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Abstract. In process discovery, the goal is to find, for a given event
log, the model describing the underlying process. While process models
can be represented in a variety of ways, in this paper we focus on the
representation by Petri nets. Using an approach inspired by language-
based regions, we start with a Petri net without any places, and then
insert the maximal set of places considered fitting with respect to the
behavior described by the log. Traversing and evaluating the whole set
of all possible places is not feasible since their number is exponential
in the number of activities. Therefore, we propose a strategy to drasti-
cally prune this search space to a small number of candidates, while still
ensuring that all fitting places are found. This allows us to derive com-
plex model structures that other discovery algorithms fail to discover.
In contrast to traditional region-based approaches this new technique
can handle infrequent behavior and therefore also noisy real-life event
data. The drastic decrease of computation time achieved by our pruning
strategy, as well as our noise handling capability, is demonstrated and
evaluated by performing various experiments.
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1 Introduction

More and more processes executed in companies are supported by information
systems which store each event executed in the context of a so-called event log.
For each event, such an event log typically describes a name identifying the
executed activity, the respective case specifying the execution instance of the
process, the time when the event was observed, and often other data related to
the activity and/or process instance. An example event log is shown in Figure 1.

In the context of process mining, many algorithms and software tools have
been developed to utilize the data contained in event logs: in conformance check-
ing, the goal is to determine whether the behaviors given by a process model and
event log comply. In process enhancement, existing process models are improved.
Finally, in process discovery, a process model is constructed aiming to reflect the
behavior defined by the given event log: the observed events are put into rela-
tion to each other, preconditions, choices, concurrency, etc. are discovered, and
brought together in a model, e.g. a Petri net.
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Case ID Ac�vity Time Stamp Resource

1

▶

01.01.2019 R0

1 A 02.01.2019 R1

2

▶

07.01.2019 R0

1 C 11.03.2019 R2

2 B 01.05.2019 R4

2 C 07.07.2019 R2

2 C 08.07.2019 R2

2 C 11.07.2019 R2

1 C 26.08.2019 R2

1 D 27.09.2019 R3

1 ▅ 29.09.2019 R0

2 E 07.12.2019 R4

2 ▅ 08.12.2019 R0

…

Real-life processes usually have a start and
end, and therefore it is reasonable to as-
sume a designated start activity I to be
executed at the beginning of each process
instance, as well as a corresponding end
activity �. For a (simplified) process of
package delivery by the postal service, this
could, for example, be package registration
and confirmation of delivery. Each deliv-
ery process would be corresponding to a
case, with possible activities like attempt
delivery or relocate package. Possible re-
sources could be the car used for delivery
or the employee processing the package.

Fig. 1. Excerpt of an example event log. The two visible cases correspond to the
activity sequences 〈I, A, C,C,D,�〉 and 〈I, B,C,C,C,E,�〉.

Process discovery is non-trivial for a variety of reasons. The behavior recorded
in an event log cannot be assumed to be complete, since behavior allowed by the
process specification might simply not have happened yet. Additionally, real-life
event logs often contain rare patterns, either due to infrequent behavior or due to
logging errors. Especially the latter type should not be taken into account when
discovering the process model, but finding a balance between filtering out noise
and at the same time keeping all desired information is often a non-trivial task.
Ideally, a discovered model should be able to produce the behavior contained
within the event log, not allow for behavior that was not observed, represent all
dependencies between the events and at the same time be uncomplicated enough
to be understood by a human interpreter. It is rarely possible to fulfill all these
requirements simultaneously. Based on the capabilities and focus of the used
algorithm, the discovered models can vary greatly. Often, there is no one and
only true model, but instead, a trade-off between the aspects noted above has
to be found. In Section 2 we give an overview of work related to our paper. For
a detailed introduction to process mining we refer the interested reader to [1].

In this paper we suggest an algorithm inspired by language-based regions,
that guarantees to find a model defining the minimal language containing the
input language ([2]). Due to our assumptions, the usually infinite set of all pos-
sible places is finite. In contrast to prominent discovery approaches based on
language-based regions (see Section 2), we do not use integer linear program-
ming to find the subset of fitting places. Instead, we replay the event log on
candidate places to evaluate whether they are fitting. We achieve that by play-
ing the token game for each trace in the log, and then utilizing the results to
skip uninteresting sections of the search space as suggested in [3]. In contrast
to the brute-force approach evaluating every single candidate place, our tech-
nique drastically increases the efficiency of candidate evaluation by combining
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this skipping of candidates with a smart candidate traversal strategy, while still
providing the same guarantees. Additionally, our algorithm lends itself to apply
efficient noise-filtering, as well as other user-definable constraints on the set of
fitting places. As a final step, we suggest to post-process the discovered set of fit-
ting places, thereby reducing the complexity of the resulting model and making it
interpretable by humans. Altogether, our approach has the potential to combine
the capability of discovering complex model structures, typical for region-based
approaches, with the ability to handle noise and simplify the model according
to user-definable constraints. We illustrate the capabilities of our algorithm by
providing results of measuring its decrease in computation time compared to
the brute-force approach, testing its noise-handling abilities, and illustrating the
rediscovery of complex models.

An overview of related work is given in the next section. In the remainder
of this paper we provide a detailed description, formalization and discussion of
our discovery approach. In Section 3 basic notations and definitions are given.
We present a detailed motivation and overview of our approach in Section 4.
Section 5 provides an extensive explanation and formalization. In Section 6, we
briefly discuss our implementation, including some tweaks and optimizations
that can be used to further improve our approach. A comparison to existing
discovery algorithms is given in Section 7 together with results and evaluation of
testing. Finally, we conclude the paper with a summary and suggestion of future
work in Section 8.

2 Related Work

Process discovery algorithms make use of a variety of formal and informal repre-
sentations to model the behavior they extract from a given event log. However,
the basic idea is similar: based on the event data given by an event log, the
different event types are coordinated and ordered using some kind of connection
between them. In this paper, we focus on the formal representation by Petri nets,
where the event types correspond to transitions and the coordinating connections
correspond to places. However, our ideas can be adapted to other representations
as well. Discovery algorithms that produce a formal process model can provide
desirable formal guarantees for their discovered models, for example, the ability
to replay each sequence of events contained in the log, or the ability to re-discover
a model based on a sufficient description of its behavior.

As noted above in process discovery there are several, often conflicting quality
criteria for a discovered model. To decrease computation time and the complexity
of the found Petri net, many existing discovery algorithms further abstract from
a given log to another representation, containing only a fraction of the original
information, based on which a formal model is created. These algorithms can
rediscover only subclasses of Petri nets, and often the resulting model does not
allow for the log to be fully replayed, or allows for much more than the log
suggests. Examples are the Alpha Miner variants ([4]) and the Inductive Mining



4 L. L. Mannel, W. M. P. van der Aalst

D

The original model, rediscovered
by our algorithm:

Discovered by Alpha Miner:

D

D

Discovered by Inductive Miner:

D

D

Discovered by ILP Miner:

D

Fig. 2. There exists a variety of discovery algorithms that are able to mine a process
model based on the log [〈I, A, C,C,D�〉, 〈I, B,C,C,C,E�〉] from Figure 1. As illus-
trated, the resulting Petri nets differ significantly between the algorithms. In particular,
the places connecting A to D and B to E, which ensure that the first choice implies
the second choice, are rarely discovered by existing algorithms.

family ([5]). Other miners based on heuristics, like genetic algorithms or Heuristic
Miner ([6]) cannot provide guarantees at all.

Due to omitting part of the information contained in the log, the miners
described above are not able to discover complex model structures, most promi-
nently non-free choice constructs. The task of creating a Petri net that precisely
corresponds to a given description of its behavior is known as the synthesis prob-
lem and closely related to region theory ([7]). Traditionally, this description was
given in form of a transition system, which was then transformed into a Petri net
using state-based region theory ([8]). The approach has been adapted for process
discovery by developing algorithms, e.g. FSM Miner, that generate a transition
system based on the log, which is then transformed into a Petri net ([9,10]).
Other approaches use language-based region theory, where the given description
is a language, rather than a transition system ([11–13]). An event log can be
directly interpreted as a language. Therefore, language-based regions can be ap-
plied directly to synthesize a Petri net from a given event log ([2]). Here the basic
strategy is to start with a Petri net that has one transition for each activity type
contained in the log. Then all places that allow replaying the log are added. The
result is a Petri net, that defines a language which is a minimal superset of the
input language. Currently such algorithms, most prominently ILP Miner, are
based on integer linear programming ([14–16]). However, available implementa-
tions make use of an abstraction of the log to increase performance, thus losing
their ability to find all possible places.

In contrast to most other discovery algorithms, region-based approaches guar-
antee that the model can replay the complete event log, and at the same time
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does not allow for much different behavior. In particular, complex model struc-
tures like non-free choice constructs are reliably discovered. On the downside,
region-based discovery algorithms often lead to complex process models that
are impossible to understand for the typically human interpreter. They are also
known to expose severe issues with respect to low-frequent behavior often con-
tained in real-life event logs. Finally, finding all the fitting places out of all
possible places tends to be extremely time-consuming.

To illustrate the differences between existing discovery algorithms, in Figure 2
we show the results of selected discovery algorithms applied to the log shown in
Figure 1. The original model, that produced the log, can be rediscovered by the
approach suggested in this paper. Alpha Miner, Inductive Miner and ILP Miner
cannot discover this model because they are restricted to mine only for certain
structures and/or a subset of possible places. In particular, the implication of
the second choice (C orD) by the first choice (A or B) is not discovered by any
of these algorithms.

3 Basic Notation, Event Logs and Process Models

Throughout our paper we will use the following notations and definitions: A set,
e.g. {a, b, c}, does not contain any element more than once, while a multiset, e.g.
[a, a, b, a] = [a3, b], may contain multiples of the same element. By P(X) we refer
to the power set of the set X, and M(X) is the set of all multisets over this set.
In contrast to sets and multisets, where the order of elements is irrelevant, in
sequences the elements are given in a certain order, e.g. 〈a, b, a, b〉 6= 〈a, a, b, b〉.
We refer to the i’th element of a sequence σ by σ(i). The size of a set, multiset
or sequence X, that is |X|, is defined to be the number of elements in X.

We define activities, traces, and logs as usual, except that we require each
trace to begin with a designated start activity and end with a designated end ac-
tivity. Since process models, in general, have a start and end, this is a reasonable
assumption. It implies, that in any discovered model all places are intermediate
places that are not part of an initial or final marking. Thus, every candidate
place we consider during execution of our algorithm, does not contain any initial
tokens. This greatly simplifies the presentation of our work. Note, that any log
can easily be transformed accordingly.

Definition 1 (Activity, Trace, Log). Let A be the universe of all possible ac-
tivities (actions, events, operations, ...), let I ∈ A be a designated start activity
and let � ∈ A be a designated end activity. A trace is a sequence containing I
as the first element, � as the last element and in-between elements of A \{I,�}.
Let T be the set of all such traces. A log L ⊆M(T ) is a multiset of traces.

In the following definition of Petri nets, note that we require the set of tran-
sitions to correspond to a subset of the universe of activities. Therefore our Petri
nets are free of silent or duplicate transitions. In combination with not having to
deal with markings, this results in a finite set of candidate places. Also note, that
we do not use weighted arcs, and can therefore assume the arcs to be implicitly
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B

A

Fig. 3. Example of a Petri net N = (A,P) with transitions A = {a, b,I,�} and
places P = {({I}|{a}), ({I}|{b}), ({a}|{�}), ({b}|{�})}. The behavior of N is the set
of fitting traces {〈I, a, b,�〉, 〈I, b, a,�〉}. A possible place ({b}|{a}) is underfed with
respect to the trace 〈I, a, b,�〉.

defined by the sets of ingoing and outgoing transitions of the places. This defi-
nition of a subset of Petri nets, natural with respect to our discovery algorithm,
removes a lot of notational overhead.

Definition 2 (Petri nets). A Petri net is a pair N = (A,P), where A ⊆ A is
the set of transitions, and P ⊆ {(I|O) | I ⊆ A ∧ I 6= ∅ ∧O ⊆ A ∧O 6= ∅} is the
set of places. We call I the set of ingoing activities of a place and O the set of
outgoing activities.

Places, that are not able to perfectly replay the given log, can be unfitting
in two ways: If at some point during replay there is no token at the place, but
the log requires the consumption of a token anyway, we call the place underfed.
If at the end of a replayed trace there is at least one token left at the place, we
call the place overfed. This categorization has been extensively discussed in [3]
and is the key to our efficient candidate traversal: as detailed in Section 4, by
evaluating one place to be underfed (overfed) we can determine a whole set of
places to be underfed (overfed), without even looking at them.

Definition 3 (Overfed/Underfed/Fitting Places, see [3]). Let N = (A,P)
be a Petri net, let p = (I|O) ∈ P be a place, and let σ be a trace. With respect
to the given trace σ, p is called

– underfed, denoted by 5σ(p), if and only if ∃k ∈ {1, 2, ..., |σ|} such that
|{i | i ∈ {1, 2, ...k − 1} ∧ σ(i) ∈ I}| < |{i | i ∈ {1, 2, ...k} ∧ σ(i) ∈ O}|,

– overfed, denoted by 4σ(p), if and only if |{i | i ∈ {1, 2, ...|σ|} ∧ σ(i) ∈ I}| >
|{i | i ∈ {1, 2, ...|σ|} ∧ σ(i) ∈ O}|,

– fitting, denoted by �σ(p), if and only if not 5σ(p) and not 4σ(p).

Note, that a place can be underfed and overfed at the same time.

Definition 4 (Behavior of a Petri net). We define the behavior of the Petri
net (A,P) to be the set of all fitting traces, that is {σ ∈ T | ∀p ∈ P : �σ(p)}.

4 Algorithmic Framework

As input our algorithm takes a log L, that can be directly interpreted as a
language, and a parameter τ ∈ [0, 1]. This parameter τ in principle determines
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the fraction of the log that needs to be replayable by a fitting place, and is
essential for our noise handling strategy. We provide details on this threshold at
the end of this section.

Inspired by language-based regions, the basic strategy of our approach is to
begin with a Petri net, whose transitions correspond to the activity types used
in the given log. From the finite set of unmarked, intermediate places Pall we
want to select a subset Pfinal, such that the language defined by the resulting net
defines the minimal language containing the input language, while, for human
readability, using only a minimal number of places to do so. Note, that by filtering
the log for noise the definition of the desired language becomes less rigorous,
since the allegedly noisy parts of the input language are ignored, and thus the
aforementioned property can no longer be guaranteed.

We achieve this aim by applying several steps detailed in Section 5. First
of all, we observe that the set Pall contains several places that can never be
part of a solution, independently of the given log. By ignoring these places we
reduce our set of candidates to Pcand ⊆ Pall. Next, we apply the main step of
our approach: while utilizing the token-game to skip large parts of the candidate
space, we actually evaluate only a subset of candidates, Pvisited ⊆ Pcand. We
can guarantee that the set of fitting places is a subset of these evaluated places,
that is Pfit ⊆ Pvisited. Finally, aiming to achieve a model that is interpretable
by human beings, we reduce this set of fitting places to a set of final places
Pfinal ⊆ Pfit by removing superfluous places.

The main challenge of our approach lies in the size of the candidate space:
there are |Pall| = |P(A)\∅ × P(A)\∅| ≈ (2|A|)2 possible places to be considered.
Keeping all of them in memory and even more replaying the log for this ex-
ponentially large number of candidates will quickly become infeasible, even for
comparably small numbers of activities. Reducing the set Pall to Pcand is by far
not a sufficient improvement.

Towards a solution to this performance issue, we propose an idea allowing
us to drastically reduce the amount of traversed candidate places, while still
providing the complete set Pfit as outcome. The monotonicity results on Petri
net places introduced in [3] form the basis of our approach. Intuitively, if a
candidate place p1 = (I1|O1) is underfed with respect to some trace σ, then at
some point during the replay of σ there are not enough tokens in p1. By adding
another outgoing arc to p connecting it to some transition a /∈ O1 we certainly
do not increase the number of tokens in the place and therefore the resulting
place p2 = (I1|O1 ∪ {a}) must be underfed as well. Thus, by evaluating p1 to
be underfed we can infer that all candidates (I1|O2) with O1 ⊆ O2 are underfed
as well, without having to evaluate them. A similar reasoning can be applied to
overfed places. This is formalized in Lemma 1. For more details, we refer the
reader to the original paper ([3]).

Lemma 1 (Monotonicity Results (see [3])). Let p1 =(I1|O1) be a place and
let σ be a trace. If 5σ(p1), then 5σ(p2) for all p2 = (I2|O2) with I1 ⊇ I2 and
O1 ⊆ O2. If 4σ(p1), then 4σ(p2) for all p2 = (I2|O2) with I1 ⊆ I2 and O1 ⊇ O2.
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As detailed in [3], these monotonicity results allow us to determine a whole set of
places to be unfitting by evaluating a single unfitting candidate. Combining this
idea with the candidate traversal strategy presented in Section 5 allows us to
skip most unfitting places when traversing the candidate space, without missing
any other, possibly interesting place. It is important to note that we do not
simply skip the replay of the log, but actually do not traverse these places at all.
This greatly increases the performance of our algorithm.

Setting our algorithm apart from other region-based approaches is its ability
to directly integrate noise filtering. When evaluating a visited place, we refer to
a user-definable parameter τ as detailed in the following definition:

Definition 5 (Fitness with Respect to a Threshold). With respect to a
given log L and threshold τ , we consider a place p =(I|O) to be

– fitting, that is �τL(p), if and only if
|{σ∈L | �σ (p)∧σ∩(I∪O) 6=∅}|
|{σ∈L | ∃a∈σ : a∈(I∪O)}| ≥ τ ,

– underfed, that is 5τL(p), if and only if
|{σ∈L | 5σ (p)}|

|{σ∈L | ∃a∈σ : a∈(I∪O)}| > (1− τ),

– overfed, that is 4τL(p), if and only if
|{σ∈L | 4σ (p)}|

|{σ∈L | ∃a∈σ : a∈(I∪O)}| > (1− τ).

Intuitively, a place p is fitting/underfed/overfed/ with respect to L and τ , if it
is underfed/overfed/fitting with respect to a certain fraction of traces in L that
involve the activities of p. This fraction is determined by the threshold τ . By
defining the value of τ , the user of our algorithm can choose to ignore a fraction
of traces when evaluating the places, making the result much more robust with
respect to infrequent behavior. If τ = 1, then all places are required to be
perfectly fitting. In [3] it is shown that Lemma 1 can be extended to the use of
such a threshold. Despite our slightly modified definition, their proof remains
valid. The impact of different values of τ will be investigated in Section 7.

5 Computing a Desirable Subset of Places

As input, our algorithm expects a log L, and a user-definable parameter τ ∈
[0, 1]. The activities contained in L, A ⊆ A, define the set of transitions of the
Petri net we want to discover. These define a finite set of unmarked, intermediate
places Pall, that we could insert, as the starting point of our algorithm.

5.1 Pre-pruning of Useless Places

Within the set Pall, there are many candidates that are guaranteed to be un-
fitting, independently of the given log. These are all places (I|O), with I ∈ O
or with � ∈ I for designated start and end activities I, �. By completely ex-
cluding such places from our search space, we remain with a much smaller set
of candidates Pcand ⊆ Pall: For a set of activities A the number of candidates
is bounded by 2|A| × 2|A|. By removing all places with I ∈ O or � ∈ I, we
effectively decrease the size of the activity set A by one for each, incoming and
outgoing activities. The new bound on the number of candidates is 2|A| × 2|A|,
thus reducing its size by 25%.
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(▶|a)  (▶|b)  (▶|■)  (a|a)  (a|b)  (a|■)  (b|a)  (b|b)  (b|■)

(▶|a,b) (▶|a,■) (▶|b,■) (a|a,b) (a|a,■) (a|b,■) (b|a,b) (b|a,■) (b|b,■)     (▶,a|a) (▶,b|a) (a,b|a) (▶,a|b) (▶,b|b) (a,b|b) (▶,a|■) (▶,b|■) (a,b|■)

(▶|a,b,■) (a|a,b,■) (b|a,b,■)    (▶,a|a,b) (▶,a|a,■) (▶,a|b,■)    (▶,b|a,b) (▶,b|a,■) (▶,b|b,■) (a,b|a,b) (a,b|a,■) (a,b|b,■)    (▶,a,b|a) (▶,a,b|b) (▶,a,b|■) 

(▶,a|a,b,■) (▶,b|a,b,■) (a,b|a,b,■) (▶,a,b|a,b) (▶,a,b|a,■) (▶,a,b|b,■)

       (▶,a,b|a,b,■)

Fig. 4. Example of the candidate space based on four activities I, a, b and �. The
horizontal levels and colored edges indicate the relations between the activity sets:
each candidate place (I1|O1) is connected to a place (I2|O2) from the level above by a
blue line if I1 = I2 and O1 ⊇ O2, and by a red line if I1 ⊇ I2 and O1 = O2.

5.2 Developing an Efficient Candidate Traversal Strategy

We illustrate our idea with the help of a running example, where A = {I, a, b,�}
is the given set of activities. The corresponding pre-pruned candidate space is
visualized in Figure 4. The organization and coloring are chosen to clarify the
relations between the candidates, which we are going to utilize to further prune
the candidate space.

Our strategy for traversing the set of candidates is the key to the effective
utilization of the described monotonicity results. Since we cannot efficiently store
and retrieve an exponential amount of candidate places, we need a scheme to
deterministically compute the next place we want to evaluate based on a limited
set of information we keep in storage. This scheme should at the same time
guarantee that all fitting places are visited, each place is visited only a limited
number of times (preferably at most once), and we are able to prune the search
space by employing the results obtained by previous place evaluations. In the
following, we are going to develop such a candidate traversal scheme.

5.3 Organization of the Candidate Space as Trees

We organize the candidate space in a set of trees, as described in Definition 6.
An example is shown in Figure 5. Note, that there are many ways to organize
the candidates in such a structure and this example shows merely one of these
possibilities.

Let A ⊆ A be the given set of activities and let >i and >o be two total
orderings on A. In the remainder, we assume all sets of ingoing activities of
a place to be ordered lexicographically according to >i, and sets of outgoing
activities according to >o. Possible strategies of computing such orderings are
noted in Section 6.

Definition 6 (Complete Candidate Tree). A complete candidate tree is
a pair CT = (N,F ) with N = {(I|O) | I ⊆ A\{�}, O ⊆ A\{I}, I 6= ∅, O 6= ∅}.
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We have that F = Fred ∪ Fblue, with

Fred ={((I1|O1), (I2|O2)) ∈ N ×N | |O2| = 1, O1 = O2,

∃a ∈ I1 :
(
I2 ∪ {a} = I1 ∧ ∀a′ ∈ I2 : a′ <i a

)
} (red edges)

Fblue ={((I1|O1), (I2|O2)) ∈ N ×N | I1 = I2,

∃a ∈ O1 :
(
O2 ∪ {a} = O1 ∧ ∀a′ ∈ O2 : a′ <o a

)
} (blue edges).

If ((I1|O1), (I2|O2)) ∈ F , we call the candidate (I1|O1) the child of its parent
(I2|O2). A candidate (I|O) with |I| = |O| = 1 is called a base root.

Note, that there is a certain asymmetry in the definition of Fred and Fblue:
red edges connect only places which have exactly one outgoing transition, while
for blue edges the number of outgoing transitions is unlimited. This is neces-
sary to obtain the collection of trees we are aiming for, and which is further
investigated below: if we did not restrict one of the edge types in this way, the
resulting structure would contain cycles. If we restricted both types of edges,
many candidates would not be connected to a base root at all. However, the
choice of restricted edge type, red or blue, is arbitrary.

In the following we show that each candidate is organized into exactly one
tree, that can be identified by its unique base root. Therefore, the number of
connected trees contained in one structure CT as described in Definition 6 is
exactly the number of base roots. In our running example (Figure 5) there are
9 such trees.

Lemma 2. The structure CT described by Definition 6 organizes the candidate
space into a set of trees rooted in the base roots, where every candidate is con-
nected to exactly one base root.

Proof (Lemma 2). Let CT = (N,F ) be the structure defined in Definition 6. We
show that every candidate (I|O) ∈ N has a unique parent, and, by induction on
the number of activities of a candidate, that each candidate is the descendant
of exactly one of the base roots. This implies that there are no cycles and the
structure is indeed a set of connected trees rooted in the base roots.

If |I ∪O| = 2 then p is a base root that cannot have any parents and the
claim holds. Now assume that the claim holds for all candidates with |I ∪O| = n.

Consider a candidate p1 = (I1|O1) with |I1 ∪O1| = n + 1. Let p2 = (I2|O2)
be any potential parent of of p1. We distinguish two cases:

Case |O1| = 1: This implies I1 = {a1, a2, ..., an−1, an}. We have that (p1, p2) /∈
Fblue, because, otherwise, we would have O2 = ∅. If (p1, p2) ∈ Fred, then by def-
inition O1 = O2 and I1 = I1\{an}.

Case |O1| ≥ 2: This implies O1 = {a1, a2, ..., ak−1, ak}, for some k ∈ [2, n−1].
We have that (p1, p2) /∈ Fred, because red edges require |O1| = 1.If (p1, p2) ∈
Fblue, then by definition we have that I1 = I2 and O2 = O1\{ak}.

In both cases, p2 is fully defined based on p1 and therefore the unique parent.
Since |I2 ∪O2| = n, the claim holds for p2 and thus for p1 as well. By induction,
the claim holds for all candidates in N . ut
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(▶|a)  (▶|b)  (▶|■)  (a|a)  (a|b)  (a|■)  (b|a)  (b|b)  (b|■)

(▶|a,b) (▶|a,■) (▶|b,■) (a|a,b) (a|a,■) (a|b,■) (b|a,b) (b|a,■) (b|b,■)     (▶,a|a) (▶,b|a) (a,b|a) (▶,a|b) (▶,b|b) (a,b|b) (▶,a|■) (▶,b|■) (a,b|■)

(▶|a,b,■) (a|a,b,■) (b|a,b,■)    (▶,a|a,b) (▶,a|a,■) (▶,a|b,■)    (▶,b|a,b) (▶,b|a,■) (▶,b|b,■) (a,b|a,b) (a,b|a,■) (a,b|b,■)    (▶,a,b|a) (▶,a,b|b) (▶,a,b|■) 

(▶,a|a,b,■) (▶,b|a,b,■) (a,b|a,b,■) (▶,a,b|a,b) (▶,a,b|a,■) (▶,a,b|b,■)

       (▶,a,b|a,b,■)

Fig. 5. Example of a complete candidate tree based on A = {I, a, b,�}. In reference
to Lemma 3, an example subtree of red edges is marked by a red background, while all
subtrees of blue edges attached to it are marked by a blue background. Together they
form the whole tree rooted in the base root ({I}|{a}).

(▶|a)                                                                              

(▶|a,b) (▶|a,■)                                                                                    (▶,a|a) (▶,b|a)                                                                               

(▶|a,b,■)                                (▶,a|a,b) (▶,a|a,■)                   (▶,b|a,b) (▶,b|a,■)                                                            (▶,a,b|a)                             

(▶,a|a,b,■) (▶,b|a,b,■)                 (▶,a,b|a,b) (▶,a,b|a,■)                  

       (▶,a,b|a,b,■)

T2

T3

T1

Fig. 6. We illustrate our tree cutting strategy using the tree rooted in the base root
({I}|{a}) from our running example (Figure 5). For the example place ({I, a}|{a})
we highlight the blue-edged subtree (T2) and red-edged subtree (T1) referred to in
Lemma 3. In reference to Lemma 4 we indicate the subtrees attached by blue edges,
which coincides with the blue-edged subtree (T2), and the subtrees attached by red
edges (T3). We emphasize that T1 6= T3.

5.4 Tree Traversal and Pruning of Candidate Space

Definition 7 (Tree Traversal Strategy). Let L be a log, τ threshold, and A
the set of activities contained in L. Let CT = (N,F ) be the complete candidate
tree based on A, with N = Pcand. We traverse one connected tree after the other,
by using a depth-first strategy starting on each base root of CT .

Let p =(I|O) be a visited place. If p is fitting, i.e. �τL(p), we add it to Pfit.
If p is underfed (5τL(p)), we skip all subtrees attached to p by a blue edge. If
p is overfed (4τL(p)) and O = {a} with @a′ ∈ A : a′ >o a, we skip all subtrees
attached to p by a red edge. After skipping a subtree this way, we proceed with
our traversal as if we had already visited those places.

Formalized in Theorem 1, we show that this strategy allows us to skip sets of
unfitting places and at the same time guarantee, that no place in Pfit is missed.

Lemma 3. Let L, τ be a given log and threshold, CT = (N,F ) a complete
candidate tree and p1 ∈ N any candidate. If 5τL(p1) (4τL(p1)), then for all
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candidates p2 ∈ N within the blue-edged (red-edged) subtree rooted in p1, we
have that 5τL(p2) (4τL(p2)).

Proof (Lemma 3). Let p1 = (I1|O1) ∈ N be a candidate with 5τL(p1) (4τL(p1)).
Consider any descendant p2 = (I2|O2) attached to p1 via a path of blue (red)
edges. From the definition of blue (red) edges (see Definition 6) we infer that
I1 = I2 and O1 ⊆ O2 (O1 = O2 and I1 ⊆ I2). Then from the monotonicity
results presented Lemma 1 it follows that 5τL(p2) (4τL(p2)). ut

According to Lemma 3, if a place p is underfed, then blue-edged subtree rooted
in p contains only underfed places, and if p is overfed, then the red-edged subtree
rooted in p contains only overfed places. In the following, we try to extend these
results to subtrees rooted in p in general. We will show that for subtrees attached
to p by blue edges this is possible in a straight-forward way. Unfortunately, due
to the asymmetry of the definition of the edges, the same argument does not
always apply to subtrees attached by red edges: here it is entirely possible that
there are blue edges within the corresponding subtree, and “overfedness” of p
cannot be necessarily extended to the contained places. This is illustrated in
Figure 6.

Lemma 4. Let L, τ be a given log and threshold, CT = (N,F ) a complete
candidate tree and p1 = (I1|O1) ∈ N any candidate. If 5τL(p1), then for all
candidates p2 within the subtrees attached to p1 with a blue edge we have 5τL(p2).
If 4τL(p1) and O1 = {a} with @a′ ∈ A : a′ >o a, then for all candidates p2 within
the subtrees attached to p1 we have 4τL(p2).

Proof (Lemma 4). Assume 5τL(p1). Due to the definition of blue edges, it holds
for each child p′ = (I ′|O′) in a subtree attached to p1 by such an edge, that
|O′| > |O1|, and thus in particular |O′| ≥ 2. By definition, all descendants of p′

have at least two outgoing activities. This implies that there is no red edge in
the whole subtree, since they require by definition at most one outgoing activity.
Thus, by Lemma 3, for every place p2 in a subtree rooted in such a p′ we have
5τL(p2), and the first claim holds.

Now assume 4τL(p1) and O1 = {a} with @a′ ∈ A : a′ >o a. Due to the
definition of red edges, it holds for p1 and each descendant p′ = (I ′|O′) of p1

reachable by red edges, that O′ = {a}. This implies that there is no blue edge
in the whole subtree rooted in p1, since they require the existence of an activity
a′ with a <o a

′. Thus, by Lemma 3, for every place p2 in the subtree rooted in
p1, we have 4τL(p2). ut

Theorem 1. Given a log L, a threshold τ and the complete candidate tree CT =
(N,F ) with N = Pcand, let Pfit be the set of fitting places with respect to L and
τ , that is {p ∈ N | �τL(p)}. Let Pvisited be the set of places visited by our tree
traversal strategy described in Definition 7. It holds that Pfit ⊆ Pvisited ⊆ Pcand.

Proof (Theorem 1). As proven in Lemma 2 every candidate is contained in ex-
actly one tree rooted in a base root and is thus visited exactly once by standard
depth-first search. Thus Pvisited ⊆ Pcand.
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Using depth-first search for tree traversal guarantees that for any visited
candidate p, we visit the complete subtree rooted in p, before proceeding to
another subtree. Thus skipping a subtree does not influence the traversal of
other subtrees. If p is underfed/overfed, we can apply Lemma 4 to guarantee
that all places contained in the skipped subtrees are underfed/overfed as well.
Thus no fitting places are skipped, and we have that Pfit ⊆ Pvisited ⊆ Pcand. ut

As mentioned earlier, we cannot store the complete candidate tree due to its
exponential size, and thus the challenge of the tree traversal lies in the determin-
istic computation of the next candidate based on limited information only. In
our algorithm, this information is only the last candidate and its fitness status.
We define a total ordering on the set of places easily computable based on the
given orderings >i, >o. We can use this ordering to deterministically select the
next subtree to traverse based on the current candidate. The fitness status is
used to decide whether to actually traverse the selected subtree, or skip it and
select the next one.

While the theoretical worst-case scenario still requires traversing the full
candidate space, we have achieved a drastic increase in performance in practical
applications. This is presented in detail in Section 7.

5.5 Evaluation of Potentially Fitting Candidates

For each place visited during candidate traversal, we need to determine its fitness
status. Fitting places are added to the set of fitting places Pfit, which will be
the input for the post-processing step (see Section 5.6). Overfed and underfed
places are not added, instead this fitness status can be used in the context of
candidate traversal to skip sets of unfitting places.

To determine the fitness status of a place p = (I|O), we use token-based
replay. We replay every trace σ ∈ L on the place p: for each activity a ∈ σ,
from first to last, if a ∈ O we decrement the number of tokens at the place by
one. Then, if a ∈ I we increment the number of tokens by one. If the number of
tokens becomes negative we consider the place to be underfed with respect to
this trace, that is 5σ(p). Otherwise, if the trace has been fully replayed and the
number of tokens is larger than zero, we consider the place to be overfed, that
is 4σ(p). Note that the place can be underfed and overfed at the same time.
Based on the replay results of the single traces and the user-definable threshold
τ (see Definition 5), we evaluate the fitness status of the place with respect to
the whole log.

5.6 Post-Processing

In the previous step, a subset of places Pfit was computed. These are exactly the
places considered to be fitting with respect to the given log L and threshold τ .
However, many of them can be removed without changing the behavior of the
Petri net implicitly defined by Pfit. Since the process model we return is likely to
be interpreted by a human being, such places are undesirable. These places are
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called implicit or sometimes redundant and have been studied extensively in the
context of Petri nets ([17–21]). In the post-processing step, we find and remove
those undesirable places by solving an Integer Linear Programming Problem as
suggested for example in [21]. The resulting set of places Pfinal ⊆ Pfit is finally
inserted into the Petri net that forms the output of our algorithm.

6 Implementation

We implemented our algorithm as a plug-in for ProM ([22]) named eST-Miner

using Java. There are many ways in which our idea of organizing the candidate
space into a tree structure can be optimized for example with respect to certain
types of models, logs or towards a certain goal. Other ideas on how to improve
performance can be found in [3].

In our implementation, we investigated the impact of the orderings of the
ingoing and outgoing activity sets (>i, >o in Section 5) on the fraction of cut
off places. They determine the position of candidates within our tree structure.
If these orderings are such that underfed/overfed places are positioned close to
the root, this leads to large subtrees and thus many places being cut off due
to monotonicity results. In Section 7, we present first results of testing different
activity orderings and evaluate their impact.

7 Testing Results and Evaluation

In this section, we present the results of testing our algorithm on various data
sets. We use a selection of artificial log-model pairs to demonstrate our ability to
rediscover complex structures and deal with noise. The efficiency of our search
space pruning technique and the resulting increase in speed are evaluated using
artificial logs as well as real-life logs. An overview of these logs is given in Table 1.

Rediscoverability of models: In Figure 7, a simple model is shown, which in-
cludes non-free choice constructs: the places ({a}|{e}) and ({b}|{f}) are not
part of any directly follows relation, and are therefore not discovered by most
existing algorithms that provide formal guarantees. Well-known discovery tech-
niques like Alpha-Miner variants ([4]) or the Inductive Mining family ([5]) fail at
such tasks. Attempts to extend the capabilities of Alpha Miner to discover such
places ([4]) have been only partially successful. These approaches may result in
process models that cannot replay the event log. In some cases, the model may
have no fitting traces due to livelocks or deadlocks. More complex structures
involving non-free choice constructs, like the model depicted in Figure 8, are
difficult to mine and not rediscovered by most algorithms ([4]).

In contrast to existing non-region-based algorithms, our approach guarantees
that all fitting places are found, and thus we are able to rediscover every model
that is free of duplicate and silent transitions, assuming that the log is com-
plete (i.e., non-fitting places can be identified). In particular, we can rediscover
both models shown in Figures 7 and 8.
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Table 1. List of logs used for evaluation. The upper part lists real-life logs while the
lower part shows artificial logs. Logs are referred to by their abbreviations. The Sepsis

log has been reduced by removing all traces that occur at most twice. The log HP2018

has not yet been published. The much smaller 2017 version can be found at [23]. We use
a reduced version with all single trace variants removed. The log Teleclaims* results
from removing the natural start and end activity activities in the log Teleclaims

and removing the 15 % less common traces. The Artificial1 log contains a single
trace 〈a, b, c, d, e, f〉. The log Artificial2 is a log generated based on a random model
containing a loop, XOR-Split and silent transition.

Log Name Abbreviation Activities Trace Variants Reference

Sepsis-mod Sepsis 11 27 [24]
HelpDesk2018SiavAnon-mod HD2018 11 595 (see caption)
Road Traffic Fine Management RTFM 11 231 [25]

Teleclaims Teleclaims 11 12 [26]
Teleclaims-mod Teleclaims* 9 12 [26]
repairexample Repair 12 77 [26]
running-example RunEx 8 6 [26]
MyLog1 Artificial1 6 1 (see caption)
MyLog2 Artificial2 7 78 (see caption)
N7 a++CE 7 3 [4]

⯀⯈

Fig. 7. The shown model can be rediscovered by our algorithm. Since (a, e) and (b, f)
are not part of any directly follows relation, most other discovery algorithms fail to
discover the corresponding places ([4]).

Dealing with noise: By setting the threshold τ to 1 we require every fitting
place, and thus the whole discovered Petri net, to be able to perfectly replay
every trace of the log. However, event logs often contain some noise, be it due
to exceptional behavior or due to logging errors. Often, we want to ignore such
irregularities within the log when searching for the underlying model. Therefore,
we suggest using the parameter τ as a noise filtering technique utilizing the
internal working of our algorithm. In contrast to approaches modifying the whole
event log, this allows us to filter for each place individually: based on the portion
of the log relevant for the current place, we can ignore a certain fraction of
irregular behavior specified by τ without losing other valuable information.

We test our implementation using different values for τ on logs modified to
contain several levels of noise. We run our algorithm with different values for
τ on logs with 1000 traces and added random noise of 2, 4, 10 and 20%. The
resulting model is tested for precision with respect to the original log using the
ETC Align Precision Metric implemented in ProM ([22]). As shown in Figure 9,
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Fig. 8. The Petri net shown in this Figure is an example of a model rediscoverable
by our algorithm, that existing non-region-based algorithms fail to find ([4]). The only
free choice is whether to do B,C or D after doing A. The rest of the trace is implicitly
determined by this choice.
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Fig. 9. For various levels of noise (0, 2, 4, 10, 20 %) introduced randomly on logs with
1000 traces each, we present the precision results (ETC Align) resulting from applying
our algorithm with different values for the threshold τ . Lower values of τ have a positive
impact on precision, and all tested models could be rediscovered for certain values of τ .

a lower threshold τ , in general, leads to increasing precision of the discovered
model. In fact, for adequate values of τ the original models could be rediscovered.
Thus, by choosing adequate values for the threshold τ , our algorithm is able to
handle reasonable levels of noise within the given event log.

Measuring performance: The main contribution of our approach lies in our strat-
egy of computing the set of fitting places Pfit. The post-processing step, where
implicit/redundant places are removed, has not been optimized and constitutes
an application of existing results. Therefore our performance evaluation focuses
on the first step. Based on several real-life logs as well as artificial logs we inves-
tigate two measures of performance: first, the absolute computation time needed
to discover Pfit, compared to the time needed by a brute force approach travers-
ing the whole set of candidates (Pcand), and second, the fraction of places that
were cut off, that is Pskipped/Pcand. For each log, we performed 10 runs of our
algorithm using two mutually independent random activity orderings for in- and
outgoing activity sets to survey the influence on these performance measures.

Fraction of skipped places: The fraction of cut-off places can vary greatly be-
tween different event logs, but also within several runs of our algorithm on the
same event log, depending on the chosen activity orderings for in- and outgoing
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Fig. 10. Depending on the given log and activity orderings, the fraction of places
skipped by our algorithm can vary greatly. In this figure, we present box plots showing
the fraction of cut-off places Pskipped for 10 sample runs of our algorithm on differ-
ent logs, given as the fraction of the complete candidate space (Pskipped/Pcand). The
threshold τ has been set to 1 for all runs.

activities. In Figure 10, we present the results for several logs, based on 10 runs
of our algorithm for each. Interestingly, the fraction of cut-off places is highest
for the real-life event logs RTFM, HD2018, Sepsis and Teleclaims. For HD2018
it goes as high as 96 % of the candidate places, that were never visited. The
reason for this could be the more restrictive nature of these large and complex
logs, resulting in a smaller set of fitting places Pfit, and thus more possibilities to
cut off branches. The lowest results are obtained for the artificial Artificial1
log. Here we could confirm the expectation stated in Section 6, that an ordering
of high average index first for ingoing activities and lo average index first for
outgoing activities, leads to significantly more places being cut off than using
the same ordering for both activity sets.

Comparison to the brute force approach: We evaluate the increase in perfor-
mance of computing Pfit using our algorithm pruning the candidate space, in
comparison to the brute force approach traversing the candidate space without
any pruning. We choose three real-life event logs, RTFM, HD2018 and Sepsis

and perform 10 runs of our algorithm on each. In Figure 11 the results of these
tests are presented: we compare the time needed by the brute force approach
to the minimum, maximum and average time needed for each of the three logs.
As is to be expected, the impact of applying our technique is most significant
for large logs, where replaying the log on a place takes a long time, and thus
cutting off places has a big effect. This is the case for the RTFM and HP2018 logs.
The Sepsis log, on the other hand, has shorter and fewer traces, reflected in a
smaller difference in the time needed by our algorithm compared to the brute
force approach.
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Fig. 11. Minimal, maximal and average time in milliseconds needed by 10 sample runs
of our tree cutting algorithm on three real-life logs, with τ = 1, compared to the time
needed by the brute force approach traversing the complete candidate space.

8 Conclusion

We have introduced a process discovery algorithm inspired by language-based
regions to find a model fitting with respect to a given event log and threshold τ .
In contrast to non-region-based approaches our algorithm is able to discover
complex structures, most prominently implicit dependencies expressed by non-
free choice constructs. In particular, for τ = 1, we can guarantee that the set of
fitting places we discover defines a Petri net, such that the language of this net
is the minimal language containing the input language (given by the event log).
Our candidate traversal strategy allows us to skip large parts of the search space,
giving our algorithm a huge performance boost over the brute force approach.

A well-known disadvantage of applying region theory is, that in the context
of infrequent behavior within the log, the resulting models tend to be overfitting,
not reflecting the core of the underlying process. We can avoid this issue, since
our approach lends itself to using the threshold τ as an intuitive noise control
mechanics, utilizing the internal workings of our algorithm.

We can see several possibilities for future research based on the presented
ideas. The most important contribution of our work is the reduction of the
search space to merely a fraction of its original size: we organize all candidate
places into trees and are able to cut off subtrees, that are known to contain only
unfitting places. Our approach would strongly benefit from any strategy allowing
for more subtrees to be cut off or pre-pruning of the candidate space. Note, that
within our work we focus on formal strategies that provide the guarantee that all
fitting places are discovered. For practical applications it is important to develop
heuristic techniques to increase the number of skipped places. Compared to many
other approaches this is relatively easy.

New insights can be gained from further testing and evaluating different ac-
tivity orderings or tree traversal schemes. By developing heuristics on how to
choose orderings, based on certain characteristics of the given log, one can opti-
mize the number of skipped candidate places without losing formal guarantees.
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These guarantees are no longer given, when applying heuristic approaches that
allow for fast identification and skipping of subtrees that are likely to be uninter-
esting. However, for practical applications, the increase in performance is likely
to justify the loss of a few fitting places. Alternatively, by evaluating the more
interesting subtrees first, the user can be shown a preliminary result, while the
remaining candidates are evaluated in the background. User-definable or heuris-
tically derived combinations of ingoing and outgoing activity sets can either be
cut off during traversal, or excluded from the search space from the very be-
ginning. Finally, note that our approach allows for each subtree to be evaluated
independently, and thus lends itself to increase performance by implementing it
in a parallelized manner.

A major issue of our algorithm is the inability to deal with silent and duplicate
activities. There exist approaches to identify such activities, either as a general
preprocessing step ([27]) or tailored towards a particular algorithm ([28,29]). The
applicability of such strategies to our approach remains for future investigation.

We emphasize that our idea is applicable to all process mining related to Petri
net definable models, and therefore we see potential not only in our discovery
algorithm itself, but also in the combination with, and enhancement of, existing
and future approaches.
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