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Abstract Artifact-centric process models aim to describe

complex processes as a collection of interacting artifacts.

Recent development in process mining allow for the dis-

covery of such models. However, the focus is often on the

representation of the individual artifacts rather than their

interactions. Based on event data, composite state machi-

nes representing artifact-centric processes can be discov-

ered automatically. Moreover, the study provides ways of

visualising and quantifying interactions among different

artifacts. For example, strongly correlated behaviours in

different artifacts can be highlighted. Interesting correla-

tions can be subsequently analysed to identify potential

causes of process performance issues. The study provides a

strategy to explore the interactions and performance dif-

ferences in this context. The approach has been fully

implemented as a ProM plug-in; the CSM Miner provides

an interactive artifact-centric process discovery tool

focussing on interactions. The approach has been evaluated

using real life data, to show that the guided exploration of

artifact interactions can successfully identify process per-

formance issues.

Keywords Process discovery � Artifact-centric processes �
Performance analysis � Interactive process exploration

1 Introduction

Process discovery is the automated creation of process

models that explain the behaviour captured in event data

(van der Aalst 2016). These process models can be studied

e.g. to identify interesting process flows that differ from

the process behaviour expected by a process expert or

analyst. However, complex process behaviour can result in

unstructured process models, which makes them difficult

and time-consuming to analyse.

One of the sources of complexity of discovered process

models is that many process discovery approaches produce

models that provide a monolithic view on the real process

(van der Aalst 2016; van Eck et al. 2016b). Such mono-

lithic models explain the behaviour of a process in terms of

the life-cycle of a single process instance. However, in

reality a process instance may involve several interacting

process objects or artifacts, each with their own life-cycle

(van der Aalst et al. 2001; Popova et al. 2015; Cohn and

Hull 2009). Examples include a procurement process with

order and invoice objects, the usage process of a smart

product with sensors measuring different physical aspects

like movement or temperature, and the status of a single

resource in terms of its status in the different processes it is

involved in.

Recently, it has become possible to automatically dis-

cover models for process artifacts and their behavioural

interactions (Lu et al. 2015; van Eck et al. 2016b; Popova

et al. 2015). These techniques produce individual process

models for each artifact, similar to traditional process

discovery approaches. The addition of artifact interaction
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enriches the individual models, connecting process ele-

ments from different artifact models. Such information

highlights e.g. whether a specific state in one artifact

coincides with the state of another artifact.

Artifact-centric techniques can provide more structured

process models than traditional discovery approaches (van

Eck et al. 2016b). By decomposing the process, smaller

and simpler models are obtained with fewer states and state

transitions per model. However, decomposing the beha-

viour of a process into interacting artifacts does not nec-

essarily make the overall process easier to understand. To

facilitate the understanding, we present an approach to

support the analysis of behavioural interactions between

process artifacts. The goal is to find the most interesting or

relevant interactions so that an analyst can inspect these

first. The next step is understanding how these interactions

affect process performance. This helps process analysts

faced with complex processes involving artifacts interact-

ing in a bigger system.

There are different ways to interpret the interaction of

artifacts (Lu et al. 2015; van Eck et al. 2016b; Popova and

Dumas 2013). We are interested in finding implications

that given the occurrence of a state or activity related to

one artifact-lifecycle provide information on the possible

behaviour of other artifacts. Process data generally does not

explicitly contain these interactions or causal relations

between artifact behaviour, so instead, we use information

on correlations between artifact behaviour to obtain such

insights.

The analysis guidance involves the use of measures of

interestingness to quantify artifact interactions. Such

measures have been developed in the field of association

rule learning to quantify the relevance of relations between

sets of items (Tan et al. 2004; Liu et al. 2000). In van Eck

et al. (2017) we discussed how these measures can be

defined in the context of process artifact interaction. Based

on these measures a ranking of artifact interactions can be

presented to process analysts when inspecting process

discovery results.

In this paper we build upon the work of van Eck et al.

(2017) in the following way: (1) we define how artifact

interaction relations can be partitioned and then compared,

(2) we discuss a strategy to analyse artifact interactions,

and (3) we show how the entire approach is used to identify

possible root causes of process performance issues. We

have extended our artifact-centric process discovery tool,

the CSM Miner van Eck et al. (2016a) in the ProM pro-

cess mining framework, to support the explanation and

analysis of interactions.

To evaluate the use of analysis guidance in practice we

have used the developed tool with real life process data.

We explored the top results suggested by the measures of

interestingness and then looked how variations in artifact

interaction resulted in performance differences in order to

identify the underlying causes for these differences. This

evaluation shows that the analysis guidance provides

insights into the overall process behaviour by highlighting

interesting artifact interactions.

The remainder of this paper is structured as follows.

First, in Sect. 2 we discuss related work on artifact-centric

process mining and measures of interestingness. In Sect. 3

we introduce a way to model processes representing arti-

fact systems and define artifact interactions. Then in

Sect. 4 we explain how interactions can be partitioned and

compared to highlight performance differences. We present

the CSM Miner, which implements the analysis approach

described in this paper, in Sect. 5. In Sect. 6 we present a

strategy to analyse artifact interactions and their effects on

overall process performance. We evaluate the approach

using real life process data in Sect. 7. Finally, in Sect. 8 we

present future work and conclusions.

2 Related Work

A plethora of algorithms and tools for automated process

discovery emerged over the last decade (van der Aalst

2016). These produce models in various process model

notations. Several approaches have also been developed to

take an object-oriented or artifact-centric view of process

mining (van der Aalst et al. 2001; Popova et al. 2015).

However, the number of techniques that can automatically

discover the interactions between artifact models is limited

(Lu et al. 2015; van Eck et al. 2016b).

There are different types of behavioural interaction

between artifacts that can be mined from process execution

data. Like in monolithic process discovery, it is possible to

establish causal dependencies between events that occur in

different artifacts (Lu et al. 2015). It is also possible to link

a stage in one artifact lifecycle to stages in related artifact

lifecycles by discovering synchronisation conditions

(Popova and Dumas 2013). Similarly, one can identify

artifact interaction defined as the co-occurrence of states

and transitions from different artifacts as part of the states

and transitions of the entire process (van Eck et al. 2016b).

The goal of the analysis of process artifacts and their

interaction is to help the user understand complex beha-

viour by providing additional structure to the process

through decomposition. There are several other existing

approaches in process mining to deal with model com-

plexity. Most process discovery tools have filtering options

or sliders to adjust which activities and dependencies

between activities are shown, often based on frequency

information (van der Aalst 2016). For some types of pro-

cesses it is also possible to discover hierarchical process

models that allow the analysis of a process at different
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levels of detail (Bose et al. 2011). Trace clustering is a

technique to decompose the process data of flexible pro-

cesses with many different process instance variants that

share little overlap in behaviour (Weerdt et al. 2013). The

clustered process instances are used to mine a more limited

model with fewer and stronger dependencies between

activities. However, all these approaches simplify the real

behaviour shown by the data and hide information instead

of using the complete information to guide the analyst.

Understanding the relations between artifacts and their

effect on the overall process behaviour is a challenge (Lu

et al. 2015). For complex processes this requires the analysis

of large numbers of possible artifact interactions, many of

which are not interesting. This problem is related to the

problem in association rule learning that association rule

mining algorithms produce large numbers of rules that are not

equally relevant (Bazaldua et al. 2014; Liu et al. 2000; Tan

et al. 2004). A solution in association rule learning for this

problem involves the quantification of the interestingness of

the association rules using specific measures of

interestingness.

In process mining it is common to look at different

variants of a process to see how instance characteristics

influence the overall process behaviour and related aspects

such as performance (Rosa et al. 2017; Bolt et al. 2017).

Techniques like trace clustering and process cubes can be

used to partition a dataset in order to compare different

process variants (Weerdt et al. 2013; Vogelgesang et al.

2016; van der Aalst 2013). Generally, with this type of

technique each partition results in a separate process

model, possibly annotated with performance information,

which can then be compared. Other approaches use the

control-flow context and process-specific information to

train decision or regression trees that can predict perfor-

mance at given points in a process (Bolt et al. 2017).

However, to the best of our knowledge there are no

approaches that can discover how process variants affect

artifact interactions and their effects on the performance of

artifact-centric processes.

3 Modelling of Artifact Systems

In this work we use the notion of state machines to model

processes representing artifact systems and the life-cycles

of artifacts as presented in van Eck et al. (2017). Note that

unlike (Cohn and Hull 2009) we do not consider an

information model describing associated data.

Regarding notation, we write rk for the k-th element of a

sequence r 2 S� of elements from some set S, and jrj
denotes the length of r. We write s 2 r if s ¼ rk for some

k and rhs; . . .; s0i for the concatenation of r with sequence

hs; . . .; s0i. Additionally, for s 2 S1 � � � � � Sn we write sðiÞ
for the value of the i-th component of s (i 2 f1; . . .; ng).

3.1 Composite State Machines

A process consisting of a number of interacting artifacts is

called an artifact system, and we model its behaviour as a

Composite State Machine (CSM). The state of a CSM is

defined as the composition of the states of its artifacts,

i.e. it is a vector of states. The set of all possible states of a

CSM is a subset of the cartesian product of the sets of

states of its artifacts, as not all combinations of artifact

states are necessarily possible. Each transition in a CSM

represents a change in the state of at least one artifact; we

do not allow self loops. Formally:

Definition 1 A Composite State Machine M ¼
ðS; T; b; f Þ is a model of a process with n artifacts where

S � ðS1 � . . .� SnÞ is a set of states, with S1; . . .; Sn the

sets of artifact states, b ¼ ðb1; . . .; bnÞ is the initial source

state, f ¼ ðf1; . . .; fnÞ is the final sink state, T �
ðS [ fbgÞ � ðS [ ffgÞ is the set of transitions, and

8ðs; s0Þ 2 T : s 6¼ s0. We define S ¼ S [ fb; fg and Si ¼
Si [ fbi; fig for i 2 f1; . . .; ng.

The explicit initial and final states have no incoming and

outgoing transitions, respectively. They are not true states:

they only mark the points in time where a process instance

begins and finishes. As a special case, we call a CSM with

only one artifact an Artifact Model, which represents the

behaviour of the artifact in isolation.

We can project a CSM onto a specific subset of its

artifacts to focus only on their behaviour. A CSM Pro-

jection is obtained by reducing the cartesian product of

each state to the given subset of artifacts, merging the

identical states, and omitting unnecessary transitions and

self loops. As transitions represent state changes, two states

of a projection are only connected by a transition if there is

a transition in the CSM whose source and target are

reduced to these different states.

Definition 2 Given a CSM M with n artifacts and an

ordered subset of indices P ¼ fi1; . . .; img � f1; . . .; ng,
with i1\i2\. . .\im, we define the state projection func-

tion pP : ðS1 � . . .� SnÞ ! ðSi1 � . . .� SimÞ as follows:

8s 2 S; ij 2 P : ðpPðsÞÞðjÞ ¼ sðijÞ. A CSM Projection of

M on P, MP ¼ ðSP; TP; bP; fPÞ, is defined as:

SP ¼fpPðsÞjs 2 Sg;
TP ¼fðpPðsÞ; pPðs0ÞÞjðs; s0Þ 2 T ^ pPðsÞ 6¼ pPðs0Þg;
bP ¼ pPðbÞ;
fP ¼ pPðf Þ:
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The Artifact Model Ai is defined as the projection Mfig of
M on fig.

Note that the projection of a CSM is itself again a CSM,

modelling only the behaviour of the artifacts projected on.

In Fig. 1 we present a simple healthcare process, which

we use as a running example. This process (model M) has

two distinct perspectives or artifacts: the status of the

patient being treated (model A1), and the status of lab tests

of the patient (model A2). The artificial initial and finial

states are marked without border.

The healthcare process starts when the patient is regis-

tered, after which a lab test is planned to diagnose the

patient. If the patient misses their appointment or if the

results are inconclusive, then a new test is planned, but if

the test results are ready then the treatment can proceed.

During the treatment additional tests may be required, until

the patient is healthy again and the process ends. Note that

the composite process is smaller than the cartesian product

of the artifacts (4� 5 ¼ 20 states) because not all state

combinations can be observed due to interdependencies.

For example, once the patient is healthy no extra lab tests

are needed. Such dependencies between artifacts can be

interesting to analyse.

3.2 Process Execution Data

The CSM models as introduced above provide only lim-

ited insights into the dependencies and interaction between

the artifacts whose behaviour makes up the process of the

artifact system. There are no expected sojourn times for the

different states or frequencies for transitions. For the pro-

cess in Fig. 1 an analyst could be interested e.g. in the

average time spent Waiting on result (C) while the patient

is In treatment (Y) or the difference in probability of

transitioning to New test needed (E) before and after the

patient is Diagnosed (X). To enrich the model with such

information, we require a collection of process execution

data.

In this work we assume the availability of both a CSM

of the process of interest and a matching collection of

process instance data consisting of execution sequences of

the process. Each State Entry in an Execution Sequence, or

trace, specifies the new state of the artifact system at a

certain point in time. A collection of execution sequences

together form a Log. Given a log, a CSM can be discov-

ered that matches the execution sequences in the log using

the approach presented in van Eck et al. (2016a).

Definition 3 Let M be a CSM and T a time domain. We

call e 2 ðS� TÞ a State Entry. Function stateðeÞ returns

the state, timeðeÞ returns the time, and stateiðeÞ ¼
pfigðstateðeÞÞ returns the state projection of the state entry

e.

r 2 ðS� TÞ� is an Execution Sequence of M iff:

– stateðr1Þ ¼ b,

– stateðrjrjÞ ¼ f ,

– ðstateðrkÞ; stateðrkþ1ÞÞ 2 T for k 2 f1; . . .; jrj � 1g,
– timeðr1Þ ¼ timeðr2Þ, and
– timeðrkÞ\timeðrkþ1Þ for k 2 f2; . . .; jrj � 1g.
The set TracesM is the set of all possible execution

sequences of M. A Log LM : TracesM ! N is a multiset

of execution sequences.

An example of an execution sequence for the CSMs

from Fig. 1 is provided in Fig. 2. Note that no time is spent

in the artificial initial state b, representing the beginning of

the known execution, but it is included in execution

sequences to enable the calculation of the frequency of the

different possible ways to start a process. Artificial final

Fig. 1 A model M of a simple healthcare process and its two artifact models A1 and A2. Every state in the process is a combination of a state

from each artifact
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state f represents the point in time after which the process

instance finished and the state is unknown.

We can use the time information in an execution

sequence to calculate the time spent in a given state. By

aggregating the durations of state entries over a log the

models can be enriched with sojourn time statistics for each

state. Similar to state sojourn times, we can also count the

number of transitions occurring in a log. These numbers

can be used to annotate the transitions in the process

models with frequency statistics.

Definition 4 Let rk be a state entry of an execution

sequence r 2 TracesM of CSM M. The state entry’s

duration is given by:

dðrkÞ ¼
timeðrkþ1Þ � timeðrkÞ; if 1� k\jrj
0; if k ¼ jrj

�

The total sojourn time of a state s 2 S for a log LM is:

sojðs;LMÞ ¼
X
r2LM

X
kjstateðrkÞ¼s

dðrkÞ � LMðrÞ

The frequency of a transition ðs; s0Þ 2 T for a log LM is:

freqTððs; s0Þ;LMÞ
¼

X
r2LM

fkjstateðrkÞ ¼ s ^ stateðrkþ1Þ ¼ s0gj j � LMðrÞ

An execution sequence of a CSM can also be projected

onto a subset of its artifacts such that it is an execution

sequence of the matching projected CSM. The projection

abstracts from state entries where the state of the specified

artifacts does not change from the previous state entry, as

these entries no longer represent transitions in the projected

process model. With such projections we can calculate

sojourn and frequency statistics to enrich projected CSMs

as before.

Definition 5 LetM be a CSM,P a set of artifact indices,

and pP a state projection function. We lift the application

of projection function pP to sequences r 2 TracesM so

that pPðrÞ 2 TracesMP . We define pPðrÞ recursively:
If r ¼ hi then pPðrÞ ¼ hi, and if r ¼ hei, with

e 2 ðS� TÞ, then pPðrÞ ¼ hðpPðstateðeÞÞ; timeðeÞÞi. For
an execution sequence rhe1; e2i,

pPðrhe1; e2iÞ ¼
pPðrhe1iÞ; if pPðstateðe1ÞÞ ¼

pPðstateðe2ÞÞ
pPðrhe1iÞpPðhe2iÞ; otherwise

8><
>:

A Log Projection LP
M : TracesMP ! N of a log LM is a

multiset of execution sequences such that:

81 2 TracesMP : LP
Mð1Þ ¼

P
r2LM:1¼pPðrÞ LMðrÞ.

Table 1 The state entries of the

execution sequence r of M
from Fig. 2, the sequence

projected on the first artifact

r0 ¼ pf1gðrÞ, and the sequence

projected on the second artifact

r00 ¼ pf2gðrÞ

k rk dðrkÞ l r0l dðr0lÞ m r00m dðr00mÞ

1 ((b1; b2), 1-1-’17) 0 1 (b1, 1-1-’17) 0 1 (b2, 1-1-’17) 0

2 ((W,A), 1-1-’17) 4 2 (W, 1-1-’17) 11 2 (A, 1-1-’17) 4

3 ((W,B), 5-1-’17) 2 3 (X, 12-1-’17) 2 3 (B, 5-1-’17) 2

4 ((W,C), 7-1-’17) 4 4 (Y, 14-1-’17) 12 4 (C, 7-1-’17) 4

5 ((W,D), 11-1-’17) 1 5 (Z, 26-1-’17) 1 5 (D, 11-1-’17) 7

6 ((X,D), 12-1-’17) 2 6 (f1, 27-1-’17) 0 6 (E, 18-1-’17) 3

7 ((Y,D), 14-1-’17) 4 7 (B, 21-1-’17) 3

8 ((Y,E), 18-1-’17) 3 8 (C, 24-1-’17) 2

9 ((Y,B), 21-1-’17) 3 9 (D, 26-1-’17) 1

10 ((Y,C), 24-1-’17) 2 10 (f2, 27-1-’17) 0

11 ((Z,D), 26-1-’17) 1

12 ((f1; f2), 27-1-’17) 0

Fig. 2 An execution sequence for the running example process from Fig. 1
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Table 1 shows an execution sequence r of the running

example process and its projections pPðrÞ for P ¼ f1g
and P ¼ f2g, together with their corresponding durations.

The information in a collection of execution sequences

can be used to enrich a CSM and its projections with state

sojourn statistics and transition frequencies as described

above. Figure 3 shows the running example process of

Fig. 1 annotated with frequency and average sojourn time

information. Process execution data can also be used for

the identification of relations between artifact model ele-

ments and the calculation of measures of interestingness

for such relations.

3.3 Artifact Interaction

Given a CSM M with multiple artifacts and a log LM, we

want to find interesting artifact interactions that are a part

of the artifact system behaviour. Interestingness in the

context of pattern analysis generally means unexpected to

the user, i.e. new knowledge or contradicting expectations,

and potentially actionable, e.g. leading to process

improvement (Liu et al. 2000). For example, if the state of

an artifact cannot be advanced until a certain state in a

different artifact has been reached then this may represent a

bottleneck in the overall process. Similarly, the probability

of making specific choices at a decision point in one arti-

fact may be affected by the state of another artifact.

The executions in a log do not explicitly describe causal

dependencies between the behaviour of different artifacts,

but we can infer correlations between sets of artifact states

or transitions. Based on this, we distinguish three types of

artifact interaction: state co-occurrence, transition co-oc-

currence and forward-looking co-occurrence.

We focus here only on the interaction between pairs of

artifacts, but the interaction definitions can be generalised

to involve sets of artifacts. We formulate each interaction

as an implication ðX ) YÞ between two statements

regarding the states or execution behaviour of the artifacts.

In van Eck et al. (2017) we already presented the formulas

to calculate these interactions in detail.

State co-occurrence ðsi )S sjÞ is defined as the condi-

tional probability that artifact model Aj is in state sj given

that artifact model Ai is in state si. From the execution

sequences in a log we can determine the strength of this

interaction in the observed data. It is calculated as the

amount of time the system state contains both states divi-

ded by the total time spent in si.

Transition co-occurrence ððsi; s0iÞ )T ðsj; s0jÞÞ is defined
as the conditional probability that, given that Ai is in a

transition from si to s0i, Aj has a state sj before and a state s0j
after the transition. If sj ¼ s0j this co-occurrence specifies

the state of Aj during the given transition in Ai, but if they

differ then it specifies a transition in Aj that co-occurs with

the transition in Ai. The strength of this interaction is

calculated as the number of times we observe transitions

for which both the condition and the consequence hold

divided by the total number of observed transitions for

which the condition holds.

Forward-looking co-occurrence ðsi ^ sj )F ðsj; s0jÞÞ is

defined as the conditional probability that the next transi-

tion executed in Aj goes to state s0j, given that Aj is in state

sj and that Ai is in state si during and after the next tran-

sition in Aj. The strength of this interaction is calculated as

the number of times we observe a transition from sj to s0j
while Ai has the specified state si divided by the total

number of outgoing transitions from sj while Ai is in si.

It is possible to calculate the artifact interactions defined

above for all pairs of states and transitions of all pairs of

artifacts. However, it is clear that this results in a very large

number of interactions for a process analyst to inspect. One

solution to this problem is to rank and filter the list of

2

6

2
9

9

Fig. 3 The models of the healthcare process from Fig. 1 annotated with transition frequencies and average state sojourn times per trace
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interactions to obtain the most interesting artifact relations

and to present those to the analyst first.

In order to rank and filter artifact interactions based on

their interestingness it is necessary to be able to quantify

‘‘interestingness’’. As we discussed in Sect. 2, work has

been performed in the field of association rule learning to

develop measures of interestingness to help with the

analysis of large sets of association rules (Tan et al. 2004;

Liu et al. 2000). In van Eck et al. (2017) we select a

number of such measures and we discuss their meaning and

applicability in the context of artifact interactions that

represent process behaviour.

4 Focussed Performance Analysis

Ranking and filtering artifact interactions based on mea-

sures of interestingness results in a shortlist of interactions

that can be studied in detail to get insights in the overall

process performance. The interactions discussed above

show how the behaviour of one artifact is influenced given

a condition on the behaviour of another artifact. Applica-

tions of this allow an analyst to see e.g. how a state with a

high sojourn time is correlated with states of other artifacts

and how the occurrence of a state affects the progression at

decision points in other artifacts. A next step can then be a

root cause analysis of the overall process performance in

terms of such interactions affecting specific parts of the

overall process.

The interactions defined above are formulated as

implications, i.e. having a condition and a consequence.

For a given condition there can be multiple possible con-

sequences, e.g. in Fig. 1 if the process is in state

(X, D) there exist two forward-looking co-occurrence

interactions related to the transitions to states (Y, D) and

(Y, E). In this example, whether or not a new test is needed

would likely depend on the type of treatment given to the

patient. Therefore, if we know the treatment type of each

case then we can investigate the strength of these interac-

tions for each treatment type separately, in order to confirm

the above hypothesis. So, given additional information it is

possible to further restrict the condition of an artifact

interaction in order to analyse variants of the process and

the possible causes of differences in overall process

performance.

In the following, we assume that traces and state entries

can have additional attributes associated to them. Examples

of such attributes are treatment type or patient character-

istics, on a trace level, and the specific type of test planned,

on a state entry level. We do not provide formal definitions

of these extensions here, but they can be interpreted as

mappings from specific traces or state entries to attribute

values.

Given a set of attributes and associated values for the

traces in a log, we can divide the traces into subsets that

can be used to compare artifact interaction in different

variants of the same process. So, to investigate how treat-

ment type affects the number of new tests needed in our

running example, we partition a log such that each partition

forms a sub-log contains all the traces belonging to a single

treatment type. For each sub-log we then calculate the

strength of the forward-looking co-occurrence interactions,

e.g. between states (X, D) and (Y, E). If there are three

treatment types then this would result in three separate

artifact interaction strength measures, which we can com-

pare to see what the estimated expected probability of a

new test is for each treatment type. In this way we can

perform a focussed performance analysis to test a specific

hypothesis.

As described in Sect. 3.3 and discussed in detail in van

Eck et al. (2017), the strength of artifact interactions is

calculated in terms of state sojourn times or transition

frequencies, as defined in Definition 4. Therefore, to cal-

culate the interactions for a sub-log we restrict the calcu-

lation of state sojourn times to traces of the specific process

variant of interest. This is defined as follows, with the

calculation of transition frequencies being analogous:

Definition 6 Let M be a CSM. The total conditional

sojourn time of a state s 2 S for a log LM and a trace mask

v � TracesM is:

sojðs;LM; vÞ ¼
X

r2LM^r2v

X
kjstateðrkÞ¼s

dðrkÞ � LMðrÞ

By providing a trace mask, traces are either included or

excluded in the calculation of interaction measures

depending on trace characteristics, i.e. the trace mask

defines which traces belong to a specific sub-log we are

interested in. We can then test whether these characteristics

are responsible for differences in overall process beha-

viour. A trace mask can be based on both provided and

derived attributes. For the running example, a mask based

on a provided trace attribute is e.g. the set of traces specific

to one treatment type. A mask based on a derived attribute

is e.g. 50% of all traces with the longest total duration of

the treatment. Both trace masks highlight differences in the

probability of a new test being needed during treatment and

may offer an explanation for the root cause of the

differences.

It is also possible to compare differences in artifact

interaction based on characteristics of the state entries

directly. This can be done by specifying a state entry mask

restricting the calculation of state sojourn times to a set of

entries as follows, with transition frequency calculations

being analogous:
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Definition 7 Let M be a CSM. The total conditional

sojourn time of a state s 2 S for a log LM and a state entry

mask u � ðS� TÞ is:

sojðs;LM;uÞ ¼
X
r2LM

X
kjstateðrkÞ¼s^rk2u

dðrkÞ � LMðrÞ

Restricting the calculation of artifact interaction mea-

sures by specifying a state entry mask is very similar to the

use of a trace mask. The difference is that two state entries

from the same trace may have different characteristics and

therefore may belong to different state entry masks. In the

running example, the probability that a new test is needed

will depend on the latest test results, which can be different

for subsequent tests performed on the same patient. By

creating a state entry mask for each test result type, it is

possible to analyse and compare how these types affect the

artifact interactions. A state entry mask can also be based

on derived attributes such as the duration of the specific

state entry.

5 Analysis Guidance Implementation

In this section we discuss the implementation of the anal-

ysis guidance and focussed performance analysis in the

CSM Miner van Eck et al. (2016a), a plug-in1 in the

process mining framework ProM.

The CSM Miner discovers a model of the artifact system

and of each artifact in the input log, annotates them with

sojourn times and frequencies, and presents them in an

interactive visualisation. The input log can be a standard

XES event log (Verbeek et al. 2011), as long as an attribute

is present per event that denotes to what artifact it belongs.

The interaction allows the user to click on a state or tran-

sition and this will highlight all other states and transitions

that co-occur with the selected element. The colour of the

highlighting is dependent on the strength of the artifact

interaction.

The analysis guidance for the exploration of artifact

interactions is provided below the interactive model visu-

alisation, as shown in Fig. 4. It provides a list of artifact

interactions and for each interaction the measures of

interestingness discussed in van Eck et al. (2017) are cal-

culated. The user can sort the interactions by the measure

values and can set minimum values for each measure to

filter the list. By clicking on interactions in the table, the

corresponding states or transitions are highlighted in the

models.

1 Contained in the CSMMiner package of the ProM 6 nightly build,

available at http://www.promtools.org/.

Fig. 4 The analysis guidance is shown below the process models. Users can sort and filter on the different measures of interestingness, and then

click on an artifact interaction to highlight it. The colours of the highlights indicate differences in performance
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The user can also change the artifact interaction high-

lighting functionality to enable both trace and state entry-

based focussed performance analysis. In the Trace Sojourn

Split mode, the highlighting shows how the artifact inter-

action differs for two trace masks consisting of the half of

traces with the lowest and the half with the highest sojourn

time in the selected state. Similarly, in the State Entry

Sojourn Split mode the highlighting shows the differences

for two state entry masks consisting of the half of the state

entry occurrences with the lowest and the half with the

highest sojourn time in the selected state.

In both modes, the highlighting uses a color

scheme from green through yellow to red to denote the

magnitude of the differences in artifact interaction. A

yellow state border indicates no significant difference

between the two groups. A green border indicates that the

traces or state entries with a lower sojourn time have a

stronger interaction between the highlighted state and the

selected state than the traces or state entries with a higher

sojourn time, while a red border indicates the reverse.

Similar to the border color, the color of the transitions

indicates whether the transition co-occurs more frequently

in the low or high sojourn time masks. The state fill color

indicates the absolute strength of the interaction for the

mask with the stronger relative artifact interaction strength,

scaling from grey to either green or red, or yellow if there

is no difference between the masks.

6 Artifact Interaction Analysis Strategy

The CSM Miner can be used for analysis of artifact

interactions and their effect on overall process perfor-

mance. To help process analysts use the tool effectively we

suggest the following approach, especially for large and

complex processes.

6.1 Preprocessing and Mining

The first step is the preparation of a state log to be used as

input for the CSM Miner. The CSM Miner does not apply

any filtering during the mining of the artifact models, so if

the input data is expected to contain noise then it can be

useful to apply filtering or outlier detection. Removing

noise or infrequent behaviour from the input can result in

more structured models, but it may also hide interesting

deviations from the main process behaviour. Therefore, the

correct preprocessing depends on the goal of the process

analysis. The State Log Creator plugin in ProM can be

used to create a log that complies with the input assump-

tions of the CSM Miner.

Given a state log, the CSM Miner creates the artifact

models and computes the artifact interactions. The analyst

can then inspect the individual artifact models to identify

whether their general structure makes sense. A set of

transformation operations is available in the visualisation

to modify the models by removing or merging states.

Removing states where little time is spent simplifies the

models without having a large effect on process behaviour,

while the merge operation can be used to hide sub-pro-

cesses or isolated parts of the process in which the analyst

is not interested at the moment. These operations cause a

recomputation of the models and all interactions. The final

result is a set of artifact models for which the analyst wants

to explore interactions.

6.2 Exploring Artifact Interaction

We identify two strategies to explore artifact interactions.

The first is using the measures of interestingness presented

in van Eck et al. (2017) and the second is to inspect the

interactions of each state of a single artifact in a specific

order.

In the CSM Miner a list of all artifact interactions is

presented below the models, which can be sorted and fil-

tered. The first step is to limit the number of artifact

interactions by setting thresholds for some measures.

Support and Confidence are most suitable for this, as their

values are intuitive to understand. By setting a minimum

support of e.g. 0.01 the interaction has to occur during at

least 1% of the time on average and a minimum confidence

of e.g. 0.5 means that the condition implies the conse-

quence at least 50% of the time. The exact thresholds to use

differ per process and also depend on the goal of the

analysis, e.g. finding strong artifact interactions or identi-

fying infrequent patterns.

The second step is sorting the remaining interactions on

a specific measure and analysing the top results. For each

artifact interaction in e.g. the top 10 results, we propose

that the analyst answers the following questions:

– Is the artifact interaction valid?

– Is the insight relevant?

– What is the root cause?

To answer the first question the analyst needs to validate

the correctness of the interaction. It may happen that an

interaction contradicts known constraints on the process

behaviour. This could occur due to incorrect logging or

mistakes in the preprocessing of the input data, in which

case the analyst has to correct these errors. Invalid inter-

actions related to (artificial) start and end states or states in

which a negligible amount of time was spent may also

occur due to timestamp granularity issues.

The second question can only be answered by the ana-

lyst using domain knowledge. The CSM Miner helps to

guide the analyst to interactions that are interesting from a
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statistical point of view, which can differ from what a

process expert may consider as interesting (Bazaldua et al.

2014). For example, when sorting on Conviction the top

results will be the interactions for which the consequence

always occurs if the condition holds. These strong causal

relations between the behaviour of different artifacts are

likely well known to a process expert and hence probably

not interesting to explore. However, if an interaction very

rarely occurs then it may also not be relevant for an anal-

ysis of the overall process behaviour.

Answering the third question also requires domain

knowledge, but the focussed performance analysis descri-

bed above can help an analyst to answer this question. We

discuss this aspect in more detail in the next subsection.

As an alternative to the use of the measure of interest, an

analyst can use the traditional approach of inspecting the

states of a certain artifact in a specific order. By selecting

an execution sequence, e.g. of the most frequent trace

through a single artifact model, the analyst can decide on

an order in which to inspect the states and their artifact

interactions. For each interaction inspected in this manner

it is still useful to use the questions above for guidance.

This type of exploration is more time consuming than using

the measures of interest, so the analyst may want to skip

states in which relatively low amounts of time are spent.

6.3 Root Cause Analysis

For a given state there are usually multiple co-occurrence

relations with states and transitions of the other artifacts.

This is because of independent behaviour of artifacts or the

presence of decision points from where multiple paths are

possible. By comparing different variants of the process, an

analyst can try to identify the root causes that influence

which states and transitions co-occur.

As a proof of concept, the CSM Miner currently sup-

ports the comparison of trace and state entry masks based

on sojourn time in the selected state. This can be used to

determine if there are significant differences between the

behaviour of instances which are slowly processed versus

those that are quickly processed. Such differences can point

to root causes of bottlenecks in the overall performance of

the process. For example, delays in a given state may be

highly related to the co-occurrence with a choice made in a

different artifact. Another example is that quickly pro-

cessing instances can result in a larger chance for the

occurrence of an undesirable outcome in another artifact,

e.g. because of mistakes made due to time pressure. The

analyst can report on such observations and start thinking

of potential ways to improve the process performance.

For a given artifact state co-occurrence relation, the

analysis works as follows. By selecting the condition state

in the CSM Miner, its corresponding consequences are

highlighted. The fill colour of a state indicates the overall

strength of the interaction, so grey states can be ignored as

they are not very likely to be important causes of perfor-

mance differences compared to red or green states. If the

border of a state is highlighted in yellow then this co-

occurrence relation is not an explanation for delays in the

condition state. If the border is orange or red then it is

correlated stronger with the slow traces or state entries and

hence it may be a possible cause of a bottleneck or per-

formance issue. The opposite holds if the border is between

yellow and green, indicating a positive correlation to lower

sojourn times. After inspecting a given co-occurrence, an

analyst will have to determine if there is a logical expla-

nation for a causal relation between the artifact interaction

and performance differences. Following this, the analyst

should inspect the other co-occurrences with the same

condition state to see the related performance differences.

An analyst can also look at the transitions to identify

causes of performance differences. Transitions are

coloured based on their relative frequency when co-oc-

curring with slow or quickly processed traces and state

entries. This can be used to investigate the links between

state sojourn times and undesirable transitions or to iden-

tify choices that lead to a quicker processing times. As an

example, additional lab tests occur more frequently if the

treatment of a patient is longer than average. However, this

insight is probably well-known to a process analyst,

showing that domain knowledge is again required to

determine the relevance of the insights.

7 Evaluation

In this evaluation we aim to show that exploring a process

using the measures of interest results in relevant artifact

interactions and that the proposed focussed performance

analysis can help a process analyst to find possible expla-

nations for performance issues. Therefore, we discuss the

results we obtained by applying the CSM Miner on real life

process data.

7.1 Process Description

We used event data taken from the BPI Challenge 2012

(van Dongen 2012). This dataset concerns process instan-

ces of a personal loan and overdraft application process at a

Dutch financial institute. The events and activities in the

log are related to three interrelated sub-processes, which

can be considered as interacting process artifacts. The first

artifact concerns the state of the application (A-states), the

second relates to the work-items performed by the financial

institute (W-states), and the third concerns the state of a

potential offer that the institute can make to the applicant
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(O-states). This process has been analysed in several other

papers (Bautista et al. 2012; Adriansyah and Buijs 2012).

The overall process behavior is as follows. The process

starts with the submission of the application. An unlogged

check determines whether the application is pre-accepted

or declined immediately. The application is accepted once

all necessary information has been provided to complete

the application. After the acceptance, the institute sends a

concrete offer for the terms of the loan or overdraft to the

applicant. When the response is returned, the application is

validated and then accepted or declined. At any point in the

process the applicant can decide to cancel their application

and exit the process. In cases where the applicant does not

respond in a timely manner, or if the application does not

meet the criteria of the financial institute, then the appli-

cation can be declined by the institute. In exceptional cases

the financial institute checks the applications for fraud.

7.2 Results

For the analysis of the described process our primary goal

was to identify where in the process potential bottlenecks

occur and what may be their root cause. To achieve this, we

explored the artifact interaction results first using the

measures of interestingness and then by focussing on the

manual tasks in the process. We applied focussed perfor-

mance analysis to identify differences between the traces

and state entries with quick processing times versus those

that were delayed.

To start the analysis of the artifact interactions, we

applied the CSM Miner on the unfiltered data and did not

remove or merge any states in the resulting artifact models.

To filter the artifact interactions we applied a minimum

support of 0.01 to filter out the very infrequent patterns and

sorted on Lift to find the patterns that are unlikely under

assumption of statistical independence. The lift measure

expresses the ratio between the probability of co-occur-

rence and the expected co-occurrence under statistical

independence (van Eck et al. 2016a). Note that lift is a

symmetric measure, so a co-occurrence between states

A and B has the same lift score independent of which state

is the condition and which the consequence. We looked at

the top 20 results, shown in Table 2, for further analysis.

For each artifact interaction, we identified whether it is

valid and relevant, and what its potential cause could be

when looking at performance differences. All artifact inter-

actions in the top 20 are valid, so below we only discuss

their relevance and the subsequent analysis to identify per-

formance differences and their possible root causes.

The interaction between Validating Application and

Offer Sent Back is a strong correlation with high confi-

dence, but the sojourn time in Validating Application has

no significant effect on the interaction strength. This is a

good example of an artifact interaction that is valid, but not

interesting for an analyst familiar with the process. An

application can only be validated if the customer has

responded to the offer of the financial institute. The inter-

action’s reverse is a weak correlation where sojourn time is

again not a relevant factor for process differences. How-

ever, there are other interactions with Offer Sent Back that

do show such differences.

One such interaction is the reverse of the second co-

occurrence in the top list of Table 2, between Offer Sent

Back and Calling Incomplete Files. As shown in Fig. 5a,

the Trace Sojourn Split mode was used to split the traces

into two equal sized sets: the traces that spend most time in

Offer Sent Back in one set and the remainder in the other

set. Set of traces with most time in Offer Sent Back are on

average spending 41:8% of this time calling or waiting for

customers to complete their application. The other traces

spend on average 11:6% of their time in Calling Incom-

plete Files at this point. This interaction is relevant and it

shows that a possible cause of delays in the decision to

accept or decline an application is the significant differ-

ences in the time spent calling the customer to provide

additional information to resolve incomplete files.

Another relevant artifact interaction is between Offer Not

Started and Application Preaccepted, shown in Fig. 5b. This

Table 2 The top 20 artifact

interaction results, sorted on lift

Lift is a symmetric measure, so

the lift score for the reverse of

each condition and consequence

pair is identical to the 10

interactions shown

Condition Consequence Support Confidence Lift

W Validating Application Offer Sent Back 0.013 0.917 6.68

W Calling Incomplete Files Offer Sent Back 0.049 0.775 5.647

Application Preaccepted Offer Not Started 0.191 1 4.893

W Not Started Offer Not Started 0.022 1 4.893

Application Partly Submitted Offer Not Started 0.012 1 4.893

Application Preaccepted W Not Started 0.012 0.065 2.912

Application Preaccepted W Complete Application 0.174 0.91 2.907

W Complete Application Offer Not Started 0.175 0.56 2.741

W Call After Offer Offer Sent 0.504 0.872 1.328

Application Finalised Offer Sent 0.657 0.827 1.259
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co-occurrence is stronger if there is a bigger delay before an

offer is made to the customer. The cause of this is actually in

the state directly before the preaccept, an interaction also in

the top list, in which many instances are quickly declined.

This is also visible from the transition, showing that 4628

applications got declined there for the half of traces spend-

ing least time before an offer was sent, compared to 1091 for

the half with the largest sojourn time. Although perhaps not

very surprising, it confirms that the automated checks of the

financial institute generally remove unsuitable applications

quickly and thereby save valuable time to be spent on

applications that benefit the organisation.

This initial part of the process also has strong co-oc-

currence relations with a high lift related to W Not Started,

as the manual work on the application has not yet started.

Once the workflow has started with the Complete Appli-

cation step then we again see strong differences in the

process flow for quick and slow traces, as shown in Fig. 6a.

This again shows that the majority of the actual working

time is spent on cases for which an offer is made rather

than on unprofitable cases that are declined.

The interaction analysis also reveals where improve-

ments can still be made, later in the process. The co-oc-

currence between Application Finalised and Offer Sent,

shown in Fig. 6b, indicates that a major cause of delay in

the last stage of the application process is caused by cus-

tomers responding very slowly to the offers sent out to

them. This is not very surprising, however the visualisation

also highlights a possible deeper root cause for the slow

response of the customers: from the transition frequencies

we can see that for the slow applications many offers are

cancelled and a new offer is subsequently created.

Apparently customers have room to negotiate on the terms

of their loan, which leads to delays in the process. As a

result of this analysis, a possible follow-up would be an

analysis of the benefits of using this strategy or whether it

may actually be cheaper to offer better initial terms to

customers and thereby reduce the amount of work and

long-running applications.

As an alternative to the use of the measures of inter-

estingness, one can also explore the models using domain

knowledge and focussing on a common sequence of

occurrences. Given that we are interested in finding per-

formance problems, we focussed on the manual parts of the

workflow artifact and looked for relevant insights that were

not covered above. Regarding the handling of leads, there

was interestingly no significant relation between the time

spent on this activity and the rate of declined applications,

as shown in Fig. 6c. This suggests that there are objective

criteria for declining a loan application. The checking of

Fig. 5 a The co-occurrences in the Workflow artifact with Offer Sent Back. b The co-occurrences in the Application artifact with Offer Not

Started (color figure online)
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the completion of the application did not reveal interesting

insights. However, if the employees spend a lot of time on

the phone with a client to discuss the offer then it is more

likely that the entire application is cancelled, as shown in

Fig. 6d. Further analysis is needed to determine whether

this simply means that employees spend a significant

amount of time on the phone to try to negotiate with cus-

tomers and whether this effort is actually worthwhile. The

same was true for the time spent calling after incomplete

files. Finally, the time spent on the final validation of the

application has no significant effect on the acceptance rate.

The above analysis has shown that by just looking at the

top artifact interactions as ranked on one of the measures of

interestingness, it is already possible to obtain surprising

and valuable insights into the performance of this process.

Although the user is generally presented with several clo-

sely related co-occurrence relations that are not guaranteed

to be relevant or interesting for performance analysis, it is

much less time consuming than exhaustively exploring the

entire set of artifact models. We also found a relevant

direction for further analysis by looking at the states in

which significant amounts of time is spent on manual work

in an average application. This shows that using a guided

approach to explore the artifact interactions in a complex

process allows an analyst to quickly get insights into the

overall process performance.

Fig. 6 a The co-occurrences in the Offer artifact with Complete Application. b The co-occurrences in Offer with Application Finalised. c The co-
occurrences in Application with Handle Leads. d The co-occurrences in Application with Call After Offer. For a and b a Trace Sojourn Split is

made and for c and d a State Entry Sojourn Split to show performance differences
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8 Conclusion and Future Work

In this paper we have presented an approach to objectively

quantify the interestingness and performance effects of

interactions between artifacts in artifact-centric processes.

This approach is based on measures of interestingness that

have been defined in the context of process models. It

highlights useful or surprising artifact interactions and

thereby enables process analysts to deal with large or

complex models.

We have also discussed how artifact interactions can be

partitioned and compared. Together with a strategy to

guided the user in analysing these interactions, the parti-

tioned interactions can be used to identify potential root

causes of performance issues in artifact-centric processes.

The approach has been implemented using an interactive

process discovery tool, the CSM Miner. We have evaluated

the approach and shown that it provides relevant and

valuable insights on real life process execution data.

However, a limitation of our evaluation is that the insights

have only been compared to the results from other authors

that analysed the same open dataset, but the results have

not been discussed with domain experts. An evaluation

with the involvement of domain experts is a direction of

future work.

We aim to extend this work in several ways. Instead of

only looking at pairs of artifacts, we can also generalise

artifact interaction to sets of artifacts. One variant of this is

related to having multiple concurrent instances of the same

artifact type, e.g. multiple invoices related to one order.

Another variant is that conditions over multiple different

artifacts can form a more complex interaction, similar to

item sets and association rules. There is also room to

improve the transformation of execution sequences into

observations of artifact interaction. For example, correla-

tions based on time intervals could be used to handle noise

or non-fitting executions in the process data. Additionally,

we have only explored co-occurrence relations, while long-

term dependencies between states are also important in

many processes.
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