out of context) 0 9 0 0 9 0 0 14 0 0 5 0

Total 11431 1734 1636 24828 3039 0 6373 1034 0 0 254 0

Table 6: Analysis of the operations executed on Lab Test Results (T) for Case 3 (5%, 10%) and CF 1 as the

criterion functions. LO indicates legitimate operations; IO indicates illegitimate operations; and MO

indicates missing operations.

were used. The results indicate that 1636 expected operations were skipped and 6061

illegitimate operations were executed on this data object. Recall that an operation is

considered illegitimate if it is executed to accomplish an activity for which the operation

is not allowed or it is executed within an invalid context (or a combination of the two).

That is why we still observe illegitimate operations, even though they are allowed by the

CRUD matrix (e.g., 753 Lab Test Results (T) were created with purpose Basic lab test

(bt) within an invalid context). Among these illegitimate operations, 37 of them were

executed out of context or for accomplishing a purpose for which they are not allowed

to be executed. For example, 24 times Lab Test Results (T) were read for the purpose of

discharge and billing (di), which is not allowed according to the CRUD matrix in Table 1.

It is worth noting that missing operations and operations with invalid or no context

42

(4473 operations in this case) may remain undetected if system-events are analyzed

without considering their contexts. This again demonstrates that the combination of

both levels helps revealing problems that would otherwise remain undetected.

On average, the construction of optimal inter-level alignments required 0.36 ms

per case (i.e., a system-trace and the corresponding control-flow alignment) when CF 1

is used, so in total 3.6 s. When CF 2 is used, the construction of optimal inter-level

alignments required on average 3.32 ms per case, so in total 33.2 s. As CF 2 allows more

linking between system-events and process moves in comparison to CF 1, its search

space is typically much larger. This explains why finding optimal inter-level alignments

using CF 2 required more time than using CF 1. We, thus, conclude observing that

both the accuracy and performance of the approach depend on the information used

to link the process and data perspective together.

6.2. Real-life Logs

For the experiments with real-life logs, we used a dataset taken from a road traffic

fine management system of the Italian police (available at [2]). As we aim to analyze

only cases that are complete, we used the heuristic proposed in [35] to filter out

incomplete cases. Then, by splitting activities and data operations from the original

dataset, we obtained a process event log and a system event log. The resulting process

event log and system event log contain 550021 trace-events and 917693 system-events

respectively. These log data were recorded for managing 145800 road traffic offense

cases. Each case starts by recording a traffic fine, followed by sending it to the offender.

After receiving the notification, the offender may appeal against a fine to prefecture

and/or judge. If the appeal is successful, the case ends. Otherwise, the offender is

notified about the result of the decision. The fine has to be paid within 180 days.

Otherwise, a penalty is added. If the fine is not paid fully by the offender, the case ends

by asking for credit collection. The execution of these activities may require performing

43

Activity
Data object

Points Amount Expenses Payment Amount Total Payment Amount Dismissal

Create Fine U C – – C C

Send Fine – – C – – –

Notification – – – – – –

Payment – – – U U –

Add Penalty – U – – – –

Appeal to Judge – – – – – U

Send for Credit Collection – – – – – –

Appeal to Prefecture – – – – – –

Send Appeal – – – – – U

Receive Result – – – – – –

Notify Offender – – – – – –

Table 7: CRUD matrix showing the interaction between the activities of the road traffic fine management

process and data objects.

certain operations on data objects. The relationship between activities and operations on

data was obtained from the insights reported in [35] and is shown in Table 7.

To construct the control-flow alignments between process-traces and the process

model, we used the work presented in [33], which is implemented as a plug-in named

Partial-Order Aware Replayer in the ProM framework. Then, we applied our approach

to compute inter-level alignments of the constructed control-flow alignments and the

system event log using the CRUD matrix in Table 7, the cost function in Table 2 and the

set of criterion functions CF 1. On average, the construction of optimal inter-level

alignments from the system logs and control-flow alignments required 1.17 ms per case.

Table 8 reports the number of different composite moves identified in the analysis of

the log. In total, we identified 139 missing operations and 3306 illegitimate operations.

All missing operations correspond to potential cases of data update omission (insider

threat type 3). In 33 cases, we observed that the amount of the fine was not recorded

when activity create fine was executed. In 21 cases, after applying the penalty, the amount

44

Synchronous

Process Move

(e, a)

Process Move

on Model

(�, a)

Process Move

on Log

(e,�)

No Process

Move

(�,�)

Synchronous

Data Move

(s, q)

914391 0 3298 —

Data Move

on Model

(�, q)

85 50 4 —

Data Move

on Log

(s,�)

0 0 0 4

No Data

Move

(�,�)

143883 87347 170 —

Table 8: Results of experiments on real-life data.

of the fine was not updated. Among the others, this is in conflict with the Italian law

that requires the total payment amount to be increased in these cases [35]. Moreover, the

value of total payment amount and payment amount were not updated in 32 and 3 cases

respectively when activity payment was performed. This data update omission should be

investigated to determine why it happened. In particular, it is not plausible that, when the

fine was paid by the offender, the total payment amount was not updated. The results also

show that 50 times activity send appeal and its required operation (dismissal update) were

skipped (i.e., a composite move of type (2,2)). This suggests that process participants

do not always adhere to the prescribed behavior when the appeals are processed.

Illegitimate operations are mainly related to the illegal execution (i.e., a process

move on log) of activity add penalty and the corresponding data update (3115 times). In

particular, the amount value of the fine was increased as required by the activity, but the

activity should not be executed (i.e., a composite move of type (1,3)), providing evidence

that unauthorized data modifications (insider threat type 2) could have happened.

45

Moreover, 4 system-events recording an update operation on the amount value were

executed out of context, i.e. they were not linked to any process moves (composite move

of type (3,4)). These operations were executed for the purpose of adding a penalty (i.e.,

their pur attribute is equal to add penalty) but the order in which they were recorded in

the system event log does not make it possible to link them to any alignment move. This

could indicate some synchronization issues in the recording of events at different levels,

but it could also indicate an unauthorized modification of data (insider threat type 2).

Our work is not the first that analyze the traffic fine management dataset. Alizadeh

et al. [14] analyze this dataset using control-flow alignments. However, as discussed in

Section 6.1, control-flow alignments only consider the process perspective. Thus, they

are unable to capture moves of type (2,1), (3,1), and (3,4) and cannot provide accurate

diagnostics for moves of types (1,2), (2,2), (3,2), (4,2), (1,3), (2,3), (3,3) and (4,3).

Specifically, if control-flow alignments are used for the analysis, in total, 89 illegitimate

operations would remain undetected and the diagnostics obtained for 90869 deviations

would not provide additional information on the use of data.

Another work that analyzes the traffic fine management dataset is the one by

Mannhardt et al. [35], who use data-aware alignments. Similarly to our work, Mannhardt

et al. consider the data perspective in the analysis by treating system-events as data

attributes of trace-events. However, although some of the conclusions obtained using our

approach are similar to the ones that can be obtained using data-aware alignments,

these two approaches have different goals and underlying assumptions. In particular,

data-aware alignments assume that the link between the process and data perspectives is

available and detect deviations in the control-flow based on the modification of attribute

values of trace-events. In contrast, our approach aims to discover such a link and exploits

this information to diagnose the usage of data and provide insights into the detected

deviations. In addition, the inability of analyzing data operations independently from

process activities makes data-aware alignments unable to capture a number of move

46

types identified in Figure 6, namely (1,2), (3,2), and (3,4). One may observe in Table 8,

that only few composite moves of these types were identified in our experiments. The

main reason lies in the way the dataset used for the experiments was constructed. In the

original log [2], data operations are attributes of trace-events, which were then extracted

to create a system event log. By doing so, all operations on data can be potentially

linked to trace-events, which was, for instance, not ensured for the synthetic log of

Section 6.1. The results in Table 8 show that our approach is capable to reconstruct the

links between system-events and trace-events.

7. Related Work

Existing auditing techniques can be classified in three categories based on the

layer(s) in which they operate: data layer, process layer or both.

Data Layer. Several auditing approaches have been proposed to detect illegitimate

data access and usage (see [44] for a survey). Agrawal et al. [13] propose an auditing

framework to verify whether a database system complies with privacy policies.

Differently from our work, the focus of this framework is on minimizing the information

to be disclosed and identifying suspicious queries rather than verifying data usage. Other

researchers have proposed methods for a-posteriori policy compliance [18, 20, 24].

For instance, Cederquist et al. [24] present a framework that allows users to construct

justification proofs for their actions. Azkia et al. [18] propose an auditing framework

to check the compliance of recorded actions with respect to security policies that may

depend on contextual conditions. However, these frameworks can only deal with a

limited range of policies and do not consider the purpose for which a data operation is

executed. Moreover, these frameworks usually analyze each data operation individually

and do not take into account the order in which data operations are executed to determine

their context. Kveler et al. [32] consider the purpose for which a data operation is

47

executed in order to detect policy infringements. However, in this work the purpose is

treated as a label and, consequently, it does not make it possible to analyze the context in

which a data operation is executed. Petković et al. [39] address this issue by linking the

intended purpose of data to the business processes of an organization and detect privacy

infringements by determining whether the data have been processed for their intended

purposes. However, this technique is only able to detect whether a deviation from

the specifications occurred and does not explicitly identify which deviation occurred.

In contrast, this work uses the purpose and context of data operations to provide

fine-grained diagnostic information capable of pinpointing the deviations that occurred.

Process Layer. From a process perspective, several researchers developed techniques

to check compliance between normative behavior of a process and the recorded behavior

in a process log [11, 12, 15, 33, 35, 46]. Rozinat et al. [46] propose to replay observed

behavior by firing recorded events in the process model and count the number of

remaining tokens and missing tokens to assess deviations. However, this approach is not

able to pinpoint the exact deviating behavior in a model. Banescu et al. [19] extend

the work in [46] to identify and classify deviations by analyzing the configuration

of missing and remaining tokens using deviation patterns. However, token-based

approaches may allow behavior that is not allowed by the model and thus may provide

incorrect diagnostics. Adriansyah et al. [11] propose an approach based on the so-called

alignment notion relating observed events in the process event log to runs of the model.

This approach has been extended in various ways. For example, the work in [33]

generalizes sequential alignments to partial orders handling concurrency between

trace-events and process moves, which is used in this work to derive process moves.

Alizadeh et al. [15] propose to use historical data to derive probable alignments. The

work in [12] extends alignments to detect high-level deviation patterns. However, all the

aforementioned techniques only focus on the process perspective. Our work extends and

48

complements those techniques by taking into account other perspectives than only the

control-flow, i.e. the name of activities and their ordering, and, thus, providing richer

diagnostics. As discussed in Section 6, only considering a process perspective does not

allow distinguishing move types (2,1), (3,1) from legitimate operations (i.e., move type

(1,1)) and identifying illegitimate operations of type (3,4). Moreover, it does not make it

possible to discriminate and provide detailed diagnostics for a number of move types

such as (1,2), (2,2), (3,2) and (4,2) (and similarly for (1,3), (2,3), (3,3) and (4,3)).

Similarly to our work, de Leoni et al. [25] extend the alignment approach to handle

the data perspective in which control-flow is aligned first and then data are considered.

Mannhardt et al. [35] propose a more balance approach in which data-aware Petri nets

and process logs are aligned to find violations with respect to data-related business rules

and guards. Specifically, these approaches analyze the executed activities and the data

values written by these activities to determine whether case variables are set correctly

and activities are executed as prescribed by the model. This allows the verification of

routing decisions during process executions, time related constraints and user restrictions

on the execution of activities. However, data-aware alignments require that the link

between the process and data perspective is already established. In contrast, our approach

aims to discover such a link and exploits this information to diagnose the usage of data

and provide insights into the detected deviations. Even if the link between the process

and data perspectives is provided, the techniques in [25, 35] are not to identify all

the composite moves presented in Figure 6. The main problem lies in the fact that these

approaches analyze violations only from a process perspective where system-events are

treated as data attributes of process events. As a result, data-aware alignments are unable

to consider the data perspective separately and diagnose system-events independently

from trace-events. For example, these techniques fail to identify move types (1,2),

(3,2) and (3, 4) as they neglect data accesses executed outside of trace-events.

49

Inter-Data-Process Layer. A large body of research has focused on modeling

interactions between processes and data to align IT implementations and business

strategies. One popular approach is the use of a CRUD matrix to relate process activities

to data accesses [34, 36, 37]. However, to the best of our knowledge, no approaches

have been proposed to check compliance between recorded and modeled behavior

from both process and data perspectives in a reconciled way. The work in this paper

leverages the CRUD artifact and proposes a novel way to reconcile the process and data

perspectives to obtain more comprehensive diagnostics of data misuse.

8. Conclusion

In recent years, many auditing techniques have been proposed to analyze the

observed behavior recorded by information systems. These techniques typically focus

on either the process or data perspective. Focusing on a single perspective, however,

may not be sufficient to detect threats posed by insiders who have knowledge of the

information system and security controls in place and can misuse their privileges and

this knowledge for malicious purposes. In addition, diagnostics obtained using these

techniques may not provide fine-grained insights required to understand the detected

deviations. This makes it difficult to decide appropriate mitigation actions. In this paper,

we propose a novel auditing approach that analyzes the observed behavior with respect to

both the data and process perspectives. We have illustrated how the obtained diagnostics

can assist auditors in the detection and identification of common insider threats that can

only be revealed by analyzing deviations in-between both perspectives. Moreover,

experiments have shown that our approach can detect such deviations accurately and is

able to provide valuable insights into deviations.

In practice, a (possibly infinite) number of control-flow alignments may exist

between a process-trace and a process model. In this work, we used the control-flow

50

alignment that is preferable from the process perspective for the analysis of data

operations. However, by considering other control-flow alignments, we may able to

find an inter-level alignment with lower total cost than the one we constructed using the

selected control-flow alignment [35]. An interesting research direction for future work

is to develop techniques that efficiently consider all possible control-flow alignments

in the analysis and provide diagnostics with respect to them.

Similar to the existence of multiple control-flow alignments, several inter-level

alignments may exist between a system-trace and a control-flow alignment. These

inter-level alignments provide different explanations for non-conformity and the quality

of the provided explanations typically is evaluated using a cost function. Following

common practice in control-flow alignment techniques [11, 12, 15, 33, 35], among

possible explanations of non-conformity we have considered the explanation that

is optimal with respect to the given cost function. However, an optimal inter-level

alignment may not necessarily represent what actually happened in the system. To

this end, various heuristics have been proposed to compute probable control-flow

alignments [15] or to handle also non-optimal control-flow alignments in the analysis

[16]. However, the study of these heuristics and methods is orthogonal to the scope

of this work and represent an interesting direction for future work.

In this work, we showed that reconciling the data and process perspectives allows

for a more fine grained analysis of the observed behavior. Considering other process

perspectives in the auditing process can enhance detection capabilities even further and

provide even more accurate diagnostics of deviations. For instance, accounting for the

user perspective (i.e., which user/role performed a certain activity and data operation) can

enable the verification of separation of duty and binding of duty constraints. Therefore,

in future work, we plan to extend our auditing framework by incorporating other

perspectives and, in particular, the user perspective to provide auditors with more

comprehensive diagnostics for the investigation of security incidents.

51

Acknowledgments. This work has been funded by the NWO CyberSecurity programme

under the PriCE project.

References

[1] Healthcare treatment process. https://svn.win.tue.nl/

repos/prom/Packages/Security/Trunk/example/

healthcareProcess/.

[2] Road traffic fine management process. http://dx.doi.org/10.4121/

uuid:270fd440-1057-4fb9-89a9-b699b47990f5.

[3] Diagnosis: Identity theft. https://www.bloomberg.com/news/

articles/2007-01-07/diagnosis-identity-theft, 2006. Ac-

cessed: 2017-03-23.

[4] Las vegas pharmacist charged with health care fraud and unlawful distribution of

controlled substances. https://www.justice.gov/archive/usao/

nv/news/2007/02232007.html, 2006. Accessed: 2017-03-23.

[5] Medical ID theft leads to lengthy recovery. http://triblive.com/

x/pittsburghtrib/news/regional/s_476326.html, 2006. Ac-

cessed: 2017-03-23.

[6] Clooney proves private health records not so private. http://abcnews.go.

com/US/story?id=3714207, 2007. Accessed: 2017-03-23.

[7] 6 face charges in Miami over fraud of Medicare. http://articles.

sun-sentinel.com/2008-04-02/news/0804010517_1_

medicare-court-files, 2008. Accessed: 2017-03-23.

52

[8] UK ICO fines Pharmacy2U Ltd for privacy breach.

https://privacybrief.net/2015/11/01/

uk-ico-fines-pharmacy2u-ltd-for-privacy-breach,

2015. Accessed: 2017-03-23.

[9] A. Adriansyah. Aligning observed and modeled behavior. PhD thesis, Eindhoven

University of Technology, 2014.

[10] A. Adriansyah, J. Munoz-Gama, J. Carmona, B. F. van Dongen, and W. M. P.

van der Aalst. Measuring precision of modeled behavior. Inf. Syst. E-Business

Management, 13(1):37–67, 2015.

[11] A. Adriansyah, B. F. van Dongen, and W. M. P. van der Aalst. Memory-efficient

alignment of observed and modeled behavior. BPM Center Report BPM-03-03,

BPMcenter.org, 2013.

[12] A. Adriansyah, B. F. van Dongen, and N. Zannone. Controlling break-the-

glass through alignment. In Proceedings of International Conference on Social

Computing, pages 606–611. IEEE, 2013.

[13] R. Agrawal, R. Bayardo, C. Faloutsos, J. Kiernan, R. Rantzau, and R. Srikant.

Auditing compliance with a Hippocratic database. In Proceedings of International

Conference on Very Large Data Bases, pages 516–527. VLDB Endowment, 2004.

[14] M. Alizadeh, M. de Leoni, and N. Zannone. History-based construction of

alignments for conformance checking: Formalization and implementation. In

Data-Driven Process Discovery and Analysis, LNBIP 237, pages 58–78. Springer,

2014.

[15] M. Alizadeh, M. de Leoni, and N. Zannone. Constructing probable explanations of

53

nonconformity: A data-aware and history-based approach. In Proceedings of IEEE

Symposium Series on Computational Intelligence, pages 1358–1365. IEEE, 2015.

[16] M. Alizadeh and N. Zannone. Risk-based analysis of business process executions.

In Proceedings of the Sixth ACM Conference on Data and Application Security

and Privacy, pages 130–132. ACM, 2016.

[17] A. Appari and M. E. Johnson. Information security and privacy in healthcare:

current state of research. International Journal of Internet and Enterprise

Management, 6(4):279–314, 2010.

[18] H. Azkia, N. Cuppens-Boulahia, F. Cuppens, G. Coatrieux, and S. Oulmakhzoune.

Deployment of a posteriori access control using IHE ATNA. International Journal

of Information Security, 14(5):471–483, 2014.

[19] S. Banescu, M. Petkovic, and N. Zannone. Measuring privacy compliance using

fitness metrics. In Business Process Management, LNCS 7481, pages 114–119.

Springer, 2012.

[20] A. Barth, A. Datta, J. C. Mitchell, and H. Nissenbaum. Privacy and contextual

integrity: framework and applications. In Proceedings of Symposium on Security

and Privacy, pages 184–198. IEEE, 2006.

[21] M. Bishop, S. Engle, S. Peisert, S. Whalen, and C. Gates. Case studies of an

insider framework. In Proceedings of 42nd Hawaii International Conference on

System Sciences, pages 1–10. IEEE, 2009.

[22] M. Bishop and C. Gates. Defining the insider threat. In Proceedings of 4th

Annual Workshop on Cyber Security and Information Intelligence Research, pages

15:1–15:3. ACM, 2008.

54

[23] D. Brandon Jr. CRUD matrices for detailed object oriented design. Journal of

Computing Sciences in Colleges, 18(2):306–322, 2002.

[24] J. G. Cederquist, R. Corin, M. A. Dekker, S. Etalle, J. I. den Hartog, and G. Lenzini.

Audit-based compliance control. International Journal of Information Security,

6(2-3):133–151, 2007.

[25] M. de Leoni, W. M. P. van der Aalst, and B. F. van Dongen. Data- and resource-

aware conformance checking of business processes. In Business Information

Systems, LNBIP 117, pages 48–59. Springer, 2012.

[26] R. Dechter and J. Pearl. Generalized best-first search strategies and the optimality

of A*. Journal of the ACM, 32:505–536, 1985.

[27] M. Dekker and S. Etalle. Audit-based access control for electronic health records.

Electronic Notes in Theoretical Computer Science, 168:221–236, 2007.

[28] P. Guarda and N. Zannone. Towards the development of privacy-aware systems.

Information & Software Technology, 51(2):337–350, 2009.

[29] M. E. Johnson. Data hemorrhages in the health-care sector. In Financial

Cryptography and Data Security, LNCS 5628, pages 71–89. Springer, 2009.

[30] M. Kandias, A. Mylonas, N. Virvilis, M. Theoharidou, and D. Gritzalis. An insider

threat prediction model. In Trust, Privacy and Security in Digital Business, LNCS

6264, pages 26–37. Springer, 2010.

[31] D. Kotz. A threat taxonomy for mHealth privacy. In Proceedings of 3rd

International Conference on Communication Systems and Networks (COMSNETS

2011), pages 1–6. IEEE, 2011.

55

[32] K. Kveler, K. Bock, P. Colombo, T. Domany, E. Ferrari, and A. Hartman.

Conceptual framework and architecture for privacy audit. In Privacy Technologies

and Policy, LNCS 8319, pages 17–40. Springer, 2012.

[33] X. Lu, D. Fahland, and W. M. P. van der Aalst. Conformance checking based on

partially ordered event data. In Business Process Management Workshops, LNBIP

202, pages 75–88. Springer, 2014.

[34] D. Lunsford and M. Collins. The CRUD security matrix: a technique for

documenting access rights. In Proceedings of Annual Security Conference, pages

2–4, 2008.

[35] F. Mannhardt, M. de Leoni, H. A. Reijers, and W. M. P. van der Aalst. Balanced

multi-perspective checking of process conformance. Computing, 98(4):407–437,

2016.

[36] J. Martin. Managing the data base environment. Prentice Hall PTR, 1983.

[37] J. Pereira, J. Martins, V. Santos, and R. Gonçalves. Crudi framework proposal:

financial industry application. Behaviour & IT, 33(10):1093–1110, 2014.

[38] J. W. Perry, A. Kent, and M. M. Berry. Machine literature searching x. machine

language; factors underlying its design and development. American Documentation,

6(4):242–254, 1955.

[39] M. Petković, D. Prandi, and N. Zannone. Purpose control: Did you process the

data for the intended purpose? In Secure Data Management, LNCS 6933, pages

145–168. Springer, 2011.

[40] C. P. Pfleeger. Reflections on the insider threat. In Insider attack and cyber

security, Advances in Information Security 39, pages 5–16. Springer, 2008.

56

[41] A. Phyo and S. Furnell. A detection-oriented classification of insider it misuse. In

Proceedings of 3rd Security Conference, 2004.

[42] Ponemon Institute. 2015 Cost of data breach study: global analysis. www.ibm.

com/security/data-breach, 2015. Accessed: 2016-09-3.

[43] J. Predd, S. L. Pfleeger, J. Hunker, and C. Bulford. Insiders behaving badly. IEEE

Security & Privacy, 6(4):0066–70, 2008.

[44] J. Reuben, L. Martucci, and S. Fischer-Hübner. Automated log audits for privacy

compliance validation: a literature survey, pages 312–326. IFIP AICT 476.

Springer, 2016.

[45] E. Rissanen, B. S. Firozabadi, and M. Sergot. Discretionary overriding of access

control in the privilege calculus. In Formal Aspects in Security and Trust, IFIPAICT

173, pages 219–232. Springer, 2005.

[46] A. Rozinat and W. M. P. van der Aalst. Conformance checking of processes based

on monitoring real behavior. Information Systems, 33(1):64–95, 2008.

[47] S. Sinclair and S. W. Smith. Preventative directions for insider threat mitigation

via access control. In Insider Attack and Cyber Security, Advances in Information

Security 39, pages 165–194. Springer, 2008.

[48] W. M. P. van der Aalst, M. Weske, and D. Grünbauer. Case handling: a new

paradigm for business process support. Data Knowl. Eng., 53(2):129–162, 2005.

57

View publication statsView publication stats

https://www.researchgate.net/publication/320915551

