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1 Introduction
Process-Aware Information Systems (PAISs) are increasingly used by organizations to
support their businesses. All these systems record the execution of process instances in
so-called event logs. These logs thus capture information about activities performed.
Each event records the execution of an activity instance by a given resource at a certain
point in time along with the output produced. Analyzing event logs, understanding
and improving processes based on facts are the primary objectives of process min-
ing (van der Aalst 2016).

In a relatively short time span, this discipline has proven to be capable of extract-
ing from event logs in-depth insights into process-related problems that contemporary
enterprises face. The lion’s share of attention in process mining is process discovery.
Process discovery aims to discover the actual processes that are executed within orga-
nizations. Typically, the output is a model that is a description of the process. Process
models produced through process discovery are based on facts and are objective, in
contrast with those hand-made, which are subjective and biased toward the designer’s
belief.

What does one need a model for? Models can be used for multiple purposes. They
can not only be used to configure a PAIS but also to discuss responsibilities, ana-
lyze compliance, reason over bottlenecks, resource utilization, costs, risks, and other
performance-related aspects of processes.

To ensure an efficient communication with the company’s stakeholders, the pro-
cess model notation plays an important role. Several notations exist but the evidence is
showing that, during the last years, BPMN (Business Process Model and Notation) 2.0
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(Object Management Group 2013) is becoming the defacto standard for modeling busi-
ness processes in industry. Therefore, it seems crucial that process discovery tech-
niques produce models in this notation. Furthermore, models need to be of a high
quality: they need to be accurate, i.e., represent various perspectives of event data, and
not to underfit the reality. To achieve this, the models need to integrate the control-
flow perspective, i.e., the allowed sequences of activities, with the resource and data
perspective (the latter a.k.a. case perspective). The organization perspective focuses on
which actors (people, systems, roles, organizational units) are involved and how: who
can execute what part of the process. The data perspectives focus on the properties of
the process instance executions (e.g., the age or gender of loan applicants) and how
these properties affect the process executions, e.g., the applications of gold customers
are managed differently from those of silver customers, which are, in turn, different
from normal customers.

The BPMN notation allows one to integrate these perspectives into a single model.
If process mining focuses on discovering integrated models, one can discover that, e.g.,
requests from certain customer types are managed by given organizational units or do
not need to be assessed by managers.

As mentioned, models need to be readable even when the processes consist of
dozens of activities and involve several organizational units. To tackle this, it is worth
using a “divide-et-impera” solution: the model is split into several sub-models, each
of which is a different, e.g., BPMN model. These sub-models are then connected to
illustrate how the executions iterate over them. In other words, readability is achieved
by making the model hierarchically structured into a main model and sub-models.

This paper illustrates a methodology to exploit event logs to generate hierarchi-
cal BPMN models that integrate the different perspectives mentioned above. The pa-
per starts from analyzing and reporting the BPMN meta-model (Object Management
Group 2013), from which we derived the main modeling elements, which can be dis-
covered using different process mining techniques. We identified three main types of
BPMN models, which inherit core BPMN modeling constructs: BPMN models with
data, hierarchical BPMN models, and BPMN models with resources. After that, we
report on process discovery techniques that mine these three types of models. Then,
we illustrate how these techniques can work in concert to integrate different views into
a single hierarchical BPMN model, which combines data, resource, and control-flow
perspectives.

This integrated discovery approach was implemented as a plugin for ProM, the
most widespread open-source process mining framework. We conducted three thor-
ough real-life case studies with processes enacted in several Dutch municipalities, in
an online sales shop, and in a banking system. The event logs contained information
related to the control-flow, the resource and the data perspective, which enabled us to
discover rich, integrated BPMN models. In addition to mining different perspectives,
these case studies illustrate the importance of mining hierarchical models where the
model is broken down into several subprocesses. Indeed, the event logs recorded the
execution of dozens of process activities, which would have led to gigantic and unread-
able process models if we focused on mining “flat” process models.

The behavioral and structural characteristics of the discovered BPMN models were
also evaluated. The structural characteristics of BPMN models discovered from real-
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life event logs were compared with the structural characteristics of BPMN models
taken from the Signavio model collection. This allowed us to show that the models
that we automatically discovered resemble manually created models, which are com-
mon for the analysts.

The remainder of this paper is organized as follows. Section 2 gives an overview
of related work. In Section 3, all notions, including event logs, Petri nets, BPMN
modeling constructs, are introduced. Section 4 demonstrates the applicability of the
existing process discovery techniques to mine different types of BPMN models. The
integrated discovery approach is presented in Section 4. Section 5 demonstrates the
experimental results. Finally, Section 6 concludes the paper.

2 Related Work
There is a large body of work on process discovery. In (van der Aalst 2016), van der
Aalst discusses a large repertoire of process discovery techniques that mainly focus on
discovering the control-flow, i.e., the sequences of executions of process activities. In
addition, there are several research works to discover the other process perspectives or
some subprocess hierarchies, e.g., (de Leoni & van der Aalst 2013, Conforti et al. 2014,
2016, Bazhenova et al. 2016, De Smedt et al. 2017, Kalenkova et al. 2017). However,
these works are often limited to a single perspective, such as the data or the resource
perspective. Although some approaches to the discovery and conformance checking
of multi-perspective process models were proposed earlier (Rozinat 2010, Rozinat &
van der Aalst 2006, Mannhardt et al. 2016, Mannhardt 2018), this work leverages the
expressive possibilities of the BPMN language. In (De Weerdt et al. 2014) an approach
for discovering BPMN models represented by control and resource perspectives is sug-
gested, but it is limited to these perspectives only. Furthermore, it is based on a spe-
cific process discovery algorithm, while we present a flexible discovering methodology
where diverse discovery techniques can be integrated in a flexible manner. The aim is
to discover a single process model with hierarchies integrating the data-flow, resource,
and control-flow perspectives.

We also believe that the evaluation of real-life case studies is certainly of higher
quality than the evaluations in previous works. No existing works have ever conducted
a significant effort to illustrate how all perspectives can be mined and put together into
an integrated model, certainly not for case studies of a complexity comparable to what
is proposed in this paper. On average, the complexity of the event logs and of the
underlying processes is certainly far higher than any previous studies.

A related topic is the recent introduction of the DMN standard (Decision Model
and Notation (DMN) V1.1 2016) by the OMG group. BPMN can be complemented
with DMN, where data-related decisions can be represented. In DMN, the data per-
spective is mainly modeled outside the BPMN process model as separate tables. In
(Batoulis et al. 2015), the authors argue that this separation of concerns would increase
the readability, especially when models are of significant size. Indeed, the separation of
concerns might theoretically increase the readability, even though more investigation is
certainly necessary to support this statement. However, it is trivial to extract the data-
related decisions from the integrated BPMN models and to represent them as separate
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DMN tables. Indeed, in (Bazhenova et al. 2016), the authors mine DMN tables using
an approach that largely coincides with what is proposed in this paper. Compared with
the latter, we propose an integrated framework where discovering the data perspective
(in the form of, e.g., rules attached to BPMN arcs or DMN tables) is just one of the
ingredients.

3 Event Logs, Petri Nets, and BPMN Modeling
Constructs

This section defines main concepts, including event logs and process modeling for-
malisms, which will be referred to later in this paper.

3.1 Event Logs
Event logs containing information systems’ behavior are considered as a starting point
for the process discovery algorithms.

The definition of event logs reflects the definition reported in (van der Aalst et al.
2015). Let A be a set of activity names, τ ∈ A be a silent activity name, Â = A \ {τ}
– a set of activity names without the silent activity, Attr – a finite set of attributes, and
Val – a set of values.

An event is defined as a pair e = (a, f), where a ∈ Â is a name of the event,
and f : Attr → Val is an attribute function, which maps attributes to their values. By
E we denote a set of events. E∗ denotes the set of all finite sequences (including the
empty sequence) of elements from E. A sequence of events tr ∈ E∗ is called a trace,
and an event log L is a multiset of traces, i.e., L ∈ B(E∗)[1]. A concatenation of two
traces 〈e1, e2, ..., ek〉 and 〈e′1, e′2, ..., e′l〉 is denoted by 〈e1, e2, ..., ek〉 · 〈e′1, e′2, ..., e′l〉
and equals 〈e1, e2, ..., ek, e′1, e′2, ..., e′l〉.

Let E′ ⊆ E be a subset of events, then a projection tr↑E′ of a trace tr ∈ E∗ on the

set E′ is defined inductively: tr↑E′ =


〈〉, if tr = 〈〉,
tr′↑E′ , if tr = 〈e〉 · tr′, e /∈ E′,
〈e〉 · tr′↑E′ , if tr = 〈e〉 · tr′, e ∈ E′.

A projection L↑E′ of an event log L ∈ B(E∗) on a set E′ ⊆ E is obtained by
projecting on E′ all the traces from L.

Consider the fragment of an event log presented in Tab. 1.
This event log contains information about the procedure of application processing.

The arrival of an application initiates a process instance. After the application is re-
ceived an acknowledgment is sent back to the applicant and the application is either
processed or forwarded to a competent employee.

Each case (identified by Case ID) corresponds to the processing of a concrete ap-
plication and represents a sequence of events (a trace). Timestamps define the order
of events within the traces. The Resource attribute indicates employees performing the
activities.
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Case ID Activity Name Resource Timestamp
e1 1 "receive application" "John" 2017-08-15 11:23:17
e2 1 "send acknowledgment of receipt" "John" 2017-08-15 11:45:54
e3 2 "receive application" "Mary" 2017-08-15 14:12:54
e1 3 "receive application" "John" 2017-08-15 14:21:32
e4 1 "process application" "Kate" 2017-08-15 14:36:17
e2 3 "send acknowledgment of receipt" "John" 2017-08-15 14:41:15
e4 3 "process application" "Kate" 2017-08-15 14:45:59
e5 2 "send acknowledgment of receipt" "Mary" 2017-08-15 14:48:12
e6 2 "forward to competent authority" "Jane" 2017-08-15 15:22:07

Table 1: An event log of an application processing procedure.

Formally, this event log can be defined as a multiset of traces L = [〈e1, e2, e4〉2 ,
〈e3, e5, e6〉1], where each event is identified by its name and the value of the Resource
attribute: e1 = (”receive application”, f1), f1(Resource) = ”John”, e2 = (”send
acknowledgment of receipt”, f2), f2(Resource) = ”John”, e3 = (”receive appli -
cation”, f3), f3(Resource) = ”Mary”, e4 = (”process application”, f4), f4(Re-
source) = ”Kate”, e5 = (”send acknowledgment of receipt”, f5), f5(Resource) =
”Mary”, e6 = (”forward to competent authority”, f6), f6(Resource) = ”Jane”.
As it was mentioned before, Case ID is used to define traces, Timestamp forms the
order of events within a trace.

3.2 Classical Petri Nets and Petri Nets with Data
Petri nets are the most popular low-level process modeling formalism used in the con-
text of process mining. A labeled Petri net is a tuple PN = (P, T, F,Minit,Mfinal, l),
where P is a set of places, T is a set of transitions, P ∩ T = ∅, and F ⊆ (P × T ) ∪
(T × P ) is a flow relation, Minit,Mfinal are initial and final markings respectively, and
l ∈ T → A is a labeling function which maps transitions to a set of activity names. A
marking is a function M ∈ P → N mapping places to natural numbers. In a mark-
ing M place p contains M(p) tokens. In addition, we will use the following notation:
by [p1, p

3
2] we will denote a marking, in which place p1 contains one token, place p2

contains three tokens, while other places are empty.
For transition t sets of input and output places are defined as: •t = {p ∈ P |(p, t) ∈

F} and t• = {p ∈ P |(t, p) ∈ F} correspondingly. Places are represented by circles,
transitions by boxes, and the flow relation by directed arcs.

Transition t is enabled in marking M iff ∀p ∈ •t :M(p) ≥ 1, i.e., each input place
contains at least one token. An enabled transition t may fire, i.e., one token is removed
from each place from •t and one token is added to each place from t•.

If l(t) = τ , then t is called invisible and represented as a black box. Func-
tion l can be applied to transition sequences using the following inductive definition:

l(σ) =


〈〉, if σ = 〈〉,
l(σ′), if σ = 〈t〉 · σ′, l(t) = τ,

〈l(t)〉 · l(σ′), if σ = 〈t〉 · σ′, l(t) 6= τ.

A trace 〈(a1, f1), ..., (ak, fk)〉 ∈ E∗ can be replayed by a labeled Petri net PN =
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(P, T, F,Minit,Mfinal, l) if there is a sequence of transition firings σ, leading from the
initial marking Minit to the final marking Mfinal, such that l(σ) = 〈a1, ..., ak〉[2].

Now let us extend Petri nets and define Petri nets with data introduced in (de Leoni
& van der Aalst 2013). A Petri net with data is a tuple DPN = (PN, V, U,R,W,G),
where PN is a labeled Petri net, V is a set of variables. The function U defines possible
values for each variable v, such that U(v) = Dv , where Dv is the domain for v. The
functions R : T → 2V and W : T → 2V define sets of variables, which are read and
written by the transitions. The guard function G : T 9 GV [3] associates some of the
transitions with guards. A transition can fire only if a corresponding guard evaluates to
true and all the input places contain at least one token[4]. A state of a Petri net with
data is represented by a pair (M,Val), where M is a marking, and Val is a function,
which maps variables to their values, i.e., Val : V → D∪{⊥}, whereD = ∪v∈V U(v).
The sign ⊥ denotes that the variable does not have a value.

An example of a Petri net with data DPN = (PN, V, U,R,W,G), where PN =
(P, T, F,Minit,Mfinal, l) is presented in Fig. 1. This Petri net describes a booking pro-
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view hotel 

details

p1 p2

p5

p3 p4 p7

p6

t1
t2

t3

t4

t6

t7

pay by 

e-money

PaymentType=

''e-money'' 

PaymentType=

''card'' 

t5

PaymentType=

''none'' 

Payment

Type

Figure 1: An example of a Petri net with data.
cess, where the user first books a hotel, chooses a payment type, pays for the reservation
(using one of the payment types) or skips the payment and views the hotel details (be-
fore, after, or during the payment). Formally, P = {p1, p2, p3, p4, p5, p6, p7}, T =
{t1, t2, t3, t4, t5, t6, t7}, F = {(p1, t1), (t1, p2), (t1, p5), (p2, t2), (t2, p3), (p3, t3),
(p3, t4), (p3, t5), (t3, p4), (t4, p4), (t5, p4), (p4, t7), (p5, t6), (t6, p6), (p6, t7), (t7, p7)},
l(t1) = ”book hotel”, l(t2) = ”choose payment type”, l(t3) = ”pay by e-money”,
l(t4) = ”pay by card”, l(t6) = ”view hotel details”, l(t5) = l(t7) = τ . Place p1
contains one token in the initial marking, formally Minit = [p1], the final is defined as
Mfinal = [p7]. The set of variables V is represented by a variable PaymentType , i.e.,
V = {PaymentType}, the set of its possible values is defined as U(PaymentType)
= {”e-money”, ”card”, ”none”}. Transition t2 writes to the variable PaymentType ,
transitions t3, t4, and t5 read its values, formally, W (t2) = {PaymentType}, R(t3) =
R(t4) = R(t5) = {PaymentType}. Moreover, the guard conditions for t3, t4, and
t5 depend on the value of PaymentType: G(t3), G(t4), and G(t5) are defined as
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PaymentType = ”e-money”, PaymentType = ”card”, PaymentType = ”none”
respectively, for other transitions the guard function is not defined. This Petri net
can replay 8 traces, represented by distinct sequences of activity names. Sequence
〈(a1, f1), (a2, f2), (a3, f3), (a4, f4)〉, where a1 = ”book hotel”, a2 = ”choose pay-
ment type”, a3 = ”view hotel details", a4 = ”pay by card”, is an example of such a
trace.

3.3 BPMN Modeling Constructs
In this subsection we will introduce BPMN modeling constructs defined on the basis of
the BPMN 2.0 specification (Object Management Group 2013). BPMN offers a wide
range of modeling elements, but not all of them are frequently employed (Muehlen
& Recker 2008). In contrast to the existing formal BPMN semantics (Dijkman et al.
2008, Kheldoun et al. 2015, Ye et al. 2008) in this paper we consider all key BPMN
constructs, which cover the main workflow perspectives: control, resource, and data.
We will restrict ourselves to private BPMN diagrams, which are used to model internal
business processes without interaction with the environment. Modeling and discover-
ing of interacting processes is out of the scope of this paper and can be considered as a
direction for future work.

We iteratively introduce and formalize various types of BPMN diagrams. To show
their relations with the BPMN standard, corresponding meta-models were extracted
from the specification (Object Management Group 2013). Native classes of modeling
elements and abstract classes are shown in white and gray respectively. Classes of
BPMN diagrams added in this work are highlighted in blue. For each native BPMN
class a parent package from (Object Management Group 2013) is specified.

3.3.1 Core BPMN Models

Core BPMN models are used to formalize flat processes represented by a control-flow
perspective.

A meta-model, which describes elements of core BPMN models, is presented in
Fig. 2.

It shows various types of flow nodes, including activities, gateways, and events.
Activities stand for process steps (in separate core BPMN models they correspond to
tasks), gateways are used to model routing constructions, start and end events denote
the beginning and completion of the process respectively. The nodes can be connected
via directed sequence flows independently of their type. Graphical notations of BPMN
elements used within core models are presented in Fig. 3.

We will restrict core BPMN models to be oriented graphs with one start and multi-
ple end events, where the start event and end events do not have incoming and outgoing
sequence flows respectively, and each node of the graph lies on a path from the start to
an end event.

Similarly to Petri nets, core BPMN models have an operational semantics based on
the model states (or markings). In each state, sequence flows (Fig. 3h) may carry to-
kens. In the initial state each outgoing sequence flow of a start event (Fig. 3a) contains
a token, while other sequence flows do not. Each node (except the start event) can be
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Figure 2: A meta-model for core BPMN models.

enabled and may fire[5]. Activities (Fig. 3d) and exclusive gateways (Fig. 3f) are en-
abled if at least one of the incoming sequence flows contains a token. When an activity
fires it takes a token from one of the incoming sequence flows and adds a token to each
outgoing sequence flow. While an exclusive gateway consumes a token from one of
the incoming sequence flows and passes a token to one of the outgoing sequence flows.

a. b. c.

e. f. g.

h.

d.

Figure 3: Elements of core BPMN
model: a. start event, b. end event,
c. cancellation end event, d. ac-
tivity, e. parallel gateway, f. exclu-
sive gateway, g. inclusive gateway,
h. sequence flow.

A parallel gateway (Fig. 3e) is enabled only if
each of the incoming sequence flows contains at
least one token. When an enabled parallel gate-
way fires, it takes a token from each incoming
sequence flow and produces a token to each out-
going sequence flow. The semantics of inclu-
sive gateways (Fig. 3g) is non-local. An inclu-
sive gateway fires if some of the incoming se-
quence flows contain tokens and it is not possible
to reach a marking from the current marking, in
which currently empty incoming sequence flows
will contain tokens, without firing this gateway.
An inclusive gateway produces tokens for some
of the outgoing sequence flows.

An end event (Fig. 3b) consumes all the
tokens as they arrive. Beyond ordinary end
events we also consider cancellation end events
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(Fig. 3c), which terminate the entire process, consuming all the tokens from its se-
quence flows. The BPMN notation contains a wide range of event constructs, the
semantics of which involves cancellation. These can be error, signal, cancel, and other
types of events. In this paper we combine all of them together conceptually as one type
called cancel event.

3.3.2 BPMN Models with Data

In this subsection we will extend core BPMN modeling constructs by adding the data
perspective. As Fig. 4 shows a BPMN model with data may contain data objects.
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BPMN model 
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1
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Data  
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Data input 
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(from Data)
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0..1
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0..1

+default

*

1 1

*
1

Figure 4: A meta-model for BPMN models with data.

Activities, which read or write data are connected with corresponding data objects
via input or output data associations respectively. Fig. 5 shows a graphical representa-
tion of a data object and a data association.

Also a BPMN model with data may incorporate conditional expressions. The val-
ues of conditional expressions are calculated on the basis of data object values and
define conditions for passing tokens to the corresponding sequence flows.

Despite the fact that according to the meta-model (Fig. 4) default sequence flows
can be used within core BPMN models, we will consider them in BPMN models with
data only, since without conditional expressions default sequence flows do not influ-
ence the model execution.
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Figure 5: Data
object, data asso-
ciation.

In contrast to the BPMN specification (Fig. 4), where for any
arbitrary sequence flow a corresponding conditional expression can
be determined, we will assume that conditional expressions are set
only for outgoing sequence flows of exclusive and inclusive gate-
ways. Also we will assume that for each exclusive or inclusive
gateway there is exactly one outgoing default sequence flow.

An exclusive gateway passes a token to one of the outgoing se-
quence flows, for which conditional expression is not defined or

evaluates to true. An inclusive gateway produces tokens for all outgoing sequence
flows, those conditional expressions are not defined or true. If conditional expressions
of all outgoing sequence flows evaluate to false, then a token is added to the corre-
sponding default sequence flow.

3.3.3 BPMN Models with Resources

A resource is a business entity which executes or is responsible for business process
activities. These can be programs, human beings, departments, or even organizations.
Usually, in private BPMN models resources are represented as lanes[6]. An example
of a BPMN model with lanes is presented in Fig. 6.

L
a
n
e
2

L
a
n
e
1

A

B

Figure 6: An example of a BPMN model with lanes.

A meta-model for BPMN models with resources is shown in Fig. 7. As one may see
from this meta-model, each lane belongs to a lane set, which in turn can be contained
by a lane. In this work we will consider only one level of granularity. Lanes may
contain flow nodes, such as activities, gateways, events. Note that sequence flows may
cross a lane’s boundaries.

3.3.4 Hierarchical BPMN Models

A hierarchical BPMN model represents a nested structure of a process by adding sub-
processes and intermediate cancellation events (Fig. 8).

As it follows from Fig. 8, a subprocess is an activity, which forms a container with
inner flow nodes, such as start/end events, other activities, and gateways. It means that
an activity can correspond to another core BPMN model, which in turn can also contain
compound activities.

The behavior of hierarchical BPMN models is built on top of the behavior of core
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Figure 8: A meta-model for hierarchical BPMN models.

BPMN models and extends their semantics to execute non-atomic activities, i.e., sub-
processes.

Each subprocess can be activated iff one of the incoming sequence flows contains
a token and there are no tokens inside the subprocess and its nested subprocesses. An
activated subprocess consumes a token from an incoming sequence flow and produces
a token to each outgoing sequence flow of the inner start event. If the subprocess
terminates normally (all tokens are consumed by non-cancellation end events), then a
token is passed to each regular outgoing sequence flow. In cases of a cancellation, the
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subprocess is terminated and the control is passed to an outgoing sequence flow marked
by a corresponding boundary event. We will assume that boundary events are attached
to subprocesses only. In other words, we will not consider boundary events attached to
atomic activities without an inner structure.

An example of a subprocess is presented in Fig. 9. An end cancellation event and a
corresponding boundary event are marked with a cross sign.

D

C

B

A

Figure 9: An example of a BPMN model with a subprocess.

3.3.5 Integrated BPMN Models

Integrated BPMN models incorporate all process modeling perspectives introduced
above (see Fig. 10 below).

We will assume that an integrated BPMN model consists of core BPMN models,
and each core BPMN model representing a subprocess or a root process, can be ex-
tended by both resources and data. A lane set can belong to a flow elements container,
which is represented by a process or a subprocess (Fig. 8). That means, each lane
set may be contained by a subprocess or a process. That also holds for data, since
(according to the BPMN specification) each subprocess may have its own variables.

Core BPMN 

model

Hierarchical 

BPMN model

BPMN model 

with resources

BPMN model 

with data

Integrated BPMN 

model

Figure 10: A meta-model for integrated BPMN models.

12



4 A Framework for Discovering Integrated BPMN
Models

This section presents a framework for discovering multi-perspective hierarchical BPMN
models. Firstly, techniques for mining various modeling perspectives are discussed,
and then a novel integrated discovery approach is introduced.

4.1 Transforming Flat Process Models to BPMN
Flat process models, such as Petri nets, causal nets (van der Aalst et al. 2011) and
process trees (Leemans et al. 2014) can be obtained from event logs using existing
process discovery techniques.

To take advantages of the vast number of existing process discovery techniques
producing Petri nets (Leemans et al. 2014, van der Aalst et al. 2003, Bergenthum et al.
2007, van der Aalst et al. 2008), an approach for the transformation of labeled Petri
nets to BPMN, is used as a basis in this work. This transformation approach is in-
troduced by examples in this subsection. The detailed description of the control-flow
transformations can be found in (Kalenkova et al. 2017). These transformations were
implemented as plugins (Kalenkova et al. 2014) for ProM (van Dongen et al. 2005) –
an open-source framework for developing process mining algorithms.

As an example, consider a labeled Petri net, which models a simple booking process
(Fig. 11). In this process people use an information system to register, book a flight,
a hotel, rent a car, and pay. Labeled transitions represent actions, while transitions
highlighted in black are invisible.

register

book 

flight

pay
book 

hotel

rent

car

Figure 11: A labeled Petri net of a
booking process.

According to Petri net semantics, users
can perform booking actions in any order,
moreover, they can skip some of the actions
(in that case corresponding invisible transi-
tions are fired).

This labeled Petri net can be auto-
matically transformed to a BPMN model
(Fig. 12), using an existing transformation al-
gorithm (Kalenkova et al. 2017). This algo-
rithm converts a labeled Petri net to a core
BPMN model in such a way that for each

visible transition there exists one, and only one, activity with the same label. It was
proven (Kalenkova et al. 2017) that the target core BPMN model has the same behav-
ior as the initial labeled Peri net. Moreover, the target BPMN model is a connected
graph with nodes lying on paths from the start to an end event.

The resulting core BPMN model (Fig. 12) complies with the meta-model presented
in Fig. 2. It contains activities, a start and an end event, exclusive/parallel gateways,
and sequence flows. Note that sequence flows can connect arbitrary flow nodes, thus,
invisible transitions are not added to the process model (Fig. 12).

This BPMN model can be simplified and transformed to a model with inclusive
gateways (Fig. 13), which compactly represents routing constructions.
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Figure 12: A BPMN model constructed from the labeled Petri net presented in Fig. 11.
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pay

end

event

Figure 13: A BPMN model with inclusive gateways obtained form the BPMN model
presented in Fig. 12.
4.2 Converting Petri Nets with Data to BPMN Models with Data
In order to transform a Petri net with data to a target BPMN model, first this Petri net
should be converted to a core BPMN model, using an algorithm described in (Kalenkova
et al. 2017).

After that, variables, read and write functions, and transition guards are trivially
transformed to data objects, input and output data associations, and conditional expres-
sions respectively.

To illustrate the conversion of transition guards let us consider a fragment of a Petri
net presented in Fig. 14 a. and a corresponding fragment of a data BPMN model shown
in Fig. 14 b.

Figure 14: Conversion of data objects, data associations and guards.

This example shows that each transition guard is transformed to a conditional ex-
pression of a corresponding sequence flow.
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4.3 Enhancing Core BPMN Models by Adding Resources and
Subprocesses

In this subsection an approach for the enhancement of core BPMN models by adding
resources and subprocesses will be introduced.

The resource-based enhancement algorithm takes a core BPMN model and an event
log as input parameters and enhances the BPMN model with resources by specifying a
function, which maps activities and other elements to lanes, producing a BPMN model
with a set of resources. This approach puts each activity of a core BPMN model to
an aggregate resource (or lane), taking into account the resource attributes of corre-
sponding events. Note that different corresponding events in a log can be associated
with different resources. We assume that activities connected by sequence flows (pos-
sibly through a series of gateways) which have a certain number of common resources
belong to the same lane. All nodes of other types (gateways, events) are attached to
one of the resources of the "neighboring" activities. For a detailed description of the
approach please refer to (Burattin et al. 2013).

Similarly to resources, subprocesses are defined using additional information pre-
sented in event logs. In this work we construct hierarchical BPMN models with subpro-
cesses using the localized logs process discovery technique proposed earlier in (van der
Aalst et al. 2015).

Each event in the event log can be assigned to a so-called region. As it will be
shown later in Section 5, such event logs can be found in many application domains.
Moreover, if there is no information on the events’ localization, then the event log can
be enriched with additional data using expert knowledge.

Let us give a definition of a localized event log (van der Aalst et al. 2015). A
localized event log is a triplet LL = (L,Reg, loc), where L ∈ B(E∗) is an event
log, Reg is a set of regions (or localizations), and loc : E → PNE(Reg)[7]. We will
consider only stable localized event logs. A localized event log LL = (L,Reg, loc)
withL ∈ B(E∗) is called stable iff ∀e1, e2 ∈ E, such that e1 = (a1, f1), e2 = (a2, f2),
and a1 = a2, holds loc(e1) = loc(e2).

The localized logs discovery approach performs a construction of a target labeled
Petri net from a localized event log LL = (L,Reg, loc), Reg = {reg1, ..., regk}, L ∈
B(E∗) in three steps:

1. For each region regi ∈ Reg a labeled Petri net PNi = (Pi, Ti, Fi,Miniti ,Mfinali , li)
is discovered from a projection of the log L↑Ei

on a set of events Ei = {e ∈
E|regi ∈ loc(e)}, using one of the existing process discovery techniques in such
a way that ∀t1, t2 ∈ Tr if li(t1) = li(t2), then t1 = t2, i.e., all transitions are
uniquely labeled;

2. A resulting labeled Petri net PNU = (P, T, F,Minit,Mfinal, l) is defined as a
union of all discovered labeled Petri nets PN1, ...,PNk, where transitions with
the same labels are merged, these transitions define start and end points of the
nested subprocesses;

3. All structurally redundant hanging places are removed.
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After the above, using the approach (Kalenkova et al. 2017), the resulting Petri
net is converted to a BPMN model, where all subgraphs, corresponding to concrete
regions, form subprocesses. Compared with the approaches discussed in (Conforti
et al. 2014, 2016), we provide language inclusion properties of the subprocesses that are
discovered. In the next section we will demonstrate how to integrate all the introduced
discovery techniques to learn hierarchical multi-perspective BPMN models.

4.4 Integrated Discovery Approach

Localized 

event log LL

Filtering

Discovering Petri nets

Event log L1 Event log Lk

…

Labeled Petri 

net PN1

... ...
Labeled Petri 
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Replaying event logs

…
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Alignment  A1
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BPMN model with data 
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Integrated BPMN 
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Alignment

 

  Ak

Labeled Petri 

net PN
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Convert to BPMN
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Discover roles

Figure 15: The integrated discovery approach
presented in this paper.

This subsection presents an inte-
grated discovery approach for con-
structing hierarchical multiperspec-
tive BPMN models. This approach
incorporates all methods introduced
above.

The entire schema of the ap-
proach is presented in Fig. 15. First,
a localized event log LL is filtered
and logs L1, ..., Lk corresponding to
regions are extracted.

After that labeled Petri nets
PN1, ...,PNk are discovered from
these event logs using any of the
existing discovery techniques (Lee-
mans et al. 2014, van der Aalst
et al. 2003, Bergenthum et al. 2007,
van der Aalst et al. 2008).

Then each event log Li is re-
played on the corresponding labeled
Petri net PNi and an alignment
Ai (replay sequences of steps, in-
cluding synchronous log and model
moves, log only and model only
moves) is constructed. These Petri
nets and alignments are merged to
a unified labeled Petri net PN and
a corresponding pseudo-alignment
A′, which in the general case may
contain replay sequences with merge
conflicts (Verbeek & van der Aalst
2016). All the replay sequences con-
taining merge conflicts are filtered
out from A′ or (if it is possible) re-
solved, and an alignment A without
conflicts is obtained.

Next a method for enriching
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Petri nets with data recorded in the event logs using corresponding align-
ments (de Leoni & van der Aalst 2013) is applied, and as a result a Petri net with
data, e.g., DPN, is obtained.

Then the Petri net with data is converted to a BPMN model with data BPMNdata us-
ing existing conversion techniques introduced above, thoroughly presented in (Kalenkova
et al. 2017, 2014).

After that, on the basis of the localization information contained in the initial event
log, subprocesses are constructed within BPMNdata, and an integrated model BPMN′i,
containing core models BPMN1, ..., BPMNm enriched with data, is produced.

Then the core models BPMN1, ..., BPMNm are enriched with resources on the
basis of information presented in the corresponding event logs. And finally, the target
integrated BPMN model BPMNi is constructed.

Note that log partitioning allows to reduce the total computational time. Log par-
titioning works especially well for algorithms of enriching Petri nets with data, since
they involve replay techniques, which are known to be time consuming for large models
and logs.

5 Case Studies
In this section we evaluate the integrated discovery approach developed as a plugin
within the MultiPerspectiveMiner package for ProM (Process mining) framework (van
Dongen et al. 2005) – an open source extensible platform, widely used for the analy-
sis of event logs. First, we show that our discovery approach can assist in extracting
in-depth knowledge from real-life event logs and represent them in terms of conve-
nient BPMN models. Then behavioral and structural characteristics of BPMN models
discovered from the real-life event logs are obtained. Finally, using these structural
characteristics the discovered BPMN models are compared to the manually created
BPMN models from the Signavio model collection.

5.1 Discovering Multiperspective BPMN Models
Subsections 5.1.1, 5.1.2, and 5.1.3 contain information on the event logs of municipal,
booking, and banking systems respectively as well as multiperspective BPMN models
discovered from these event logs.

5.1.1 Discovering Municipal Processes

First, we took event logs from building permission administrative processes of five
Dutch municipalities (van Dongen 2015) (containing 1,199, 832, 1,409, 1,053, and
1,156 traces respectively) and analyzed them. These event logs contain information on
processes managed by an information system and performed by human resources. A
fragment of one of the event logs after preprocessing is shown in Table 2.

Each row represents an event occurrence and contains a case id, an activity name,
a timestamp, a resource identifier, a subprocess name (derived from an original event
code), and a value of additional question parameter. This fragment of the log describes
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Case ID Activity Name Timestamp Resource ID Subprocess Question
name

5772892
application

received
2012-09-04 560912 HOOFD EMPTY

T13:12:34

5772892
send

confirmation
2012-09-04 560912 HOOFD true

T13:12:36

5772892
enter date ac-

knowledgment
2012-09-04 560912 HOOFD EMPTY

T13:16:20

5772892
forward to the

competent
2012-09-04 560912 DRZ false

authority T13:16:24

5772892
start regular
procedure

2012-09-04 560912 BPT true

without MER T13:16:24
... ... ... ... ... ...

5772892
publish

document
2012-10-23 560890 HOOFD true

T15:48:36

Table 2: Event log of a Dutch municipality processes.

one case of the building permission process. First, resource 560912 receives an appli-
cation, then sends a confirmation of receipt and enters a date of acknowledgment (all
these activities are performed within the main subprocess HOOFD), after that within
the DRZ subprocess resource 560912 decides not to forward the application to the com-
petent authority (note that the value of the question parameter is set to false), and finally
he or she starts a regular procedure of application processing without MER (assessment
of the impact on the environment) within the BPT subprocess. Then, after several steps
of the application processing, another resource 560890 publishes a document with a
final decision.

The resulting BPMN model describes a building permission process and contains
13 subprocesses with control-flow obtained on the basis of the inductive miner (Lee-
mans et al. 2014) using the Subprocess name attribute for the subprocesses’ identifica-
tion.

The data and resource perspectives were discovered by (de Leoni & van der Aalst
2013) and (Burattin et al. 2013) algorithms respectively. Constructing resources within
subprocesses allowed to build a more detailed diagram and significantly reduce time
costs for the resource discovery. Moreover, the division of the model into subprocesses
made it possible to apply the data perspective mining technique (de Leoni & van der
Aalst 2013) which relies on the model and log alignment (and thus known to be possi-
bly time consuming as logs and models get bigger).

Now let us consider the discovered BPMN model in details. A fragment of the BPT
subprocess is presented in Fig. 16.
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Figure 16: A fragment of the BPT subprocess.

As it follows from the diagram, the decision whether or not to process an applica-
tion with MER (assessment of the impact on the environment) depends on the value
of the question data variable. This dependency was automatically discovered and rep-
resented within the diagram. According to the log (Tab. 2) the choice was made (the
variable assigned a value) in the previous step, when a performer decided whether the
application should be forwarded to a competent authority. The other exclusive choice
gateway (Fig. 16) also has a guard depending on the value of the question data variable.
Cases are split according to the procedure type (Regular or not). Note, that just like in
the previous case the value of the variable is defined in the preceding step (here it is
defined by activities regular procedure).

Another fragment of the diagram, containing the OPS subprocess, is presented in
Fig. 17. It illustrates the applicability of the resource discovery approach.

Figure 17: A fragment of the OPS subprocess.

The subprocess OPS describes a procedure of suspending an application and is
performed by two roles. As it follows from the diagram, Role 2 is responsible for
the technical steps, such as registration of suspension, finding a reason for suspension
and forwarding the application to a competent authority. While Role 1 is a role of a
competent authority, who defines the terms.

The basic approach constructs subprocesses with one entry and one exit. However,
in some cases it may be feasible to construct subprocesses with multiple exits. One of
these exits may represent a normal subprocess termination, while the other exists stand
for exceptional terminations. The localized logs approach can be extended to construct
subprocesses with multiple exits. This requires to enrich the event log with additional
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information about terminating events.
Figure 18 presents a fragment of the EIND subprocess, constructed for the event log

enriched with additional cancellation attributes. This subprocess describes a termina-
tion procedure. If the result of terminate on request activity is true (i.e., it was decided
to terminate the entire process), then a cancellation occurs and a token is produced to
an outgoing sequence flow marked with a corresponding boundary cancellation event,
leading to the final process activity. Whereas, it was decided not to terminate the en-
tire process, the subprocess EIND terminates normally, and a token is produced to an
ordinary outgoing sequence flow, resuming execution of the entire process.

Figure 18: A subprocess with a cancellation event.

5.1.2 Discovering a Booking Process

A real-life event log of a ticketing system was analyzed as well. This log contains
774 traces and describes the behavior of a web-based system used for searching and
booking the flights. Each trace of the log represents user interactions with the ticketing
system. The user can buy a flight and get an insurance. For that purpose he or she
needs to fill-in the form with personal data, choose an insurance type, choose a type of
payment, and pay.

A hierarchical BPMN diagram discovered from the event log contains personal
data entry, registration of insurance, and payment subprocesses. A fragment of the
personal data entry subprocess is presented in Fig. 19.

The resource perspective shows that different groups of users perform different
steps within the subprocesses.

As it follows from this diagram, there are two groups of users: the first group fills
the forms in order to buy a flight, while users from the other group just check-in/check-
out the document expiry date checkbox. Another important observation is that users
fill the form fields in an arbitrary order: the parallel gateway splits the control-flow into
several subflows, each of which corresponds to a concrete field of the personal data
form.
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Figure 19: A fragment of the personal data entry subprocess.

5.1.3 Discovering a Banking Process

Figure 20: A fragment of the ser-
vice subprocess.

Another event log being analyzed is a small (66
traces) software log of a banking information
system, which consists of three program layers
(front, service, database) and handles the user re-
quests. First, a user request is received by the
front layer and transmitted to the next service
layer.

The service layer implements a business logic
of the process, interacting with the database layer
to store and retrieve data. Each program layer was
discovered as a subprocess. Fig. 20 shows a frag-
ment of the service layer: an exclusive gateway

with guards identifies types of operations (types of requests) and passes the control to
corresponding outgoing sequence flows.

5.2 Analyzing Discovered BPMN Models
In the previous subsection we have discussed the capability of the integrated discov-
ery approach to build relevant multiperspective BPMN diagrams from real-life event
logs. Now let us consider behavioral and structural characteristics of BPMN models
discovered from the real-life event logs.

For the experiments we have chosen 7 real-life event logs: 5 event logs of building
permission administrative processes of Dutch municipalities (denoted as M1-M5), an
event log of a ticketing system (TS), and an event log of a banking system (BS). These
event logs are described in the subsections 5.1.1, 5.1.2, and 5.1.3 respectively. For
mining data and resource perspectives, approaches (de Leoni & van der Aalst 2013)
and (Burattin et al. 2013) were used. To discover subprocesses, all the event logs were
preprocessed (the information needed for the events localization was learned from the
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event attributes) and then a discovery approach (van der Aalst et al. 2015) was ap-
plied. The inductive miner technique (Leemans et al. 2014) was used as an underlying
control-flow discovery method. The discovered Petri nets were converted to BPMN
models using an algorithm presented in (Kalenkova et al. 2017).

Since the aim of the work is to discover readable and convenient process models,
the analysis of their structural characteristics is meaningful. Next to these structural
characteristics we need to estimate behavior parameters of models to evaluate their
quality with respect to the initial event logs. In order to relate initial event logs and
discovered process models, we consider three standard metrics: fitness, precision and
generalization (van der Aalst 2016). Fitness shows if the model can replay a given
event log. If all the traces of the log can be replayed by a model then the value of
the fitness function is 1. If there are non-fitting traces, then corresponding alignments,
represented as sequences of synchronous and asynchronous steps performed to replay a
trace on a model, are calculated and penalties are estimated in such a way that the value
of the fitness function will be decreased proportionally to the number of asynchronous
log and model moves in the alignment. The detailed description of the fitness function
can be found in (van der Aalst et al. 2012). In this work we calculate the fitness
value of each subprocess, merge alignments using the approach presented in (Verbeek
& van der Aalst 2016), and then semi-automatically resolve merge conflicts to obtain
the overall alignments and corresponding fitness values.

Having a fitting process model is not sufficient, because it is easy to construct a
process model that can replay any trace, but overfits or underfits behavior observed
in the event log. Thus, additional process metrics: precision and generalization are
needed (van der Aalst 2016). The precision shows if the model does not allow too much
behavior, i.e., it does not underfit the event log. The generalization metric indicates
whether the model is general enough, i.e., the model is not overfitting.

Tab. 3 compares behavioral characteristics of the models discovered using local-
ization information and models discovered directly from M1-M5 event logs. For the
behavioral characteristics of the models discovered from TS and BS event logs please
refer to (van der Aalst et al. 2015). The process models constructed from the event
logs M1-M3 using the localized logs approach are more fitting than the corresponding
process models constructed directly. However, the models discovered from the event
logs M4-M5 using localization information are less fitting, because root subprocesses
in these models do not agree with the event logs on activities, which correspond to the
beginning of child subprocesses. Skipping a shared event when aligning an event log
and a parent process may lead to skipping all events of the corresponding subprocess.
This can decrease the total fitness value.

Structural metrics of process models highly correlate with their readability. The
following structural metrics were considered during the analysis of the discovered
models: number of nodes, including the number of atomic activities, XOR (exclusive)
gateways, AND (parallel) gateways, data objects, subprocesses, and swimlanes; num-
ber of control-flows; density (ratio of the number, to the possible maximum number
of control-flows); diameter (the maximal shortest path from the start node to a graph
node); depth (maximal nesting of the graph); number of child nodes for compound
nodes. As it was statistically shown in (Sánchez-González et al. 2010), the number of
nodes, density, diameter, and depth have a negative correlation with the process model
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Log Fitness Precision Genera-
traces lization

M1 0.94 / 0.88 0.14 / 0.15 1.00 / 0.99
M2 0.96 / 0.88 0.14 / 0.12 1.00 / 0.99
M3 0.94 / 0.93 0.12 / 0.11 0.99 / 0.99
M4 0.80 / 0.89 0.13 / 0.12 0.99 / 0.99
M5 0.75 / 0.93 0.14/ 0.11 1.00 / 1.00

Table 3: Behavioral characteristics of process models discovered from the event logs
with and without application of the localized logs approach. The inductive miner was
used as an underlying discovery technique.

understandability. Thus, we were especially interested in these metrics. Structural
metrics of the discovered process models are presented in Table 4.

Number of Number of Number
Log activities, Num- swim- Number of of data

traces XOR, AND ber of lanes child nodes Density Diameter Depth objects
gateways flows and sub- and

processes guards

M1 180, 24, 60 350 13, 14 124 / 1 / 12.8 0.003 35 / 4 / 10.6 3 2, 5
M2 235, 49, 72, 2 482 11, 22 191 / 1 / 13.2 0.003 44 / 4/ 12.7 3 2, 3
M3 238, 44, 66 494 10, 22 31 / 1 / 7.7 0.003 27 / 4/ 10.5 2 2, 6
M4 265, 44, 72 504 14, 37 134 / 1 / 9.5 0.002 31 / 4 / 13.8 3 2, 5
M5 255, 44, 88 512 13, 42 177 / 1 / 9.5 0.002 35 / 4 / 12.4 3 2, 3
TS 59, 4, 20 134 6, 5 47 / 1 / 12.0 0.009 13 / 2 / 7.3 3 6, 4
BS 74, 4, 10 159 4, 4 31 / 2 / 16 0.1 11 / 2 / 7.0 3 3, 4

Table 4: Structural characteristics of process models discovered from the event logs[8].

These structural characteristics of the discovered process models were compared
with the characteristics of the BPMN models constructed manually. For that reason
the existing Signavio collection of 4781 BPMN models from various domains was an-
alyzed. The results based on the Signavio collection analysis are presented in Table 5.
For each parameter maximal, minimal and average values are specified.

Number of Number of Number
activities, Num- swim- Number of of data

XOR, AND ber of lanes child nodes Density Diameter Depth objects
gateways flows and sub- and

processes guards

34/ 0/ 7.2, 38/ 0/ 14.6, 20/ 0/ 0.74,
16/ 0/ 2, 27/ 0/ 3.4 14/ 0/ 0.5 68/ 0/ 4.4 0.87/ 0/ 0.1 25/ 1/ 8 8/ 1/ 2.7 6 /0 /0.008

14/ 0/ 0.66

Table 5: Structural characteristics of BPMN models from the Signavio model collec-
tion[8].

Although the total number of elements in the discovered process models is signifi-
cantly higher that in manually created BPMN models, structural characteristics within
containers (subprocesses and swimlanes), such as diameter (only for subprocesses) and
number of child nodes, are comparable. Thus, an automatically discovered (sub)model
within a subprocess or a swimlane resembles a manually created model by its struc-
tural characteristics. The maximum values for the number of child nodes of the dis-
covered BPMN models were typically found in the main subprocesses whereas other
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subprocesses were comparable to the manually created models. Thus, in contrast to the
approach of discovering large flat BPMN models from real-life event logs (Kalenkova
et al. 2017), we showed that the proper identification of subprocesses, helps to discover
readable and convenient process models.

Moreover, the decomposition (extraction of subprocesses) significantly reduces the
discovery time. Thus, using a laptop with 2.4GHz Processor and 4GB RAM, it takes
less than a minute to discover a BPMN model from any of the real-life event logs. In
the meantime, the discovery of multi-perspective BPMN models without identification
of subprocesses cannot be performed in a reasonable amount of time, using a computer
with the same characteristics.

6 Conclusion
This paper reported on a methodology to discover BPMN models that integrate several
perspectives and support the “divide-et-impera” paradigm, where the model is hierar-
chically broken down into several subprocesses.

Section 2 discusses the related work. In Section 3 the main concepts, such as Petri
nets and BPMN modeling constructs, including data, resources and subprocesses, are
introduced. Section 4 presents a novel integrated approach to discover hierarchical
multi-perspective process models. Case studies are thoroughly described in Section 5.

The overall methodology can be summarized as follows. First, the event log is split
into smaller event logs. The case studies reported in this paper illustrate that this is
often possible by leverage of domain knowledge. For each sub-log, we can discover
the control-flow structure of the process, which is used as a sort of process backbone,
initially in the form of a labeled Petri net. Subsequently, the projected log is replayed
on these individual, generally, much smaller, labeled Petri nets. Through the replay,
we can add information on input and output data and we can even learn guards. The
resulting data Petri net can be converted to a hierarchical BPMN model and resource
information can be added at each level of granularity. This results in a hierarchical
BPMN model that integrates the different perspectives.

The work was thoroughly validated with real-life event logs. The validation illus-
trates the pros of our framework in giving insights that are more accurate, incorporating
several process perspectives, and more understandable, with the process model struc-
tured in sub-models. An added bonus is that the splitting of the logs also improves
performance.

Compared with the past research this framework is the first attempt to integrate
several existing approaches with the aims of discovering multi-perspective hierarchical
BPMN models. Note that, while the framework is showcased with several techniques,
it is possible in the future to integrate other techniques and also extend to other per-
spective, for example, the time.

In fact, the time perspective is certainly an avenue for future work. Another impor-
tant direction of work is the discovery of interacting processes in a form of pools and
messages communicating these pools. It is also worth extending the framework to al-
low process analysts to compare the discovered BPMN models (a.k.a. “as-is models”)
with the supposed models (a.k.a. “to-be models”) that encode the knowledge of the
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stakeholders. By comparing the “as-is model” with the “to-be model”, one can better
pinpoint where deviations lie between what process participants should do and what
they actually do.

Notes
1. B(X) denotes a set of multisets over X .

2. Note that invisible steps in the process model do not need to be observed in the
event log.

3. 9 denotes a partial function, which is defined for a subset of domain elements.

4. If transition t is not explicitly associated with a guard, we assume that G(t) =
true.

5. Note that in order to avoid multiple firings of the start event, we assume that it
cannot be enabled.

6. Despite the fact that an assignment of lanes is not strictly defined in the BPMN
2.0 specification, most frequently they are used to model resources.

7. PNE(X) defines a set of non-empty subsets of X .

8. The maximal, minimal and average values are separated by a slash, the values of
metrics for different types of elements are separated by comma.
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