
A Tour in Process Mining: From Practice to
Algorithmic Challenges

Wil van der Aalst1, Josep Carmona2, Thomas Chatain3, and Boudewijn van
Dongen4

1 Process and Data Science group, RWTH Aachen University (Germany)
2 Computer Science Department, Universitat Politècnica de Catalunya, Barcelona

(Spain)
jcarmona@cs.upc.edu

3 LSV, ENS Paris-Saclay, CNRS, Inria, Université Paris-Saclay, Cachan (France)
chatain@lsv.fr

4 Eindhoven University of Technology, Eindhoven, The Netherlands
b.f.v.dongen@tue.nl

Abstract. Process mining seeks the confrontation between modeled be-
havior and observed behavior. In recent years, process mining techniques
managed to bridge the gap between traditional model-based process anal-
ysis (e.g., simulation and other business process management techniques)
and data-centric analysis techniques such as machine learning and data
mining. Process mining is used by many data-driven organizations as a
means to improve performance or to ensure compliance. Traditionally,
the focus was on the discovery of process models from event logs de-
scribing real process executions. However, process mining is not limited
to process discovery and also includes conformance checking. Process
models (discovered or hand-made) may deviate from reality. Therefore,
we need powerful means to analyze discrepancies between models and
logs. These are provided by conformance checking techniques that first
align modeled and observed behavior, and then compare both. The re-
sulting alignments are also used to enrich process models with perfor-
mance related information extracted from the event log. This tutorial
paper focuses on the control-flow perspective and describes a range of
process discovery and conformance checking techniques. The goal of the
paper is to show the algorithmic challenges in process mining. We will
show that process mining provides a wealth of opportunities for people
doing research on Petri nets and related models of concurrency.

1 Introduction to Process Mining

This tutorial paper is based on a tutorial given at Petri Nets 2017 in Zaragoza
(Spain) on Tuesday, June 27th, 2017 and a tutorial given at Petri Nets 2018
in Bratislava (Slovakia) on Tuesday, June 26th, 2018. The goal of these two
tutorials was to introduce the topic of process mining for people with a Petri
nets background and to show the exciting algorithmic challenges provided by
the various process mining tasks. Although process mining is widely used in

industry, there are still many open research questions that require knowledge of
both process science (e.g., formal methods and concurrency theory) and data
science (e.g., data mining, machine learning, and statistics). To limit the scope,
we focus on control flow and Petri nets as a representation.

1.1 Opportunities Provided by Event Data

Modeling behavior is valuable, but is often based on (unrealistic) simplifying
assumptions. Simulation models and specifications can be used to get process
insights, but these insights depend on the assumptions and abstraction used
while modeling. Fortunately, when it comes to existing processes and systems,
we no longer need to rely on modeling only. There is an abundance of event
data. In the book [1], the term Internet of Events (IoE) is used to refer to the
different types of event data readily available. These include: the Internet of
Content (traditional databases, web pages, e-books, newsfeeds, movies, music,
etc.), the Internet of People (e-mail, Facebook, Twitter, forums, LinkedIn, etc.),
the Internet of Things (smart homes, high-tech systems, Industry 4.0, etc.), and
the Internet of Locations (smartphones, wearables, etc.). Events may take place
inside machines, enterprise information systems, hospital information systems,
social networks, and transportation systems. Events may be “life events”, “ma-
chine events”, or “organization events”. Process mining aims to exploit event
data in a meaningful way, for example, to provide insights, identify bottlenecks,
anticipate problems, record policy violations, recommend countermeasures, and
streamline processes. Event data are like the breadcrumbs in the fairy tale of
Hansel and Gretel. When stored properly, we can use them to reconstruct the
real behavior.

Table 1 shows a small fragment of a larger event log describing 16218 events
related to 1266 cases. The events in this log correspond to the handling of orders.
Each row corresponds to two events, i.e., the start of an activity instance and the
completion of an activity instance. Each activity instance (i.e., row) describes
the execution of an activity for a particular order. The first column refers to
the order number. The second column shows the activity name. The next two
columns show the start time and end time of an activity. There are also additional
attributes such as the person executing the event.

Event data, as shown in Table 1, can be used to discover process models
best describing the behavior observed. This is similar to discovering a decision
tree based on labeled instances, i.e., instances having descriptive attributes and
a class label. However, in process mining, the instances correspond to events
referring to cases (i.e., process instances), activities, timestamps, etc. Process
discovery starts from the situation without a model and just event data. Given
a process model, it is also possible to check conformance. Conformance checking
uses as input both modeled and observed behavior. Discrepancies can be detected
by replaying the event data on the process model. The process model may be
hand-made or discovered using some process discovery technique. Next to process
discovery and conformance checking, there are many additional process mining
techniques using both event data and models. For example, events data can be

Table 1. Fragment of an event log with 16218 events related to 1266 cases.

o
rd

er
n
u
m

b
er

a
ct

iv
it

y
st

a
rt

ti
m

e
en

d
ti

m
e

re
so

u
rc

e
p
ro

d
u
ct

p
ro

d
-p

ri
ce

q
u
a
n
ti

ty
a
d
d
re

ss

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

9
8
9

p
la

ce
o
rd

er
1
0
/
0
7
/
2
0
1
5

0
5
:1

0
1
0
/
0
7
/
2
0
1
5

0
5
:2

5
S
o
p
h
ia

A
P

P
L

E
iP

h
o
n
e

6
s

6
4

G
B

8
5
8
.0

2
N

L
-7

7
4
2
X

G
-1

7
9
8
4

se
n
d

in
v
o
ic

e
1
0
/
0
7
/
2
0
1
5

0
8
:4

7
1
0
/
0
7
/
2
0
1
5

0
8
:5

7
J
a
ck

S
A

M
S
U

N
G

C
o
re

P
ri

m
e

G
3
6
1

1
3
5
.0

2
N

L
-9

4
6
8
H

G
-1

4
8
1
0

p
re

p
a
re

d
el

iv
er

y
1
0
/
0
7
/
2
0
1
5

0
8
:5

0
1
0
/
0
7
/
2
0
1
5

0
8
:5

3
E

m
m

a
A

P
P

L
E

iP
h
o
n
e

6
s

P
lu

s
6
4

G
B

9
6
9
.0

4
N

L
-7

8
7
5
E

H
-2

6
8
9
8

co
n
fi
rm

p
ay

m
en

t
1
0
/
0
7
/
2
0
1
5

0
8
:5

6
1
0
/
0
7
/
2
0
1
5

0
9
:0

2
L

il
y

S
A

M
S
U

N
G

G
a
la

x
y

S
4

3
2
9
.0

4
N

L
-7

9
4
4
B

B
-6

8
5
8

p
re

p
a
re

d
el

iv
er

y
1
0
/
0
7
/
2
0
1
5

0
9
:0

1
1
0
/
0
7
/
2
0
1
5

0
9
:0

4
E

m
m

a
S
A

M
S
U

N
G

G
a
la

x
y

J
5

2
1
9
.9

9
1

N
L

-7
8
2
3
J
J
-7

9
9
0

p
la

ce
o
rd

er
1
0
/
0
7
/
2
0
1
5

0
9
:4

1
1
0
/
0
7
/
2
0
1
5

0
9
:5

1
S
o
p
h
ia

M
O

T
O

R
O

L
A

M
o
to

G
1
9
9
.0

4
N

L
-9

5
1
4
B

V
-1

6
8
3
8

co
n
fi
rm

p
ay

m
en

t
1
0
/
0
7
/
2
0
1
5

0
9
:5

6
1
0
/
0
7
/
2
0
1
5

1
0
:0

3
J
a
ck

S
A

M
S
U

N
G

C
o
re

P
ri

m
e

G
3
6
1

1
3
5
.0

3
N

L
-7

8
2
6
G

D
-9

8
6
9

p
re

p
a
re

d
el

iv
er

y
1
0
/
0
7
/
2
0
1
5

1
0
:3

9
1
0
/
0
7
/
2
0
1
5

1
0
:4

2
E

m
m

a
S
A

M
S
U

N
G

G
a
la

x
y

S
4

3
2
9
.0

1
N

L
-7

7
4
2
X

G
-1

7
8
7
5

p
re

p
a
re

d
el

iv
er

y
1
0
/
0
7
/
2
0
1
5

1
0
:4

2
1
0
/
0
7
/
2
0
1
5

1
0
:4

6
A

id
en

S
A

M
S
U

N
G

C
o
re

P
ri

m
e

G
3
6
1

1
3
5
.0

4
N

L
-9

4
0
7
E

M
-3

5
8
9
8

m
a
k
e

d
el

iv
er

y
1
0
/
0
7
/
2
0
1
5

1
0
:4

4
1
0
/
0
7
/
2
0
1
5

1
1
:0

6
A

u
b
re

y
S
A

M
S
U

N
G

G
a
la

x
y

S
4

3
2
9
.0

4
N

L
-7

9
4
4
B

B
-6

9
1
4

se
n
d

re
m

in
d
er

1
0
/
0
7
/
2
0
1
5

1
1
:3

8
1
0
/
0
7
/
2
0
1
5

1
1
:5

8
A

b
ig

a
il

M
O

T
O

R
O

L
A

M
o
to

G
1
9
9
.0

3
N

L
-7

8
2
8
A

M
-1

1
a

9
9
1

p
la

ce
o
rd

er
1
0
/
0
7
/
2
0
1
5

1
1
:4

1
1
0
/
0
7
/
2
0
1
5

1
5
:3

2
L

u
ca

s
S
A

M
S
U

N
G

C
o
re

P
ri

m
e

G
3
6
1

1
3
5
.0

4
N

L
-7

9
0
5
B

C
-4

0
a

8
8
8

p
ay

1
0
/
0
7
/
2
0
1
5

1
1
:4

9
1
0
/
0
7
/
2
0
1
5

1
1
:5

4
L

il
y

A
P

P
L

E
iP

h
o
n
e

6
1
6

G
B

6
3
9
.0

3
N

L
-7

8
2
1
A

C
-3

9
7
7

se
n
d

in
v
o
ic

e
1
0
/
0
7
/
2
0
1
5

1
1
:5

6
1
0
/
0
7
/
2
0
1
5

1
2
:0

1
M

a
d
is

o
n

S
A

M
S
U

N
G

G
a
la

x
y

S
4

3
2
9
.0

3
N

L
-7

9
0
8
X

B
-4

6
8
8
9

p
ay

1
0
/
0
7
/
2
0
1
5

1
2
:0

3
1
0
/
0
7
/
2
0
1
5

1
2
:0

9
L

il
y

S
A

M
S
U

N
G

G
a
la

x
y

S
4

3
2
9
.0

2
N

L
-7

9
4
8
B

X
-1

0
8
8
3

m
a
k
e

d
el

iv
er

y
1
0
/
0
7
/
2
0
1
5

1
2
:0

9
1
0
/
0
7
/
2
0
1
5

1
2
:3

7
A

u
b
re

y
M

O
T

O
R

O
L

A
M

o
to

G
1
9
9
.0

1
N

L
-7

7
5
1
A

R
-1

9
9
1
2

se
n
d

re
m

in
d
er

1
0
/
0
7
/
2
0
1
5

1
2
:3

4
1
0
/
0
7
/
2
0
1
5

1
2
:4

6
A

b
ig

a
il

A
P

P
L

E
iP

h
o
n
e

6
1
6

G
B

6
3
9
.0

1
N

L
-9

4
0
2
N

V
-2

5
8
2
3

co
n
fi
rm

p
ay

m
en

t
1
0
/
0
7
/
2
0
1
5

1
2
:5

6
1
0
/
0
7
/
2
0
1
5

1
3
:0

4
L

il
y

S
A

M
S
U

N
G

G
a
la

x
y

S
4

3
2
9
.0

7
N

L
-7

9
4
3
M

C
-4

8
6
3

p
re

p
a
re

d
el

iv
er

y
1
0
/
0
7
/
2
0
1
5

1
2
:5

9
1
0
/
0
7
/
2
0
1
5

1
5
:2

1
L

u
ca

s
A

P
P

L
E

iP
h
o
n
e

6
1
6

G
B

6
3
9
.0

2
N

L
-7

9
0
5
A

X
-3

8
8
6
0

m
a
k
e

d
el

iv
er

y
1
0
/
0
7
/
2
0
1
5

1
3
:0

4
1
0
/
0
7
/
2
0
1
5

1
3
:3

2
A

u
b
re

y
S
A

M
S
U

N
G

G
a
la

x
y

S
6

3
2

G
B

5
4
3
.9

9
3

N
L

-7
8
2
3
J
J
-7

9
9
2

p
la

ce
o
rd

er
1
0
/
0
7
/
2
0
1
5

1
3
:4

1
1
0
/
0
7
/
2
0
1
5

1
3
:5

1
J
a
co

b
S
A

M
S
U

N
G

G
a
la

x
y

S
4

3
2
9
.0

3
N

L
-7

9
4
8
D

N
-1

2
a

9
0
0

se
n
d

re
m

in
d
er

1
0
/
0
7
/
2
0
1
5

1
3
:4

5
1
0
/
0
7
/
2
0
1
5

1
3
:5

9
A

b
ig

a
il

A
P

P
L

E
iP

h
o
n
e

6
1
6

G
B

6
3
9
.0

2
N

L
-9

5
2
1
K

J
-3

4
9
0
5

se
n
d

re
m

in
d
er

1
0
/
0
7
/
2
0
1
5

1
3
:5

2
1
0
/
0
7
/
2
0
1
5

1
4
:0

8
L

u
k
e

A
P

P
L

E
iP

h
o
n
e

5
s

1
6

G
B

4
4
9
.0

4
N

L
-7

9
4
2
G

T
-2

8
6
7

p
re

p
a
re

d
el

iv
er

y
1
0
/
0
7
/
2
0
1
5

1
4
:3

6
1
0
/
0
7
/
2
0
1
5

1
4
:4

3
S
o
p
h
ia

S
A

M
S
U

N
G

G
a
la

x
y

S
6

3
2

G
B

5
4
3
.9

9
2

N
L

-7
9
0
8
X

B
-4

6
..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

used to enrich or repair process models. It is also possible to predict performance
or compliance. See [1] for a more complete overview of process discovery. The
book [2] focuses on conformance checking.

1.2 Control Flow as the Backbone of Any Process

In this paper, we focus on control flow. This means that we ignore most of
the attributes in Table 1. Initially, we are only interested in the ordering of
activities within a case (i.e., process instance). To illustrate this, consider a
particular order, e.g., order 889. There are six activity instances in Table 1
related to this order. Each activity instance corresponds to two events: start and
complete. Suppose we focus on the start events. This means that order 889 is
described by six events (rather than twelve). Table 2 shows these six events.
Note that we only show the first three columns. Table 2 describes a sequence of
activities for one case, namely: 〈place order , send invoice, pay , prepare delivery ,
make delivery , confirm payment〉. Note that the timestamps are only used to
order the events.

Table 2. The events of type “start” for case 889.

order number activity timestamp

889 place order 23/06/2015 19:45
889 send invoice 24/06/2015 18:23
889 pay 10/07/2015 12:03
889 prepare delivery 21/07/2015 11:22
889 make delivery 22/07/2015 13:00
889 confirm payment 23/07/2015 10:53

Each of the 1266 cases in Table 1 can be described as such a trace.
There are 503 cases that correspond to the trace 〈place order , send invoice, pay ,
prepare delivery ,make delivery , confirm payment〉 (including order 889). Table 3
shows the frequency of each observed trace. As we will see later, the control-flow
aspect of an event log Table 3 can be formally represented as a mulsetti-set of
activity sequences.

Clearly, Table 3 contains only a fraction of the information in the original
event log (compare with the fragment in Table 1). However, this information is
sufficient to construct a control-flow model, e.g., a Petri net. To further simplify
things, assume that we abstract from activity sr = send reminder , i.e., we create
a new log without this activity and feed it to various discovery algorithms.
Figure 1 shows a few discovered process models that will be discussed later.

Control-flow models such as the ones shown in Figure 1 are just the starting
point for process mining. By replaying the event log on the discovered model, one
can show bottlenecks, etc. Actually, the control-flow model may be extended with
additional perspectives: the organizational perspective (“What are the organiza-
tional roles and which resources are performing particular activities?”), the case

Table 3. Event log represented as a multi-set of traces using the short names po =
place order , si = send invoice, py = pay , pd = prepare delivery , md = make delivery ,
cp = confirm payment , co = cancel order , sr = send reminder .

trace frequency

〈po, si , py , pd ,md , cp〉 503
〈po, si , sr , py , pd ,md , cp〉 247
〈po, si , sr , sr , co〉 141

〈po, si , sr , sr , py , pd ,md , cp〉 139
〈po, si , py , pd , cp,md〉 135
〈po, si , sr , py , pd , cp,md〉 57
〈po, si , sr , sr , py , pd , cp,md〉 36
〈po, py , si , pd ,md , cp〉 6
〈po, py , si , pd , cp,md〉 2

total 1266

perspective (“Which characteristics of a case influence a particular decision?”),
and the time perspective (“Where are the bottlenecks in my process?”). These
additional perspectives are very important from a practical point of view.

Analysts applying process mining are interested in questions such as:

– What is the main bottleneck in the process and is this caused by particular
resources?

– What do the incompliant cases have in common? Do they lead to higher
costs?

– Will we be able to handle 95% of the cases in two hours in the coming days?
– Does the workload have an effect on the durations of activities?

For all of these questions, we first need to have a control-flow model. Moreover,
we need to be able to link events in the log to activities in the process model
in order to discuss bottlenecks, deviations, decisions, etc. Transitional machine
learning, data mining, and optimization techniques can be used once the control-
flow model is in place and the event log is aligned with the model. However, these
techniques cannot be used to handle the control-flow perspective. Therefore, this
paper focuses on control-flow.

1.3 Process Discovery 6= Synthesis

Data science techniques need to deal with uncertainty and incompleteness [3].
Suppose that we learn a decision tree that adequately predicts that one is less
likely to claim insurance when being middle-aged and female and that one is
more likely to claim insurance when being young and male. However, even a
properly constructed decision tree will not be able to classify things correctly
and we accept that there will be young males not claiming insurance or middle-
aged females that do claim insurance. Moreover, we do not expect to see all
combinations in our input data. For example, when customers are described
by 10 different attributes age, gender, income, region, brand, etc., we cannot

(a) Process model discovered using the inductive miner.

(b) Petri net discovered using the inductive miner.

(c) Petri net discovered using state-based regions.

(e) Process model discovered using Celonis.(d) Process model discovered using Disco.

(f) BPMN model discovered using Celonis.

Fig. 1. Different process models discovered using plug-ins of ProM (models (a), (b),
and (c)), Disco (model (d)), and Celonis (models (e) and (f)). Process models (d) and
(e) are so-called directly follows graphs. Process models (a), (b), and (f) all describe
the same process, but use different notations. Process model (c) describes the process
best, because pay and cancel order are mutually exclusive.

expect to see all combinations in our training data. Despite these limitations, the
decision tree still provides valuable insights. When performing process discovery,
we are facing similar challenges. The event log is just a sample and the fact
that something happens in the logs once does not imply that the model should
allow for it. Consider for example the 1266 cases in Table 3. Some traces are
very frequent, e.g., 〈po, si , py , pd ,md , cp〉 occurred 503 times. Other traces are
very infrequent, e.g., 〈po, py , si , pd , cp,md〉 happened only twice. Traces in an
event log typically follow a Pareto distribution, i.e., some are frequent, but many
may be infrequent (for example, 80% of the log is described by 20% of the
trace variants). When using a larger process model with many activities, one
often witnesses that many traces in the event log are unique. Taking a different
sample of the same process will lead to different unique variants. For example,
if we take only the first 500 cases from the log shown in Table 3, we may not
see 〈po, py , si , pd , cp,md〉. Moreover, if we observe the same process for a longer
time, we will see cases that are not in Table 3 (e.g., new trace variants with three
or more reminders). We may also be just interested in the dominant behavior.
For example, to resolve a bottleneck, we may want to focus on the most frequent
behavior. However, when investigating fraud we may be most interested in the
least frequent behavior.

Researchers working on formal methods and concurrency theory often have
problems dealing with uncertainty and incompleteness. Most synthesis ap-
proaches assume that the input provides a full and unambiguous description
of all possible behavior [4]. When performing process mining in reality such as-
sumptions are very unrealistic. To reason about the correctness of process mining
results one needs to use a data science approach (e.g., cross-validation using test
and training data) and apply notions such as precision and recall to assess the
quality.

1.4 Industrial Uptake of Process Mining and Commercial Software

Around 2002, only simple stand-alone process mining tools were available (e.g.,
MiMo, EMiT, Little Thumb, and InWolvE) [1]. This triggered the development
of the ProM framework. In 2004, the first fully functional version of the ProM
framework was released. Since then, ProM has been the de facto standard for pro-
cess mining research. ProM provides a “plug-able” open-source platform where
developers can contribute new analysis techniques in the form of plug-ins. Cur-
rently, there are over 1500 plug-ins. ProM served as an example for a “wave” of
commercial process mining tools.

Reports by Gartner [5] and Forrester [6] report on the uptake of process
mining in industry. There are more than 25 commercial tools supporting process
mining. Examples include: Disco (Fluxicon), Celonis Process Mining (Celonis),
ProcessGold Enterprise Platform (ProcessGold), QPR ProcessAnalyzer (QPR),
SNP Business Process Analysis (SNP AG), minit (Gradient ECM), myInvenio
(Cognitive Technology), Everflow (Accelera Labs), ProDiscovery (Puzzeldata),
PAFnow (Process Analytics Factory), Stereologic (Stereologic), ARIS Process
Mining (Software AG), Mehrwerk Process Mining (Mehrwerk), Logpickr Process

Explorer (Logpickr), and Lana Process Mining (Lanalabs) [1]. See the website
of the IEEE Task Force on Process Mining for examples of successful case stud-
ies [7]. For example, within Siemens there are currently over 2,500 active users
of Celonis Process Mining. Siemens reported savings of “double-digit millions
euros” as a result of the worldwide application of process mining [8]. Celonis is
a process mining start-up founded in 2011 that is now valued over one billion
dollar. The many tools available and the widespread adoption illustrate the rele-
vance of process mining. However, at the same time, there are many challenges,
as demonstrated in this paper.

As described in Gartner [5], there is an increasing need for process mining
capabilities that go beyond process discovery. Initially, commercial tools focused
on process discovery and often discovery capabilities were limited to the so-
called directly-follows graph. In such a graph, nodes represent activities and arcs
represent a simplistic view on causality. Activities a and b are connected if a
is frequently followed by b. In the event log used before, po = place order is
directly followed by si = send invoice 1258 times, and po = place order is
directly followed by py = pay only 8 times. Depending on the threshold set, an
arc connecting place order to pay is added to the directly-follows graph.

Figure 1 shows six process models discovered based on the event log described
in tables 1 and 3 (without activity send reminder). Figure 1(a) shows a screen-
shot of ProM’s visual inductive miner [9]. This model can be converted into a
Petri net as shown in Figure 1(b). Note that the model allows for the trace where
pay is followed by cancel order , i.e., the model is “underfitting” and allowing for
unseen behavior (in the event log there are no orders for which both pay and
cancel order occurred). Figure 1(c) shows a model generated by ProM based
on state-based regions. This Petri net does not allow for the unseen behavior
mentioned before (there is an exclusive choice between pay and cancel order).
Figure 1(d) shows a directly-follows graph generated using Disco, the software
from Fluxicon. The directly-follows graph is annotated with the frequencies. Us-
ing two sliders, it is possible to remove infrequent arcs and activities. Figure 1(e)
shows a similar directly-follows graph generated using Celonis. Celonis also sup-
ports the basic inductive mining algorithm [1, 10]. The result is presented as a
BPMN model as shown in Figure 1(f). Note that models (a), (b), and (f) are
semantically equivalent, but use different notations. Each of the models in Fig-
ure 1 defines a language, i.e., the (possibly infinite) set of traces accepted by the
model. Ideally, the model accepts most of the traces in the event log (but not
necessarily all, e.g., outlier behavior may not be accepted) and does not accept
behavior that is unlikely given the event log. Later, these notions will be defined
more precisely.

Although the initial focus of commercial tools was on discovery, vendors
started to add functionality related to conformance checking (i.e., monitoring
deviations by comparing model and log), social network/organizational mining,
root-cause analysis using machine learning, and case prediction. For example,
it is possible to find possible causes for bottlenecks and compliance problems
and generate statements like “The extreme waiting times are caused by unnec-

essary rework involving an external party and under-staffing of the backoffice
on Fridays” and “Most of the compliance violations were caused by this new
manager that approved requests without the necessary checks”. Note that these
more advanced questions have been researched for over more than a decade [1].
All of the analysis features that can be found in today’s commercial tools, had
been implemented in ProM years before. Note that, currently, ProM provides
over 1500 plug-ins providing a wide range of analysis techniques.

In this paper, we focus on conformance checking and limit the scope to
control-flow [1, 2]. Given a trace σ1 = 〈po, si , pd , py ,md , cp〉 and a process
model like Figure 1(c), we would like to decide if the trace fits the model
and if not, diagnose the difference(s). In σ1, pd = prepare delivery is per-
formed before the py = pay which is impossible according to the Petri net
in Figure 1(c). In σ2 = 〈po, py , si , py , pd ,md , cp〉, the order is paid twice. In
σ3 = 〈po, py , si ,md , cp〉, the order was delivered without the mandatory prepa-
ration step. Given an event log with possibly millions of events, conformance
checking techniques need to provide aggregate diagnostics (e.g., the activity was
skipped 1500 times).

1.5 Killer App for Petri Nets

The process mining discipline is highly relevant (see the uptake of commercial
process mining tools and activities) and provide interesting scientific challenges.
Progress in this young scientific discipline has been remarkable and this resulted
in powerful techniques that are highly scalable. However, many of the problems
identified (process discovery, conformance checking, etc.) are notoriously difficult
and have not been solved satisfactorily. Process mining provides a great oppor-
tunity for Petri net researchers. When studying real-life processes, concurrency
should be a starting point for analysis and not added as an afterthought (locality
of actions). Many other modeling approaches start from a sequential view on the
world and then add special operators to introduce concurrency. Petri nets are
inherently concurrent. Although Petri nets are often seen as a procedural lan-
guage, in essence, Petri nets are declarative. A Petri net without any places and
a non-empty set of transitions allows for any behavior involving the activities
represented by these transitions. Adding a place is like introducing a constraint.
The idea that transitions (modeling activities or actions) are independent (i.e.,
concurrent) unless specified otherwise is foundational ([11]).

Most data science approaches do not consider behavioral aspects and when
they do, they typically use sequential models (e.g., sequential patterns, Markov
models, etc.). As the evolution of the process mining discipline shows, the com-
bination of event data and Petri nets is very powerful. Therefore, we encour-
age Petri-net researchers to tackle the open problems identified in this paper.
However, as Section 1.3 describes this is not “business as usual”: One needs to
approach the problem from a data-science perspective.

1.6 Outline

The remainder of this paper is organized as follows. Section 2 introduces prelim-
inaries, including basic notations, event logs, and Petri nets. Section 3 discusses
the challenges related to process discovery and presents inductive and region-
based discovery techniques. Section 4 is devoted to conformance checking. The
focus here is on alignment-based techniques. Alignments relate seen behavior
to modeled behavior even when there are deviations. Such alignments are used
for a range of analyses (bottleneck analysis, predictions, etc.). Section 5 focuses
on the quality of a process model in the context of a given event log. Notions
such as fitness, precision, generalization, and simplicity are discussed. Section 6
concludes the paper.

2 Preliminaries

2.1 Mathematical Notation

A multi-set is like a set in which each element may occur multiple times. For ex-
ample, [a, b2, c3, d2, e] is the multi-set with nine elements: one a, two b’s, three c’s,
two d’s, and one e. The following three multi-sets are identical: [a, b, b, c3, d, d, e],
[e, d2, c3, b2, a], and [a, b2, c3, d2, e]. Formally, IB(A) = A→ N is the set of multi-
sets (bags) over a finite domain A, i.e., X ∈ IB(A) is a multi-set, where for each
a ∈ A, X(a) denotes the number of times a is included in the multi-set. For
example, if X = [a, b2, c3], then X(b) = 2 and X(e) = 0.

The sum of two multi-sets (X] Y), the difference (X \ Y), the presence of
an element in a multi-set (x ∈ X), and the notion of subset (X ≤ Y) are defined
as usual.

For a given set A, A∗ is the set of all finite sequences over A. A finite se-
quence over A of length n is a mapping σ ∈ {1, . . . , n} → A. Such a sequence is
represented by a string, i.e., σ = 〈a1, a2, . . . , an〉 where ai = σ(i) for 1 ≤ i ≤ n.
|σ| denotes the length of the sequence, i.e. |σ| = n. σ ⊕ a′ = 〈a1, . . . , an, a′〉 is
the sequence with element a′ appended at the end. Similarly, σ1 ⊕ σ2 appends
sequence σ2 to σ1 resulting a sequence of length |σ1|+ |σ2|.

hdk(σ) = 〈a1, a2, . . . , akminn〉, i.e., the “head” of the sequence consisting of
the first k elements (if possible). Note that hd0(σ) is the empty sequence and
for k ≥ n: hdk(σ) = σ. pref(σ) = {hdk(σ) | 0 ≤ k ≤ n} is the set of prefixes of
σ.

tlk(σ) = 〈a(n−k+1)max 1, ak+2, . . . , an〉, i.e., the “tail” of the sequence com-

posed of the last k elements (if possible). Note that tl0(σ) is the empty sequence
and for k ≥ n: tlk(σ) = σ.

σ ↑ X is the projection of σ onto some subset X ⊆ A, e.g., 〈a, b, c, a, b, c, d〉 ↑
{a, b} = 〈a, b, a, b〉 and 〈d, a, a, a, a, a, a, d〉 ↑ {d} = 〈d, d〉.

For any sequence σ = 〈a1, a2, . . . , an〉 over A, {a ∈ σ} = {a1, a2, . . . , an} and
[a ∈ σ] = [a1, a2, . . . , an], e.g., if σ = 〈d, a, a, a, a, a, a, d〉, then {a ∈ σ} = {a, d}
and [a ∈ σ] = [a6, d2].

2.2 Process Models as Petri Nets

Definition 1 ((Labeled) Petri net). A (labeled) Petri Net [12] is a tuple N =
〈P, T,F ,M0,Mf , Σ, λ〉, where P is the set of places, T is the set of transitions
(with P∩T = ∅), F : (P×T)∪(T×P)→ {0, 1} is the flow relation, M0 ∈ IB(P) is
the initial marking, Mf ∈ IB(P) is the final marking, Σ is an alphabet of actions
and λ : T → Σ ∪ {τ} labels every transition by an action, or as a silent action
denoted by the symbol τ .

A marking M ∈ IB(P) is an assignment of a non-negative integer to each
place. If k is assigned to place p by marking M (denoted M(p) = k), we say that
p is marked with k tokens. Given a node x ∈ P ∪ T , its pre-set and post-set are
denoted by •x and x• respectively.

A transition t is enabled in a marking M when all places in •t are marked.
When a transition t is enabled, it can fire by removing a token from each place
in •t and putting a token to each place in t•. A marking M ′ is reachable from
M if there is a sequence of firings t1 . . . tn that transforms M into M ′, de-
noted by M [t1 . . . tn〉M ′. We define the language of N as the set of full runs
defined by L(N) := {λ(t1) . . . λ(tn) | M0[t1 . . . tn〉Mf}. A Petri net is k-bounded
if no reachable marking assigns more than k tokens to any place. A Petri net
is bounded if there exist a k for which it is k-bounded. A Petri net is safe if it
is 1-bounded. A bounded Petri net has an executable loop if it has a reachable
marking M and sequences of transitions u1 ∈ T ∗, u2 ∈ T+, u3 ∈ T ∗ such that
M0[u1〉M [u2〉M [u3〉Mf .

2.3 Process Event Data

Processes are crucial to manage the operations in organizations. Often, processes
are complex, due to many reasons: they can comprise a large number of activ-
ities, can have many decision points, there can be many participants working
jointly on a case, etcetera. Also, there can be many work streams running in
parallel, possibly with the support of multiple information systems and also ex-
ternal suppliers. Regardless of their complexity, processes in organizations have
a common element: They generate data. We call the event data generated in a
process event logs.

The collection and analysis of event logs opens various opportuni-
ties for improving the underlying process. Table 4 shows a simple event
log, which contains information about the underlying process, including
data in the form of event attributes. The event log underlying traces are
{〈a, b, c, d〉, 〈c, d, a, b〉, 〈b, a, d, c〉, 〈d, c, b, a〉} and they correspond to ‘case IDs’ 1,
2, 3, and 4, respectively. We assume that the set of attributes is fixed and the
function attr maps pairs of events and attributes to the corresponding values.
For each event e the log contains the case ID case(e), the activity name act(e),
and the set of attributes defined for e, e.g., attr(e, timestamp). For instance, for
the event log in Table 4, case(e7) = 2, act(e7) = a, attr(e7, timestamp) = “10-
04-2015 10:28pm”, and attr(e7, cost) = 19.

Event Case ID Activity Timestamp Temperature Resource Cost Risk

1 1 a 10-04-2015 9:08am 25.0 Martin 17 Low
2 2 c 10-04-2015 10:03am 28.7 Mike 29 Low
3 2 d 10-04-2015 11:32am 29.8 Mylos 16 Medium
4 1 b 10-04-2015 2:01pm 25.5 Silvia 15 Low
5 1 c 10-04-2015 7:06pm 25.7 George 14 Low
6 1 d 10-04-2015 9:08pm 25.3 Peter 17 Medium
7 2 a 10-04-2015 10:28pm 30.0 George 19 Low
8 2 b 10-04-2015 10:40pm 29.5 Peter 22 Low
9 3 b 11-04-2015 9:08am 22.5 Mike 31 High
10 4 d 11-04-2015 10:03am 22.0 Mylos 33 High
11 4 c 11-04-2015 11:32am 23.2 Martin 35 High
12 3 a 11-04-2015 2:01pm 23.5 Silvia 40 Medium
13 3 d 11-04-2015 7:06pm 28.8 Mike 43 High
14 3 c 11-04-2015 9:08pm 22.9 Silvia 45 Medium
15 4 b 11-04-2015 10:28pm 23.0 Silvia 50 High
16 4 a 11-04-2015 10:40pm 23.1 Peter 35 Medium

Table 4. An example event log

For the sake of understandability, in this paper we will focus on the data
corresponding to the temporal relation of activities, i.e., the control-flow per-
spective of a process. The reader can find in the literature references to also
explore process mining techniques that go beyond this perspective.

Formally, an event log is a collection of traces, where a trace may appear
more than once. Formally:

Definition 2 (Event Log). An event log L ∈ IB(Σ∗) (over an alphabet of
actions Σ) is a multiset of traces. σ ∈ Σ∗ is a possible trace.

The event log in Figure 2 can be compactly represented
as L = [〈po, si , py , pd ,md , cp〉503, 〈po, si , sr , py , pd ,md , cp〉247,
〈po, si , sr , sr , co〉141, 〈po, si , sr , sr , py , pd ,md , cp〉139, 〈po, si , py , pd , cp,md〉135,
〈po, si , sr , py , pd , cp,md〉57, 〈po, si , sr , sr , py , pd , cp,md〉36,
〈po, py , si , pd ,md , cp〉6, 〈po, py , si , pd , cp,md〉2].

3 Discovering Process Models

This section focuses on process discovery and introduces various techniques. The
goal is not to be complete, but to provide valuable insights into the different
solution approaches.

3.1 Definition of Discovery

The input for process discovery is an event log L ∈ IB(Σ∗). As mentioned before,
we focus on control flow and leave out other perspectives (time, costs, data, etc.).

Process discovery algorithms take an event log as input and aim to output
a process model that satisfies certain properties. To judge the quality of the
discovered model the following four quality dimensions of process mining [1] are
used:

– fitness (also called recall): the discovered model should allow for the behavior
seen in the event log (avoiding “non-fitting” behavior),

– precision: the discovered model should not allow for behavior completely
unrelated to what was seen in the event log (avoiding “underfitting”),

– generalization: the discovered model should generalize the example behavior
seen in the event log (avoiding “overfitting”), and

– simplicity : the discovered model should not be unnecessarily complex.

The simplicity dimension refers to Occam’s Razor: “one should not increase,
beyond what is necessary, the number of entities required to explain anything”.
In the context of process mining, this is often operationalized by quantifying the
complexity of the model (number of nodes, number of arcs, understandability,
etc.). The other three dimensions typically abstract from the representation. This
means that an event log L ∈ IB(Σ∗) is a multiset of traces and a modelM⊆ Σ∗
is simply seen as a set of traces (a language). Is this paper M corresponds to
the language of a labeled accepting Petri net N = 〈P, T,F ,M0,Mf , Σ, λ〉, i.e.,
M = L(N).

Many conformance measures have been proposed throughout the years. There
seems to be consensus on the four quality dimensions, but these can be opera-
tionalized in many different ways. In [13], 21 so-called conformance propositions
were defined to discuss desirable properties of existing measures for recall, preci-
sion, and generalization. It has been shown that seemingly obvious conformance
propositions are violated by existing approaches. Furthermore, [13] also shows
the importance of probabilistic conformance measures that also take into account
trace likelihoods in process models. However, to date, very few conformance mea-
sures exist that can actually support probabilistic process models.

Another approach to get handle on the problem of evaluating a process model
in the context of an event log is to assume the existence of an underlying system
S ⊆ Σ∗ that generated the event log L. (Note that we assume S to be a language
just like M.). Process mining techniques aim at extracting a process model
L(N) =M from a log L with the goal to elicit the process underlying system S.
By relating the behaviors of L,M and S, particular concepts can be defined [14].
A log is incomplete if S \ {σ ∈ L} 6= ∅. A model M fits log L perfectly if
{σ ∈ L} ⊆ M. A model is precise in describing a log L if M\{σ ∈ L} is small.
A modelM = L(N) represents a generalization of log L with respect to system
S if some behavior in S \ {σ ∈ L} exists in M.

As shown in [1, 13], the above line of thinking is rather naive when it comes
to real-life problems. The following properties make process discovery and the
evaluation of process discovery results particulary challenging.

– In reality one will never know the underlying system S. This is only possible
in a simulation setting.

– One cannot witness negative examples, i.e., the event log does not show what
could not happen.

– The event log only contains a tiny fraction of the set of all possible traces.
– If the model has loops, then the set M \ {σ ∈ L} is infinitely large and

expressions such as M\ {σ ∈ L} do not make any sense.

– If one observes a system for a longer time, one can see new behaviors. This
may be due to the large number of possible variants, the low probability of
some variants, or concept drift (the underlying system changes over time).
Hence, Murphy’s law for process mining states that “anything is possible
if one waits long enough”. Therefore, one cannot assume the existence of
a system oracle that acts as a binary classifier, and therefore it is vital to
take frequencies, incompleteness, and probabilities into account to get the
full picture [13].

The above challenges explain why a range of discovery approaches have been
developed over time. In the remainder of this section we aim to provide insights
into a few representative examples.

3.2 Process Discovery Using Inductive Mining

Process models discovered from event logs describe possible life-cycles of cases
(i.e., process instances). Such models have a start and end. In terms of Petri
nets, we are interested in models that have an initial marking M0 ∈ IB(P) and
a final marking Mf ∈ IB(P). All accepted traces correspond to paths from M0

to Mf . However, Petri nets may be deadlocking or livelocking. It may even
be the case that there is no accepting trace (i.e., Mf is not reachable from
M0). The notion of soundness was first introduced in the context of workflow
nets [15], but can be relaxed and generalized to accepting Petri nets. Soundness
cannot be decided locally, yet process discovery techniques may need to make
local decisions. Therefore, most process discovery techniques may generate un-
sound models. One way to ensure soundness is to only consider block-structured
process models. Inductive process discovery, as presented in [9, 10, 16, 17], uses
process trees to ensure soundness. Moreover, the hierarchical nature of a pro-
cess tree also enables a divide-and-conquer approach. Rather than using a single
pass through the event log, it is also possible to try and break the problem into
smaller problems. Inductive process discovery approaches split the event log re-
cursively into smaller sublogs. For example, if one group of activities is preceded
by another group of activities, but never the other way around, then we may
deduce that these two groups are in a sequence relation. Subsequently, the event
log is decomposed based on the two groups of activities. Next to the sequence
relation, it is also possible to detect choices, concurrency, and loops, and split the
log accordingly. This divide-and-conquer approach is repeated until each sublog
refers to single activity. Leemans et al. developed a family of inductive mining
techniques [9, 10, 16, 17]. Some of these techniques are tailored to dealing with
huge event logs and process models, other techniques address challenges such as
infrequent behavior and incompleteness of logs. In this section, we only consider
the basic algorithm also described in [1].

Figure 2 shows a process tree. This process tree was discovered using the event
log introduced in Section 1. Next to the visual tree representation, process trees
also have a textual description →(po,∧(×(τ, py), si),×(co,→(pd ,∧(md , cp)))).
The root node is of type → meaning that the three subtrees po, ∧(×(τ, py), si),

po

si co

place

order

make
delivery

confirm
payment

cancel
order

send
invoice

sequential
compostion

exclusive
choice a

τ

parallel
composition

redo
loop

normal
activity

silent
activity

py
pay

pd
prepare

delivery

md

τ

cp

Fig. 2. Process tree →(po,∧(×(τ, py), si),×(co,→(pd ,∧(md , cp)))) discovered for the
event log described in tables 1 and 3 (without activity sr = send reminder). The
process tree corresponds to models (a), (b), and (f) in Figure 1.

and ×(co,→(pd ,∧(md , cp))) are executed in sequence. The subtree in the middle
∧(×(τ, py), si) is of type ∧ meaning that its two parts are executed concurrently.
The subtree on the left ×(co,→(pd ,∧(md , cp))) is of type × meaning that there
is an exclusive choice between its two children.

Next to → (sequential composition), × (exclusive choice), and ∧ (parallel
composition), there is also the 	 (redo loop) operator. The redo loop operator
	 has at least two children. The first child is the “do” part and the other children
are alternative “redo” parts. Process tree 	(a, b, c) allows for traces {〈a〉, 〈a, b, a〉,
〈a, c, a〉, 〈a, b, a, b, a〉, 〈a, c, a, c, a〉, 〈a, c, a, b, a〉, 〈a, b, a, c, a〉, . . .}. Activity a is ex-
ecuted at least once and the process always starts and ends with a. The “do”
part alternates with the “redo” parts b or c. When looping back either b or c
is executed. The redo loop operator 	 is often used in conjunction with silent
activity τ . For example, 	(τ, a, b, c, . . . , z) allows for any trace (including the
empty one) involving activities a, b, c, . . . , z.

The same activity may appear multiple times in the same process tree. For
example, process tree →(a, a, a) models a sequence of three a activities. From
a behavioral point of view →(a, a, a) and ∧(a, a, a) are indistinguishable. Both
allow for one possible trace: 〈a, a, a〉.

Definition 3 (Process tree). Let A ⊆ Σ be a finite set of activities with
τ 6∈ Σ.

⊕
= {→,×,∧,	} is the set of process tree operators. Process trees are

defined inductively:

– if a ∈ A ∪ {τ}, then Q = a is a process tree,
– if n ≥ 1, Q1, Q2, . . . , Qn are process trees, and ⊕ ∈ {→,×,∧},

then Q = ⊕(Q1, Q2, . . . Qn) is a process tree, and

– if n ≥ 2 and Q1, Q2, . . . , Qn are process trees,
then Q = 	(Q1, Q2, . . . Qn) is a process tree.

sequential
compostion

exclusive
choice

a

τ

parallel
composition

redo
loop

normal
activity

silent
activity

a b z...
a b z...

a b z...

start end

a b z...

a
start end

τ
start end

a

start

z

...
τ b τ

end

a b z...

a

start

z

...
τ b

τ

end

a

start

z

...

τ

b

end

τ

τ

... ...

τ

τ

... ...

... ...

Fig. 3. Mapping process trees onto Petri to illustrate their semantics.

L(Q) is the language of a process tree Q. Formal definitions are provided
in [1, 9, 10, 16, 17]. Here we only provide a mapping to Petri nets and some ex-
amples. Figure 3 shows the semantics of each operator in terms of Petri nets.
The following examples further illustrate the process tree operators and their se-
mantics: L(τ) = {〈 〉}, L(a) = {〈a〉}, L(→(a, b, c)) = {〈a, b, c〉}, L(×(a, b, c)) =
{〈a〉, 〈b〉, 〈c〉}, L(∧(a, b, c)) = {〈a, b, c〉, 〈a, c, b〉, 〈b, a, c〉, 〈b, c, a〉, 〈c, a, b〉, 〈c, b, a〉},
L((a, b)) = {〈a〉, 〈a, b, a〉, 〈a, b, a, b, a〉, . . .}, L(→(a,×(b, c),∧(a, a))) =
{〈a, b, a, a〉, 〈a, c, a, a〉}, L(×(τ, a, τ,→(τ, b),∧(c, τ))) = {〈 〉, 〈a〉, 〈b〉, 〈c〉}, and
L((a, τ, c)) = {〈a〉, 〈a, a〉, 〈a, a, a〉, 〈a, c, a〉, 〈a, a, c, a〉, 〈a, c, a, c, a〉, . . .}.

Consider process tree Q = →(po,∧(×(τ, py), si),×(co,→(pd ,∧(md , cp)))),
i.e., the process tree shown in Figure 2. L(Q) = {〈po, si , py , co〉,
〈po, si , py , pd ,md , cp〉, 〈po, si , py , pd , cp,md〉, 〈po, py , si , co〉,
〈po, py , si , pd ,md , cp〉, 〈po, py , si , pd , cp,md〉, 〈po, si , co〉, 〈po, si , pd ,md , cp〉,
〈po, si , pd , cp,md〉}.

Given an event log L ∈ IB(Σ∗) we would like to discover a process treeQL. For
example, for event log L = [〈a, b, c, e〉85, 〈a, c, b, e〉56, 〈a, d, e〉34] we would like to
discover Q = →(a,×(∧(b, c), d), e). For event log L = [〈a, b, d〉33, 〈a, b, c, b, d〉25,
〈a, b, c, b, c, b, d〉12, 〈a, b, c, b, c, b, c, b, d〉6, 〈a, b, c, b, c, b, c, b, c, b, d〉2] we would like
to discover Q = →(a,	(b, c), d). The general idea of the inductive mining ap-
proach is to build a directly-follows graph and decompose the event log based on
a particular cut of the directly-follows graph. The decomposition partitions the
set of activities, i.e., sublogs are created in such a way that each event appears in
precisely one of the sublogs. This is repeated until each sublog refers to only one
activity. Note that each of the four operators, i.e., → (sequential composition),
× (exclusive choice), ∧ (parallel composition), and 	 (redo loops), corresponds
to a particular type of cut and decomposes the event log accordingly.

To be able to define cuts, we first formalize the notion of a directly-follows
graph.

Definition 4 (Directly-Follows Graph). Let L be an event log, i.e., L ∈
IB(Σ∗). The directly-follows graph of L is G(L) = (AL, 7→L, A

start
L , Aend

L) with:

– AL = {a ∈ σ | σ ∈ L} is the set of activities in L,
– 7→L= {(a, b) ∈ A×A | a >L b} is the directly-follows relation,5

– Astart
L = {a ∈ A | ∃σ∈La = first(σ)} is the set of start activities, and

– Aend
L = {a ∈ A | ∃σ∈La = last(σ)} is the set of end activities.

The Inductive Mining (IM) algorithm iteratively splits the initial event log
into smaller sublogs. For any sublog L we can create a directly-follows graph
G(L). a 7→L b if a was directly followed by b somewhere in L. a 67→L b if a
was never directly followed by b. 7→+

L is the transitive closure of 7→L. a 7→+
L b if

there is a non-empty path from a to b in G(L), i.e., there exists a sequence of
activities a1, a2, . . . , ak such that k ≥ 2, a1 = a and ak = b and ai 7→L ai+1 for
i ∈ {1, . . . , k − 1}. a 67→+

L b if there is no path from a to b in the directly-follows
graph.

Note that a 7→L b if a was directly followed by b only once in L. It is also
possible to set thresholds to filter out infrequent behavior [16].

Definition 5 (Cut). Let L be an event log with corresponding directly-follows
graph G(L) = (AL, 7→L, A

start
L , Aend

L). Let n ≥ 1. An n-ary cut of G(L) is a
partition of AL into pairwise disjoint sets A1, A2, . . . An: AL =

⋃
i∈{1,...,n}Ai

and Ai ∩Aj = ∅ for i 6= j. Notation: (⊕, A1, A2, . . . An) with ⊕ ∈ {→,×,∧,	}.
For each type of operator (→, ×, ∧, and) specific conditions apply:

– An exclusive-choice cut of G(L) is a cut (×, A1, A2, . . . An) such that
• ∀i,j∈{1,...n}∀a∈Ai

∀b∈Aj
i 6= j =⇒ a 67→L b.

– A sequence cut of G(L) is a cut (→, A1, A2, . . . An) such that
• ∀i,j∈{1,...n}∀a∈Ai

∀b∈Aj
i < j =⇒ (a 7→+

L b ∧ b 67→+
L a).

– A parallel cut of G(L) is a cut (∧, A1, A2, . . . An) such that

5 a >L b if and only if there is a trace σ = 〈t1, t2, t3, . . . tn〉 and i ∈ {1, . . . , n− 1} such
that σ ∈ L and ti = a and ti+1 = b.

• ∀i∈{1,...n} Ai ∩Astart
L 6= ∅ ∧ Ai ∩Aend

L 6= ∅ and
• ∀i,j∈{1,...n}∀a∈Ai

∀b∈Aj
i 6= j =⇒ a 7→L b.

– A redo-loop cut of G(L) is a cut (, A1, A2, . . . An) such that
• n ≥ 2,
• Astart

L ∪Aend
L ⊆ A1,

• {a ∈ A1 | ∃i∈{2,...n}∃b∈Ai
a 7→L b} ⊆ Aend

L ,
• {a ∈ A1 | ∃i∈{2,...n}∃b∈Ai b 7→L a} ⊆ Astart

L ,
• ∀i,j∈{2,...n}∀a∈Ai∀b∈Aj i 6= j =⇒ a 67→L b,
• ∀i∈{2,...n}∀b∈Ai∃a∈Aend

L
a 7→L b =⇒ ∀a′∈Aend

L
a′ 7→L b, and

• ∀i∈{2,...n}∀b∈Ai∃a∈Astart
L

b 7→L a =⇒ ∀a′∈Astart
L

b 7→L a
′.

A cut (⊕, A1, A2, . . . An) with ⊕ ∈ {→,×,∧,	} of directly-follows graph
G(L) is maximal if there is no cut (⊕, A′1, A′2, . . . A′m) with m > n. Cut
(⊕, A1, A2, . . . An) is called trivial if n = 1.

Definition 6 (Projection). Let L be an event log and (⊕, A1, A2, . . . An) a cut
with ⊕ ∈ {→,×,∧,	} based on the directly-follows graph G(L) (n ≥ 2). L is
split into sublogs L1, L2, . . . , Ln such that each event ends up in precisely one log
and ∪σ∈Li

{a ∈ σ} = Ai for any 1 ≤ i ≤ n.

The precise way in which the event log is split depends on the operator
[9,10,16]. Consider cut (→, {a}, {b, c, d}, {e}) in the context of L = [〈a, b, c, e〉85,
〈a, c, b, e〉56, 〈a, d, e〉34]. L will be split into L1 = [〈a〉175], L2 = [〈b, c〉85, 〈c, b〉56,
〈d〉34], and L3 = [〈e〉175]. Consider cut (×, {a, b}, {c, d}) in the context of
L = [〈a, b〉10, 〈b, a〉10, 〈c, d〉20]. L will be split into L1 = [〈a, b〉10, 〈b, a〉10] and
L2 = [〈c, d〉20]. Consider cut (∧, {a, b}, {c}) in the context of L = [〈a, b, c〉10,
〈b, a, c〉10, 〈a, c, b〉10, 〈b, c, a〉10, 〈c, a, b〉10, 〈c, b, a〉10]. L will be split into L1 =
[〈a, b〉30, 〈b, a〉30] and L2 = [〈c〉60]. Consider cut (, {a, b}, {c, d}) in the con-
text of L = [〈a, b〉10, 〈a, b, c, d, a, b〉4, 〈a, b, c, d, a, b, c, d, a, b〉2]. L will be split into
L1 = [〈a, b〉24] and L2 = [〈c, d〉8]. Note that each iteration creates a new case,
e.g., case 〈a, b, c, d, a, b, c, d, a, b〉 is split into three 〈a, b〉 cases and two 〈c, d〉 cases.

The IM algorithm works as follows [1]. IM is a function that converts an event
log into a process tree. Given a log or sublog L, Q = IM (L) is the corresponding
(sub)tree. Given an event log, the directly-follows graph is constructed. If there is
a non-trivial exclusive-choice cut, then a maximal exclusive-choice cut is applied,
splitting the event log into smaller event logs. If there is no non-trivial exclusive-
choice cut, but there is a non-trivial sequence cut, then a maximal sequence cut is
applied splitting the event log into smaller event logs. If there are no non-trivial
exclusive-choice and sequence cuts, but there is a non-trivial parallel cut, then a
maximal parallel cut is applied splitting the event log into smaller event logs. If
there are no non-trivial exclusive-choice, sequence and parallel cuts, but there is
a redo-loop cut, then a maximal redo-loop cut is applied splitting the event log
into smaller event logs. After splitting the event log into sublogs the procedure
is repeated until a base case (sublog with only one activity) is reached.

How the event log is split into sublogs, depends on the operator (see before).
Empty traces are handled in a dedicated manner (based on the operator) and
may result in the insertion of τ activities. If there are no non-trivial cuts meeting

the requirements in Definition 6, a fall-through is selected. The part that cannot
be split is presented by a so-called flower model (“anything can happen”). Note
that such a model can be easily represented as process tree 	(τ, a, b, . . .) allowing
for any trace involving the activities in the different redo parts. The fall-through
serves as a last resort ensuring fitness, but possibly resulting in lower precision.

In the base case, the sublog contains only events corresponding to a particular
activity, say a. If the sublog is of the form L = [〈a〉k] with k ≥ 1 (i.e., a occurs
once in each trace), then the subtree a is returned. If the sublog is of the form
L = [〈 〉k, 〈a〉l] with k, l ≥ 1, then the subtree ×(a, τ) is returned because a
is sometimes skipped. If a is executed at least once in each trace in the sublog
and sometimes multiple times (e.g., L = [〈a〉9, 〈a, a〉2, 〈a, a, a〉]), then the subtree
	(a, τ) is returned. In all other cases (e.g., L = [〈 〉3, 〈a〉4, 〈a, a, a〉]), the subtree
	(τ, a) is returned because a is executed zero or more times in the traces of
sublog L.

First, we show a larger worked out example showing the iterative process of
splitting the event logs into sublogs based on cuts.

– Let Labcdef = [〈a, b, c, d〉3, 〈a, c, b, d〉4, 〈a, b, c, e, f, b, c, d〉2,
〈a, c, b, e, f, b, c, d〉2, 〈a, b, c, e, f, c, b, d〉, 〈a, c, b, e, f, b, c, e, f, c, b, d〉] be an
event log. Based on the directly-follows graph we identify a maximal
sequence cut (→, {a}, {b, c, e, f}, {d}) splitting the event log into La, Lbcef ,
Ld.
• La = [〈a〉13] is a base case. Hence, IM (La) = a.
• Lbcef = [〈b, c〉3, 〈c, b〉4, 〈b, c, e, f, b, c〉2, 〈c, b, e, f, b, c〉2, 〈b, c, e, f, c, b〉,
〈c, b, e, f, b, c, e, f, c, b〉]. There are no non-trivial exclusive-choice, se-
quence or parallel cuts. Therefore, we apply the maximal redo-loop cut
(, {b, c}, {e, f}) splitting the event log into Lbc and Lef .
∗ Lbc = [〈b, c〉11, 〈c, b〉9]. Based on the maximal parallel cut

(∧, {b}, {c}), we obtain Lb and Lc .
· Lb = [〈b〉20] is a base case. Hence, IM (Lb) = b.
· Lc = [〈c〉20] is a base case. Hence, IM (Lc) = c.

∗ Lef = [〈e, f〉7]. Based on the maximal sequence cut (→, {e}, {f}),
we obtain Le and Lf .
· Le = [〈e〉7] is a base case. Hence, IM (Le) = e.
· Lf = [〈f〉7] is a base case. Hence, IM (Lf) = f .

• Ld = [〈d〉13] is a base case. Hence, IM (Ld) = d.
– After splitting the event log to reach the base cases, we can construct the

overall tree:
• IM (Lb,c) = ∧(IM (Lb), IM (Lc)) = ∧(b, c).
• IM (Le,f) =→(IM (Le), IM (Lf)) =→(e, f).
• IM (Lbcef) = 	(IM (Lb,c), IM (Le,f)) = 	(∧(b, c),→(e, f)).
• IM (Labcdef) = →(IM (La), IM (Lbcef), IM (Ld)) = →(a,	(∧(b, c),
→(e, f)), d) represents the overall process tree for the whole event log.

To illustrate the handling of base cases we show a few smaller examples:

– If L = [〈a, a〉12, 〈a, a, a〉6], then IM (L) = 	(a, τ).

– If L = [〈a, b, c〉20, 〈a, c〉30], then IM (L) =→(a,×(b, τ), c).
– If L = [〈b〉12, 〈a, b〉6, 〈b, c〉5, 〈a, b, c〉4], then IM (L) =→(×(a, τ), b,×(c, τ)).
– If L = [〈a, c〉2, 〈a, b, c〉3, 〈a, b, b, c〉2, 〈a, b, b, b, c〉2, 〈a, b, b, b, b, b, b, c〉], then

IM (L) =→(a,	(τ, b), c).

In this section, we only described the basic IM algorithm [1, 10]. This algo-
rithm provides many guarantees. The discovered models are always sound and
are guaranteed to be able to replay the whole event log. Moreover, for large sub-
classes of process trees, rediscoverability is guaranteed (i.e., a sufficiently large
event log obtained by simulating a model is sufficient to reconstruct a behav-
iorally equivalent model). However, the basic algorithm presented here cannot
abstract from infrequent behavior and does not handle incompleteness well. The
log is assumed to be directly-follows complete and frequencies are not taken into
account. Fortunately, the inductive mining framework is quite flexible. Using the
basic ideas presented in this section, a family of inductive mining techniques has
been developed [1, 9, 10, 16, 17]. All use a divide-and-conquer approach in com-
bination with process trees that are sound by construction. As demonstrated
in [9, 17] the approach can be made highly scalable and can be applied to huge
event logs.

3.3 Process Discovery Using Region-Based Approaches

In contrast to inductive mining, which is able to guarantee a sound workflow
model, the existing approaches that rely on the notion of region theory [18]
search for a process model that is both fitting and precise [19]. This section
shows two branches of region-based approaches for process discovery: state and
language-based approaches.

State-based Region Approach for Process Discovery State-based region
approaches for process discovery need to convert the event log into a state-
based representation, that will be used to discover the Petri net. The techniques
described in [20] present many variants for solving this first step. The basic idea
to incorporate state information is to look at the pre/post history of a subtrace
in the event log. Figures 4(a)-(b) show an example, where states are decided by
looking at the set of common prefixes.

A transition system (TS) is a tuple (S,Σ,A, sin), where S is a set of states,
Σ is an alphabet of activities, A ⊆ S × Σ × S is a set of (labeled) arcs, and

sin ∈ S is the initial state. We will use s
e→ s′ as a shortcut for (s, e, s′) ∈ A, and

the transitive closure of this relation will be denoted by
∗→. Figure 4(b) presents

an example of a transition system.
A region6 in a transition system is a set of states that satisfy an homogeneous

relation with respect to the set of arcs. In the simplest case, this relation can

6 In this paper we will use region to denote a 1-bounded region. However, when needed
we will use k-bounded region to extend the notion, necessary to account for k-
bounded Petri nets.

r
s s s

sb

sb

sb

p

p

p
em em em

ac

ac

rj

rj

ap

ap c

c

c

c

rs

rs

1 r,s,sb,p,ac,ap,c

2 r,sb,em,p,ac,ap,c

4 r,em,sb,p,ac,ap,c

5 r,sb,s,p,ac,rj,rs,c

6 r,sb,p,s,ac,ap,c

7 r,sb,p,em,ac,ap,c

(a)

(b)

3 r,sb,p,em,ac,rj,rs,c

s

p
rj rs

sb

em ac

ap

c
r

(c)

Fig. 4. State-based region discovery: (a) log L, (b) a transition system corresponding
to L, (c) derived Petri net.

r
s s s

sb

sb

sb

p

p

p
em em em

ac

ac

rj

rj

ap

ap c

c

c

c

rs

rs

(a)

s

p
rj rs

sb

em ac

ap

c
r

(b)

Fig. 5. (a) Example of region (three shadowed states). The predicates are r enters, s
and em exits, and the rest of events do not cross, (b) Corresponding place shadowed
in the Petri net.

be described by a predicate on the set of states considered. Formally, let S′ be
a subset of the states of a TS, S′ ⊆ S. If s 6∈ S′ and s′ ∈ S′, then we say that
transition s

a→ s′ enters S′. If s ∈ S′ and s′ 6∈ S′, then transition s
a→ s′ exits

S′. Otherwise, transition s
a→ s′ does not cross S′: it is completely inside (s ∈ S′

and s′ ∈ S′) or completely outside (s /∈ S′ and s′ 6∈ S′). A set of states r ⊆ S is
a region if for each event e ∈ E, exactly one of the three predicates (enters, exits
or does not cross) holds for each of its arcs. An example of region is presented in
Figure 5 on the TS of our running example. In the highlighted region, r enters
the region, s and em exit the region, and the rest of labels do not cross the
region.

A region corresponds to a place in the Petri net, and the role of the arcs
determine the Petri net flow relation: when an event e enters the region, there is
an arc from the corresponding transition for e to the place, and when e exits the

region, there is an arc from the region to the transition for e. Events satisfying
the do not cross relation are not connected to the corresponding place. For
instance, the region shown in Figure 5(a) corresponds to the shadowed place in
Figure 5(b), where event r belongs to the set of input transitions of the place
whereas events em and s belong to the set of output transitions. Hence, the
algorithm for Petri net derivation from a transition system consists in finding
regions and constructing the Petri net as illustrated with the previous example.
In [21] it was shown that only a minimal set of regions was necessary, whereas
further relaxations to this restriction can be found in [19]. The Petri net obtained
by this method is guaranteed to accept the language of the transition system,
and satisfy the minimal language containment property, which implies that if all
the minimal regions are used, the Petri net derived is the one whose language
difference with respect to the log is minimal, hence being the most precise Petri
net for the set of transitions considered.

In any case, the algorithm that searches for regions in a transition system
must explore the lattice of sets (or multisets, in the case for k-bounded regions),
thus having a high complexity: for a transition system with n states, the lattice
for k-bounded regions is of size O(kn). For instance, the lattice of sets of states
for the toy TS used in this article (which has 22 states) has 222 possibles sets to
check for the region conditions. Although many simplification properties, efficient
data structures and algorithms, and heuristics are used to prune this search
space [19], they only help to alleviate the problem. Decomposition alternatives,
which for instance use partitions of the state space to guide the search for regions,
significantly alleviate the complexity of the state-based region algorithm, at the
expense of not guaranteeing the derivation of precise models [22]. Other state-
based region approaches for discovery have been proposed, which complement
the approach described in this section [23–25].

Language-based Region Approach for Process Discovery In Language-
based region theory [26–31] the goal is to construct the smallest Petri net such
that the beharviour of the net is equal to the given input language (or minimally
larger). [32] provides an overview for language-based region theory for different
classes of languages: step languages, regular languages, and (infinite) partial
languages.

More formally, let L ∈ IB(Σ∗) be an event log, then language based region
theory constructs a Petri net with the set of transitions equals to Σ and in
which all traces of L are a firing sequence. The Petri net should have only
minimal firing sequences not in the language L (and all prefixes in L). This is
achieved by adding places to the Petri net that restrict unobserved behavior,
while allowing for observed behavior. The theory of regions provides a method
to identify these places, using language regions.

Definition 7 (Prefix Closure). Let L ∈ IB(Σ∗) be an event log. The prefix
closed language L ⊆ Σ∗ of L is defined as: L = {σ ∈ Σ∗ | ∃σ′∈Σ∗σ ◦ σ′ ∈ L}.

The prefix closure of a log is simply the set of all prefixes in the log (including
the empty prefix).

t1 t2

t4t3

x1

x2

x3

x4

y1

y2

y3

y2

c

Fig. 6. Region for a language over four activities [33].

Definition 8 (Language Region). Let Σ be a set of activities. A region of
a prefix-closed language L ∈ Σ∗ is a triple (x,y, c) with x,y ∈ {0, 1}Σ and
c ∈ {0, 1}, such that for each non-empty sequence w = w′ ◦ a ∈ L, w′ ∈ L,
a ∈ Σ:

c+
∑
t∈Σ

(w′(t) · x(t)−w(t) · y(t)) ≥ 0

This can be rewritten into the inequation system:

c · 1 +M ′ · x−M · y ≥ 0

where M and M ′ are two |L|×|Σ| matrices with M(w, t) = w(t), and M ′(w, t) =
w′(t), with w = w′ ◦ a. The set of all regions of a language is denoted by <(L)
and the region (0,0, 0) is called the trivial region.

Intuitively, vectors x,y denote the set of incoming and outgoing arcs of the
place corresponding to the region, respectively, and c sets if it is initially marked.
Figure 6 shows a region for a language over four activities, i.e. each solution
(x,y, c) of the inequation system can be regarded in the context of a Petri net,
where the region corresponds to a feasible place with preset {t|t ∈ T,x(t) = 1}
and postset {t|t ∈ T,y(t) = 1}, and initially marked with c tokens. Note that
we do not assume arc-weights here, while the authors of [26–28,34] do.

Since the place represented by a region is a place which can be added to a
Petri net, without disturbing the fact that the net can reproduce the language
under consideration, such a place is called a feasible place.

Definition 9 (Feasible place). Let L be a prefix-closed language over Σ and
let N = ((P,Σ, F),m) be a marked Petri net. A place p ∈ P is called feasible
if and only if there exists a corresponding region (x,y, c) ∈ <(L) such that
m(p) = c, and x(t) = 1 if and only if t ∈ •p, and y(t) = 1 if and only if t ∈ p•.

In general, there are many feasible places for any given event log (when con-
sidering arc-weights in the discovered Petri net, there are even infinitely many).
Several methods exist for selecting an appropriate subset of these places. The
authors of [28,34] present two ways of finitely representing these places, namely a
basis representation and a separating representation. Both representations maxi-
mize precision, i.e. they select a set of places such that the behavior of the model
outside of the log is minimal.

In contrast, the authors of [33, 35–37] focus on those feasible places that
express some causal dependency observed in the event log, and/or ensure that
the entire model is a connected workflow net. They do so by introducing various
cost functions favouring one solution of the equation system over another and
then selecting the top candidates.

Process Discovery vs. Region Theory The goal of region theory is to find
a Petri net that perfectly describes the observed behavior (where this behavior
is specified in terms of a language or a statespace). As a result the Petri nets are
perfectly fitting and maximally precise.

As a consequence, the assumption on the input is that it provides a full be-
havioral specification, i.e. that the input is complete and noise free. Furthermore,
the assumption on the output is that it is a compact, exact representation of the
input behavior.

When applying region theory in the context of process mining, it is there-
fore very important to perform any generalization before calling region theory
algorithms. For state-based regions, the challenges are in the construction of the
statespace from the event log and in language based regions in the selection of
the appropriate prefixes to include in the final prefix-closed language in order to
ensure some level of generalization.

4 Conformance Checking and the Challenge of
Alignments

Conformance checking is a crucial dimension in process mining: by relating mod-
elled and observed behavior, process models that have either been discovered or
manually created, can be confronted with event data [2]. On its core, confor-
mance checking relies on the fundamental problem of identifying, among the set
of runs of a process model (which can be infinite), the run that mostly resem-
bles an observed trace. In this section we overview the problem of computing
alignments, and provide applications to be build on top of alignments.

4.1 Formal Definition of Alignments

An alignment of an observed trace and a process model relates events of the
observed trace to elements of the model and vice versa. Such an alignment reveals
how the given trace can be replayed on the process model. The classical notion
of aligning an event log and process model was introduced by [38]. To achieve
an alignment, we need to relate moves in the observed trace to moves in the
model. It may be the case that some of the moves in the observed trace can not
be mimicked by the model and vice versa. For instance, consider the model N1

in Figure 7, with the following labels, λ(t1) = a1, λ(t2) = a2, λ(t3) = a3 and
λ(t4) = a4, and the trace σ = 〈a1, a1, a4, a2〉; four possible alignments are:

α1=
a1 a1 ⊥ a4 a2
t1 ⊥ t3 t4 ⊥

α2=
a1 a1 ⊥ a4 a2
⊥ t1 t2 t4 ⊥

Fig. 7. Process model N1.

α3=
a1 a1 a4 a2 ⊥
t1 ⊥ ⊥ t2 t4

α4=
a1 a1 a4 a2 ⊥
⊥ t1 ⊥ t2 t4

The moves are represented in tabular form, where moves by the trace are at
the top, and moves by the model are at the bottom of the table. For example
the first move in α2 is (a1,⊥) and it means that the observed trace moves a1,
while the model does not make any move. Formally, an alignment is defined as
follows:

Definition 10 (Alignment). Given a labeled Petri net N and an alphabet of
events Σ, Let AM and AL be the alphabet of transitions in the model and events
in the log, respectively, and ⊥ denote the empty set, then:

– (X,Y) is a synchronous move if X ∈ AL, Y ∈ AM and X = λ(Y)
– (X,Y) is a move in log if X ∈ AL and Y =⊥.
– (X,Y) is a move in model if X =⊥ and Y ∈ AM .
– (X,Y) is an illegal move, otherwise.

The set of all legal moves is denoted as ALM and given an alignment α ∈ A∗LM ,
the projection of the first element (ignoring ⊥), α ↑AL

, results in the observed
trace σ, and projecting the second element (ignoring ⊥), α ↑AM

, results in the
model trace.

For the previous example, α1 ↑AM
= t1t3t4 and α1 ↑AL

= a1a1a4a2.
Costs can be associated to the different types of moves in Def. 10. Tradi-

tionally, the approaches in the literature use a cost function that assigns higher
costs to asynchronous moves (move in model/log) than to synchronous moves,
and the model trace that minimizes the cost (hence, minimizing the number of
asynchronous moves) is computed. When a cost function is in place, then one
can consider optimality: an optimal alignment is an alignment with minimal cost.
The most simple cost function that satisfies this requirement is the standard cost
function, which assigns cost 1 to asynchronous moves, and cost 0 to synchronous
moves. In this paper we will assume the standard cost function, which will for
instance assign cost 3 to the alignments α1−α4 shown before. According to the
standard cost function, all four alignments are optimal.

4.2 Techniques for the Computation of Alignments

In this section we report some of the existing alternatives to compute alignments.
First we describe the reference technique nowadays for alignment computation.

Fig. 8. (Top) Process model, (Bottom) Synchronous product net over the trace
〈a1, a4, a2, a11〉.

Then, we provide pointers to other techniques so that the reader gets an overall
impression on the vivid field of alignment computation.

A∗ Technique over the Synchronous Product Net The reference technique
for alignment computation was presented in the context of Arya Adriansyah’s
PhD thesis [38]. It is based on the notion of synchronous product net (SPN, for
short), which we define informally now with the help of an example.

Figure 8(Top) describes a process model. Now let us assume that it should
be aligned with the trace σ = 〈a1, a4, a2, a11〉. The idea underlying the method
from [38] is to first create an SPN, that encompasses the joint behavior between
the process model and σ. This SPN is described in Figure 8(Bottom). Transitions
in the SPN can be partitioned into three sets

– Transitions at the top (i.e., t1, . . . t11) correspond to original model transi-
tions.

– Transitions at the bottom correspond to the Petri net representation of σ.

– Transitions in the middle represent the joint synchronization of the model
and the trace states.

Accordingly, transitions in the SPN will be assigned a cost7: transitions in the
top of the SPN, and in the bottom of the SPN, will receive cost one. Transitions
in the middle, will receive cost 0. Informally, this cost assignment penalizes
the process model or the log independent executions, and in contrast favours
synchronous executions, that are executed without cost. Then, a search for the
cost-minimal path between initial and final marking of the state space of the
created SPN is computed.

The cost-minimal path search can be done either once the full state-space is
computed, or more intelligently by applying a A∗ strategy to avoid, whenever
possible, the full exploration of the state-space. This can be achieved by using
heuristics that at each state reached, estimate the minimal cost to reach the final
marking, and prune the exploration for successor states that are not promising.
Several heuristics can be applied, that include the use of the marking equation of
Petri nets [12] to estimate the remaining distance by solving an (integer) linear
program that provides a lower bound to the real distance.

Other Techniques Alternatives to A∗ have appeared very recently: in the ap-
proach presented in [39], the alignment problem is mapped as an automated plan-
ning instance. Unlike the A∗, the aforementioned work is only able to produce
one optimal alignment (not all optimal), but it is expected to consume consid-
erably less memory. Automata-based techniques have also appeared [40, 41]. In
particular, the technique in [40] can compute all optimal alignments. The tech-
nique in [40] relies on state space exploration and determinization of automata,
whilst the technique in [41] is based on computing several subsets of activities
and projecting the alignment instances accordingly.

The work in [42] presented the notion of approximate alignment to alleviate
the computational demands of the current challenge by proposing a recursive
paradigm on the basis of structural theory of Petri nets. In spite of resource
efficiency, the solution is not guaranteed to be executable. A follow-up work
of [42] is presented in [43], which proposes a trade-off between complexity and
optimality of solutions, and guarantees executable properties of results. The
technique in [44] presents a framework to reduce a process model and the event
log accordingly, with the goal to alleviate the computation of alignments. The
obtained alignment, called macro-alignment since some of the positions are high-
level elements, is expanded based on the information gathered during the initial
reduction. Decompositional techniques have been presented [45,46] that, instead
of computing optimal alignments, they focus on the decisional problem of whereas
a given trace fits or not a process model.

Recently, two different approaches by the same authors have appeared: the
work in [47] proposes using binary decision diagrams to alleviate the compu-
tation of alignments. The work in [48], which has the goal of maximizing the
synchronous moves of the computed alignments, uses a pre-processing step on
the model.

7 Remember that we are assuming the standard cost function that assigns cost 1 to
synchronous moves and cost 0 to asynchronous moves.

4.3 Alignments Applications

In this section we overview different use cases of alignments. The reader can find
a complete and detailed presentation in [2].

Model Enhancement Alignments open the door to incorporate information
from the event log to the process model. More concretely, from an alignment α,
one can transfer the information from the log trace α ↑AL

to the model activities
in α ↑AM

corresponding to the synchronous moves. This information is contained
in the events attributes. For instance, after aligning the complete log, one can
realize that in reality a given model transition is only performed by a limited set
of persons or roles, or the cost of executing it is within certain margins.

Alignments can also be used to animate the process model. This has already
illustrated early in the paper (see for instance the annotations in Figure 1 (a)).
This helps to understand better the visualization of real traces through the
process model, and is one of the most interesting features of several existing
process mining tools.

Furthermore, more elaborated information can be projected on top of the
process model, with the help of a tailored analysis. One possibility is performance
analysis, in order to display performance information like activity durations,
waiting times and routing probabilities. For instance, in the left-most decision of
Figure 1 (a), one can see that 11.1% (141 out of 1266) of the cases the activity
pay is skipped.

Alternatively, the event log attributes can be used to explain decision in
process models, once alignments are obtained. This is known as decision point
analysis. Decision point analysis is based on building prediction models next to
each decision point, using the data available. Often, the data used to feed these
models can be obtained from the events corresponding to the prefixes of traces
that lead to the decision point. Examples of data attributes that can be used for
the previous example are product, resource, prod-price, quantity and address in
Table 1. Continuing with the previous example, one can for instance infer that
the explanation on why the activity pay is sometimes skipped is due to products
orders placed which both contain more than one item and the item price is less
than 500.

Model and Log Repair Another interesting application of using alignments
is the possibility to repair the model or the log, so that they are more aligned.
Model repair can be performed by selecting and resolving particular asyn-
chronous moves in an alignment [49]. Intuitively, to resolve model moves one
need to insert routing logic that allows to skip certain activities to be executed.
Symmetrically, to resolve log moves one should extend the process model so that
new behavior is possible in particular situations.

On the other hand, log repair considers that models contain the truth and
whenever deviations are found, they should be corrected at the log level. Cor-
recting deviations at log level is straightforward: model moves amounts to in-
sert events in the observed trace, whilst log moves imply to remove events in

the observed trace. For instance, the log repair of the alignment α1 for trace
σ = 〈a1, a1, a4, a2〉, and the model shown in Figure 7, derives the new trace
σ′ = 〈a1, a3, a4〉.

5 Evidence-based Quality Metrics for Process Models

With the aim of quantifying the relation between observed and modeled behav-
ior, conformance checking techniques consider four quality dimensions: fitness,
precision, generalization and simplicity [50]. In section 3.1 we already described
the intuition behind these dimensions. In this section we do a step further, and
present ways to measure them.

When alignments are available, most of the quality dimensions can be de-
fined on top [2]. In a way, alignments are optimistic: although observed behavior
may deviate significantly from modeled behavior, it is always assumed that the
least deviations are the best explanation (from the model’s perspective) for the
observed behavior. For the first three dimensions, the alignment between a pro-
cess model and an event log is of paramount importance, since it allows relating
modelled and observed behavior.

5.1 Fitness

Fitness evaluates to which extent the observed behavior is possible according to
the modelled behavior. Intuitively (and abusing a bit the notation), if L is also
considered the language of the log, then the fitness of L with respect to a process
model N can be computed by the following formula:

fitness =
|L ∩ L(N)|
|L|

Alternatively, a refined metric for fitness can be measured through align-
ments. The way alignments are constructed, i.e. by looking for a shortest path
through the state space of the SPN, is not necessarily deterministic. There may
be more than one shortest path. However, the final cost of the alignment is
minimal and therefore deterministic. On the basis of this cost, alignment-based
fitness is defined as:

fitnessa = 1− cost of the optimal alignment

cost of worst-case alignment

Again, for any log L we have:

fitnessla = 1−
∑
σ∈L cost of the optimal alignment for σ∑
σ∈L cost of worst-case alignment for σ

For alignment-based fitness, two costs are of interest, namely the cost of
the optimal alignment and the cost of the worst-case alignment. The former is
obtained by the alignment algorithm defined in section 4.2. The latter is simply
defined as the cost of aligning the empty trace in the model plus the cost of
treating all events as log moves.

5.2 Precision

One important metric in conformance checking is to assess the precision of the
model with respect to the observed executions, i.e., characterize the ability of the
model to produce behavior unrelated to the one observed. Therefore, precision
can be measured by the following formula:

precision =
|L ∩ L(N)|
|L(N)|

The formula above poses a problem for measuring precision in practice: since
in general a model can have an infinite language, the formula on its limit tends
to 0. Below we provide a couple of alternatives to fight this problem, thus coining
metrics for estimating the precision dimension.

Escaping Arcs Precision can be approximated by exploring the behavior of
the process model using as a reference the traces of the log, and stopping the
exploration each time modelled behavior deviates from recorded behavior [51].
The following formula would then be used to estimate precision:

precisionea(L,N) =

∑
σ∈L,e∈σ enabledL(e)∑
σ∈L,e∈σ enabledN (e)

where enabledL(e) provides the activities that are possible in L after the same
prefix that contains the event e has been observed, and enabledN (e) denotes the
number of tasks that can be executed in the state right before executing the
task corresponding to e. In the formula above, we assume fitting models, i.e.,
enabledL(e) ⊆ enabledN (e). This assumption can be lifted with the help of the
alignments [52].

Anti-Alignments. The idea of anti-alignments [53] is to seek in the language
of a model N , what are the runs which differ considerably with all the observed
traces. Hence, this is the opposite of the notion of alignment. Anti-alignments
can be used to measure precision [53,54]. The intuition behind the metric based
on anti-alignments is as follows. A very precise process model allows for exactly
the traces to be executed and not more. Hence, if one trace σ is removed from the
log, this trace becomes the anti-alignment for the remaining log, as it is the only
execution of the model that is not in the log. This idea would lead to a trace-based
precision metric grounded in anti-alignments, that penalizes the model precision
for traces σ in the log that are very deviating from the anti-alignment obtained
when removing σ in the log. Alternatively, a log-based precision metric can also
be defined, if not per trace but instead a single anti-alignment with respect to
the whole log is used.

5.3 Generalization

In process mining, the challenge is not to discover the correct process model for
a given log, but to discover the process model that provides the most insights
into the process from which the log originated. This is comparable to the area
of process modelling, where a model is made of a process in order to describe
that process in a meaningful way [55].

In process modelling, there are essentially two fundamental concepts that
describe a lot of behavior using only a limited number of modelling elements,
namely parallelism and loops. Both constructs have in common that they allow
for many traces to be executed, while at the same time the number of states
a process model can be in remains limited. In order to generalize from a set
of observed sequences, process mining techniques make use of the inference of
concurrency and loops. All process discovery techniques presented in Section 3
do so, however the way they decide is different.

Another fundamental property of correctly modelling processes is abstraction,
i.e. one should only include parts of a model if they are relevant enough. By
making models too detailed, an end-user can no longer see the important parts
of the process.

Generalization is a quality dimension that tries to measure whether the infer-
ence of parallelism and loops and abstraction are done properly. For generaliza-
tion, only few metrics exist [14,53,56]. The approach in [14] considers frequency
of use, where models are assumed to generalize if all parts of the model are
used equally frequently when reproducing the event log, i.e. this metric focusses
entirely on proper abstraction of the observed data. The metric in [56] uses ar-
tificial negative events, i.e. events that were not observed at a particular point
in the trace and uses a confidence in these events to measure generalization.
Finally, in [53] a metric based on anti-alignments is presented which focusses
entirely on the relation between the number of states and the number of traces
in the model.

5.4 Simplicity

When a process model is discovered, one crucial metric for its evaluation is
simplicity: is the derived process model the most simple explanation of the un-
derlying process? This metric refers to the Occam’s Razor principle. One method
for measuring simplicity is by analysing the complexity of the underlying graph.
In [57] some examples of such complexity metrics (e.g., size, diameter, connec-
tivity) can be found. Alternatively, process model related metrics can also be
defined, such as sequentiality, structuredness, among others.

6 Concluding Remarks

Process mining is a discipline which already impacts organizations in the present,
but promises to impact them even more in the near future. In this paper we

have overviewed the area, focusing on the fundamental algorihtmic challenges
that need to be confronted, to make these promises to become realities soon.
Behind these challenges lie traditional theory that has been there several decades
already: Petri net theory, data science methods, optimization, business process
management, to cite the most important ones. We believe research in these
areas would contribute to the development of the process mining field as well, a
phenomena that we have already observed in the last decade.

Acknowledgments. This work has been supported by MINECO and FEDER funds

under grant TIN2017-86727-C2-1-R.

References

1. van der Aalst, W.M.P.: Process Mining - Data Science in Action, Second Edition.
Springer (2016)

2. Carmona, J., van Dongen, B.F., Solti, A., Weidlich, M.: Conformance Checking -
Relating Processes and Models. Springer (2018)

3. Pearl, J.: Reasoning under uncertainty. Annual Review of Computer Science 4(1)
(1990) 37–72

4. Badouel, E., Bernardinello, L., Darondeau, P.: Petri Net Synthesis. Texts in
Theoretical Computer Science. An EATCS Series. Springer (2015)

5. Kerremans, M.: Gartner Market Guide for Process Mining, Research Note
G00353970. www.gartner.com (2018)

6. Koplowitz, R., Mines, C., Vizgaitis, A., Reese, A.: Process Mining: Your Com-
pass For Digital Transformation: The Customer Journey Is The Destination.
www.forrester.com (2019)

7. TFPM: Process Mining Case Studies, http://www.win.tue.nl/ieeetfpm/doku.
php?id=shared:process_mining_case_studies (2017)

8. Celonis: Process Mining Success Story: Innovation is an Alliance with the Future,
http://www.win.tue.nl/ieeetfpm/lib/exe/fetch.php?media=:casestudies:

siemens_celonis_story_english.pdf (2017)
9. Leemans, S., Fahland, D., van der Aalst, W.: Scalable process discovery and con-

formance checking. Software and Systems Modeling (2016) 1–33
10. Leemans, S., Fahland, D., Aalst, W.: Discovering Block-structured Process Models

from Event Logs: A Constructive Approach. In Colom, J., Desel, J., eds.: Appli-
cations and Theory of Petri Nets 2013. Volume 7927. (2013) 311–329

11. Aalst, W.: Discovering the “Glue” Connecting Activities - Exploiting Monotonicity
to Learn Places Faster. In Boer, F., Bonsangue, M., Rutten, J., eds.: It’s All About
Coordination. (2018) 1—-20

12. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77(4) (April 1989) 541–574

13. Aalst, W.: Relating Process Models and Event Logs: 21 Conformance Propositions.
In: Proceedings of the International Workshop on Algorithms and Theories for
the Analysis of Event Data (ATAED 2018). Volume 2115 of CEUR Workshop
Proceedings., CEUR-WS.org (2018) 56–74

14. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: Quality dimensions in
process discovery: The importance of fitness, precision, generalization and simplic-
ity. Int. J. Cooperative Inf. Syst. 23(1) (2014)

15. van der Aalst, W.M.P., van Hee, K.M., ter Hofstede, A.H.M., Sidorova, N., Verbeek,
H.M.W., Voorhoeve, M., Wynn, M.T.: Soundness of workflow nets: classification,
decidability, and analysis. Formal Asp. Comput. 23(3) (2011) 333–363

16. Leemans, S., Fahland, D., Aalst, W.: Discovering Block-Structured Process Mod-
els from Event Logs Containing Infrequent Behaviour. In Lohmann, N., Song, M.,
Wohed, P., eds.: Business Process Management Workshops, International Work-
shop on Business Process Intelligence (BPI 2013). Volume 171. (2014) 66–78

17. Leemans, S.: Robust Process Mining With Guarantees. Phd thesis, Eindhoven
University of Technology (2017)

18. Ehrenfeucht, A., Rozenberg, G.: Partial (Set) 2-Structures. Part I, II. Acta Infor-
matica 27 (1990) 315–368

19. Carmona, J., Cortadella, J., Kishinevsky, M.: New region-based algorithms for
deriving bounded Petri nets. IEEE Transactions on Computers 59(3) (2009) 371–
384

20. van der Aalst, W.M.P., Rubin, V., Verbeek, H.M.W.E., van Dongen, B.F., Kindler,
E., Günther, C.W.: Process mining: a two-step approach to balance between un-
derfitting and overfitting. Software and Systems Modeling (2009)

21. Desel, J., Reisig, W.: The synthesis problem of Petri nets. Acta Inf. 33(4) (1996)
297–315

22. Carmona, J.: Projection approaches to process mining using region-based tech-
niques. Data Min. Knowl. Discov. 24(1) (2012) 218–246

23. Solé, M., Carmona, J.: Light region-based techniques for process discovery. Fun-
dam. Inform. 113(3-4) (2011) 343–376

24. Solé, M., Carmona, J.: Incremental process discovery. Trans. Petri Nets and Other
Models of Concurrency 5 (2012) 221–242

25. Solé, M., Carmona, J.: Region-based foldings in process discovery. IEEE Trans.
Knowl. Data Eng. 25(1) (2013) 192–205

26. Darondeau, P.: Deriving Unbounded Petri Nets from Formal Languages. In: CON-
CUR 1998, London, UK, Springer-Verlag (1998) 533–548

27. Badouel, E., Bernardinello, L., Darondeau, P.: Polynomial Algorithms for the
Synthesis of Bounded Nets. In: TAPSOFT. (1995) 364–378

28. Lorenz, R., Juhás, R.: How to Synthesize Nets from Languages - a Survey. In:
Proceedings of the Wintersimulation Conference (WSC) 2007. (2007)

29. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Synthesis of petri nets from
infinite partial languages. In: ACSD. (2008) 170–179

30. Lorenz, R.: Towards synthesis of petri nets from general partial languages. In:
AWPN. (2008) 55–62

31. Bergenthum, R., Desel, J., Mauser, S., Lorenz, R.: Synthesis of petri nets from
term based representations of infinite partial languages. Fundam. Inform. 95(1)
(2009) 187–217

32. Mauser, S., Lorenz, R.: Variants of the language based synthesis problem for petri
nets. In: ACSD. (2009) 89–98

33. van der Aalst, W.M.P., van Dongen, B.F.: Discovering petri nets from event logs.
Trans. Petri Nets and Other Models of Concurrency 7 (2013) 372–422

34. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process mining based on regions
of languages. In: BPM 2007. Volume 4714 of LNCS., Springer (2007) 375–383

35. van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Pro-
cess discovery using integer linear programming. Fundam. Inform. 94(3-4) (2009)
387–412

36. van Zelst, S.J., van Dongen, B.F., van der Aalst, W.M.P., Verbeek, H.M.W.:
Discovering workflow nets using integer linear programming. Computing 100(5)
(2018) 529–556

37. van Zelst, S.J., van Dongen, B.F., van der Aalst, W.M.P.: Ilp-based process discov-
ery using hybrid regions. In van der Aalst, W.M.P., Bergenthum, R., Carmona, J.,
eds.: Proceedings of the International Workshop on Algorithms & Theories for the
Analysis of Event Data, ATAED 2015, Satellite event of the conferences: 36th In-
ternational Conference on Application and Theory of Petri Nets and Concurrency
Petri Nets 2015 and 15th International Conference on Application of Concurrency
to System Design ACSD 2015, Brussels, Belgium, June 22-23, 2015. Volume 1371
of CEUR Workshop Proceedings., CEUR-WS.org (2015) 47–61

38. Adriansyah, A.: Aligning observed and modeled behavior. PhD thesis, Technische
Universiteit Eindhoven (2014)

39. de Leoni, M., Marrella, A.: Aligning real process executions and prescriptive pro-
cess models through automated planning. Expert Syst. Appl. 82 (2017) 162–183

40. Reißner, D., Conforti, R., Dumas, M., Rosa, M.L., Armas-Cervantes, A.: Scalable
conformance checking of business processes. In: OTM CoopIS, , Rhodes, Greece.
(2017) 607–627

41. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Scalable process discovery
and conformance checking. Software and System Modeling 17(2) (2018) 599–631

42. Taymouri, F., Carmona, J.: A recursive paradigm for aligning observed behavior
of large structured process models. In: 14th International Conference of Business
Process Management (BPM), Rio de Janeiro, Brazil, September 18 - 22. (2016)

43. van Dongen, B., Carmona, J., Chatain, Th., Taymouri, F.: Aligning modeled and
observed behavior: A compromise between complexity and quality. In Dubois,
E., Pohl, K., eds.: Proceedings of the 29th International Conference on Advanced
Information Systems Engineering (CAiSE’17). Volume 10253 of Lecture Notes in
Computer Science., Essen, Germany, Springer (June 2017) To appear.

44. Taymouri, F., Carmona, J.: Model and event log reductions to boost the com-
putation of alignments. In: Proceedings of the 6th International Symposium on
Data-driven Process Discovery and Analysis (SIMPDA 2016), Graz, Austria, De-
cember 15-16, 2016. (2016) 50–62

45. Munoz-Gama, J., Carmona, J., Van Der Aalst, W.M.P.: Single-entry single-exit
decomposed conformance checking. Inf. Syst. 46 (December 2014) 102–122

46. van der Aalst, W.M.P.: Decomposing petri nets for process mining: A generic
approach. Distributed and Parallel Databases 31(4) (2013) 471–507

47. Bloemen, V., van de Pol, J., van der Aalst, W.M.P.: Symbolically aligning ob-
served and modelled behaviour. In: 18th International Conference on Application
of Concurrency to System Design, ACSD, Bratislava, Slovakia, June 25-29. (2018)
50–59

48. Bloemen, V., van Zelst, S.J., van der Aalst, W.M.P., van Dongen, B.F., van de
Pol, J.: Maximizing synchronization for aligning observed and modelled behaviour.
In: Business Process Management - 16th International Conference, BPM, Sydney,
NSW, Australia. (2018) 233–249

49. Fahland, D., van der Aalst, W.M.P.: Model repair - aligning process models to
reality. Inf. Syst. 47 (2015) 220–243

50. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on
monitoring real behavior. Inf. Syst. 33(1) (2008) 64–95

51. Munoz-Gama, J.: Conformance Checking and Diagnosis in Process Mining - Com-
paring Observed and Modeled Processes. Volume 270 of Lecture Notes in Business
Information Processing. Springer (2016)

52. Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B.F., van der Aalst,
W.M.P.: Measuring precision of modeled behavior. Inf. Syst. E-Business Manage-
ment 13(1) (2015) 37–67

53. Chatain, T., Carmona, J.: Anti-alignments in conformance checking - the dark
side of process models. In: Application and Theory of Petri Nets and Concurrency
- 37th International Conference, PETRI NETS 2016, Toruń, Poland, June 19-24,
2016. Proceedings. (2016) 240–258

54. van Dongen, B.F., Carmona, J., Chatain, T.: A unified approach for measur-
ing precision and generalization based on anti-alignments. In: Business Process
Management - 14th International Conference, BPM 2016, Rio de Janeiro, Brazil,
September 18-22, 2016. Proceedings. (2016) 39–56

55. Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals of Business
Process Management, Second Edition. Springer (2018)

56. vanden Broucke, S.K.L.M., Weerdt, J.D., Vanthienen, J., Baesens, B.: Determining
process model precision and generalization with weighted artificial negative events.
IEEE Trans. Knowl. Data Eng. 26(8) (2014) 1877–1889

57. Mendling, J., Neumann, G., van der Aalst, W.M.P.: Understanding the occur-
rence of errors in process models based on metrics. In: On the Move to Meaningful
Internet Systems 2007: CoopIS, DOA, ODBASE, GADA, and IS, OTM Confed-
erated International Conferences CoopIS, DOA, ODBASE, GADA, and IS 2007,
Vilamoura, Portugal, November 25–30, 2007, Proceedings, Part I. (2007) 113–130

