
Earth Movers’ Stochastic Conformance Checking

Sander J.J. Leemans1, Anja F. Syring2, and Wil M. P. van der Aalst2

1 Queensland University of Technology, Brisbane, Australia
2 Process and Data Science (Informatik 9),

RWTH Aachen University, D-52056 Aachen, Germany

Abstract. Process Mining aims to support Business Process Manage-
ment (BPM) by extracting information about processes from real-life
process executions recorded in event logs. In particular, conformance
checking aims to measure the quality of a process model by quantify-
ing differences between the model and an event log or another model.
Even though event logs provide insights into the likelihood of observed
behaviour, most state-of-the-art conformance checking techniques ignore
this point of view. In this paper, we propose a conformance measure that
considers the stochastic characteristics of both the event log and the pro-
cess model. It is based on the “earth movers’ distance” and measures the
effort to transform the distributions of traces of the event log into the
distribution of traces of the model. We formalize this intuitive confor-
mance metric and provide an approximation and a simplified variant.
The latter two have been implemented in ProM and we evaluate them
using several real-life examples.

Keywords: Stochastic process mining · stochastic conformance check-
ing · stochastic languages · stochastic Petri nets.

1 Introduction

Today’s information systems provide an abundance of information about ac-
tivities performed by or for customers, employees, machines etc. Databases and
transaction files can be converted to event logs ready for analysis. Process mining
aims to provide analysts with procedures and tools to obtain insights from these
recorded event logs. For instance, process models, which describe the process
steps in the process (activities), which activities are to be executed and in what
order activities can be executed, are used to document and prescribe processes.
A process model can be obtained manually, by human analysts modelling, or
automatically, by process discovery algorithms using recorded event data [1].

Both human analysts and process discovery algorithms might leave out cer-
tain behaviour of the process to make the model more readable or to capture
only the “happy flow”. In order to not limit the model to seen behaviour only,
they also include other behaviour and generalise the model in this way. There-
fore, before drawing conclusions from a model, it should be evaluated using a
conformance checking technique. Such a technique compares a process model
with an event log and highlights their differences. Using conformance checking,



2 S.J.J. Leemans et al.

deviations between log and model can be unearthed, as well as differences be-
tween different versions of a business process, for instance the same process in
geographic regions or different periods [8]. Furthermore, stochastic conformance
checking is used to evaluate discovered process models and process discovery
algorithms.

In typical real-life processes, not all parts of the processes are executed
equally often: rarely executed exception handling routines or infrequent paths
might be included in the model. Knowledge of the likelihood of such paths is
necessary to gain insights into performance aspects of a business process, for
instance to predict the remaining duration of a running trace [20] or, given a
particular deadline, to estimate the probability of missing the deadline [6]. We
refer to a process model that defines likelihoods for its traces as a stochastic
process model. Such models can be automatically discovered from event logs by
stochastic process discovery techniques, such as [12]. Consequently, stochastic
conformance checking compares an event log with a stochastic process model
and highlights their differences.

For instance, consider the event log [〈a, b〉1, 〈b, a〉99] and the stochastic pro-
cess model expressing the stochastic language [〈a, b〉0.99, 〈b, a〉0.01]. Even though
only 2% of the log and model’s stochastic language overlaps, any conformance
checking technique that does not take the stochastic perspective into account
will consider the log and model to have a perfect fitness and precision.

In this paper, we first propose an intuitive theoretical stochastic conformance
checking measure. This measure is based on the earth movers’ distance, that is,
given two distributions (piles of earth), the effort to transform one pile into the
other in terms of dirt that needs to be moved times the distance over which dirt
has to be moved. This measure is defined for stochastic languages with possi-
bly infinitely many traces (process models with loops may have infinitely many
possible behaviours), but challenging to compute automatically for the general
case. Therefore, second, we introduce an approximation and a simplification.
We provide algorithms and implementations for both these last two measures,
and illustrate their differences with conformance checking techniques that do not
take probabilities into account.

We apply the measures to several real-life logs and automatically discovered
stochastic process models to show their applicability.

In the remainder of this paper, we first explore related work in Section 2 and
introduce concepts in Section 3. In Section 4, we introduce the three measures,
after which we evaluate and analyse them in Section 5. Section 6 concludes the
paper.

2 Related Work

Stochastic Process Formalisms. Several formalisms to describe stochastic lan-
guages have been proposed. Next to Stochastic Petri Nets (SPNs) and Gener-
alised GSPNs which we will introduce in Section 3, several extensions have been
proposed. For instance, Markov regenerative SPNs [18] and generally distributed
transition SPNs [13] allow for the modelling of generally distributed timed events.



Earth Movers’ Stochastic Conformance Checking 3

Fluid SPNs extend SPNs with continuous fluid quantities to model physical sys-
tems [19], and controlled SPNs extend SPNs for decision support purposes [11].
For a more elaborate overview, please refer to [5], in which several types of SPN
are discussed, as well as the feasibility to compute their case-duration distribu-
tion. Several of the SPN types support inhibitor arcs, but silent transitions are
not supported. Typically, stochastic Petri nets are used to express and compute
the temporal perspective of business processes, while we focus on the combina-
tion of the control flow and stochastic perspectives of the traces in the model.
However, none of these works considers SPNs with silent transitions.

An exception is [3], in which stochastic Petri nets with silent transitions are
considered. In [3], a method is proposed to, given an SPN, (a set of) initial
marking(s) and a trace, compute the possible markings the SPN can be in after
executing the trace, and how likely each marking is.

In Section 3, we introduce our formalisation of Generalised Stochastic La-
belled Petri Nets (GSLPN), which differs from the variants in the mentioned
papers by including silent transitions. Even though our implementation targets
GSLPNs, our measures work for any stochastic process model, as long as it
represents a stochastic language.

Stochastic Conformance Checking. Conformance checking on non-stochastic
process models has been addressed by many techniques (e.g. token-based replay
and alignments, for an overview please refer to [4]). Such techniques typically
consider two directions of inclusion: fitness (behaviour of the log is included in
the model) and precision (behaviour of the model is included in the log). How-
ever, these notions of language inclusion do not apply to stochastic behaviour,
as a stochastic language cannot include another stochastic language (for both
languages, the probabilities of traces sum to 1). Therefore, a single similarity
measure is more appropriate in a stochastic setting.

In [9], standard Petri nets are enriched with frequency information (that is,
each transition gets a probability corresponding to the frequency of its label in
the event log), and a most-probable alignment is computed in order to find the
root cause of deviations. However, this approach is not intended to cope with
arbitrary stochastic languages.

Hidden Markov Models (HMMs) have been used to model stochastic pro-
cesses and to check conformance, for instance in [14]. HMMs express that transi-
tions between states and the execution of activities in states can happen with cer-
tain probabilities. In Section 5.4.3 of [14], fitness and precision of non-stochastic
Petri nets without concurrency are computed by translating the net to an HMM
assuming that all transitions are equally likely. This approach might be applica-
ble to verify the conformance of general stochastic languages as well, as long as
the language can be expressed as an HMM.

3 Preliminaries

Stochastic Languages. Let Σ be a finite alphabet of activities (the different steps
executed in a process) and Σ∗ be the set of all possible sequences (traces) over
the alphabet Σ. A stochastic language is a collection of traces with attached



4 S.J.J. Leemans et al.

probabilities. Formally, a stochastic language is a function f : Σ∗ → [0, 1] that
maps each trace onto a probability such that

∑
t∈Σ∗ f(t) = 1. For instance,

[〈a, b, c〉 23 , 〈a, c, b〉 13 ] is a stochastic language consisting of 2 traces, the first of
which has a probability of 2

3 and for which first an activity a was executed,
followed by a b and a c. We denote the set of traces of a stochastic language M
that have a nonzero probability with M̃ = {t ∈ Σ∗ |M(t) > 0}.

Event Logs. An event log is a finite multiset of traces, which can be easily
transformed into a stochastic language by normalising the trace quantities by
dividing each trace’s occurrences by the total number of traces. For instance,
an event log consisting of 20 times 〈a, b, c〉 and 10 times 〈b, a, c〉 would have a

corresponding stochastic language [〈a, b, c〉 2030 , 〈b, a, c〉 1030 ]. In this paper, we will
use the term “event log” for the stochastic language belonging to an event log.

Earth Movers’ Distance. The Earth Movers’ Distance or Wasserstein distance
describes the distance between two distributions [16]. In an analogy, given two
piles of earth (the distributions), it expresses the effort required (in terms of
quantity of earth and the horizontal distance it needs to be moved) to transform
one pile into the other.

Stochastic Petri Nets. A labelled Petri net is a tuple (P , T , F , Σ, l), in which
P is a finite set of places, T is a finite set of transitions, F : (P × T )→ (T × P )
is a flow relation, Σ is a finite alphabet of activities and l : T → Σ ∪ {τ} is a
labelling function, such that P ∩ T = ∅ and τ /∈ Σ. A marking is a multiset
of places ∈ P , indicating the state of the net. A transition is enabled if each
of its incoming places contains a token. When a transition fires, it changes the
marking of the net by consuming and producing tokens to/from its connected
places. If a transition t ∈ T is labelled with an activity l(t) = a ∈ Σ, then a
is executed whenever t fires. Note that multiple transitions might share a. A
transition t′ ∈ T that is unlabelled (l(t′) = τ) is a silent transition: when t′ fires,
it may change the marking of the net but it does not correspond to the execution
of an activity. A path through the model is a sequence of transition firings that
starts in the initial marking and ends in a marking in which no transitions are
enabled (a deadlock). That is, we consider each deadlock to be a final marking.
The corresponding trace is the sequence of labelled transitions in a path.

A Generalised Stochastic Labelled Petri Net (GSLPN) is a tuple (P , T , F ,
Σ, l, Ti, Tt) where (P, T, F,Σ, l) is a labelled Petri net, Ti ⊆ T is a set of imme-
diate transitions and Tt ⊆ T is a set of timed transitions such that Ti ∩ Tt = ∅.
Immediate transitions t ∈ Ti take precedence over t′ ∈ Tt: timed transitions
cannot fire if an immediate transition is enabled. A transition t ∈ Ti is imme-
diate, it has a weight w(t) attached (this weight may depend on the marking)
and if multiple transitions T ′ ⊆ Ti are enabled, a transition t is chosen to fire
with probability w(t)/

∑
t′∈T ′ w(t′). A timed transition t has an exponentially

distributed waiting/enabling time, with firing rate parameter λ(t). Due to the
memory-less property of the exponential distribution, given a set of enabled



Earth Movers’ Stochastic Conformance Checking 5

timed transitions T ′ ⊆ Tt, the probability that a particular transition t will fire
first is λ(t)/

∑
t′∈T ′ λ(t′) [12].

The probability of a trace is defined as the sum of the probabilities over
all paths through the model that produce the trace. Given a trace and a path
through the model that produces the trace, then the probability of the trace is
the product of the probabilities of the choices made in the model along the path.
The stochastic language of an GSLPN is the weighted set of all traces through
the model.

For instance, Figure 1 contains a GSLPN in which all transitions are imme-
diate. The stochastic language of this model consists of two traces, 〈a, b〉 and
〈a, c〉. In the model, there are infinitely many paths resulting in these traces,
and their probabilities are geometric series. For 〈a, b〉:

1

2
+

1

2

1

2

1

2
+

1

2

1

2

1

2

1

2

1

2
+ . . . =

∞∑
n=0

1

2
(
1

4
)n =

1
2

1− 1
4

=
2

3

For 〈a, c〉:

1

2

1

2
+

1

2

1

2

1

2

1

2
+

1

2

1

2

1

2

1

2

1

2

1

2
+ . . . =

∞∑
n=0

1

4
(
1

4
)n =

1
4

1− 1
4

=
1

3

This example illustrates that for GSLPNs, it might be challenging to establish
the stochastic language.3 To the best of our knowledge, this challenge has not
been solved yet for our GSLPNs (in particular, for silent transitions) [3,15],
however an in-depth discussion is outside the scope of this paper.

a
1

1
2

1
2

b

1
2

c

1
2

Fig. 1: Example of a generalised stochastic Petri net. All transitions are imme-
diate.

Please note that livelocks, that is the inability to reach a final marking with
nonzero probability, invalidate the stochastic language, as paths that enter the
livelock with a certain probability p cannot terminate, thus the total probability
of the corresponding stochastic language will be at most 1 − p rather than 1.
Therefore, in this paper, we assume that GSLPNs do not have livelocks.

The firing of transitions in GSLPNs only depends on the current state of the
model: immediate transitions are randomly chosen by weight and timed tran-
sition are exponentially distributed and hence memoryless. Therefore, GSLPNs
satisfy the Markov property and can be translated to Markov chains.

3 Notice that in case of duplicated labels, there might be exponentially, but finitely,
many paths through the model for a particular trace.



6 S.J.J. Leemans et al.

4 Method

In this section, we introduce our measure for stochastic conformance checking.
We first introduce the theoretical measure and illustrate it with a running ex-
ample. Second, we provide a method to compute the measure.

4.1 Earth Movers’ Stochastic Conformance

In this section, we transform the analogy of the Earth Movers’ Distance to
stochastic languages: our measure expresses the cost of transforming the distri-
bution of traces of one language into the distribution of the other language.

First, we introduce the concept of reallocation functions, which indicate how
a stochastic language is transformed into another stochastic language. Second,
we introduce a distance function, which expresses the cost of transforming one
trace into another trace. Third, we introduce a cost function that expresses the
cost of a particular reallocation function. Finally, we define the measure and we
give a variant that considers unit trace distances.

Reallocation. We first introduce a function that indicates the movement of
probability mass between two stochastic languages. Let L and M be stochastic
languages, then a reallocation function r : L̃ × M̃ → [0, 1] describes how L can

be transformed into M . That is, r(t, t′) describes the probability mass of t ∈ L̃
that should be moved to t′ ∈ M̃ . The function r(t, t) indicates the probability

mass of t ∈ L̃ that remains at t ∈ M̃ .
To ensure that a reallocation function properly transforms L into M the

probability mass of each t ∈ L̃ should be accounted for. Hence, the row for t
should sum up to L(t).

∀t∈L̃ L(t) =
∑
t′∈M̃

r(t, t′) (1)

Similarly, the mass of traces t′ ∈M should be preserved:

∀
t′∈M̃ M(t′) =

∑
t∈L̃

r(t, t′) (2)

We refer to the set of all reallocation functions r that adhere to equations (1)
and (2) as R (note that R depends on L and M).

For instance, consider the stochastic languages Le = [〈a〉 14 , 〈a, a〉 34 ] and Me =

[〈a〉 12 , 〈a, a〉 14 , 〈a, a, a〉 18 , 〈a, a, a, a〉 1
16 . . .]. An example reallocation function re is:

re 〈a〉 〈a, a〉 〈a, a, a〉 〈a, a, a, a〉 〈a, a, a, a, a〉 . . .
〈a〉 1

4 0 0 0 0 . . .
〈a, a〉 1

4
1
4

1
8

1
16

1
32 . . .

In this tabular visualisation, Equation (1) states that each row should sum
up to the corresponding value in language Le (e.g. the first row sums up to 1

4
as Le(〈a〉) = 1

4 ). Similarly, Equation (2) expresses that each column should sum
up to the corresponding mass in Me.



Earth Movers’ Stochastic Conformance Checking 7

Trace Distance. Second, a trace distance function d expresses the “distance”
between traces: d : Σ∗ ×Σ∗ → [0, 1]. This function is 0 if and only if two traces
are equal: d(t, t′) = 0 ⇔ t = t′. Furthermore, this function is required to be
symmetrical, that is d(t, t′) = d(t′, t).

For example, we can use the normalised string edit (Levenshtein) distance.
The Levenshtein distance expresses the minimum number of edit operations re-
quired to transform a trace into another trace using the event insertion, deletion
and substitution operations [10]. As this distance has an upper bound in the
number of events in the longest of the two traces, it can be normalised: we
choose dl(t, t

′) to be the Levenshtein distance divided by the maximum length
of t and t′.

For instance, consider our two stochastic languages Le and Me again. Then,
the normalised Levenshtein distance dl is:

〈a〉 〈a, a〉 〈a, a, a〉 〈a, a, a, a〉 〈a, a, a, a, a〉 . . .
〈a〉 0 1

2
2
3

3
4

4
5 . . .

〈a, a〉 1
2 0 1

3
2
4

3
5 . . .

Cost. Given two stochastic languages, several reallocation functions might ex-
ist. However, the Earth Movers’ Distance problem aims to express the shortest
distance between the two languages, that is, the least probability mass movement
over the least distance between traces.

Therefore, the cost to transform a stochastic language L into a stochastic
language M using a reallocation function r is the inner product of reallocation
and distance:

cost(r, L,M) = r · d =
∑
t∈L̃

∑
t′∈M̃

r(t, t′)d(t, t′) (3)

By construction, d returns values between 0 and 1, hence 0 ≤ cost(r, L,M) ≤
1 for any r, L and M .

For instance, considering our example with Le, Me and re again, the cost of
re given Le and Me is computed as follows:

cost(re, Le,Me) =
1

4
· 0 + 0 · 1

2
+ 0 · 2

3
+ 0 · 3

4
+ 0 · 4

5
+ . . .

1

4
· 1

2
+

1

4
· 0 +

1

8
· 1

3
+

1

16
· 2

4
+

1

32
· 3

5
+ . . .

=
1

8
+

∞∑
n=3

n− 2

2n · n
=

13

8
− log 4

≈ 0.238706

Earth Movers’ Stochastic Conformance. Finally, the Earth Movers’ Stochas-
tic Conformance (EMSC) measure is defined as the lowest cost for any realloca-
tion function r and given L and M . To align EMSC with existing conformance



8 S.J.J. Leemans et al.

checking measures, it is mirrored such that 1 indicates perfect conformance and
0 indicates the worst conformance.

EMSC(L,M) = 1−min
r∈R

cost(r, L,M) (4)

In our running example, re is an optimal reallocation function, thus EMSC(Le,Me) ≈
0.761294.

Unit Distances. If we choose the trace distance function d differently, another
version of EMSC appears: this function can also be chosen such that each pair
of traces is either classified as equal with value 0 or as unequal with value 1.
Intuitively, the Earth Movers’ Distance expresses the amount of earth that has
to be moved times the (possibly normalised) distance it has to be moved. The
new choice for unit distances takes the distance out of the equation: the earth
(traces) is either moved or not, but the distance over which it is moved is not
taken into account.

Hence, in our conformance measure with unit distances, we only need to take
into account how much probability mass of L is to be moved, and not where this
probability mass will be put in M . This simplifies the reallocation function r
considerably and removes the need for the minimisation step of Equation (4),
yielding a much simpler measure for unit trace distances uEMSC:

uEMSC(L,M) = 1−
∑
t∈L̃

max(L(t)−M(t), 0) (5)

Intuitively, the unit distance measure expresses the mass probability (“amount”)
of behaviour in L that is not supported or in surplus of the behaviour in M ,
without considering distances between traces.

If L̃ is finite, for instance if L is an event log, then this sum is finite and can
be computed without constructing the full stochastic language of M explicitly;
M only needs to be queried for probabilities of traces that appear in L (which
might still be challenging for GSLPNs as shown in Section 3).

4.2 Truncated Earth Movers’ Stochastic Conformance

Computing EMSC measure in the previous section poses several challenges: the
stochastic language might have infinitely many traces and many reallocation
functions r might apply and need to be evaluated.

To address these challenges, we introduce a derivative measure truncated
EMSC (tEMSC) that truncates infinite languages and searches for an optimal
reallocation function. In the remainder of this section, we discuss how tEMSC
addresses the two challenges, we analyse the new measure and we discuss its
implementation.

Handling Models with Infinite Languages. If the stochastic language M has in-
finitely many traces, then Equation (3) has infinitely many terms, making EMSC
challenging to compute in practice. To handle such a process model, we truncate



Earth Movers’ Stochastic Conformance Checking 9

its language to only contain a certain user-chosen mass of probability (m). We
chose to do this in a breadth-first prioritised fashion, consequently shorter likely
traces tend to be included before longer unlikely traces.

As a side effect, Equation (2) does not hold for truncated stochastic lan-
guages, as the probabilities of traces in such a language do not sum up to 1.
Therefore, this equation is weakened to:

∀
t′∈M̃ M(t′) ≤

∑
t∈L̃

r(t, t′) (6)

LetR′ denote the set of all reallocation functions that adhere to equations (1)
and (6). Furthermore, let Mm denote a truncated stochastic language of M such
that at least m of M ’s probability mass is included:

∑
t∈Mm

Mm(t) ≥ m and
∀t∈Mm

Mm(t) ≤M(t). Then:

tEMSC(L,M,m) = 1− min
r∈R′

cost(r, L,Mm) (7)

Then, by construction:

Corollary 1. Let L and M be stochastic languages. Then, for m approaching
1, tEMSC and EMSC coincide: EMSC(L,M) = limm→1 tEMSC(L,M,m).

In a model-model comparison context, L might have infinitely many traces
as well. Then, a symmetric argument applies, but an extra requirement on the
reallocation function is necessary, that is, the sum of this function should be 1.

An alternative to weakening the equation is to normalise the probability mass
of the model after truncation. However, as this alters the stochastic language
which is an input for the conformance calculation, we discard this option.

Another option to determine the point of truncation could be to unfold the
model until we included all traces that have the same length as the longest
trace of the event log. For the included traces of the model, we calculate the
reallocation cost as defined before. All traces part of the excluded probability
mass are longer than all traces of the event log. Based on this, we assume all
excluded traces of the model to be unfitting with distance 1. Therefore, this
measure gives a lower bound to EMSC. However, we leave this option for future
work.

Efficient Minimisation. Given a trace distance function different from the de-
scribed unit costs, the goal is to obtain an optimal reallocation function that
yields minimal costs. This can be achieved by solving a linear programming
problem.

Linear programming is a technique that optimises a given linear function,
the objective function, with respect to given linear constraints. Based on this
objective function the linear programming algorithm finds the minimal/maximal
value in the region of feasible solutions defined by the constraints [17].

To find the optimal reallocation function with minimal cost, we chose Equa-
tion (3) as our objective function. The constraints of the optimisation problem



10 S.J.J. Leemans et al.

are defined by equations (1) and (6). Hence, only reallocation functions that pre-

serve the probability mass of each t ∈ L̃ as well as the mass of t′ ∈ M̃ are valid.
To complete the construction of the solution space, we define the reallocation
r(t, t′) to be non-negative.

Considering our two stochastic languages Le and Me, and the distances given
by the normalised Levenshtein distance function, the linear programming prob-
lem is constructed as follows:

Minimise r(t1, t
′
1) · 0 + r(t1, t

′
2) · 1

2
+ r(t1, t

′
3) · 2

3
+ . . . ,

Subject to
1

4
≤ r(t1, t′1) + r(t1, t

′
2) + r(t1, t

′
3) + . . . ,

. . .

1

2
≤ r(t1, t′1) + r(t2, t

′
1),

1

4
≤ r(t1, t′2) + r(t2, t

′
2),

. . .

0 ≤ r(t1, t′1), r(t1, t
′
2), r(t1, t

′
3) . . .

4.3 Example & Implementation

Example. Consider the following event logs: L1 = [〈a, b, c, e〉0.25, 〈a, c, b, e〉0.25,
〈a, d, e〉0.5] and L2 = [〈a, b, c, e〉0.45, 〈a, c, b, e〉0.45, 〈a, d, e〉0.1]. Furthermore, con-
sider the GSLPNs shown in Figure 2, and the corresponding tEMSC and uEMSC
measures in Table 1. Model M1 is a model that supports any behaviour (a flower
model), with uniform probabilities of the individual activities and ending the
trace. Intuitively, this model differs considerably from both logs L1 and L2, which
is reflected in the low measures. Models M2 and M3 have the same language, but
their stochastic perspective differs markedly. A conformance checking technique
that is not stochastic aware would consider these models to be equivalent, result-
ing in equivalent measures, even though their behaviour is very different from
a stochastic perspective: d is much less likely in M3. Intuitively, M2 is closer to
L1 than to M3, (which is closer to L2) and this is reflected in all our measures.
Finally, from M4 the trace 〈a, d, e〉 is missing, and, accordingly, the measures
being lower for L1 than for L2 indicates that this trace had a higher probability
in L1.

With respect to tEMSC and uEMSC, observe that both measures are con-
sistent in their ranking of the logs and models.

Implementation. Both tEMSC and uEMSC have been implemented as plug-ins
of the ProM framework [7]. The plug-in of tEMSC takes an event log and an
GSLPN (as returned by a stochastic process discovery technique [12]), and con-
structs the full stochastic language of the log, as well as the truncated stochastic
language of the GSLPN, with a user-specified m. Second, a linear programming



Earth Movers’ Stochastic Conformance Checking 11

1
1
6

a

1
6

b

1
6

c

1
6

d

1
6

e

1
6

(a) Flower model M1.

a
1 1

2
b

1
2

c

1
2

1

d

1
2

e
1

(b) Model M2.

a
1 9

10
b

1
2

c

1
2

1

d

1
10

e
1

(c) Model M3.

a
1 b

1
2

c

1
2

e
1

(d) Model M4.

Fig. 2: Four example GSLPNs, in which all transitions are immediate.

Table 1: Our measures on the example logs and models.

model tEMSC (m = 0.8) uEMSC

L1 L2 L1 L2

M1 0.46 0.45 0.0010288065843622 0.0010288065843621
M2 1 0.8 1 0.6
M3 0.8 1.0 0.6 1.0
M4 0.75 0.95 0.5 0.9

problem is constructed and solved using the LpSolve library [2]. For uEMSC,
the GSLPN is not allowed to have executable loops of silent transitions (see Sec-
tion 3). The source code of both plug-ins is available at https://svn.win.tue.nl/
repos/prom/Packages/EarthMoversStochasticConformanceChecking/Trunk/.

5 Evaluation

In this section, we evaluate the newly introduced measures: the theoretical
EMSC, the truncated tEMSC and the unit-distance uEMSC. First, we illus-
trate these on our running example. Second, we apply the measures to real-life
logs to show their applicability.

Example. For illustrative purposes, we apply tEMSC and uEMSC to our run-
ning example consisting of the stochastic languages Le = [〈a〉 14 , 〈a, a〉 34 ] and

https://svn.win.tue.nl/repos/prom/Packages/EarthMoversStochasticConformanceChecking/Trunk/
https://svn.win.tue.nl/repos/prom/Packages/EarthMoversStochasticConformanceChecking/Trunk/


12 S.J.J. Leemans et al.

Me = [〈a〉 12 , 〈a, a〉 14 , 〈a, a, a〉 18 , 〈a, a, a, a〉 1
16 . . .] to show the influence of truncat-

ing on a simple loop. We apply tEMSC to Le and Me for increasing m.

60 80 100
0

0.2

0.4

0.6

0.8

1

% probability mass included (m)

t
E
M

S
C

(a) varying parameter (m).

0 5 10 15 20

number of traces

(b) varying number of traces with in-
creasing loop unfoldings.

Fig. 3: tEMSC measured over our example Le and Me. The dashed lines indicate
the EMSC values.

Figure 3a shows the results, as well as the theoretical EMSC value for Le and
Me. After an initial climb when the two traces of the log are not represented by
the truncated model, tEMSC temporarily stabilises at 0.875. This stable range
of m indicates that the truncation includes more probability mass than m, that
is, if we choose m = 52% then the truncation nevertheless includes 74% of the
probability mass. Only at m = 76%, another trace is included in the truncated
language. After this point, the truncation includes more and more traces that are
not in the event log, thus tEMSC drops and seems to approach the theoretical
EMSC value shown in Section 4.

To illustrate the convergence to EMSC, we repeat the experiment where we
manually create stochastic languages for Le and Me, where we unfold the loop
of Me an increasing number of times. Figure 3b shows these results. From this
graph, it is clear that tEMSC quickly converges to the theoretical EMSC value
with every trace and loop unfolding added. At 6 traces, which corresponds to
m = 98%, the difference is a negligible 0.01.

The run time for these examples was too small to warrant any conclusion.

Real-Life Event Logs. In this experiment, we evaluate the applicability of
tEMSC and uEMSC to 16 publicly available real-life logs and stochastic process
models. First, we apply the Stochastic Miner (SM) [12] to these logs to obtain
stochastic Petri nets. As these nets contain silent transitions, they can be seen as
GSLPNs (Section 3). Table 2 shows the logs and their complexity. Furthermore,
it shows that a GSLPN was discovered for only 6 logs in the 24BGB of RAM
we had available, which illustrates the need for more research into stochastic
process discovery techniques and their implementations.



Earth Movers’ Stochastic Conformance Checking 13

Table 2: Real-life event logs used in the evaluation.
activities traces events discovery [12] uEMSC rank

BPIC12 36 13087 262200 out of memory
BPIC15-1 398 1199 52217 out of memory
BPIC15-2 410 832 44354 out of memory
BPIC15-3 383 1409 59681 out of memory
BPIC15-4 356 1053 47293 out of memory
BPIC15-5 389 1156 59083 out of memory
BPIC18 Control summary 7 43808 161296 3 0.599 1
BPIC18 Department control 6 29297 46669 3 0.120 2
BPIC18 Entitlement application 20 15620 293245 out of memory
BPIC18 Geo parcel documents 16 29059 569209 out of memory
BPIC18 Inspection 15 5485 197717 out of memory

BPIC18 Parcel document 10 14750 132963 3 1.15 · 10-4 5
BPIC18 Payment application 24 43809 984613 out of memory

BPIC18 Reference alignment 6 43802 128554 3 0.22 · 10-2 3

Road Traffic Fines 11 150370 561470 3 2.88 · 10-4 4

Sepsis 16 1050 15214 3 1.52 · 10-14 6

Second, we apply our new measures to the logs and the six discovered GSLPNs.
For tEMSC, we use various parameters m (see Equation (7)) to study how the
inclusion of mass influences the returned values. In the remainder of this section,
we first discuss run times, then the results of tEMSC followed by the results of
uEMSC.

0 20 40 60 80 100

102

105

108

% probability mass included (m)

r
u
n

t
im

e
(
m

s
)

BPIC18 Control summary

BPIC18 Department control

BPIC18 Parcel document

BPIC18 Reference alignment

Road Traffic Fines

Fig. 4: Run time of tEMSC for several real-life logs.

Run Time. The run times of uEMSC were negligible: all measures finished within
a second. For tEMSC, run times are shown in Figure 4. Please note that y-axis
is logarithmic, and that due to the inherent nondeterministic nature of tEMSC
and the multithreadedness of the implementation, these measures are indicative
only, especially for lower m.

Some of the values could not be obtained: for BPIC18 Parcel Document

with m = 80, the linear programming optimisation ran out of memory, while
for Sepsis with any m, the explicit creation and truncation of the stochas-
tic language ran out of memory. For 4 out of 6 logs, computation took less
than a few seconds, which was considerably less than the discovery technique,
which could take hours on these logs. However, a general trend towards longer
run times is visible as m approaches 100%. For BPIC18 Parcel document and
BPIC18 Reference alignment, computation could take up to little over an
hour. A manual inspection revealed that this is caused by the size of the language
described in the stochastic models: especially in models that combine concur-
rency with looping behaviour. In such models, the probability mass per trace



14 S.J.J. Leemans et al.

decreases and more traces are necessary to cover a certain probability mass,
which makes it very challenging to obtain a high probability mass m. This is
a clear limitation of the current technique, which might be addressed in future
work.

Truncated EMSC (tEMSC). Second, we discuss the returned values of tEMSC,
which are shown in Figure 5 for m (that is, the minimum probability mass
covered in the truncation step) varying from 2% to 98%.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

% probability mass included (m)

t
E
M

S
C

BPIC18 Control summary

BPIC18 Department control

BPIC18 Parcel document

BPIC18 Reference alignment

Road Traffic Fines

Fig. 5: tEMSC with varying mass truncation parameter (m).

Most measures show expected behaviour with increasing m: due to nondeter-
minism of the truncation, for lower m they vary considerably, but stabilise with
m approaching 100%. An exception is BPIC18 Reference alignment, which
increases to 0.98 for m = 52, after which it decreases almost linearly. A man-
ual inspection revealed that the GSLPN contains many loops, while most of the
event log’s traces do not exhibit repeating activities. As m increases, more traces
are added by unfolding loops and, as these new traces are not in the log, the
measured tEMSC drops.

Unit-distance EMSC (uEMSC). The results for uEMSC are shown in Table 2.
As identified in Section 3, loops of silent transitions challenge the computation
of the probability of a trace in an GSLPN (M(t) in Equation (5)). A manual
inspection revealed that none of the discovered models contained such loops.
However, most models contained lots of concurrency, which makes the state
space of the model huge and thus the probability of individual traces in the
model is very low, leading to low uEMSC measures.

If the use case at hand involves choosing a stochastic process model that
best represents a given event log, then uEMSC and tEMSC mostly agree: of the
10 possible pairs of models (out of which the model closest to the log is to be
chosen), 8 times uEMSC and tEMSC agree on which model is the closest.

Reproducibility. The experiments were performed on a single machine with 3.5GHz
quadcore CPU and 24GB RAM available for each experiment process, running
fully patched Windows 7 in January 2019. The source code is available.



Earth Movers’ Stochastic Conformance Checking 15

6 Conclusion

Recently the interest in stochastic-aware conformance checking increased within
the process mining community. Despite a larger awareness about the importance
of a stochastic view on the process model, to this day there are only a few
conformance checking techniques that consider the stochastic characteristics of
both event log and model. This paper, however, presents conformance checking
measures that compare the stochastic languages of event logs and process models.
In essence, this is achieved by measuring “how much probability mass that has
to be moved how far” to transform one language into the other. We introduced
three variations of the measure: a theoretical and two adapted versions, which
are also feasible on process models with an infinite set of traces.

These adapted variants were implemented and their practical relevance was
illustrated on real-life event logs. The experiments showed the influence of the
probability mass parameter on the run time and the results of the measure. The
evaluation showed the trade-offs between run time and memory usage, and accu-
racy, and it would be interesting for future work to inspect different strategies of
choosing this parameter. Additionally, it would be interesting to investigate the
influence of different distance functions, since the current work only compares
the Levenshtein distance to a simple unit distance. However, the measure could
easily be extended to use other distance functions as well.

Although EMSC simply requires two stochastic languages, its implementa-
tion starts from an event log and a stochastic Petri net. Currently, it is challeng-
ing to establish the language of a GSLPN as well as calculating the probability
of a single trace in the net. Especially loops of silent transitions are shown to
be problematic. Extending the technique with a new method which solves this
problem will improve the reliability of the measure. Furthermore, for models
with a large state space where each trace only has a low probability, the tech-
nique would benefit from a more efficient truncation implementation. Searching
the model until the required probability mass has been collected is a time critical
part of the measure.

In [9], a technique to calculate the most probable alignment between a model
and a log is proposed, based on the probabilities of behaviour observed in the
event log. For future work, it would be interesting to incorporate their technique
in our reallocation function. Instead of achieving the result with the lowest cost,
the algorithm would aim for the most probable reallocation.

In general, with this paper we want to stress the importance of stochastic-
aware process mining and hope to inspire more discussion and contributions on
this topic, for instance on the need for dual (recall/precision) measures vs. single
measures or on dependencies of choices in models.

References

1. van der Aalst, W.M.P.: Process Mining - Data Science in Action. Springer (2016)
2. Berkelaar, M., Eikland, K., Notebaert, P.: lp solve 5.5. Software (May 1 2004)
3. Cabasino, M.P., Hadjicostis, C.N., Seatzu, C.: Probabilistic marking estimation in

labeled Petri nets. IEEE Trans. Automat. Contr. 60(2), 528–533 (2015)



16 S.J.J. Leemans et al.

4. Carmona, J., van Dongen, B.F., Solti, A., Weidlich, M.: Conformance Checking -
Relating Processes and Models. Springer (2018)

5. Ciardo, G., German, R., Lindemann, C.: A characterization of the stochastic pro-
cess underlying a stochastic Petri net. IEEE TSE 20(7), 506–515 (1994)

6. Conforti, R., Fink, S., Manderscheid, J., Röglinger, M.: PRISM - A predictive risk
monitoring approach for business processes. In: BPM. pp. 383–400 (2016)

7. van Dongen, B.F., et al.: The ProM framework: A new era in process mining tool
support. In: Petri Nets. pp. 444–454 (2005)

8. van Eck, M.L., Lu, X., Leemans, S.J.J., van der Aalst, W.M.P.: PM ˆ2 : A process
mining project methodology. In: CAiSE. pp. 297–313 (2015)

9. Koorneef, M., Solti, A., Leopold, H., Reijers, H.A.: Automatic root cause identifi-
cation using most probable alignments. In: BPM Workshops. pp. 204–215 (2017)

10. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. In: Soviet physics doklady. vol. 10, pp. 707–710 (1966)

11. de Meer, H., Düsterhöft, O.: Controlled stochastic Petri nets. In: SRDS. pp. 18–25
(1997)

12. Rogge-Solti, A., van der Aalst, W.M.P., Weske, M.: Discovering stochastic Petri
nets with arbitrary delay distributions from event logs. In: BPM Workshops. pp.
15–27 (2013)

13. Rogge-Solti, A., Weske, M.: Prediction of business process durations using non-
markovian stochastic Petri nets. Inf. Syst. 54, 1–14 (2015)

14. Rozinat, A.: Process mining : conformance and extension. Ph.D. thesis, Ph. D.
thesis, Eindhoven University of Technology (2010)

15. Ru, Y., Hadjicostis, C.N.: Bounds on the number of markings consistent with label
observations in petri nets. IEEE Trans. Automation Science and Engineering 6(2),
334–344 (2009)

16. Rüschendorf, L.: The Wasserstein distance and approximation theorems. Proba-
bility Theory and Related Fields 70(1), 117–129 (1985)

17. Sierksma, G.: Linear and integer optimization : theory and practice. Chapman &
Hall/CRC, Boca Raton (2015)

18. Trivedi, K.S., Puliafito, A., Logothetis, D.: From stochastic Petri nets to Markov
regenerative stochastic Petri nets. In: MASCOTS. pp. 194–198 (1995)

19. Tuffin, B., Chen, D.S., Trivedi, K.S.: Comparison of hybrid systems and fluid
stochastic Petri nets. Discrete Event Dynamic Systems 11(1-2), 77–95 (2001)

20. Verenich, I., Dumas, M., Rosa, M.L., Maggi, F.M., Teinemaa, I.: Survey and cross-
benchmark comparison of remaining time prediction methods in business process
monitoring. CoRR 1805.02896 (2018)


	Earth Movers' Stochastic Conformance Checking

