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Abstract. Process mining is a multi-purpose tool enabling organiza-
tions to improve their processes. One of the primary purposes of process
mining is finding the root causes of performance or compliance problems
in processes. The usual way of doing so is by gathering data from the
process event log and other sources and then applying some data mining
and machine learning techniques. However, the results of applying such
techniques are not always acceptable. In many situations, this approach
is prone to making obvious or unfair diagnoses and applying them may
result in conclusions that are unsurprising or even discriminating (e.g.,
blaming overloaded employees for delays). In this paper, we present a
solution to this problem by creating a fair classifier for such situations.
The undesired effects are removed at the expense of reduction on the
accuracy of the resulting classifier. We have implemented this method as
a plug-in in ProM. Using the implemented plug-in on two real event logs,
we decreased the discrimination caused by the classifier, while losing a
small fraction of its accuracy.

1 Introduction

Motivation. Academic and commercial process mining tools aim to find the root
causes of performance or compliance problems in processes. Mainly, a classifier,
say a decision tree, is created using the data gathered from the process and then
the rule mining is done using that decision tree [14]. However, this approach
may lead to diagnoses that are not valuable. In some cases, the main cause of
the problem is already known and essentially cannot be altered. Also, due to
the strong correlation of the known main cause and the problem, it may become
impossible to see the other minor but probably more practically valuable causes
of the problem. Consider the following two scenarios:

(i) there is a bottleneck in the process and it is caused by the most busy em-
ployee, or

(ii) there are deviations caused by the most experienced resources taking the
most difficult cases.

In these scenarios, it is likely that the most busy employees or the most experi-
enced resources are declared the main reasons for the bottleneck or deviations in
the process. This is not just unfair but also does not provide novel insights (just
stating the obvious). Even if we remove the attribute conveying the employee
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or the resource, still rules that proxy these attributes would be revealed as the
result of the traditional rule mining [18]. In these cases, it is essential to make
inference about the less trivial root-causes of the problem in the process.

As another application, consider that for a given process we are interested
in questions which are related to investigating the process while ignoring the
effect of different values of a particular attribute. “Following the progress of
career paths while eliminating gender differences” is one example of these sorts
of situations where we need to remove the correlation between two attributes
in the data. Here we need to infer the rules governing the process ignoring the
correlation between the effect of different values of that particular attribute and
the process attribute of interest.

Discrimination-aware data mining. Each population can be partitioned into
several subgroups according to the properties of its members, e.g., race, age, or
academic degree. Discrimination means treating a subgroup of people, called
sensitive group, in an unfair way merely because of being a member of that sub-
group. There is a possibility that negligent usage of new advanced technologies,
especially in the field of data mining and machine learning, inadvertently cause
discrimination. To avoid these phenomena, detecting discrimination and design-
ing fair predictors have been studied intensively(see [3,6,11,12,18,19]). This paper
is the first paper to address this problem in the context of process mining.

Demographic parity is one of the most studied definitions of fairness that
indicates the portion of people in the sensitive subgroup who receive the desired
result must be the same as the whole population. To maintain this criterion,
in some approaches the training data is manipulated. This is done by changing
the labels of some items in the training data [8,9,18], or by applying carefully
designed re-sampling methods [9]. In another approach, [18], the representation
of the data is changed, and the fairness is maintained as a side-effect of fair
representations. In [10], demographic parity in a decision tree is retained by
taking into account the information gain of the sensitive attribute as well as the
class attribute as the criteria used for splitting the internal nodes. In [10], the
relabeling technique is also used to modify leaves of the resulting decision tree.

Besides demographic parity, other notions of fairness have been formalized
in the literature. For example, equal opportunity and equal odds have been in-
troduced in [7], and individual fairness has been introduced in [4]. We refer the
interested readers to [2] for a review of various fairness criteria.

Process mining. Process mining is the link between model-based process anal-
ysis and data-oriented analysis techniques; a set of techniques that support the
analysis of business processes based on event logs. In this context, several works
have been dedicated to decision mining and finding the correlation among the
process data and making predictions [5,13,14,16].

Ethical and legal effects of process mining can be considered in two cate-
gories; confidentiality and fairness issues. Confidentiality in the process mining
has recently receiving attention [15]. To the best of our knowledge, there is no
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work in the area of process mining dedicated to investigating fairness issues. This
is the first publication considering discrimination within a given process.

Our Results. We provide a solution for the previously mentioned problems. Spec-
ifying a problem in the process, we propose an approach by adopting the tech-
niques available in data mining for removing discrimination from classifiers in
the area of process mining to avoid unfair or obvious conclusions in such sce-
narios. We do that by declaring the attribute that indicates the existence of the
problem in the given situation as the class attribute and the attribute that we
want to decrease its dependency to the class attribute as the sensitive attribute.
We consider the class attribute to be binary with the following two values: +
indicates the desirable result conveying the problem of interest has not been
faced while − has the opposite meaning. The sensitive attribute is also assumed
to be binary, where / convey belonging to the sensitive group while , convey
belonging to the rest of the population (favorable group). In the previous exam-
ples, we can consider the existence of the delay or deviation in the cases as the
class attribute and the employee being busy or highly experienced as the sensi-
tive attribute. Now, we can consider the problem as a discriminatory case and
remove the dependency of the class and the sensitive attributes in the resulting
classifier by creating a fair classifier. Doing so, the resulting rules would not be
discriminatory against the sensitive group. Also, this technique masks some of
the causes of that problem and focus on the other ones. Consequently, we can
aim at finding more feasible solutions for the problem in the process by finding
other possibly less obvious or even hidden causes of the problem.

We have implemented this approach as a ProM plug-in. In this plug-in, we
create two decision trees using the data gathered about the process. The first
one is a standard decision tree (using algorithm C4.5) describing the correlations
between dependent and independent attributes as they are. The second one is a
fair decision tree, in which the dependency between the sensitive and the class
attributes is decreased or removed. The goal is to create a decision tree with no
unacceptable discrimination and the maximum possible accuracy. A snapshot of
the plug-in implemented in ProM is depicted in Figure 1.

The remainder of the paper is organized as follow. In Section 2, we present the
problem statement. A high-level overview of the proposed approach is presented
in Section 3. The experimental results of applying the implemented method
on some real event logs are presented in Section 4. Finally, in Section 5, we
summarize our approach and discuss directions for further research.

2 Problem Statement

To analyze conformance and performance problems, we use event data and pro-
cess models (discovered or hand-made).1 An event log is a collection of traces
and each trace is a collection of events related to the same case. Also each trace

1 We assume the reader to be familiar with the concepts like set, multi-set, and func-
tion. Given a non-empty set X, we denote all the non-empty subsets of X by P(X).
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Fig. 1. The two decision trees created by the implemented plug-in. The left one is a
standard decision tree and the right one is a fair decision tree. The yellow leaves are
the ones that have been relabeled to ensure fairness.

may be associated with some attributes. Consider Uact as the universe of all
possible activity names, Utime the universe of all possible time stamps, Uatt the
universe of all possible attribute names, Uval the universe of all possible values,
and, Umap : Uatt 67→ Uval. Also, let values : Uatt 7→ P(Uval) be the function that
returns the set of all possible values for each attribute name. We define an event
log as follow:

Definition 1 (Event Log). An event is an element of Uact × Utime × Umap
and the universe of all possible events is denoted by E. A log is an element of
P(Umap × P(E)) and the universe of all possible logs is denoted by L. We call
each t ∈ L, where L ∈ L, a trace.

To work with event logs, we need the following helper functions:

– Given an event e = (act, time,map) ∈ E , πact(e) = act, πtime(e) = time,
and, πmap(e) = map.

– Given t = (map,E) ∈ L, where L ∈ L, then πmap(t) = map and πevents(t) =
E.

– Given E ∈ P(E), then πmaxtime(E) = arg maxe∈E πtime(e), πact(E) = {e ∈
E|πact(e) = act}, and, E≤time = {e ∈ E|πtime(e) ≤ time}. This function
returns the set of events of a trace whose time stamps are at most equal to
a given time stamp.

We assume that each event in a given log L is unique and also has a unique
time stamp. In other words, ∀t, t′ ∈ L∀e ∈ πevents(t)∀e′ ∈ πevents(t′)

(
πtime(e) =

πtime(e
′) =⇒ (e = e′ ∧ t = t′)

)
.

Given two sets A and B, a partial function f : A 67→ B is defined as a function
f : A′ 7→ B for some A′ ⊆ A. We say f(a) = ⊥ if a 6∈ A′.
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If the problem in the process is about the traces, like delay in some cases, then
for a given trace all the values of its trace and event level attributes might be
relevant. However, if the problem is related to a specific activity, like a bottleneck
in activity act, then we need to extract the data from the trace attributes plus
the attributes of a subset of its events that occur before the occurrence of that
specific event. Also, the class attribute may occur several times in a given trace.
We define the notion of a situation to handle such cases as follows:

Definition 2 (Situation). We define a situation as an element in (Umap ×
P(E)). The set of all possible situations is denoted by Usit. Given a log L ∈ L,
we define the set of all situations derived from it as:

SL =
⋃

(map,E)∈L

( ⋃
e∈E

{(map,E≤πtime(e))}
)
.

It is obvious that L ⊆ SL. Any S ⊆ SL is called a situation subset of L. For a
given log L, there are two main types of situation subsets. The first one is the
trace situation subset which is SL,⊥ = L. The second type is the event specified
situation subsets which includes all SL,act = {(map,E) ∈ SL|πact(πmaxtime(E)) =
act}, where act ∈ Uact and SL,act 6= ∅.

An attribute may be a trace or an event level attribute. So, it may happen
several times with different values in a trace. To specify an attribute, besides
the name of the attribute, we need to know if it is a trace or an event attribute
and if it is an event attribute, we need to know to which events does it belong.
To concretely specify an attribute, we use the situation feature notion defined
as follows:

Definition 3 (Situation Feature). For any given a ∈ Uact ∪ {⊥} and att ∈
Uatt, we call sf a,att : Usit 67→ Uval a situation feature. Given a situation (map,E)
we define sf a,att((map,E)) as follows:

sf a,att((map,E)) =

{
map(att) a = ⊥
πmap(πmaxtime(πa(E)))(att) a ∈ Uact

.

We denote the universe of all possible situation features by Usf . Given a situation
feature sf a,att, we define values(sf a,att) = values(att). Also, for a given n ∈ N,
EP ∈ Unsf is a situation feature extraction plan of size n, where Unsf is defined
as Usf × · · · × Usf︸ ︷︷ ︸

n times

.

A situation feature extraction plan can be interpreted as the schema, the tuple
composed of those situation features that are relevant to the given problem in
the process.

The first step of solving any problem is concretely specifying the problem.
We call such a problem description a situation specification which is defined as
follows:
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Definition 4 (Situation Specification). A situation specification is a tuple
SS = (EP , ssf , csf , ε) in which

(i) EP ∈ Unsf , where n ∈ N, is the situation feature extraction plan which in-
cludes all the situation features for which we are going to investigate their
effect on the given problem.

(ii) ssf ∈ Usf , the sensitive situation feature where values(ssf ) = {,,/} and
ssf 6∈ EP.

(iii) csf ∈ Usf , the class situation feature where values(csf ) = {+,−}, csf 6∈ EP,
and csf 6= ssf .

(vi) ε ∈ [0, 1], indicating the acceptable level of discrimination against ssf (the
amount of acceptable dependency between ssf and csf ).

For a given situation specification, we go through the following three steps;

1. Enriching the log: The event log is enriched with several attributes that
are driven from the given event log or other sources of information.

2. Extracting the data: The relevant independent situation features, sensi-
tive and class situation features values are driven from the enriched log.

3. Learning fair classifier: Two decision tree classifiers are created by the
C4.5 algorithm. Then a relabeling technique is used to remove the unaccept-
able discrimination from one of the decision trees.

Fig. 2. The general framework proposed for fair root-cause analysis. First, according
to the situation specification the event log is enriched by preprocessing the log and
other sources of information. Then, the data is extracted from the enriched event log.
Finally, two standard and fair classifier are created. Based on the analysis result, it is
possible to adapt the situation specification to gather additional insights.

The general approach of our method is depicted in Figure 2. In this approach,
the first two steps are related to the data extraction and the third one aims at
creating a fair classifier.

3 Approach

We go through every one of the steps for creating a fair classifier for a given
situation specification, mentioned in the previous section, in more details.
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1. Enriching the log. Let SS = (EP , ssf , csf , ε) be the given situation specifica-
tion. If EP includes situation features that can not be directly extracted from the
given log L, we enrich the log by augmenting each trace of it. In this step, we add
some attribute values to the traces and its events. These added attributes can
be related to any one of different process characteristics; time perspective, data
flow-perspective, control-flow perspective, conformance perspective, or resource
organization perspective. They may be driven from the given log, conformance
checking results from replaying the traces on a given Petri-net model, or any ex-
ternal information resource like the weather information. Here, we assume that
we have access to the log, Petri-net modeling the process of the log and the
conformance checking results of replaying the log on the given model. The range
of possible attributes that can be used to enrich the log is broad. We have im-
plemented some of them. For example, some of the implemented trace attributes
are trace-duration, trace-delay, sub-model-duration , and, deviation. Some of the
implemented event attributes are next-activity-in-the-trace, previous-activity-in-
the-trace, total-workload, and resource-workload. The formal definitions of these
attributes are beyond the scope of this paper2.

Extracting the data. To discover meaningful dependency results by the decision
tree, we need to capture the data such that the causality relations among them
and the class attribute are not violated. To do so, given csf = sf a,att, we apply
the following two rules while extracting the data;

1. If a ∈ Uact, each trace may map to several situations and the data should
be extracted from that part of the trace that happens before the occurrence
of csf . If a = ⊥, then csf is related to a trace level attribute and the data
should be extracted from the whole trace.

2. The value of the independent situation feature with the closest occurrence
time to the occurrence of csf must be collected.

The second rule is valid assuming that if one of the independent situation features
has happened several times before the occurrence of csf in a trace, the one that
is closest to the occurrence of csf regarding the time, has the most effect on its
value.

To follow the first rule, for the given log L and the situation specification
SS = (EP , ssf , csf , ε), where csf = sf a,att, we set S = SL,⊥ if a = ⊥ and we
set S = SL,act if a = act. If S = SL,⊥, then each situation is a trace in the log.
However, if S = SL,act, then for all s ∈ S we have πmaxtime(πevents(s)) = act.
i.e., S is the set of all situations in SL for which the activity name of the event
with maximum time stamp is act.

The final step for extracting the data is creating a data table and annotating
each row of the table by adding the values of sensitive and class situation feature
to it. We create the data table and annotate it as specified in the following
definition. Note that each situation is mapped to a row of the table.

2 Refer to [14] for the formal definition of some of the properties.
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Definition 5 (Situation Feature Table). Given a situation feature extraction
plan EP = (sf a1,att1 , . . . , sf an,attn), and a situation set S ⊆ Usit, a situation
feature table is a multi-set which is defined as:

TS,EP = [(sf a1,att1(s), . . . , sf an,attn(s))|s ∈ S].

For a log L ∈ L, S ⊆ SL, we call TS,EP a situation feature table of L.
For a given situation feature table TS,EP and csf , ssf ∈ Ussf for which ssf 6=

csf and csf , ssf 6∈ EP and ∀s∈S (csf (s) 6= ⊥ ∧ ssf (s) 6= ⊥), we define an
annotated situation table ATS,EP,ssf ,csf as:

ATS,EP,ssf ,csf = [(sf a1,att1(s), . . . , sf an,attn(s), ssf (s), csf (s))|s ∈ S].

We call each element of ATS,EP,ssf ,csf an instance. For a given instance insts =
(sf a1,att1(s), . . . , sf an,attn(s), ssf (s), csf (s)) we define πEP (insts) =

(
sf a1,att1(s),

. . . , sf an,attn(s)
)
, πssf (insts) = ssf (s), and, πcsf (insts) = csf (s).

Here, ssf is the sensitive and csf is the class (label) situation feature. Also, each
member of insts ∈ ATS,EP,ssf ,csf where s ∈ S can be seen as a row of the data
table in which πEP (insts) is the tuple including independent attribute values
and πcsf (insts) is the class attribute value of insts.

Learning fair classifier. We define a classifier as follow:

Definition 6 (Classifier). Let S be a set of situations and EP = (sf a1,att1 , . . . ,
sf an,attn) be a situation extraction plan and csf ∈ Usf such that ∀1≤i≤nsf ai,atti 6=
csf , then a classifier is a function class : TS,EP 7→ values(csf ).

Given a classifier class and an annotated situation table ATS,EP,ssf ,csf , then
the accuracy of class over ATS,EP,ssf ,csf is measured as:

acc(class,ATS,EP,ssf ,csf ) =
|[inst ∈ ATS,EP,ssf ,csf |class(πEP (inst)) = πcsf (inst)]|

|ATS,EP,ssf ,csf |
.

For fairness, we use demographic parity as the main concept. To measure the
discrimination in the data, we use the measure mentioned in [10], which is:

disc(ATS,EP,ssf ,csf ) =
|[inst ∈ ATS,EP,ssf ,csf |πssf (inst) = , ∧ πcsf (inst) = +]|

|[inst ∈ ATS,EP,ssf ,csf |πssf (inst) = ,]|
−

|[inst ∈ ATS,EP,ssf ,csf |πssf (inst) = / ∧ πcsf (inst) = +)]|
|[inst ∈ ATS,EP,ssf ,csf |πssf (inst) = /]|

.

By replacing πcsf (inst) with class(πEP (inst)) in this equation, we can measure
the discrimination imposed by the classifier class.

For the classifier, we use decision trees. It is worth mentioning that both the
classifier and the measure of discrimination can be changed according to the
given application.

The first step toward removing the discrimination has already been taken
during the creation of the classifier by not considering the sensitive situation
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feature for the classification purpose (Definition 6). As mentioned in many works,
e.g. [18], this is not enough due to the existence of correlation among different
situation feature values in a given situation feature table. The discrimination
in the classifier can be further eliminated by the relabeling technique. In this
paper, we relabel leaves in the decision tree to balance accuracy and fairness.
However, other discrimination free classifiers can be used [1,17,18].

As mentioned before, in the implemented plug-in two classifiers are gener-
ated. The first one is a tree classifier that is generated by J48 tree classifier
implementation of C4.5 algorithm in WEKA package. Then, if the discrimina-
tion in the resulting decision tree is more than an acceptable threshold ε, the
leaves of the decision tree are relabeled to create a fair classifier. For the relabel-
ing, we use an algorithm similar to the one mentioned in [10]. In [10], the leaves
of the tree are ordered in descending order of the ratio of the discrimination gain
and accuracy lose of relabeling each leaf. Then according to this order, leaves are
relabeled until the discrimination in the classifier tree is lower than ε. As men-
tioned in [10], the problem of finding the set of leaves to be relabeled such that
the discrimination in the decision tree is lower than a given threshold ε with the
lowest possible negative effect on the accuracy of the decision tree is equivalent
to the knapsack problem. In the relabeling algorithm implemented in the ProM
plug-in, we use dynamic programming and rounding to choose approximately
the best possible set of leaves to be relabeled.

Note that in the context of process mining and root cause analysis, changing
the class label from + to - and from - to + at the same time may not be desirable.
Consider a case where the problem in the process is the delay in some cases. Then
+ label of a situation means being on-time. Changing the label of some leaves
from + to - means considering some delay where they do not exist. So in some
cases we may need to restrict the relabeling technique to just desirable or just
undesirable labeled leaves of the tree. Note that if we restrict the relabeling,
there might be cases where the discrimination of the fair tree is higher than
given ε. In these cases the discrimination in the fair decision tree would be close
ε.

4 Implementation and Experimental Results

The approach presented in Section 3 has been implemented as a plug-in of ProM
which is an open source framework for process mining. The implemented plug-in
is available under the name Discrimination aware decision tree.

The inputs of the plug-in are the event log, the Petri-net model of the process,
and, the conformance checking results of replaying the given log on the given
model. Using these inputs, several derivative attributes for enriching traces have
been implemented.

The current implementation focuses on three types of problems in a given
process:
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– Routing problems: When there is a choice in the model of the process,
what was the reason that some cases took one choice while the others took
another?

– Deviation problems: This category refers to the questions like why a
specific activity has been skipped or what was the reason that some traces
do not comply with the given model.

– Performance: This category includes questions like what was the reason
for the delay in the cases or why a specific activity takes more time in some
cases.

To illustrate the fair analysis of these problems we use two real data logs, the
hospital billing3 event log and receipt phase of an environmental permit appli-
cation process (WABO) CoSeLoG project4 (receipt log for short). We use the
last 20000 traces of hospital billing log in the experiments which include 71188
activities. The receipt log includes 1434 traces and 8577 activities. In this initial
evaluation, we created a controlled experiment with a known ground truth. The
discrimination is added to the event logs artificially and then the altered logs
are used to evaluate the method and investigate the effect of removing discrim-
ination on the accuracy of the created fair decision trees. In all the experiments
the same setting has been used. For example in all the experiments ε = 0.05
and there was no limit for applying relabeling technique. Also for each event
log, the same set of independent situation features has been chosen and all the
parameters for creating the decision tree were the same. 60 percent of the data
has been used for training, and 40 percent of the data has been used for testing
the classifier. The results of our experiment are depicted in Figure 3. The first
three charts present the results for the receipt process and the other three charts
present the results for the hospital billing process regarding the three problems
that have been mentioned above. Chart (a) and chart (d) show the results of
applying our technique when there is a performance problem in the process for
which we consider the delay in the traces. Chart (b) and chart (e) show the
results of applying our technique when there is a routing problem in the pro-
cess for which we consider the choice between “T05 Print and send confirmation
of receipt” and skipping this transition in the receipt process and the choice
between “BILLED” and skipping this transition in the hospital billing process.
Chart (e) and chart (f) show the results of applying our technique when there
is a conformance problem in the process for which we consider the existence of
deviation in the traces in both processes.

In each chart, the level of discrimination in the data is depicted on the x-axis
(and also by the blue curve for the sake of easy comparison). In each experi-
ment the level of discrimination in data (denoted by ‘discrimination data’, the
blue curve, in the charts), the level of discrimination in standard decision tree
(denoted by ‘discrimination standard tree’, the orange curve, in the charts), the
level of discrimination in fair decision tree (denoted by ‘discrimination fair tree’,
the gray curve, in the charts), the accuracy of the standard tree (denoted by

3 https://data.4tu.nl/repository/collection:event logs real
4 https://data.4tu.nl/repository/uuid:a07386a5-7be3-4367-9535-70bc9e77dbe6
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Fig. 3. The result of applying the implemented ProM plug-in on two real event logs. In
all these charts, the blue curve exhibits the level of discrimination in data, the orange
curve shows the level of discrimination in standard decision tree, the gray curve shows
the level of discrimination in a fair decision tree, the yellow color curve exhibits, and,
the green color curve exhibits the accuracy of the fair tree. The first three pictures
respectively show the results of applying our technique when there is (a) a perfor-
mance problem, (b) a routing problem, and (c) a conformance problem in the receipt
process. (d), (e) and (f) show the same results when the same problems are observed
in the hospital billing process. In all these experiments ε = 0.05 and the level of dis-
crimination in the data is depicted by the x-axis. In all these experiments, the level
of discrimination in the fair classifiers are less than the given threshold ε. Also, as the
level of discrimination increases in the data, the difference between the accuracy of the
fair decision tree and standard decision tree increases. Also in part (f), the fair decision
tree demonstrates a better performance than the standard decision tree in terms of
accuracy.
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Fig. 4. The result of applying imple-
mented plug-in with different values
for parameter ε which is depicted in
purple in the chart. In this chart, the
value of ε shown by the pink curve.
The level of discrimination in the data
in all these experiments are the same.
In all these experiments, the level of
discrimination in the fair decision tree
is lower than the given threshold ε.
Also, the accuracy of the fair decision
tree tends to be lower for the lower
values of ε.

‘accuracy standard tree’, the yellow color curve, in the charts), and, the accu-
racy of the fair tree (denoted by ‘accuracy fair tree’, the green color curve, in the
charts) are recorded. For example the two trees shown in Figure 1 are related
to the red vertical line in Figure 3(a), where the discrimination in the data is
0.48, the discrimination by the standard decision tree is 0.26, the discrimination
by the fair decision tree is 0.05, and the accuracy of standard and fair decision
tree are 0.84 and 0.79, respectively (ε = 0.05 and we set no limit for applying
relabeling technique).

As is depicted in Figure 3, we can reduce the discrimination on the sensitive
group at the expense of some reduction at the accuracy of the classifier. As ex-
pected, as the level of discrimination increases in the data, the amount of the
accuracy of the classifier that needs to be sacrificed for removing the discrimina-
tion increases. We need to be careful using this technique, as there are occasions
where discrimination may be put on the favorable group. This phenomenon is
also unfair. Surprisingly, in some cases like Figure 3(f), the fair decision tree
outperforms the standard decision tree in terms of accuracy. This phenomenon
has been reported in [10] as well. Note that in all the experiments the relabel-
ing technique with no limitation on the label of the leaf have been used, which
means, both leaves with + and - labels may get relabeled.

The chart in Figure 4, demonstrates the level of discrimination in the fair
decision tree and its accuracy for different settings of parameter ε. As expected,
the accuracy of the fair decision tree is lower when ε is smaller. Here, we use the
receipt log and delay in traces as the class situation feature.

To demonstrate that a fair classifier may affect the results of the root cause
analysis of a given problem in a process, an example based on an experiment on
a real event log is given in the Appendix A.
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5 Conclusion

The first step toward enhancing a process by removing one of its performance or
compliance problems is diagnosing the root causes of that problem. By using
standard data mining techniques for detecting the causes, the results might
be obvious and mainly regarding those parts of the process that can not be
altered. The other less obvious roots of the given problem are sometimes the
most precious diagnosis where the real improvement can be applied. To reveal
these less vivid causes of the problem we need to mask the obvious ones. We did
so by looking at the cause that we need to ignore its effect on the problem as the
sensitive attribute. Then removing the dependency between the sensitive and
the class attributes from the created classifier, we allow other causes to shine.
This is done at the expense of a small reduction in the accuracy of the resulting
classifier.

This research has several applications; detecting the discrimination within
a process, removing the discrimination from the process by replacing the fair
classifier with the current one, making more accurate and realistic judgments
about the root causes of the problem at hand.

This research can be extended in several directions. The first one is to add
new derived attributes to the log when enriching the log. The other one is altering
the fairness criteria, the classification method, or the technique for creating the
discrimination-free classifier depending on the application.
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A Example

To demonstrate how creating a fair classifier may affect the results of the root
cause analysis in a given process, consider the receipt process log (This is the
same event log that has been used in Section. 4). This event log contains the
records of the execution of the receiving phase of the building permit application
process in an anonymous municipality. A Petri-net model for this process is
depicted in Figure 5. One of the trace attributes in this log is responsible which
may takes one of 38 different values indicating which resource is responsible for
the corresponding case. Note that the resource responsible for the trace may
be different from the one who executes the trace. It is known that some of the
resources are more busy than others. Also, it is observed that in the given process
some of the traces have been delayed. We can augment the log with the trace-
delay attribute (sf trace,delay) where the threshold for the delay is set to 2 percent
of the maximum duration of all traces in this log (note that in this event log the
average duration of traces is 467263915 milliseconds which is roughly 1.96 percent
of the maximum duration of a trace in this event log); so, values(sf trace,delay)) =
{on-time, delayed}. In this log, we consider sf trace,responsible as the sensitive
attribute and the overloaded resources as the sensitive values, also, sf trace,delay
as the class attribute and on-time as the desirable outcome. The considered
situation specification is as follow:

– EP = {sf T06 Determine necessity of stop advice,Resource,
sf T06 Determine necessity of stop advice,Resourc Workload, sf trace,responsible,
sf trace,channel, sf trace,department, sf trace,group, sf trace,deadline, sf trace,deviation,
sf trace,number modelMove, sf trace,number logMove, }.

– ssf = sf trace,responsible, where the set of sensitive values of this situation
feature is

{Resource07, Resource08, Resource09, Resource11, Resource15,

Resource17, Resource18}.

– csf = trace-delay, where values(trace-delay) = {on-time, delayed} which
are renamed as values(trace-delay) = {desirable class, undesirable class}.

– ε = 0.

Fig. 5. The Petri-net of the receipt process generated by Inductive Miner.
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With this setting, the level of discrimination in this data log is 0.0954. Even
though we did not use te values of sf trace,responsible for the creation of the deci-
sion tree, the discrimination caused by the standard decision tree is 0.126 which
means that this tree could detect and amplify the discrimination through the
correlation among the different situation feature values.

Fig. 6. The Fair decision tree created by applying the implemented plug-in on the
receipt process. The relabeled leaf in the left side of the tree includes 9 situations,
all sensitive and delayed. The relabeled leaf on the right side of the tree includes 24
situations, 12 sensitive which 10 of them were delayed and 7 favorable situations which
4 of them were delayed.

To remove the correlation among the sf trace,responsible and sf trace,delay, we
create a fair tree in which ε = 0. Note that we can convey that the delay caused
by the busier resources are explainable to some extend (but not all the delay
caused by them) by setting ε to a value higher than zero. To have meaningful
results, we restrict using the relabeling for leaves with undesirable outcome, i.e.
with the delayed label. The resulting fair decision tree is shown in Figure 6.
Differently from the standard decision tree, after removing the discrimination,
ten classes of situations are not considered problematic in the fair decision tree.
For example, those situations in which

sf trace,deadline ≤ 1.3158688E12 ∧ sf trace,group = Group5 ∧

sf T06 Determine necessity of stop advice,Resource = Resource11 ∧
sf trace,deviation = true ∧ sf trace,deadline > 1.300234E12

are considered on− time. This rule applies to 9 situations, all were sensitive and
delayed. Here, those leaves are relabeled that relabeling them have the minimum
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negative impact on the correctness of the decision tree while removing the de-
pendency between the sensitive and class situation features. Using the relabeling
technique, the leaves with “delayed” label which have just or mainly sensitive
instances are more likely to be relabeled. This way the rules that apply specif-
ically to the sensitive instances are ignored. The remaining inferred rules from
the fair decision tree that apply for the sensitive instances are those rules that
have mainly favorable situations with undesirable label. We can interpret these
rules as the ones targeting those sensitive situations which would have been de-
layed even if they had been favorable. These leaves may signify those causes of
the problem that are general and not related to the situation being sensitive and
might be improved.

It is worth noting that if we just remove the instances corresponding to those
situations which belong to the sensitive group and were delayed from the data,
the resulting decision tree would be a decision tree with three leaves which is
not informative.
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