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Abstract

Workflow management technology promises a flexible solution for business-process support facilitating the easy
creation of new business processes and modification of existing processes. Unfortunately, today’s workflow prod-
ucts have no support for workflow verification. Errors made at design-time are not detected and result in very costly
failures at run-time. This paper presents the verification tool Woflan. Woflan analyzes workflow process definitions
downloaded from commercial workflow products using state-of-the-art Petri-net-based analysis techniques. This
paper describes the functionality of Woflan emphasizing diagnostics to locate the source of a design error. Woflan
is evaluated via two case studies, one involving twenty groups of students designing a complex workflow process
and one involving an industrial workflow process designed by Staffware Benelux. The results are encouraging and
show that Woflan guides the user in finding and correcting errors in the design of workflows.
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1 Introduction

Workflow management systems take care of the auto-
mated support and coordination of business processes
to reduce costs and flow times and to increase quality
of service and productivity [27, 30, 33, 34, 43]. A criti-
cal challenge for workflow management systems is their
ability to respond effectively to changes in business
processes [8, 9, 15, 32, 37, 53]. Changes may range
from simple modifications of a workflow process such
as adding a task to a complete restructuring of the work-
flow process to improve efficiency. Changes may also
involve the creation of new processes. Today’s work-
flow management systems are ill suited to dealing with
frequent changes, because there are hardly any checks
to assure some minimal level of correctness. Even a
simple change as adding a task can cause a deadlock
or livelock. Creating or modifying a complex process
that combines parallel and conditional routing is an ac-
tivity subject to errors. Contemporary workflow man-
agement systems do not support advanced techniques
to verify the correctness of workflow process definitions
[3, 7, 28]. These systems typically restrict themselves
to a number of (trivial) syntactical checks. Therefore,
serious errors such as deadlocks and livelocks may re-
main undetected. This means that an erroneous work-
flow may go into production, thus causing dramatic
problems for the organization. An erroneous workflow
may lead to extra work, legal problems, dissatisfied cus-
tomers, managerial problems, and depressed employ-
ees. Therefore, it is important to verify the correctness
of a workflow process definitionbeforeit becomes op-
erational. The role of verification becomes even more
important as many enterprises are making Total Quality
Management (TQM) one of their focal points. For ex-
ample, an ISO 9000 certification and compliance forces
companies to document business processes and to meet
self-imposed quality goals [29]. Clearly, rigorous veri-
fication of workflow processes can be used as a tool to
ensure certain levels of quality.

The development ofWoflan[50] started at the end of
1996. The goal was to build a verification tool specif-
ically designed for workflow analysis. Right from the
start, there have been three important requirements for
Woflan:

1. Woflan should beproduct independent, i.e., it
should be possible to analyze processes designed
with various workflow products of different ven-
dors.

2. Woflan should be able to handlecomplex work-
flowswith up to hundreds of tasks.

3. Woflan should give to-the-pointdiagnostic infor-
mationfor repairing detected errors.

Based on these requirements, we decided to base
Woflan on Petri nets. Petri nets are a universal model-
ing language with a solid mathematical foundation. Yet,
Petri nets are close to the diagramming techniques used
in today’s workflow management systems. The efficient
analysis techniques developed for Petri nets allow for
the analysis of complex workflows. The graphical rep-
resentation of Petri nets and the available analysis tech-
niques are particularly useful for generating meaningful
diagnostic information. Since the release of version 1.0
of the tool in 1997, we have been continuously improv-
ing Woflan. Both new theoretical results and practical
experiences stimulated several enhancements. Pivotal
to Woflan is the notion ofsoundnessof a workflow
process [1, 3, 5]. This notion expresses the minimal
requirements any workflow should satisfy. Informally,
some given workflow process is sound if it satisfies the
following conditions.

(option to complete) It should always be possible to
complete a case that is handled according to the
process. This condition guarantees the absence of
deadlocks and livelocks in the workflow process.

(proper completion) It should not be possible that the
workflow process signals completion of a case
while there is still work in progress for that case.

(no dead tasks)For every task, there should be an ex-
ecution of the workflow process that executes it.
This restriction means that every task has a mean-
ingful role in the workflow process.

The current version 2.1 of Woflan can analyze work-
flows designed with the workflow productsCOSA,
Staffware, METEOR, andProtos. COSA (COSA So-
lutions/Software Ley, [47]) is one of the leading work-
flow management systems on the Dutch workflow mar-
ket. COSA allows for the modeling and enactment of
complex workflow processes which use advanced rout-
ing constructs. The modeling language of COSA is
based on Petri nets. However, COSA does not sup-
port verification. Woflan can analyze any workflow
process definition constructed by using CONE (COSA
Network Editor), the design tool of the COSA sys-
tem. Woflan can also import workflow process defini-
tions from Staffware (Staffware Plc, [48]). Staffware
is one of the most widespread workflow management
systems in the world. In 1998, it was estimated by
the Gartner Group that Staffware has 25 percent of
the global market [16]. Staffware uses a proprietary
graphical input language for defining workflow pro-
cess definitions. Nevertheless, Woflan can analyze
some useful properties of workflow process definitions
made with Staffware. Woflan can also be used to ana-
lyze process definitions made with METEOR and Pro-
tos. METEOR (LSDIS, [45]) is a workflow manage-

3



ment system based on CORBA and supports transac-
tional workflows ([25]). Protos (Pallas Athena, [36])
is a Business-Process-Reengineering tool which can be
used to (re)design and document workflow processes.

This paper focuses on version 2.1 of Woflan and,
in particular, on the diagnosis process that it supports.
This process has been developed based on experiences
with earlier versions of Woflan. It implements several
well-known Petri-net analysis techniques that are rele-
vant in the context of workflow management. However,
it also implements a new technique; Woflan can gener-
ate so-calledbehavioral error sequences. One can think
of such a behavioral error sequence as a doomsday sce-
nario that clearly shows the roots of the error in a work-
flow. These sequences can be used for diagnosing er-
rors that are not easy to detect with standard analysis
techniques available in earlier versions of Woflan. The
functionality of Woflan 2.1 has been evaluated via two
case studies. The first case study uses workflow process
definitions developed by students of the courseWork-
flow Management & Groupware(1R420), attended by
42 students of the Eindhoven University of Technol-
ogy, and the courseWorkflow Management: Models,
Methods, and Tools(25756), attended by 15 students
of the University of Karlsruhe. These students formed
20 groups which independently designed the workflow
in a travel agency consisting of about 60 tasks and other
building blocks. These workflows were designed with
Protos. We collected the workflows and analyzed them
with Woflan 2.1. Most of the designed workflows con-
tained several errors that were repaired using the diag-
nostics provided by Woflan. This case study proved
to be very useful for testing the diagnosis process of
Woflan. The second case study involves the analysis of
an industrial workflow process definition developed by
Staffware Benelux and containing more than 100 tasks
and other building blocks. In the experiment, a work-
flow designer of Staffware Benelux introduced several
(non-trivial) errors in a version of the workflow that was
known to be correct. We analyzed the resulting process
definition in Woflan. The exact number of errors and the
type of errors were not known to us. We succeeded in
finding six out of seven errors in the workflow process
definition; also, the corrections we made based on the
diagnostics of Woflan turned out to be the appropriate
ones. This second case study complements the first one;
it strengthens our belief that our approach of workflow-
product-independent verification support is feasible.

The remainder of this paper is organized as follows.
Section2 introduces a class of Petri nets called P/T nets
and summarizes some well-known results and analysis
techniques. Section3 introduces the area of workflow
management and our approach to verification of work-
flows. In Section4, we present a subclass of P/T nets for
modeling workflows called WF nets and we formalize
the soundness property on these WF nets. The section

also introduces some specific techniques for analyzing
WF nets, including the above mentioned technique of
behavioral error sequences. Together with the standard
analysis techniques of Section2, these techniques form
the (mathematical) foundation for Woflan. Section5
discusses the tool Woflan and the diagnosis process that
it supports to decide whether or not a WF net satisfies
the soundness property. The two case studies used for
evaluating Woflan are presented in Section6. Section
7 discusses related work. Finally, Section8 presents
conclusions and topics for future work.

2 P/T nets

2.1 Introduction

Woflan is based on Petri nets. As indicated in the in-
troduction, there are several reasons for using Petri nets
for the verification of workflow process definitions. The
interested reader is referred to [2, 3, 12, 21] for a more
elaborate discussion on the use of Petri nets in the work-
flow domain. In this section, we introduce a standard
class of Petri nets called P/T nets. First, we introduce
some basic definitions and useful properties. Second,
we introduce some analysis techniques on P/T nets.
Readers familiar with Petri nets can browse through
this section to become familiar with the notations used.
An extensive treatment of Petri nets can be found in
[19, 38, 39, 40].

2.2 Basic definitions

2.2.1 P/T nets

A P/T net is a directed graph with two kinds of nodes:
transitionsandplaces. Arcs in the graph always con-
nect a node of one kind to a node of the other kind.

Definition I (P/T net) The triple N ∈ (P, T, F) is a
P/T net iff:

i. P is a finite, non-empty set of places.

ii. T is a finite, non-empty set of transitions such that
P ∩ T = ∅.

iii. F ⊆ (P × T) ∪ (T × P) is a set of directed arcs,
called the flow relation.

It is common practice to draw places by circles and tran-
sitions by squares. An example of a P/T net can be seen
in Figure1. A P/T net models thestructureof a pro-
cess. The class of Petri nets introduced in Definition
I is sometimes referred to as the class ofordinary P/T
nets to distinguish it from the class of Petri nets that al-
lows more than one arc between a pair of nodes. For
the sake of simplicity, we allow in this paper at most
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Figure 1: The example P/T netN

Figure 2: An example systemS for netN

one arc between any two nodes. However, most results
extend in a relatively straightforward way to nets that
may have multiple arcs between pairs of nodes.

2.2.2 Systems

Places in a P/T net may contain so-calledtokens. The
distribution of tokens over the places determines the
stateof the P/T net, also called themarkingof the P/T
net. Graphically, tokens are typically represented by
black dots. For example, if we add the marking consist-
ing of a token in the place labeledi to our example P/T
net N of Figure1, we get the marked P/T net (or sys-
tem) as shown in Figure2. Since a place may contain
multiple tokens, a marking can be represented as a bag
or finite multi-set.

Notation (Bags) A bag over some alphabetA is a
function from A to the natural numbers that assigns
only a finite number of elements fromA a positive
value. For a bagX over alphabetA anda ∈ A, X(a) de-
notes the number of occurrences ofa in X, often called
the cardinality ofa in X. Note that a finiteset of el-
ements fromA is also a bag overA, namely the func-
tion yielding 1 for every element in the set and 0 other-
wise. The set of all bags overA is denotedB(A). We
use brackets to explicitly enumerate a bag and super-
scripts to denote cardinalities. For example, [a2,b3, c]
is the bag with twoa’s, threeb’s, and onec; the bag
[a2
|P(a)], where P is a predicate onA, contains two

elementsa for everya such thatP(a) holds. The sum
of two bagsX and Y, denotedX + Y, is defined as
[an
|a ∈ A ∧ n = X(a) + Y(a)]. The difference ofX

andY, denotedX − Y, is defined as [an
|a ∈ A ∧ n =

(X(a)−Y(a))max 0]. BagX is a subbag ofY, denoted
X ≤ Y, iff, for all a ∈ A, X(a) ≤ Y(a).

Definition II (System) A bag M ∈ B(P) is called a
marking of a P/T net(P, T, F). The pairS= (N,M)
is called asystemwith initial marking M .

2.2.3 Behavior of systems

Using a system, we can model a process structure as
well as the current state of the process. However, we
do not know yet how the process gets from one state to
another. For this reason, we define the so-called firing
rule.

Definition III (Preset, postset)Let N = (P, T, F) be
a P/T net. Forn ∈ P ∪ T The preset ofn, •n, equals
{n0 ∈ P ∪ T |(n0,n) ∈ F}; the postset ofn, n•, equals
{n0 ∈ P ∪ T |(n,n0) ∈ F}.

For a node (a place or a transition)n, its preset cor-
responds to the set of nodes (calledinput nodes) from
which there is an arc (called aninput arc) to n; its post-
set corresponds to the set of nodes (calledoutput nodes)
to which there is an arc (called anoutput arc) from n.

Definition IV (Firing rule) Let N = (P, T, F) be a
P/T net. MarkingM of N enables transitiont in T iff
•t ≤ M . Marking M1 is reached fromM by firing t ,

denotedM
t
−→ M1, iff •t ≤ M andM1 = M−•t+t•.

So, a transition isenablediff its preset is a subbag of the
actual marking, implying that there is a token in every
input place of the transition. Note that we use the fact
that the preset is a set and hence a bag. When a transi-
tion is enabled, we can reach a new marking byfiring
this transition. This new marking can be constructed by
removing the transition’s preset from the original mark-
ing and adding the transition’s postset. For example, in
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our system of Figure2, only theregister transition
is enabled. Whenregister fires, the new marking
becomes [c1 , c2 ]: The token from placei is removed
and new tokens are added to placesc1 andc2 .

2.3 Analysis of nets

Petri nets are known for the availability of many analy-
sis techniques. Clearly, this is a great asset in favor of
the use of Petri nets for workflow modeling. The anal-
ysis techniques can be used to prove qualitative proper-
ties (safety properties, invariance properties, deadlock,
etc.) and to calculate performance measures (response
times, waiting times, occupation rates, etc.). In this pa-
per, the primary focus is on qualitative verification.

2.3.1 Structural analysis

A structural property of a P/T net is a property that does
not depend on the marking of the net. Therefore, it can
be defined on P/T nets rather than on systems. In pro-
cess modeling, the simple combination of places and
transitions can be used to devise various routing con-
structs ranging from a simple sequence to a delicate
mixture of choice and synchronization. In the context
of workflow design, certain, more advanced, constructs
are considered to be suspicious and a potential source
of errors. Therefore, we review the standard structural
properties for P/T nets. A strong point of structural
properties is that most of them can be computed effi-
ciently.

As in all directed-graph structures, we can distin-
guish directed and undirected paths in P/T nets.

Definition V ((Strongly) connected P/T net) A P/T
net is calledconnectediff there exists a(n undirected)
path between every two nodes. It isstronglyconnected
iff there exists a directed path between every two nodes.

The P/T netNof Figure1 is connected, but not strongly
connected: For instance, there is no directed path from
o to i . If we short-circuit netN of Figure1 with the
shortcircuit transition fromo to i , we get a net
that is strongly connected. Figure3 shows the resulting
net N. (Actually, it shows a system based onN but, at
this point, the marking is not relevant.)

A (directed or undirected) path is calledelementary
iff all nodes in the path are different.

Definition VI (PT-handle, TP-handle[23]) Let N =
(P, T, F) be a P/T net. A place-transition pair(p, t) ∈
P × T is called a PT-handle iff there exist two elemen-
tary directed paths fromp to t sharing only the two
nodesp and t ; a transition-place pair(t, p) ∈ T × P
is called a TP-handle iff there exist two elementary di-
rected paths fromt to p sharing only nodesp andt .

Figure 3: The short-circuited systemS= (N, [i ])

(c3, archive)

Figure 4: The only PT-handle in netN

Since PT-handles and TP-handles can easily introduce
design flaws in (workflow) process definitions (see Sec-
tion 5.2.4), we name nets without these potentially
correctness-threatening constructs well-handled.

Definition VII (Well-handled P/T net) A P/T net
is well-handled iff it has no PT-handles and no TP-
handles.

P/T netN of Figure 1 is not well-handled, because it
contains one PT-handle (see Figure4) and two TP-
handles (see Figure5).

A P/T net is calledfree-choiceiff every two transi-
tions sharing at least one input place have identical pre-
sets. NetNof Figure1 is free-choice.

Definition VIII (Free-choice P/T net) A P/T net
(P, T, F) is free-choice iff∀t0, t1 ∈ T : •t0 ∩ •t1 =
∅ ∨ •t0 = •t1.

A net is called a state machine iff all transitions have
exactly one input and one output place.

6



(register, c4)

(register, c7)

Figure 5: TP-handles in netN

Definition IX (State machine)A P/T net(P, T, F) is
a state machine iff∀t ∈ T : | • t | = |t • | = 1.

Definition X (Subnet) Let N = (P, T, F) andN0 =

(P0, T0, F0) be P/T nets. NetN0 is a subnet of netN iff
P0 ⊆ P, T0 ⊆ T , andF0 = F∩((P0×T0)∪(T0×P0)).

Definition XI (S-component) Let N = (P, T, F) be
a P/T net andN0 = (P0, T0, F0) a subnet ofN; let •
denote the preset and postset functions ofN. SubnetN0
is an S-component ofN iff N0 is a strongly connected
state machine such that∀p ∈ P0 : •p∪ p• ⊆ T0.

If a P/T net corresponds to a set of S-components, it is
S-coverable. NetN of Figure1 has no S-components.
P/T netNof Figure3 has two S-components (see Figure
6) but is not S-coverable: Placec8 is not contained in
any of these S-components.

Figure 6: S-components of netN

Definition XII (S-coverability) A P/T net (P, T, F)
is S-coverable iff for each placep ∈ P there is an S-
component(P0, T0, F0) of N such thatp ∈ P0.

A place-invariant is a weighted sum over the places that
is invariant under each possible transition firing.

Definition XIII (Place-invariant) Let N = (P, T, F)
be a P/T net andw a weight function fromP to the
integer numbers. Functionw is a place-invariant ofN
iff ∀t ∈ T : (

∑
p ∈ •t : w(p)) = (

∑
p ∈ t• : w(p)).

Note that despite the fact that the above explanation of a
place-invariant is in terms of transition firings, a place-
invariant is a structural property: It is independent of the
marking of the net. For example, a place-invariant of
netNof Figure1 is the function that assigns the weight
1 to the placesi , c1 , c3 , c5 , ando and 0 to the other
places. A convenient way to represent this function is
i + c1 + c3 + c5 + o.

It is not difficult to see that ifw0 andw1 are place-
invariants, the elementwise sumw0 + w1 and the ele-
mentwise differencew0 − w1 are place-invariants too.
As a result, a net has only the place-invariant containing
only weights 0 or it has infinitely many place-invariants.

Exchanging the roles of places and transitions in
the notion of a place-invariant yields the concept of
a so-called transition-invariant. However, transition-
invariants do not play a role in this paper.

2.3.2 Occurrence sequences

Behavioral analysis techniques are those techniques
that use the initial marking of a P/T net. Therefore,
these techniques use systems instead of P/T nets. An
elementary behavioral technique is the analysis of the
so-calledoccurrence sequencesof a system. An occur-
rence sequence is simply a chain of transition firings.
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Definition XIV (Occurrence sequence) Let S =
(N,M0) be a system, letM1, . . . ,Mn, for some nat-
ural numbern, be markings ofN = (P, T, F), and
let t0, t1, . . . , tn−1 be transitions inT . Sequences =
M0t0M1 . . . tn−1Mn is an occurrence sequence ofS iff

∀i,0≤ i < n : Mi
ti
−→ Mi+1.

An occurrence sequence of a system projected onto
transitions yields a so-calledfiring sequence.

Consider again P/T netN of Figure 1. As-
suming initial marking [c4 , c5 , c8 ], the set of fir-
ing sequences equals{process , process redo ,

process done , process done archive }. Note
that the sets of firing and occurrence sequences are
prefix-closed, i.e., every prefix of a firing (occurrence)
sequence is also a firing (occurrence) sequence.

2.3.3 Occurrence graph

The set of occurrence sequences of a system can be em-
bedded into a graph. Every occurrence sequence corre-
sponds to some path in that graph and vice versa.

Notation (Reachability) Let N = (P, T, F) be a P/T
net. MarkingM1 is reachable from markingM0, de-
notedM0 −→ M1, iff system(N,M0) has an occur-
rence sequence ending inM1.

In system S of Figure 2, marking [c4 , c5 , c8 ] is
reachable from the initial marking [i ], while from
[c4 , c5 , c8 ] both [c4 , c5 ] and [o] are reachable.

Definition XV (Occurrence graph) Let S =

((P, T, F),M0) be a system; letH ⊆ B(P) be a set of
markings, letA ⊆ (H × T × H) be a set ofT-labeled
arcs, and letG = (H, A) be a graph which satisfies the
following requirements:

i. H = {M ∈ B(P)|M0 −→ M};

ii. A = {(M, t,M1) ∈ (H × T × H)|M
t
−→ M1}.

GraphG is called the occurrence (or reachability) graph
(OG) of S.

The OG of systemS of Figure2 is given in Figure7.
The OG embeds precisely all behaviors of the sys-

tem. The construction of this graph is straightforward,
although termination is not guaranteed, because it might
be infinite. For example, the OG of systemS of Figure
3 has infinitely many nodes. In this system, firing the
transitionsregister send rec dont archive
shortcircuit over and over again, leads to in-
finitely many markings [i , c8 n], for arbitrary n > 0.
After one firing of these transitions, there is one token
in c8 , after two firings there are two, and so on. There
is no limit to the number of tokens inc8 . Placec8 is
said to beunbounded. As a result, the number of mark-
ings in the OG is infinite.

Figure 7: The OG of systemS

2.3.4 Coverability graph

A solution to cope with unbounded places is the notion
of a so-called coverability graph. A coverability graph
is a finite variant of an OG. However, we have to pay
a price: First, we must allow markings to be infinite
to deal with unbounded behavior. Second, a P/T sys-
tem may have a number of possible coverability graphs,
whereas it always has one unique OG.

An extended bag over some alphabetA is a function
from A to the natural numbers plusω (denoting infin-
ity). The set of all extended bags overA is denoted
Bω(A). All operations on bags can be defined for ex-
tended bags in a straightforward way. An extended bag
M ∈ Bω(P) is called anextendedmarking of a P/T net
(P, T, F). The set of extended markings can be parti-
tioned into a set offinite markingsB(P) and a set of
infinitemarkingsBω(P) \ B(P).

A coverability graph of a system is a variant of the
OG, where paths in the OG with infinitely many differ-
ent (finite) markings are represented by a finite number
of infinite markings. An infinite marking is introduced
in a coverability graph if we encounter a markingM1
on an occurrence sequence that has a smaller marking
M0 as one of its predecessors: The places inM1 − M0
are unbounded and are marked withω. It is known that
a coverability graph is always finite ([38], p. 70).

Definition XVI (Coverability graph) Let S =

((P, T, F),M0) be a system, letH ⊆ Bω(P) be a set
of extended markings, letA ⊆ (H ×T × H) be a set of
T-labeled arcs, and letG = (H, A) be a graph which
can be constructed as follows:

i. Initially, H = {M0} andA = ∅.

ii. Take an M from H and a t from T such that
M enablest and such that noM1 exists with
(M, t,M1) ∈ A. Let M2 = M − •t + t•. Add M3
to H and(M, t,M3) to A, where for everyp ∈ P:
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Figure 8: The CG for the short-circuited systemS

(a) M3(p) = ω, if there is a nodeM1 in H such
that M1 ≤ M2, M1(p) < M2(p), and there
is a (directed) path fromM1 to M in G;

(b) M3(p) = M2(p), otherwise.

Repeat this step until no new arcs can be added.

G is called a coverability graph (CG) ofS.

The result of this algorithm may vary depending on the
order in which markings are considered in the second
step (see [38] for more details). Nevertheless, a CG of
a system can be used to analyze the behavior of the sys-
tem. The short-circuited netS of Figure3 has a unique
CG which is shown in Figure8.

Given a system and a CG of this system, every oc-
currence sequence of the system corresponds to a path
in the CG. The converse is not necessarily true: There
may be paths in the CG that do not correspond to any
occurrence sequence. However, a path containing only
finite markings does correspond to some occurrence se-
quence. This conforms to the fact that the CG is iden-
tical to the OG if the former has no infinite markings.
The theoretical worst-case complexity of generating a
CG is non-primitive recursive space, although for small
to medium sized systems generating a CG is feasible.

In [24], Finkel introduces the notion of aminimalCG
(MCG) of a P/T system. An MCG of a system with
infinite OG is usually much smaller than a CG of the
system. Another advantage is that the MCG of a system
is unique. However, the MCG of a system with finite
OG may differ from that OG. It is beyond the scope of
this paper to go into more detail.

2.3.5 Behavioral properties

Behavioral properties of a P/T net are those properties
that depend on the marking of the net. Thus, these prop-
erties are defined on systems. In the remainder, we do
not go into detail about the precise complexities of the
algorithms to determine behavioral properties (see [22]
for more information). For our purposes, it suffices to
know that the theoretical complexity of computing be-
havioral properties is often much worse than the com-
plexity of computing structural properties.

Definition XVII (Dead transition) A transition t ∈
T of a system((P, T, F),M0) is dead iff there is no
marking reachable fromM0 enablingt .

A transition is live iff it can always fire again.

Definition XVIII (Liveness) A transition t ∈ T of
a systemS = ((P, T, F),M0) is live iff ∀M ∈

B(P),M0 −→ M : ∃M1 ∈ B(P),M −→ M1 : M1
enablest . SystemS is live iff all transitions are live.

SystemS of Figure2 is not live: For instance, no tran-
sition firings are possible in reachable marking [o] (see
Figure7). The short-circuited systemS of Figure3 is
also not live: No transition firings are possible in reach-
able marking [c4 , c5 ] (see Figure8).

A system isboundediff it has no unbounded places.
An equivalent definition for boundedness is to require
that the number of reachable markings, or the system’s
OG, is finite. A system is called safe iff all places in any
reachable marking contain at most one token.

Definition XIX (Boundedness, safeness)A system
((P, T, F),M0) is bounded iff∀M ∈ B(P),M0 −→

M : ∀M1 ∈ B(P),M −→ M1 : ¬(M < M1). A sys-
tem ((P, T, F),M0) is safe iff∀M ∈ B(P),M0 −→

M : ∀p ∈ P : M(p) ≤ 1.

Note that, for a bounded system, the CG-generation al-
gorithm of DefinitionXVI yields the OG of the system.

The systemS of Figure2 is bounded and safe. The
latter is straightforward to see in its OG: In each mark-
ing, every place occurs at most once. However, the
short-circuited systemS of Figure 3 is unbounded,
which follows directly from the fact that there are in-
finite markings in the CG of Figure8.

3 Workflow management

3.1 Introduction

In the last decade,workflow management systemshave
become a popular tool to support the logistics of busi-
ness processes in banks, insurance companies, and gov-
ernmental institutions [3, 27, 30, 33, 34, 43, 44]. Be-
fore, there were no generic tools to support workflow
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management. As a result, parts of the business process
were hard-coded in the applications. For example, an
application to support taskX triggers another applica-
tion to support taskY. This means that one applica-
tion knows about the existence of another application.
This is undesirable, because every time the underly-
ing business process is changed, applications need to be
modified. Moreover, similar constructs need to be im-
plemented in several applications and it is not possible
to monitor and control the entire workflow. Therefore,
several software vendors recognized the need for work-
flow management systems. A workflow management
system is a generic software tool that allows for the
definition, execution, registration, and control of busi-
ness processes orworkflows. At the moment, many ven-
dors are offering a workflow management system. This
shows that the software industry recognizes the poten-
tial of workflow management tools.

As indicated in the introduction (see also [2, 3, 12,
21]), P/T nets are a good starting point for a solid
foundation of workflow management. We use P/T nets
to specify the partial ordering of tasks in a workflow.
Based on a P/T-net representation of the workflow pro-
cess, we tackle the problem of verification.

3.2 Workflow processes

The fundamental property of a workflow process is that
it is case-based. This means that every piece of work
is executed for a specificcase. Examples of cases are
an insurance claim, a tax declaration, a customer com-
plaint, a mortgage, an order, or a request for informa-
tion. Thus, handling an insurance claim, a tax decla-
ration, or a customer complaint are typical examples
of workflow processes. Cases are often generated by
an external customer. However, it is also possible that
a case is generated by another department within the
same organization (internal customer). A typical exam-
ple of a process that is not case-based, and hence not a
workflow process, is a production process such as the
assembly of bicycles. The task of putting a tire on a
wheel is (generally) independent of the specific bicycle
for which the wheel will be used. Note that the produc-
tion of bicycles to order, i.e., procurement, production,
and assembly are driven by individual orders, can be
considered as a workflow process.

The goal of workflow management is to handle cases
as efficient and effective as possible. A workflow pro-
cess is designed to handle large numbers of similar
cases. Handling one customer complaint usually does
not differ much from handling another customer com-
plaint. The most important aspect of a workflow pro-
cess is theworkflow process definition. This process
definition specifies whichtasksneed to be executed in
whatorder. Alternative terms for workflow process def-
inition are: ‘procedure’, ‘workflow schema’, ‘flow dia-

gram’, and ‘routing definition’. Tasks are ordered by
specifying for each task theconditionsthat need to be
fulfilled before it may be executed. In addition, it is
specified which conditions are fulfilled by executing a
specific task. Thus, a partial ordering of tasks is ob-
tained. In a workflow process definition, standard rout-
ing elements are used to describe sequential, alterna-
tive, parallel, and iterative routing thus specifying the
appropriate route of a case. The workflow manage-
ment coalition (WfMC) has standardized a few basic
building blocks for constructing workflow process def-
initions [34]. A so-calledOR-split is used to specify a
choice between several alternatives; anOR-join spec-
ifies that several alternatives in the workflow process
definition come together. AnAND-split and anAND-
join can be used to specify the beginning and the end
of parallel branches in the workflow process definition.
The routing decisions in OR-splits are often based on
data such as the age of a customer, the department re-
sponsible, or the contents of a letter from the customer.

Many cases can be handled by following the same
workflow process definition. As a result, the same task
has to be executed for many cases. A task that needs
to be executed for a specific case is called awork item.
An example of a work item is the order to execute task
‘send refund form to customer’ for case ‘complaint of
customer Baker’. Most work items need aresourcein
order to be executed. A resource is either a machine
(e.g., a printer or a fax) or a person (participant, worker,
or employee). Besides a resource, a work item often
needs atrigger. A trigger specifies who or what initi-
ates the execution of a work item. Often, the trigger for
a work item is the resource that must execute the work
item. Other common triggers are external triggers and
time triggers. An example of an external trigger is an in-
coming phone call of a customer; an example of a time
trigger is the expiration of a deadline. A work item that
is being executed is called anactivity. If we take a pho-
tograph of the state of a workflow, we see cases, work
items, and activities. Work items link cases and tasks.
Activities link cases, tasks, triggers, and resources.

A thorough investigation of the business processes in
a company that results in a complete set of efficient and
effective workflow processes is the basis of the success-
ful introduction of a workflow system. Formal verifica-
tion can be a useful aid in obtaining the desired effec-
tiveness and efficiency.

3.3 Workflow perspectives and abstrac-
tion

In the previous subsection, we introduced the workflow
concepts used in the remainder of this paper. Workflow
management has many aspects and typically involves
many disciplines. The verification tool presented in
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this paper focuses on the control-flow perspective (i.e.,
workflow process definitions) and abstracts from other
perspectives. This subsection motivates why it is rea-
sonable to restrict the analysis focus to a single perspec-
tive. Therefore, we start by introducing the perspectives
commonly identified in workflow literature [30].

3.3.1 Perspectives

The primary task of a workflow management system is
to enact case-driven business processes by joining sev-
eral perspectives. The following perspectives are rel-
evant for workflow modeling and workflow execution:
(1) control-flow (or process) perspective, (2)resource
(or organization) perspective, (3)data (or information)
perspective, (4)task(or function) perspective, (5)oper-
ation (or application) perspective. (These perspectives
are similar to the perspectives given in [30].)

In the control-flow perspective,workflow process
definitionsare defined to specify which tasks need to
be executed and in what order (i.e., the routing or con-
trol flow). The concepts relevant for this perspective
(task, condition, and AND/OR-split/join) have been in-
troduced in Section3.2.

In the resource perspective, the organizational struc-
ture and the population are specified. Resources, rang-
ing from humans to devices, form the organizational
population and are mapped onto resource classes. In
office environments, where workflow management sys-
tems are typically used, the resources are mainly hu-
man. However, because workflow management is not
restricted to offices, we prefer the term resource. To
facilitate the allocation of work items to resources, re-
sources are grouped into classes. Aresource classis
a group of resources with similar characteristics. There
may be many resources in the same class and a resource
may be a member of multiple resource classes. If a re-
source class is based on the capabilities (i.e., functional
requirements) of its members, it is called arole. If the
classification is based on the structure of the organiza-
tion, such a resource class is called anorganizational
unit (e.g., team, branch, or department). The resource
classification describes the structure of the organization.

The data perspective deals withcontrol andproduc-
tion data. Control data are data introduced solely for
workflow management purposes. Control data are of-
ten used for routing decisions in OR-splits. Production
data are information objects (e.g., documents, forms,
and tables) whose existence does not depend on work-
flow management.

The task perspective describes the content of the pro-
cess steps, i.e., it describes the characteristics of each
task. A task is a logical unit of work with character-
istics such as the set of operations that need to be per-
formed, description, expected duration, due-date, prior-
ity, trigger (i.e., time, resource, or external trigger), and

required resources classes (i.e., roles and organizational
units).

In the operational perspective, the elementary actions
are described. Note that one task may involve several
operations. These operations are often executed using
applications ranging from a text editor to custom-built
applications for performing complex calculations. Typ-
ically, these applications create, read, or modify control
and production data in the data perspective.

This paper addresses the problem of qualitative
workflow verification. That is, we focus on properties
of a logical nature (i.e., the soundness property intro-
duced in Section1) and not on performance issues. For
the purpose of qualitative verification, we only consider
the control-flow perspective of a workflow. In the re-
mainder of this subsection, we discuss a number of ab-
stractions motivating why this simplification is reason-
able.

3.3.2 Abstraction from resources

Detailed knowledge of the allocation of resources to
work items, the duration of activities, and the timing
characteristics of triggers are a crucial factor when an-
alyzing the performance of a workflow. However, for
qualitative verification, it is only relevant whether cer-
tain execution paths are possible or not. It is important
to note that the allocation of resources can only restrict
the routing of cases, i.e., it does not enable execution
paths that are excluded in the control-flow perspective.
Since resource allocation can only exclude execution
paths, for qualitative verification, it suffices to focus on
potential deadlocks resulting from the unavailability of
resources. Therefore, we argue that deadlocks result-
ing from restrictions imposed by resource allocation are
generally absent, thus motivating why it is reasonable to
abstract from resources.

A potential, resource-inflicted deadlock could arise
(1) when multiple tasks try to allocate multiple re-
sources at the same time, or (2) when there are tasks
imposing such demanding constraints that no resource
qualifies.

The first type of deadlock often occurs in flexible
manufacturing systems where both space and tools are
needed to complete operations thus potentially result-
ing in locking problems [46]. However, given today’s
workflow technology, such deadlocks cannot occur in
a workflow management system: At any time, there
is only one resource working on a task which is be-
ing executed for a specific case. In today’s workflow
management systems, it is not possible to specify that
several resources are collaborating in executing a task.
Note that even if multiple persons are contributing to
the execution of one activity, e.g., writing a report for a
given case, only one person is assigned to that activity
from the perspective of the workflow management sys-
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tem: This is the person that selected the corresponding
work item from the in-basket (i.e., the electronic work-
tray). Therefore, from the viewpoint of qualitative ver-
ification, it is reasonable to abstract from these locking
problems. (Nevertheless, if in the future collaborative
features are explicitly supported by workflow manage-
ment systems, then these problems should be taken into
account.)

The second type of deadlock occurs when there is no
suitable resource to execute a task for a given case, e.g.,
there is not a single resource within a resource class.
Generally, such problems can be avoided quite easily
by checking whether all resource allocations yield non-
empty sets of qualified resources. However, there may
be some subtle errors resulting from case management
(a subset of tasks for a given case is required to be ex-
ecuted by the same resource) and function separation
(two tasks are not to be executed by the same resource
to avoid security violations). For example, task 1 should
be executed by the same person as task 2 and task 2
should be executed by the same person as task 3. How-
ever, task 3 should not be executed by the person who
executed task 1. Clearly, there is no person qualified
to execute task 3. Such problems highly depend on the
workflow management system being used and are fairly
independent of the routing structure. Therefore, in our
approach of workflow-product-independent verification
we abstract from this type of resource-driven deadlocks.

3.3.3 Abstraction from data and triggers

Recall that the data perspective deals with both con-
trol and production data. We abstract from production
data because these are outside the scope of the work-
flow management system. These data can be changed at
any time without notifying the workflow management
system. In fact, their existence does not even depend
upon the workflow application and they may be shared
among different workflow processes, e.g., the bill-of-
material in manufacturing is shared by production, pro-
curement, sales, and quality-control processes.

We partly abstract from control data. In contrast to
production data, the control data used by the workflow
management system for routing cases are managed by
the workflow management system. However, some of
these data are set or updated by humans or applications.
For example, a decision is made by a manager based on
intuition or a case is classified based on a complex cal-
culation involving production data. Clearly, the behav-
ior of a human or a complex application cannot be mod-
eled completely. Therefore, some abstraction is needed
when verifying a given workflow. The abstraction used
in this paper is the following. Since control data are
only used for the routing of a case, we incorporate the
routing decisions but not the actual data. For example,
the decision to accept or to reject an insurance claim is

taken into account, but not the actual data where this de-
cision is based on. Therefore, we consider each choice
to be a non-deterministic one. Moreover, we assume a
fair behavior with respect to these choices and exclude
conspiracies [14].

We also abstract from triggers, because a workflow
management system cannot control the occurrence of
triggers. As for choices, we only assume fairness with
respect to the occurrence of triggers: An enabled task
cannot be blocked forever (or infinitely often) because
the corresponding trigger is never received.

The fairness assumptions on choices and triggers are
reasonable: Without these assumptions any iteration or
trigger would create a potential livelock or deadlock.
In [31], we explored restrictions on the topology of the
process definition such that conspiracies are not possi-
ble and standard fairness assumptions suffice to guaran-
tee a correct behavior.

There are other reasons for abstracting from data and
triggers. If we are able to prove soundness (i.e., the cor-
rectness criterion introduced in Section1) for the pro-
cess definition after abstraction, it will also hold for the
situation where the routing of cases is based on control
data or the occurrence of triggers (under the fairness as-
sumptions mentioned before). If the logical correctness
of the workflow depends on mutual dependencies be-
tween control data, the invariance of a single piece of
control data, or the occurrence of a specific trigger, it is
not possible to prove soundness. However, one might
argue that such a workflow is poorly designed. Last but
not least, we abstract from data and triggers because
it allows us to use classical Petri nets (i.e., P/T nets)
rather than high-level Petri nets. From an analysis point
of view, this is preferable because of the availability of
efficient algorithms and powerful analysis tools.

3.3.4 Abstraction from task content and opera-
tions

As a final abstraction, we consider tasks to be atomic
abstracting from the duration of tasks and the execution
of operations inside tasks. The workflow management
system can only launch applications or trigger people
and monitor the results. It cannot control the actual ex-
ecution of the task. Therefore, from the viewpoint of
qualitative verification, it is reasonable to consider tasks
as atomic entities.

Note that we do not explicitly consider transactional
workflows [25]. There are several reasons for this. First
of all, most workflow management systems (in partic-
ular the commercial ones) do not support transactional
features in the workflow modeling language. Second, as
is shown in [12], the various transactional dependencies
can easily be modeled in terms of Petri nets. Therefore,
we can straightforwardly extend the approach in this pa-
per to transactional workflows.
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3.4 Verification approach

In the previous subsection, it has been shown that for
the purpose of qualitative verification it is reasonable
to abstract from resources, data, triggers, the content of
tasks, and operations and to focus on the control-flow
perspective. In fact, it suffices to consider the control
flow of one case in isolation. The only way cases inter-
act directly, is via the competition for resources and the
sharing of production data. (Note that control data are
strictly separated.) Therefore, if we abstract from re-
sources and production data, it suffices to consider one
case in isolation. The competition between cases for
resources is only relevant for performance analysis.

The principal goal of the approach presented in this
paper is to verify the correctness of a workflow speci-
fied insomeworkflow management system, i.e., the ap-
proach isnot tailored towards aspecificworkflow man-
agement system. Despite the efforts of the Workflow
Management Coalition (WfMC, [34]), there is no con-
sensus on the language for specifying workflows. The
format proposed by the WfMC for exchanging work-
flow process definitions, i.e., Interface 1: Workflow
Process Definition Language (WPDL), is only partially
supported by the existing systems. (Typically, workflow
management systems are unable to import and handle
all constructs.) Moreover, WPDL has no formal seman-
tics which makes it very hard to reason about the cor-
rectness of a given workflow process definition. There-
fore, we propose to directly translate a workflow pro-
cess definition specified in some workflow management
system to a Petri net.

The P/T net in Figure1 models a typical workflow
process, namely the processing of complaints. Assume
that the initial marking is [i ], thus obtaining the system
of Figure2. Marking [i ] corresponds to the fact that a
new complaint has been received. First, this complaint
is registered (register ). Taskregister is an ex-
ample of an AND-split. Upon completion of this task,
in parallel, a form is sent (send ) to the complainant and
the complaint is evaluated to determine whether it needs
to be processed (do) or not (dont ). The two transitions
do anddont together form an OR-split. The two tran-
sitions model a single task in the real workflow which
might be called something like ‘evaluate’. If the form
that is sent to the complainant is received in time (rec ),
the complaint can be processed. If it is not received
in time (timeout ), the form cannot be used for the
processing of the complaint. After the complaint has
been processed (process ), a check is made to deter-
mine whether it has been processed correctly (done )
or not (redo ) (another OR-split). If not, it needs to
be processed again. Placec7 is an example of an OR-
join: Two alternative process branches are joined. In the
end, the complaint is archived (archive ). Transition
archive is an example of an AND-join.

We see that the P/T-net representation of a workflow
process definition is straightforward: Tasks are repre-
sented bytransitionsand conditions byplaces. Two
special places are added, one to indicate that a new case
has been created, placei , and another to indicate that a
case has been completed, placeo. It is clear that stan-
dard building blocks such as the AND-split, AND-join,
OR-split, and OR-join (see [34, 52]) can be modeled by
P/T nets.

To illustrate the spectrum of languages used to spec-
ify workflow processes and their mapping onto P/T
nets, we present two workflow process definitions (one
using COSA and one using Staffware) corresponding to
the P/T net shown in Figure1.

Figure 9: The COSA specification of the process of Fig-
ure1

Figure 9 shows the workflow process designed us-
ing CONE (COSA Network Editor). CONE is the de-
sign tool of the workflow management system COSA
[47]. Since COSA is based on Petri nets, it is easy to
see that the workflow specification corresponds to the
P/T net shown in Figure1. Note that the transitions
do anddont in Figure1 correspond to one task called
evaluate in Figure9, as explained above. This task
is an OR-split which sets a variable nameddo . Based
on this variable, either the arc fromevaluate to c4
is activated or the arc fromevaluate to c7 is acti-
vated. The arc conditions shown in Figure9 are evalu-
ated at run-time and determine whether a token is pro-
duced forc4 or c7 . Similar remarks hold for the task
namedcheck . By using a set of simple translation
rules, any workflow process definition designed using
COSA can be translated to a P/T net. Note that dur-
ing the translation one abstracts from data, i.e., the four
arc conditions shown in Figure9 are translated to two
non-deterministic choices (as in Figure1).
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Figure 10: The Staffware specification of the process of Figure1

Figure 10 shows the same workflow process spec-
ified using the Graphical Workflow Designer (GWD)
of Staffware [48]. The behavior of the specification
shown in Figure10 is identical to the P/T net shown
in Figure1. Nevertheless, the diagram is quite differ-
ent. Staffware tasks, called steps in Staffware, have OR-
join/AND-split semantics. Therefore, explicit building
blocks need to be added to synchronize (AND-join) and
select (OR-split). A wait step, which is represented by
a sand timer, is used to synchronize parallel flows. Con-
ditions, represented by diamonds, correspond to binary
choices. Moreover, Staffware does not have the concept
of places. In the example of Figure1, places are, among
other things, used for OR-joins. To emulate OR-joins
in the Staffware model corresponding to the P/T net of
Figure1, three so-called complex routers (which can be
interpreted as automatic steps) have been added:join ,
done , anddo . These three routers need to be added
to join alternative flows. The traffic light in Figure10
shows the beginning of the workflow process and the
stop sign shows the end. Note that the timeout is mod-
eled explicitly in Figure10and is attached to taskrec .
If rec is not executed within a given period, then task
timeout is triggered. Using the translation described
in [11], one can automatically translate a Staffware pro-
cess definition to a Petri net. It should be noted that
the translation of [11] applied to the workflow process
shown in Figure10 results in a P/T net that is different
from the one shown in Figure1: The resulting P/T net
is considerably larger because the translation is generic.
For example, the automatic stepsjoin , done , anddo
shown in Figure10 are not present in Figure1 but will
be present as transitions in the result of the translation of
[11]. Nevertheless, the behavior of the Staffware model
shown in Figure10matches the behavior of the P/T net
shown in Figure1.

Figures9 and 10 illustrate the differences between
workflow modeling languages used by today’s work-

flow management systems. Both designs model the pro-
cess corresponding to the Petri net shown in Figure1.
In the remainder, it is shown that this workflow process
is incorrect, e.g., the workflow will deadlock if a redo is
needed. As a result, both COSA and Staffware may
deadlock if the workflow is executed. This example
is no exception: In the current generation of workflow
management systems, there are hardly any verification
capabilities. Therefore, it is relevant to develop tools
which can detect anomalies in workflow designs. In-
stead of building a specific workflow verification tool
for every workflow management system, we propose
the approach illustrated by Figure11.

Figure 11: The approach supported by Woflan

As Figure11 shows, there is a specifictranslator for
each workflow management system. Such a transla-
tor translates a workflow process definition into a P/T
net. During the translation, the abstraction discussed
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in the previous subsection is used to extract the infor-
mation required for qualitative verification. It is impor-
tant to note that the workflow verification tool isnot
used to edit the workflow process definition. If the ver-
ification tool detects errors, then the diagnostics pro-
vided by the verification tool are used to correct the
errors using the design tools of the workflow manage-
ment system itself. As Figure11 shows, the process of
correcting the errors is iterative: The workflow process
definition constructed using the workflow management
system is translated and analyzed using the verification
tool. Then, the diagnostics are used to correct (if nec-
essary) the process definition using the workflow man-
agement system. This procedure is repeated until all
errors have been repaired. Note that the approach illus-
trated in Figure11 stands or falls with the assumption
that the diagnostics are of high-quality and workflow-
system independent. Since most workflow management
systems model workflows in terms of a graph structure
connecting tasks, it is possible to make the diagnostics
relatively system independent. For example, the verifi-
cation tool can present a list of tasks which cannot be
executed or show execution sequences in terms of tasks
which lead to a deadlock. These diagnostics can be in-
terpreted in the context of any workflow management
system. To improve the feedback to the workflow mod-
eler, it is possible to use the diagnostics to highlight the
errors directly in the design tools of workflow manage-
ment systems. Note that the latter requires extensions
of the workflow management system itself.

4 Workflow nets

In this section, we introduce the class ofworkflow nets
(WF nets), which is the subclass of P/T nets used for
modeling workflow process definitions. In addition, we
formalize the soundness property introduced in Section
1 in terms of WF nets. We also briefly consider the
subclass of free-choice WF nets. Finally, we present
techniques for analyzing whether or not a given WF net
is sound.

The soundness property is the least requirement that
a WF net must satisfy in order to model a correct work-
flow process definition. As explained, a WF net is an
abstraction of the actual workflow process, i.e., only the
control-flow perspective is considered. We do not pro-
pose WF nets as a complete modeling language. They
are merely introduced for the purpose of (qualitative)
verification. When importing a workflow process def-
inition from some workflow tool, our verification tool
Woflan distills the aspects it needs from the workflow
process definition and translates this information to a
WF net.

4.1 Structural restrictions

Not every P/T net corresponds to a proper workflow
process definition. A P/T net modeling a workflow must
satisfy several structural properties.

First, we want a P/T-net model of a workflow process
to have a well-defined beginning and end. Therefore,
we require that such a P/T-net model has one place in-
dicating the condition that a case has been created and
one place indicating that a case has been completed. In
the example of Figure1, these places are calledi ando,
but they also could have been calledstart andfin-
ish . From now on, we assume thati (in) ando (out)
identify these places. There can be no tasks that fulfill
the condition corresponding toi : The workflow cannot
generate its own cases. Also, there can be no tasks for
which the condition corresponding too has to be ful-
filled: Once a case has been completed, no more tasks
should be executed for this case.

Second, observe that there is not much use in having
a task that can never be executed or in having a task
from which a case cannot be completed. Thus, we want
to exclude such tasks. In terms of the structure of a
workflow net, this means that it must satisfy at least
the following requirement: For every transitiont in a
workflow net, there must be a directed path fromi to t
and a directed path fromt to o. In P/T-net terms, this
conforms to strongly connectedness (see DefinitionV)
under the assumption that there is a directed path fromo
to i . This assumption can be fulfilled if we short-circuit
the net as illustrated in Figure3.

Definition XX (Workflow net) A P/T net N =

(P, T, F) is a workflow net (WF net) iff

i. i ∈ P ∧ •i = ∅,

ii. o ∈ P ∧ o• = ∅, and

iii. the short-circuited P/T net(P, T ∪ {t}, F ∪
{(o, t), (t, i )}), denotedN, is strongly connected,
wheret 6∈ T .

The example P/T netN of Figure 1 satisfies all three
conditions, using placei as input placei ando as out-
put placeo. Thus, it is a WF net.

4.2 Behavioral restrictions

Considering the behavioral correctness of a workflow,
we are, as explained Section3.4, interested in the be-
havior of a single case. Assuming a WF netN =
(P, T, F), it is an obvious choice to have [i ] as the ini-
tial marking, because it corresponds to the creation of
a new case. So,S = (N, [i ]) is the WF system corre-
sponding toN that we are interested in.

The behavioral restrictions we impose on a WF sys-
tem in its initial state can be derived from the soundness
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requirement introduced in Section1. Recapitulating, a
workflow process must always have the option to com-
plete, completion must always be proper, and every task
should contribute to at least one possible execution of
the workflow. In a WF net, completion of a case is sig-
naled by a token in the special placeo. Thus, the com-
pletion option means that it must always be possible to
put a token ino. Proper completion means that, as soon
as a token is put ino, all other places must be empty.
The last requirement strengthens the third structural re-
quirement of DefinitionXX. It simply means that a WF
system may not have any dead transitions (see Defini-
tion XVII ).

Definition XXI (Soundness) A WF net N =

(P, T, F) is sound iff

i. ∀M ∈ B(P), [i ] −→ M : ∃M1 ∈ B(P),M −→
M1 : M1 ≥ [o] (option to complete),

ii. ∀M ∈ B(P), [i ] −→ M : M ≥ [o] ⇒ M = [o]
(proper completion), and

iii. no transitiont ∈ T is dead in(N, [i ]) (no dead
tasks).

Soundness is originally defined in [1], where it says
that it should always be possible to complete the case
properly (option to complete properly). Our definition
is slightly different, but it is not difficult to prove that
they are equivalent.

Soundness of a WF netN can, for example, be de-
termined from a CG of the WF system(N, [i ]). If we
take a look at our WF systemS in Figure2 and its OG
in Figure7 (which is also the unique CG ofS), we see
thatN is not sound because the first two restrictions are
not satisfied:

i. In [c4 , c5 ], there is no option to complete;

ii. in [c8 ,o], we have improper completion.

The third restriction is satisfied, because for every tran-
sition we have at least one arc labeled with it in the CG.

In [1], it has been shown that soundness of a WF
net corresponds to liveness (see DefinitionXVIII ) and
boundedness (see DefinitionXIX ) of the short-circuited
WF system. Recall that, for a WF netN, the short-
circuited net(P, T = T ∪ {t}, F = F ∪ {(o, t), (t, i )})
with t 6∈ T is denotedN.

Theorem I (Soundness vs. liveness and bounded-
ness) A WF net N = (P, T, F) is sound iff the short-
circuited WF system(N, [i ]) is live and bounded.

Proof See [1].

From the CG in Figure8, we conclude that the short-
circuited WF systemS of Figure3 is not bounded and
not live. It is not bounded, because we have infinite
markings in the CG; it is not live, because, for instance,
marking [c4 , c5 ] has no outgoing arcs. Hence, the WF
net N of Figure1 is not sound, which conforms to our
earlier conclusion.

4.3 Free-choice WF nets

The class of free-choice WF nets (see DefinitionVIII ) is
an interesting one for two reasons. First, it appears that
many workflow management systems allow only work-
flow process definitions that result in free-choice WF
nets. Most of the workflow management systems avail-
able at the moment abstract from states between tasks,
i.e., states are not represented explicitly. Such work-
flow management systems use the AND-split, AND-
join, OR-split, and OR-join as standard building blocks
to specify workflow procedures. Because these systems
abstract from states, every choice is madeinsidean OR-
split building block. If we model such an OR-split in
terms of a WF net, the OR-split corresponds to a num-
ber of transitions sharing the same set of input places.
Thus, it appears that for these workflow management
systems a workflow procedure always corresponds to
a free-choice WF net. Only a few workflow manage-
ment systems (e.g., COSA, INCOME, LEU, and MO-
BILE) allow arbitrary non-free-choice constructs. Sec-
ond, for a free-choice WF net, it can be decided in
polynomial time whether or not the net is sound, be-
cause it is possible to verify in polynomial time whether
the corresponding short-circuited WF system is live and
bounded [19].

Given these two facts, one could envision a verifica-
tion tool that focuses on free-choice WF nets. However,
for Woflan, we decided differently. One of the main re-
quirements for Woflan mentioned in the introduction is
that it is workflow-product independent. Allowing non-
free-choice WF nets means that Woflan can support a
wider range of (future) workflow management systems.
Furthermore, standard routing constructs, such as paral-
lelism, sequential routing, conditional routing, and iter-
ation, can be modeled without violating the free-choice
property. However, sometimes, complex routing con-
structs cannot be modeled with free-choice WF nets.
For example, Staffware is a workflow management sys-
tem that abstracts from states (see also Section3.4) but
it supports one (rarely used) construct that can only be
translated to a non-free-choice construct in the corre-
sponding WF net (see [11], for more details). In other
occasions, non-free-choice constructs yield more con-
cise models than the corresponding free-choice ones. A
second requirement for Woflan mentioned in the intro-
duction is that it must provide to-the-point diagnostic
information in case of design errors. Unfortunately, ef-
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ficient algorithms for verifying soundness are not nec-
essarily a good basis for meaningful diagnostic infor-
mation in case a WF net is not sound.

4.4 Analyzing WF nets

TheoremI is an interesting result, because it shows
that for the analysis of WF nets we can focus on
boundedness and liveness of short-circuited WF sys-
tems. Boundedness and liveness have been studied ex-
tensively in the Petri-net literature. Existing results can
be tuned to the analysis of WF nets. In the remainder
of this section, we present results that form the founda-
tion of Woflan, emphasizing results that are useful for
providing meaningful diagnostic information in case of
errors in a WF net.

4.4.1 Structural techniques

In Section2.3.1, a number of structural techniques for
analyzing P/T nets have been introduced. Despite the
fact that Woflan is not restricted to free-choice WF nets,
the free-choice property does play a role in diagnos-
ing WF nets. Also, PT- and TP-handles, S-components
and S-coverability, and (place-)invariants all play an im-
portant role in Woflan. The interpretation of non-free-
choice constructs, PT/TP-handles, and S-components in
the workflow domain is explained in more detail in the
next section. In this subsection, we present results re-
lating structural techniques to soundness of WF nets.

Theorem II (Sound and free-choice vs. S-coverable)
Let N be a sound, free-choice WF net. The short-
circuited WF netN is S-coverable.

Proof This follows directly from TheoremI and the
fact that a net which is free-choice, live, and bounded
must be S-coverable ([19]).

In the analysis of WF nets, this theorem can be used as
follows. If N is a free-choice WF net such thatN is
not S-coverable, thenN cannot be sound. Places that
are not part of any S-component are a potential source
of the error. For example, the WF netN of Figure 1
is free-choice, butN of Figure3 is not S-coverable, as
explained in Section2.3.1. Placec8 is not part of an
S-component. Thus, netN is not sound, as we have
concluded earlier.

Definition XXII (Well-structuredness) A WF net N
is well-structured iffN is well-handled, i.e., the short-
circuited net has no PT-handles and TP-handles (see
DefinitionVII ).

Theorem III (Sound and well-structured vs. S-
coverable) Let N be a sound, well-structured WF net.
The short-circuited WF netN is S-coverable.

Proof See [4].

TheoremIII can be used in the analysis of WF nets in
a similar way as TheoremII can be used. TheoremIII
does not provide useful information for our running ex-
ample, because short-circuited WF netN of Figure3 is
not well-structured.

As a side remark, note that for a given well-structured
WF net, it can be decided in polynomial time whether or
not it is sound. (See [5]; the proof uses TheoremI and
the fact that short-circuited WF nets without PT-handles
and TP-handles are elementary extended non-self con-
trolling [13].) Also note that the classes of free-choice
WF nets and well-structured WF nets are incompara-
ble. That is, there are free-choice nets that are not well-
structured and vice versa.

S-coverability of a short-circuited WF net is a suf-
ficient (but not necessary) condition for safeness and,
hence, boundedness of the corresponding system.

Theorem IV (S-coverability vs. boundedness)Let N
be a WF net and let the short-circuited WF netN be S-
coverable. The short-circuited WF system(N, [i ]) is
safe and bounded.

Proof It follows from Definition XI that the number
of tokens in any reachable marking of(N, [i ]) in an
S-component ofN is constant. Because we initially
have one token (ini ), the number of tokens in any S-
component is either zero or one. Therefore, the number
of tokens in any place in any S-component is always
either zero or one. Because all places inN are con-
tained in some S-component,(N, [i ]) is safe and thus
bounded.

Note that a consequence of TheoremIV is that both
sound free-choice WF nets and sound well-structured
WF nets correspond to safe WF systems.

Considering again our running example, we have al-
ready seen thatNof Figure3 is not S-coverable and that
system (N, [i ]) is not bounded. Since placec8 is not
part of an S-component, again the diagnostic informa-
tion points to placec8 as a possible error: Itmight be
unsafe or unbounded. (We, of course, already know that
c8 is unbounded.)

It is also well-known that place-invariants with only
non-negative weights, the so-calledsemi-positiveplace-
invariants, can be used to formulate a sufficient condi-
tion for boundedness. A place occurring with a positive
weight in a semi-positive place-invariant is said to be
coveredby that invariant.
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Theorem V (semi-positive place-invariants vs.
boundedness) Let N be a WF net. If every place
of N is covered by a semi-positive place-invariant of
the short-circuited netN, then the short-circuited WF
system(N, [i ]) is bounded.

Proof It follows immediately from Theorem 2.31 of
[19].

Places not covered by a semi-positive place-invariant of
a short-circuited WF net might be indications of an er-
ror. In the running example, placec8 is the only place
not covered by a semi-positive place-invariant ofN.

4.4.2 Liveness and boundedness vs. soundness

In this paragraph, we investigate the relation between
the soundness of a WF net and the liveness and bound-
edness of the corresponding short-circuited WF system
in some more detail.

As the following result shows, an unbounded place in
a short-circuited WF system may be a sign of improper
completion.

Theorem VI (Improper completion vs. unbounded-
ness)Let N be a WF net that can complete improperly.
Then, the short-circuited WF system(N, [i ]) has un-
bounded places.

Proof It follows from the assumption and the defini-
tion of proper completion (DefinitionXXI ) that there
exists a non-empty markingM ∈ B(P) such that
[i ] −→ M + [o] in N. Then, [i ] −→ M + [o]
in N and, because of the short-circuiting transitiont ,
[i ] −→ M + [i ] in N. We conclude that all places inM
are unbounded in(N, [i ]).

In the OG of Figure7, we see that WF netN of Figure
1 may complete improperly, because marking [c8 ,o] is
reachable. The CG of Figure8 shows that system (N,
[i ]) has unbounded placec8 .

Non-live transitions in a short-circuited WF system
are a potential sign that a WF net does not satisfy the
completion option.

Theorem VII (Option to complete vs. liveness)Let
N = (P, T, F) be a WF net that does not satisfy the
completion option. Then, the short-circuited WF sys-
tem(N, [i ]) has non-live transitions.

Proof Suppose (N, [i ]) has only live transitions.
Then, the short-circuiting transitiont is live, i.e., for all
M ∈ B(P) with [i ] −→ M , there exists anM1 ∈ B(P)
with M −→ M1 such that•t ≤ M1. Since•t = {o},
we immediately conclude thatN has the option to com-
plete.

Let us return to WF netN of Figure1 once more. The
CG of S=(N, [i ]) in Figure7 has a deadlock marking,
namely [c4 ,c5 ]; thus, N does not satisfy the comple-
tion option. Since the CG ofS=(N, [i ]) in Figure8 has
the same deadlock marking, all transitions ofS are non-
live. Although this observation is consistent with The-
oremVII , it does unfortunately not provide any useful
diagnostic information on WF netN.

Part of the soundness requirement on a WF net is
the absence of dead transitions in the corresponding
WF system. A dead transition in a WF system corre-
sponds to a task in the workflow that can never be ex-
ecuted. Non-live transitions in the short-circuited WF
system, in particular dead transitions, might be a sign of
dead transitions in the non-short-circuited WF system.
The question is how dead transitions in a WF system
S= (N, [i ]) and the short-circuited WF systemSrelate
to each other. Observe that any occurrence sequence of
S is also an occurrence sequence ofS, but that the con-
verse is not necessarily true. Thus, a transition that is
dead inS is also dead inS, but a transition that is dead
in S might not be dead in the short-circuited systemS.
However, under the assumption of boundedness ofS, a
transition that is dead inS is also dead inS.

Theorem VIII (Dead transitions in bounded short-
circuited WF systems) Let S = (N, [i ]) with N =
(P, T, F) be a WF system such that the short-circuited
systemS = (N, [i ]) is bounded. Transitiont ∈ T is
dead inS iff it is dead inS.

Proof The result follows immediately from the obser-
vation that, under the boundedness assumption, either
the OGs ofSandSare identical (in case marking [o] is
not reachable inS) or the OG ofSextends the OG ofS
with the arc([o], t, [i ]) (in case [o]is reachable).

4.4.3 Behavioral error sequences

Structural errors in a P/T net modeling a workflow, i.e.,
violations of the requirements of DefinitionXX, are
generally easy to find and to correct. Behavioral errors,
i.e., violations of DefinitionXXI , are more difficult to
locate and to correct. The results in Section4.4.2show
that the sets of unbounded places in a short-circuited
WF net, as well as the lists of non-live and dead tran-
sitions may provide useful information for diagnosing
behavioral errors. Unbounded places, non-live transi-
tions, and dead transitions all point to different types
of behavioral errors in a WF net. However, experience
with verification of workflow processes has shown that
this information is not always sufficient for finding the
exact cause of an error. In particular, it might be diffi-
cult to diagnose violations of requirementsi (option to
complete) andii (proper completion) of DefinitionXXI .
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To overcome this problem, we introduce so-called be-
havioral error sequences. The idea for these sequences
is relatively simple: We want to find firing sequences
of minimal length such thateverycontinuation of that
sequence leads to an error. Such a firing sequence is
required to be minimal in the sense that no prefix has
the property that every continuation leads to an error.
Thus, one can think of behavioral error sequences as
scenariosthat capture the essence of errors made in the
workflow design. Depending on the kind of error one
is interested in, different types of behavioral error se-
quences can be helpful for diagnosing the design. In
the next two paragraphs, we introduce two types of be-
havioral error sequences callednon-live sequencesand
unbounded sequencesthat are particularly useful for di-
agnosing liveness-related (requirementi of Definition
XXI , option to complete) and boundedness-related (re-
quirementii of Definition XXI , proper completion) be-
havioral errors, respectively.

4.4.4 Non-live sequences

Intuitively, a non-live sequence is a firing sequence of a
workflow system of minimal length such that comple-
tion is no longer possible (i.e., it is no longer possible to
reach a marking with a token in the special placeo). By
now, it is clear that the completion-option requirement
of a WF net is strongly related to the liveness of the cor-
responding short-circuited system. Liveness analysis is
only feasible for bounded systems. Thus, we assume a
WF systemS = (N, [i ]) such that the short-circuited
systemS = (N, [i ]) is bounded. We also assume the
absence of dead transitions inS (or equivalently inS;
see TheoremVIII ). In the next section, it is explained
in more detail how these assumptions are enforced in
the diagnosis process of Woflan. The precise definition
of non-live sequences is based on the following theo-
rem.

Theorem IX (Liveness of bounded short-circuited
WF systems) Let S = ((P, T, F), [i ]) be a WF
system without dead transitions such that the short-
circuited systemS is bounded. Then,S is live iff
∀M ∈ B(P), [i ] −→ M : M −→ [o].

Proof The implication from left to right follows in a
straightforward way from DefinitionXXI (Soundness)
and TheoremI (Soundness vs. liveness and bounded-
ness). The other implication follows directly from Def-
initionsXVII (Dead transitions) andXVIII (Liveness).

Based on this theorem, we define a non-live sequence as
a firing sequence of WF systemSof minimal length that
ends in a marking from which it is no longer possible to
reach [o]. Non-live sequences can be computed from
the OG ofS. Note that the OG ofS is finite, because

S and hence alsoS is bounded. In terms of the OG of
S, a (non-empty) non-live sequence is a firing sequence
corresponding to a path in the OG that starts in marking
[i ] and ends in a markingM

i. from which there is no path to [o] and

ii. whose immediate predecessorM1 on the path has
a path to [o].

Apparently, the transition leading from markingM1 to
marking M removes the option to complete. To deter-
mine which markings in the OG can act asM andM1,
we partition the markings into three parts:

i. red markings, from which there is no path to [o],

ii. green markings, from which all paths lead to [o],
and

iii. yellow marking, from which some but not all paths
lead to [o].

Only a red marking can possibly act asM , whereas only
a yellow marking can possibly act asM1. All we need to
do now is to find arcs in the OG which connect a yellow
marking to a red marking. The label of such an arc gives
us the name of the transition whose firing removes the
option to complete. Any path from the initial marking
[i ] to M in the OG corresponds to a non-live sequence.

The definition of non-live sequences can be formal-
ized as follows. Note that the definition does not require
the absence of dead transitions in the WF system under
consideration. LetM1 H⇒ M denote that there exists a
path in the OG from nodeM1 to nodeM .

Definition XXIII (OG partitions for non-liveness)
Let N = (P, T, F) be a WF net such that its WF sys-
tem(N, [i ]) is bounded. LetG = (H, A) be the OG of
(N, [i ]). We partitionH into three parts:

i. HR = {M ∈ H | ¬(M H⇒ [o])},

ii. HG = {M ∈ H | ¬∃MR ∈ HR : M H⇒ MR} and

iii. HY = H \ (HG ∪ HR).

Remarks:

• If there are no red markings, there can be no yellow
markings:HR = ∅ implies HY = ∅.

• If there are no green markings, there can be no yel-
low markings:HG = ∅ implies HY = ∅.

• If there is no way to complete properly, then all
markings are red: [o] 6∈ H implies H = HR.

• If there is a way to complete properly, then the tar-
get marking is green (becauseo• = ∅): [o] ∈ H
implies [o] ∈ HG.
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Definition XXIV (Non-live sequences) Let (N, [i ])
be a bounded WF system with OGG = (H, A). Let HR

andHY be defined as in DefinitionXXIII . If [ i ] ∈ HR,
then the occurrence sequence [i ] is called non-live. An
occurrence sequence [i ]t0M1 . . . tn−2Mn−1tn−1Mn, for
some positive natural numbern, with all markings dis-
tinct is called non-live iffMn ∈ HR and Mn−1 ∈ HY.
A firing sequence of a WF system is called non-live iff
it is derived from a non-live occurrence sequence.

The most valuable information in a non-live sequence
is the combination of its last two markings(Mn−1 ∈

HY and Mn ∈ HR) and its last transition (tn−1).
The only interest we have in the sequence’s prefix
([i ]t0M1 . . . tn−2) is that it gives us a path which leads to
the last-but-one marking. Note that we have excluded
firing sequences containing cycles (by requiring that all
markings in a non-live sequence must be distinct); cy-
cles do not provide any additional useful information.
Also note that it is possible that several non-live se-
quences have the same suffixMn−1tn−1Mn.

Theorem X (Non-live sequences vs. liveness)Let S
be a WF system without dead transitions such that the
short-circuited systemS is bounded. Then,S is live iff
Shas no non-live sequences.

Proof The theorem follows immediately from Theo-
rem IX (Liveness of bounded short-circuited WF sys-
tems) and DefinitionXXIV (Non-live sequences).

Note that, based on TheoremI, TheoremX can alter-
natively be formulated as follows. IfS = (N, [i ]) is a
WF system without dead transitions such that the short-
circuited systemS is bounded, thenN is sound iffShas
no non-live sequences.

Figure 12: WF netN1

Figure 13: The OG ofS1 partitioned for non-live se-
quences

As an example, consider the WF netN1 of Figure12.
It is a variant of WF netN of Figure 1 with an extra
arc from placec8 to transitionarchive . The OG of
S1=(N1, [i ]) is shown in Figure13. The meaning of
the thick arcs is explained in the next section. Clearly,
S1 has no dead transitions. Since the OG ofS1=(N1,
[i ]) is simply the graph in Figure13 extended with the
arc ([o], shortcircuit , [i ]), whereshortcir-
cuit is the short-circuiting transition, we see thatS1
is bounded. Figure13 also shows the partitioning of
the OG ofS1 according to DefinitionXXIII . We can
deduce, among others, the following five non-live se-
quences:

i. register send timeout ,

ii. register send dont timeout ,

iii. register send rec do ,

iv. register send do , and

v. register do .

SinceS1 has non-live sequences, we can deduce from
TheoremX thatS1 is not live, which means thatN1 is
not sound. It is also possible to arrive at this conclu-
sion by investigating the OG ofS1. Since it contains
deadlock marking [c4 ,c5 ], it follows that all transi-
tions of S1 are non-live. Unfortunately, the informa-
tion that all transitions are non-live is not sufficiently
specific to be useful. By examining the above five non-
live sequences, we can obtain more detailed informa-
tion. Note that non-live sequenceii provides almost the
same information as sequencei. Together, they show
that the combinationsend and timeout is the pos-
sible cause of an error and thatdont is not important.
From sequencei, we conclude that, whatever happens,
placec8 does not get a token. As a result, transitions
process andarchive cannot fire. The sequences
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iii , iv, andv provide the information that firing transi-
tion do always results in an error. We may conclude
that the cycle to whichdo leads might cause a prob-
lem. For now, we do not go into details about possible
solutions to correct the errors.

4.4.5 Unbounded sequences

Intuitively, an unbounded sequence is a firing sequence
of a WF system of minimal length such that every con-
tinuation implies a violation of the proper-completion
requirement of DefinitionXXI . Such a violation can
have two causes. The first one is the most straightfor-
ward one. Clearly, proper completion is violated if a
reachable marking is strictly greater than the marking
[o] that signals proper completion. The second cause
is more implicit. If a WF system is unbounded, then
the proper-completion requirement is also violated. To
see this, consider a WF systemS = (N, [i ]) with two
reachable markingsM and M1 such thatM < M1
(which by DefinitionXIX means thatS is unbounded).
Assuming that proper completion is possible fromM ,
i.e., M −→ [o], we may deduce thatM1 −→ [o] +
M1 − M which is strictly greater than [o]. Thus, as-
suming that completion is possible at all, unbounded-
ness of a WF system implies a violation of the proper-
completion requirement.

As we have seen, the proper-completion requirement
of a WF net is strongly related to the boundedness of
the corresponding short-circuited system. The follow-
ing theorem confirms this observation. It forms the ba-
sis for formalizing unbounded sequences.

Theorem XI (Boundedness of short-circuited WF
systems) Let S = ((P, T, F), [i ]) be a WF system.
SystemS = ((P, T, F), [i ]) is bounded iff systemS
is bounded and, for all markingsM ∈ B(P) reachable
from [i ] in S, ¬(M > [o]).

Proof To prove the theorem, we show thatS is un-
bounded iffS is unbounded or there is a markingM ∈
B(P) reachable from [i ] in S such thatM > [o]. Re-
call Definition XIX (Boundedness). The implication
from right to left is straightforward (see also the proof
of TheoremVI). The other implication is more in-
volved. Assume thats = M0t1M1 . . . tnMn, for some
natural numbern, is an occurrence sequence ofS such
that M0 = [i ] and such that there exists ak < n
with Mk < Mn. Distinguish two cases. First, assume
that the short-circuiting transitiont is not an element
of {t1, . . . , tn}. In this case,s is also an occurrence se-
quence ofS, which means thatS is unbounded. Second,
assume thatt is an element of{t1, . . . , tn}. Without loss
of generality, we may assume thats is minimal in the
following sense: First, all markingsM0, . . . ,Mn are

different; second, there are no natural numbersk and
l with k < l < n such thatMk < Ml . The first as-
sumption means thats contains no cycles; the second
assumption means thats contains no strict prefix from
which unboundedness can be derived. The crux of the
proof is thatt must betn. Suppose thatt equalstk, with
k < n. Since•t = {o} andt• = {i }, Mk−1 ≥ [o] and
either Mk = [i ] = M0 or Mk > [i ] = M0. In both
cases, the minimality ofs is violated. Thus,t equalstn.
It follows from the definition oft ands that Mn > [i ]
and that the occurrence sequenceM0t1M1 . . . tn−1Mn−1
is an occurrence sequence ofSsuch thatMn−1 > [o].

Unbounded sequences can be computed from a cover-
ability graph of a WF systemS (see Section2.3.4). As-
suming we have a CG ofS, an unbounded sequence
is a firing sequence ofS of minimal length which in-
evitably leads either to an infinite marking in the CG
or to a marking greater than [o] in that CG. The above
theorem means that such a sequence corresponds to a
sequence ofS that inevitably leads to an infinite mark-
ing when the CG ofS is extended to a CG ofS.

To compute unbounded sequences, we partition a
given CG ofS in a way similar to the partitioning of
the OG for computing non-live sequences given in Def-
inition XXIII :

i. The green markings are those markings from
which infinite markings or markings greater than
[o] are not reachable;

ii. the red markings are those markings from which
infinite markings or markings greater than [o] are
unavoidable, i.e., those markings from which no
green marking is reachable;

iii. the yellow markings are those markings from
which infinite markings or markings greater than
[o] are reachable but avoidable.

Definition XXV (CG partitions for unboundedness)
Let N = (P, T, F) be a WF net, letG = (H, A) be a
CG of WF system(N, [i ]), and letHω

= H \ B(P) ∪
{M ∈ B(P) | M > [o]} be the set of markings inH
that are infinite or greater than [o]. We partitionH into
three parts:

i. Hω
G = {M ∈ H |¬∃M1 ∈ Hω : M H⇒ M1},

ii. Hω
R = {M ∈ H |¬∃M1 ∈ Hω

G : M H⇒ M1} and

iii. Hω
Y = H \ (Hω

G ∪ Hω
R).

Remarks:

• If there are no red markings, there can be no yellow
markings:Hω

R = ∅ implies Hω
Y = ∅.
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• If there are no green markings, there can be no yel-
low markings:Hω

G = ∅ implies Hω
Y = ∅.

Given the above partitioning of a CG of a WF system,
we can define its unbounded sequences.

Definition XXVI (Unbounded sequences) Let
(N, [i ]) be a WF system with CG(H, A). Let Hω

R and
Hω

Y be defined as in DefinitionXXV . If [ i ] ∈ Hω
R,

then the occurrence sequence [i ] is called unbounded.
An occurrence sequence [i ]t0M1 . . . tn−2Mn−1tn−1Mn,
for some positive natural numbern, with all mark-
ings distinct is called unbounded iffMn ∈ Hω

R and
Mn−1 ∈ Hω

Y . A firing sequence of a WF system is
called unbounded iff it is derived from an unbounded
occurrence sequence.

Theorem XII (Unbounded sequences vs. bounded-
ness) A short-circuited WF systemS is bounded iff
Shas no unbounded sequences.

Proof The theorem follows immediately from Theo-
rem XI (Boundedness of short-circuited WF systems)
and DefinitionXXVI (Unbounded sequences).

Unbounded sequences have been defined on the basis
of a CG of a WF system. However, CGs of WF sys-
tems can become very large, even to the extent that
the computation of unbounded sequences may become
intractable. A simple observation alleviates the prob-
lem of large CGs: Infinite markings in a CG have
only infinite successors. For determining unbounded
sequences, it is not necessary to consider successors of
infinite markings, because they are guaranteed to be red.
This observation leads to the notion of arestricted CG
(RCG) of a system. LetS= ((P, T, F),M0) be some
P/T system. An RCG ofS is constructed via the algo-
rithm of DefinitionXVI with one important difference,
namely that we restrict the markingM in stepii to be
finite. As an example, compare the CG of the short-
circuited system of Figure3 depicted in Figure8 with
the RCG of Figure14. For this simple example, the
RCG is approximately half the size of the CG. Note
that if a system is bounded the RCG-generation algo-
rithm and the CG-generation algorithm both yield the
OG of the system.

It is straightforward to see that an RCG can be used
to compute the unbounded sequences of a WF system.
Consider the partitioning of a CG given in Definition
XXV . Since infinite markings are always red, it is clear
that successors of infinite markings are also red. There-
fore, the part of a CG that is omitted in an RCG is
not used when constructing unbounded sequences. This
means that unbounded sequences can be computed by
applying the partitioning of DefinitionXXV to an RCG.

Figure 14: The RCG of the short-circuited example net

The idea to restrict a CG of a system to an RCG is
similar to one of the ideas behind the notion of an MCG
(minimal CG) of [24]. In general, an RCG of a system
is still larger than its MCG. Unfortunately, the MCG of
a WF system is not suitable for computing unbounded
sequences. For more details, the interested reader is re-
ferred to [24].

Figure 15: The RCG partitioned for unboundedness

Figure15shows the partitioned RCG of the example
systemS of Figure2. Note that this RCG is the OG
of S, becauseS is bounded.S has among others the
following unbounded sequences:

i. register send rec dont and

ii. register send dont rec .

These two sequences show that firing the combination
of rec anddont inevitably leads to unboundedness of
the short-circuited system. The reason is thatrec puts
a token in placec8 , whereas firingdont removes the
option to remove this token via transitionprocess .
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5 Woflan

5.1 Introduction

This section describesWoflan(WOrkFLow ANalyzer,
[50]) version 2.1. Woflan is a tool that analyzes work-
flow process definitions specified in terms of Petri nets.
It has been designed to verify process definitions that
are downloaded from a workflow management system,
as explained in Section3.4. As indicated in the intro-
duction, there is a clear need for such a verification tool.
Today’s workflow management systems do not verify
the correctness of workflow process definitions. There-
fore, errors made at design time such as deadlocks and
livelocks may remain undetected. This means that an
erroneous workflow may go into production, thus caus-
ing dramatic problems for the organization. To avoid
these costly problems, it is important to verify the cor-
rectness of a workflow process definition before it be-
comes operational.

Based on some of the results presented in the previ-
ous section, the development of the tool Woflan started
at the end of 1996 and the first version was released
in 1997 [10, 26]. Basically, Woflan takes a workflow
process definition imported from some workflow prod-
uct, translates it into a P/T net, and tells whether or not
the net is a sound WF net. Furthermore, using some
standard P/T net-analysis techniques as well as those
tailored to WF nets presented in the previous section,
the tool provides diagnostic information about the net in
case it is not a sound WF net. Woflan implements a pre-
defined diagnosis process illustrated in Figure16. The
diagnosis process is in fact a workflow process mod-
eled in Protos [36]. In the next subsection, the diagno-
sis process of Figure16 is explained in detail. In Sec-
tion 5.3, the P/T net of Figure1 is analyzed by means
of Woflan. Version 2.1 of Woflan extends version 1.0
as described in [10, 26] with some new analysis tech-
niques of which the technique of behavioral error se-
quences is the most important one, with a predefined,
detailed diagnosis process that uses a new, workflow-
oriented nomenclature, and with an import facility for
COSA, Staffware, METEOR, and Protos.

5.2 Diagnosis process

In Sections2 and4, we have seen a wide range of anal-
ysis techniques for P/T nets in general and WF nets in
particular. The goal is to apply these techniques in the
analysis of workflow processes in a logical and mean-
ingful order, and to distill useful diagnostic information
from the analysis results in case of errors in the work-
flow. The diagnosis process implemented in Woflan,
version 2.1, achieves this goal. Figure16 illustrates the
process. As mentioned, the process is in fact a work-
flow itself. Analyzing the Protos model of Figure16

in Woflan yields that it corresponds to a sound WF net
(assuming that Steps 2 through 8 and 10 through 12 are
OR-splits and Step 14 is an OR-join).

The basis for the diagnosis process in Figure16 is
TheoremI (Soundness vs. liveness and boundedness).
That is, the diagnosis process aims at establishing the
soundness of a WF net by showing that the correspond-
ing short-circuited system is live and bounded. As
mentioned earlier, liveness analysis is only feasible for
bounded systems. Thus, we have decided to center
the diagnosis process around the following three mile-
stones. The naming of the milestones is chosen in such
a way that it fits with standard workflow terminology.

Workflow Process Definition (WPD) Does the im-
ported process definition correspond to a WF net?

Proper WPD Is the short-circuited system corre-
sponding to the WF net bounded?

Sound WPD Is the (bounded) short-circuited system
corresponding to the WF net live (and thus the WF
net sound)?

The order in which analysis techniques are applied in
the diagnosis process is based on two criteria, namely
efficiency of the technique and usefulness of the diag-
nostic information. Since structural analysis techniques
are (usually) computationally much more efficient than
behavioral ones, we see that structural analysis tech-
niques are used as much as possible in the diagnosis
process before switching to behavioral techniques.

5.2.1 Step 1: Start of diagnosis

The diagnosis process is started by importing a process
definition from some workflow tool. In this step, the
process definition is translated to a P/T-net representa-
tion, applying the abstractions discussed in Section3.3.

5.2.2 Step 2: Workflow process definition?

In this step, it is verified whether the first milestone is
satisfied. The first milestone is included to guarantee
that the process definition that is being imported from
some workflow tool corresponds to a WF net. Woflan
simply checks whether all the requirements of Defini-
tion XX are satisfied (one place must correspond to a
point of creation, one place must correspond to a point
of completion, and all nodes must be related to both
places). If the milestone is not satisfied, the diagnosis
process ends and the workflow designer must make a
correction to the process definition. In this case, Woflan
provides diagnostic information such as, for example,
the list of tasks that are not connected to the point of
creation and/or the point of completion.
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Figure 16: Diagnosis process, modeled using Protos
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5.2.3 Step 3: Thread of control cover?

From a workflow point of view, we would like to see a
case as a set of parallelthreads of control. Each such a
thread specifies that certain tasks have to be executed in
a certain order to get a certain piece of work completed.
In the running example of Figure1, we have two such
threads:

i. The first thread handles the piece of work associ-
ated with the complaint form: After registration,
first, the form has to be sent to the complainant.
Second, it is either received back or a timeout oc-
curs. Finally, the returned form or the fact that it
was not returned in time is archived.

ii. The second thread handles the piece of work asso-
ciated with the complaint itself: After registration,
first, the complaint has to be evaluated. Second,
depending on the evaluation (do or dont ), it may
be processed followed by a check. Third, depend-
ing on the result of the check (done or redo ), it
may be processed again. Finally, it is archived.

The idea of threads is reflected by the S-components
in the short-circuited WF net: Every S-component in
that short-circuited net corresponds to a logical piece
of work in the workflow. (See, for example, Figure6
that shows the two S-components for the running ex-
ample.) Recall that an S-component is a strongly con-
nected state machine which is embedded in a P/T net
(see DefinitionXI). For each S-component in a P/T
system, the total number of tokens in its places is al-
ways constant. From the strongly connectedness of S-
components and the structure of WF nets, it follows that
an S-component in a short-circuited sound WF net al-
ways contains the short-circuiting transitiont and the
two special placesi ando. Assuming the initial marking
[i ], every place in an S-component is safe and bounded,
and the system corresponding to a short-circuited WF
net that is S-coverable is safe and thus bounded (see also
TheoremIV). In addition, sincei is an element of all S-
components in an S-coverable net, every S-component
contains exactly one token in every marking reachable
from [i ]. This observation conforms to the intuitive no-
tion of threads of control.

It appears that any WF net should satisfy the require-
ment that its short-circuited net is S-coverable. A place
that does not belong to a thread of control is a suspicious
place, because it cannot be related to a logical piece of
work. Although it is possible to construct a sound WF
net with a short-circuited net that is not S-coverable, the
places that are not S-coverable in sound WF nets typi-
cally do not restrict transitions from being enabled and
are thus superfluous. Note that S-coverability is not a
sufficient requirement: It is possible to construct an un-
sound WF net with an S-coverable short-circuited net.

Figure 17: A non-free-choice cluster (confusion)

The diagnostic information that Woflan provides is
the list of S-components of the short-circuited WF net,
as well as a list of places not contained in any of these
S-components. This information can generally be com-
puted efficiently. If there are no uncovered places,
the second milestone of the diagnosis process (Proper
WPD) has been achieved (see TheoremIV), which
means that we can continue with liveness analysis (see
Figure16).

5.2.4 Step 4: Confusions and mismatches?

At this point, we know that our workflow process
definition is not covered by threads of control; in
Petri-net terminology, the short-circuited WF system
is not S-coverable. Based on TheoremsII and III ,
we may conclude that the WF net under considera-
tion shouldnot be free-choice or well-structured. If it
is free-choice or well-structured, we know that it can-
not be sound. It is indeed possible to have a sound
WF-net that is neither free-choice nor well-structured.
For some more advanced routing constructs, non-free-
choice nets and/or non-well-structured nets are in-
evitable. Notwithstanding these observations, in many
practical workflows, non-free-choiceness or non-well-
structuredness are signs of design errors, as explained
in some more detail below.

Confusions

The diagnostic information that Woflan provides on the
free-choice property is the set of so-calledconfusions.
A confusion is a non-free-choice cluster, where a cluster
is a connected component of a net that remains after all
arcs from transitions to places are removed from the net.
A cluster is non-free-choice iff it does not satisfy the
free-choice property of DefinitionVIII . An example of
a non-free-choice cluster is shown in Figure17.

Two transitions that do not satisfy the free-choice
property have different presets that are not disjoint. In a
workflow context, this means that two tasks share some
but not all preconditions. Usually, tasks that share a pre-
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Figure 18: AND/OR mismatches

condition start alternative branches: They form an OR-
split. Also, a task that has multiple preconditions (note
that at least one of the transitions has multiple precon-
ditions) usually ends a set of parallel branches: It is an
AND-join. A non-free-choice cluster is therefore often
a mixture of an OR-split with an AND-join (see Fig-
ure17). The OR-split is troubled by such an AND-join,
because one alternative may be enabled while the other
is not. The AND-join is troubled by the OR-split, be-
cause a fulfilled parallel branch may get unfulfilled be-
fore the AND-join is enabled. If possible, the OR-split
and AND-join must be separated. The routing of a case
should be independent of the order in which tasks are
executed.

As explained in Section4.3, most of the work-
flow management systems available at the moment ab-
stract from states between tasks which means that pro-
cess definitions imported from these workflow systems
yield, in principle, free-choice WF nets. Clearly, the
search for confusions is only meaningful for workflow
management systems that allow non-free-choice con-
structs.

Mismatches

A good workflow design is characterized by a balance
between AND/OR-splits and AND/OR-joins. Clearly,
two parallel flows initiated by an AND-split should not
be joined by an OR-join. Two alternative flows created
via an OR-split should not be synchronized by an AND-
join. From a workflow point of view, the situations as
depicted in Figure18are suspicious.

In the leftmost situation, an AND-split is terminated
by an OR-join. Tasks of a case are executed in parallel,
but fulfilling one branch implies that both branches are
fulfilled. The condition corresponding to placeP can
even be fulfilled twice. In a workflow, such a condition
is often an error. In P/T-net terminology, this means
that usually all places of a WF net should be safe. Note
that this kind of error may lead to unboundedness of the
short-circuited system and hence to unsoundness.

In the rightmost situation, an OR-split is terminated
by an AND-join. One of the alternative tasks will be
executed for the case. However, the task corresponding
to transitionT synchronizes both branches and needs
both its preconditions to be fulfilled; it will never be

executed. Note that this kind of error may lead to a non-
live short-circuited system and hence to unsoundness.

Both situations depicted in Figure18 describe a
so-called non-well-handled pair: A transition-place or
place-transition pair with two disjoint paths leading
from one to the other. The leftmost situation describes
a TP-handle, the rightmost a PT-handle (see Definition
VI). Recall from DefinitionXXII that a WF net is well-
structured iff the short-circuited net is well-handled (see
Definition VII ). Although a non-well-handled pair in
the short-circuited net is often a sign of potential errors,
a WF net that is not well-structured can still be sound.

The diagnostic information that Woflan provides is a
list of all non-well-handled pairs in the short-circuited
net; usually, the subset of non-well-handled pairs fully
embedded in the non-short-circuited net (i.e., both paths
between the two nodes of the pair do not contain the
short-circuiting transition) provides the most useful in-
formation, because they often correspond to the unde-
sirable AND-OR and OR-AND mismatches discussed
above.

At this point in the diagnosis methods, there are several
possibilities. Quite often, the combination of a number
of places not covered by a thread of control (Step 3) and
information on confusions plus AND-OR / OR-AND
mismatches reveals one or more errors in the process
definition. (Note that, theoretically, the workflow pro-
cess definition may still be sound.) Thus, the workflow
designer might decide to end the diagnosis process, to
correct the process definition in the workflow tool being
used to design the workflow, and to restart the diagno-
sis process on the new process definition. In other occa-
sions, the designer may decide to continue the diagnosis
process, even if it is already known that the workflow
process definition cannot be sound (based on Theorems
II andIII , as explained above).

5.2.5 Step 5: Uniform invariant cover?

A uniform invariant is a (semi-positive) place-invariant
with only weights zero and one. Uniform invariants of
a WF net can in general be computed efficiently, al-
though it requires theoretically in the worst-case expo-
nential space. Such place-invariants can provide useful
information concerning the proper-completion property
of a WF net. As mentioned before, the net of Fig-
ure 1 has a place-invarianti + c1 + c3 + c5 + o.
Because we know that initially there is one token in
place i and upon completion there is one token ino,
we conclude from this invariant thatc1 , c3 , andc5
are empty upon completion. Furthermore, we can de-
duce from TheoremV (semi-positive place-invariants
vs. boundedness) that a short-circuited WF system is
bounded if all places are covered by uniform invariants.
A place that is not covered by a uniform invariantmight
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be unsafe or even unbounded. From a workflow point
of view, this means that a condition might be fulfilled
more than once at a single point in time, which is often
undesirable. Note that this check is less discriminat-
ing than the check for S-coverability (Step 3): Every
S-component corresponds to a uniform invariant. Thus,
every place belonging to an S-component is covered by
a uniform invariant. However, a place that does not be-
long to any S-component might still be covered by a
uniform invariant.

The diagnostic information that Woflan provides in
this step is the set of uniform invariants of the short-
circuited WF net as well as the places that are not cov-
ered by these invariants. If all places are covered, the
Proper-WPD milestone has been achieved.

5.2.6 Step 6: Weighted invariant cover?

Another structural technique for deciding bounded-
ness of the short-circuited WF net is simply the check
whether all places in the net are covered by some semi-
positive place-invariant (thus allowing weights greater
than one when compared to the previous step). Semi-
positive place-invariants are simply calledweightedin-
variants in Woflan. Clearly, this check is less discrimi-
nating than the check performed in the previous step.
Places that are not covered by a weighted invariant
might be unbounded. From a workflow point of view,
this means that a conditionmight be fulfilled an arbi-
trary number of times.

The diagnostic information that Woflan provides in
this step is (a representation of) the set of weighted in-
variants of the short-circuited WF net as well as the
places that are not covered by these invariants. If all
places are covered, the Proper-WPD milestone has been
achieved.

5.2.7 Step 7: No improper conditions?

At this point in the diagnosis process, we have indi-
cations that some places of the short-circuited system
mightbe unbounded. In Woflan, unbounded places are
referred to as improper conditions. An improper con-
dition in the short-circuited system always indicates a
soundness error (related to improper completion; see
also Sections4.4.2and4.4.5). To determine improper
conditions, Woflan computes the MCG (Minimal Cov-
erability Graph [24]) of the short-circuited system. This
computation can be time and space consuming, but it
turns out that computing the MCG is feasible for most
practical workflows. (Particularly for workflows cor-
responding toboundedshort-circuited WF systems the
computation does not take very long.)

The diagnostic information provided by Woflan con-
sists of the set of improper conditions. If this set is
empty, the Proper-WPD milestone has been achieved.

5.2.8 Step 8: No substates?

A substate of a system is a reachable markingM such
that there is another reachable markingM1 with M <

M1. It is not difficult to see that aboundedshort-
circuited WF system with substates cannot be live. As-
sume M is a substate of such a system withM1 a
marking reachable from the initial marking such that
M < M1. (Note thatM1 cannot be reachable fromM ,
because this would contradict the boundedness of the
system (see DefinitionXIX ).) It is impossible to reach
marking [o] from substateM , because otherwise we
could reach [o]+M1−M from M1 which by Theorem
XI (Boundedness of short-circuited WF systems) con-
tradicts the boundedness assumption. Since the short-
circuiting transition haso as its only precondition, this
transition cannot be live, which implies that also the
short-circuited system cannot be live. The MCG algo-
rithm that is used for computing improper conditions
in the previous step allows the easy detection of sub-
states (see [24]). The current version of Woflan pro-
vides a warning if a bounded short-circuited system has
substates; it does not provide any detailed information
about substates because this information is rather tech-
nical.

5.2.9 Step 9: Improper scenarios!

If the set of improper conditions in Step 7 of the di-
agnosis process is not empty, we know that the short-
circuited WF system is unbounded. In case the set of
improper conditions provides insufficient information
for diagnosing the error(s), Woflan offers the workflow
designer the possibility to compute the unbounded se-
quences of the WF system, called improper scenarios in
Woflan.

As explained in Section4.4.5, unbounded sequences
are computed by constructing and partitioning an RCG
of the WF system. Recall that it is not possible to use
the MCG for this purpose (see [24]). It is not difficult
to see that sequences that are

• permutations of the same set of transitions and

• end with the same transition

all provide the same diagnostic information. Thus, it
suffices to consider only a single sequence of such a
set. In order to minimize the set of improper scenarios
presented to the workflow designer, Woflan computes a
spanning tree of the RCG. A spanning tree of a graph
is a connected subgraph in the form of a tree that con-
tains all the nodes. The tree-constraint means that be-
tween every two nodes there is exactly one undirected
path. A spanning tree of an RCG can be constructed
in a straightforward way during the construction of the
RCG. In the RCG of Figure15, for example, the thick
arcs denote a spanning tree. If Woflan is applied to
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our running example, it computes precisely the parti-
tioned RCG of Figure15 with the visualized spanning
tree. Using this tree, it presents the two unbounded se-
quences given in Section4.4.5for this example.

Since at this point in the diagnosis process we know
that the short-circuited system is unbounded and, hence,
that the Proper-WPD milestone cannot be achieved, the
workflow designer must make a correction to the work-
flow process definition and restart the diagnosis process
with this corrected process definition.

5.2.10 Step 10: No dead tasks?

At some point during the diagnosis, the Proper-WPD
milestone has been achieved, possibly after one or more
corrections to the original process definition have been
made. It remains to establish the third milestone of the
diagnosis process. Recall that this part of the process
is aimed at analyzing the liveness of the short-circuited
WF system.

Using the MCG of the short-circuited WF system,
Woflan provides the set of dead transitions of this sys-
tem. Recall that TheoremVIII (Dead transitions in
bounded short-circuited WF systems) implies that this
set is precisely the set of dead transitions of the non-
short-circuited system. These transitions correspond to
dead tasks in the workflow process. Note that the MCG
might already be available from Step 7 (No improper
conditions?) of the diagnosis process; if this is not the
case the MCG is computed at this point. If the WF sys-
tem has dead tasks, the workflow designer must correct
the error(s) and restart the diagnosis process with the
new process definition.

5.2.11 Step 11: No non-live tasks?

At this point in the diagnosis process, we know that
the short-circuited WF system is bounded and that it
does not have any dead transitions. Woflan computes
the OG of the short-circuited system to determine the
set of non-live tasks, which it presents to the workflow
designer. If all tasks are live, the diagnosis process is
complete and successful: It has been shown that the
short-circuited WF system is bounded and live which by
TheoremI implies that the underlying WF net is sound.

5.2.12 Step 12: Non-live tasks!

At this point in the diagnosis process, we know that the
short-circuited WF system is bounded, that it does not
have any dead transitions, but that it is not live. Also in
this case Woflan computes the set of non-live tasks via
the OG of the short-circuited system.

5.2.13 Step 13: Locking scenarios!

If the result of Step 11 or Step 12 indicates that there
are non-live transitions, but if this information is not
sufficient for diagnosing the error(s), Woflan provides
the option to compute the non-live sequences of the WF
system. In Woflan, non-live sequences are referred to as
locking scenarios (because they generally lead to live-
locks and/or deadlocks in the workflow process). The
set of locking scenarios is computed from the OG of
the WF system (see Section4.4.4) and minimized via
a spanning tree of the OG. As in Step 9 (Improper sce-
narios!) of the process, the reason for minimizing the
set of scenarios presented to the workflow designer is
that non-live sequences being permutations of the same
set of transitions and ending with the same transition
provide the same diagnostic information.

5.2.14 Step 14: End of diagnosis

The diagnosis process ends with one of three possible
conclusions, namely that the imported process defini-
tion does not correspond to a WF net, that it does cor-
respond to a WF net but is not sound, or that it corre-
sponds to a sound WF net. In case of errors, the process
definition must be corrected in the workflow tool being
used (see Section3.4, Figure11), after which the diag-
nosis process has to be restarted.

5.3 Diagnosing the example net

In this subsection, we diagnose the example workflow
process illustrated in Figure1 in Woflan. We used Pro-
tos as the front end for designing and correcting the pro-
cess definition. As an alternative, we could also have
chosen COSA. Both tools support a modeling language
that is sufficiently expressive for modeling arbitrary P/T
nets. Figure19 shows a Protos model of the exam-
ple workflow process. Note that we have modeled the
two choices in the process via tasksevaluate and
check , as explained in Section3.4. Figure20 shows
a number of Woflan dialogs for the various steps of the
diagnosis process of Figure16.

The upper dialog in Figure20shows the information
provided by Woflan when importing our Protos pro-
cess definition. (Protos definitions are imported via the
COSA import facility, which clarifies the title of the di-
alog window.) Using this dialog the workflow designer
can preview the P/T net resulting from the conversion
before it is analyzed. In this case, the information is
a straightforward list of conditions and tasks. Note
that Woflan reports a task namedcheck 0. As ex-
plained, Woflan splits choices into a number of tasks
corresponding to the possible outcomes of a choice.
In this case, Woflan splits taskcheck into check 0
andcheck 1, and taskevaluate into evaluate 0
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Figure 20: Example diagnosis, dialogs
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Figure 19: The Protos specification of the process of
Figure1

andevaluate 1. These four new tasks correspond to
tasksdone , redo , dont , anddo of Figure1, respec-
tively. The information provided by Woflan during the
conversion may vary depending on the workflow tool
being used. If Staffware is used, for example, some
errors in the process definition may already be detected
during the conversion. The reason is that Staffware uses
a proprietary modeling language of which the mapping
to WF nets is non-trivial (see [11]). In the next sec-
tion, we briefly return to this point when discussing the
Staffware case study.

The second dialog in Figure20 is the Workflow-
Process-Definition dialog that corresponds to Step 2 of
the diagnosis process of Figure16. It clearly shows that
the net is a workflow process definition (i.e., a WF net).

The third dialog corresponds to Step 3 (Thread of
control cover?) of the diagnosis process. It lists
two threads of control, corresponding to the two S-
components shown in Figure6, and one condition that
is not covered, namely conditionc8 . This information
indicates that there might be a problem withc8 ; it may
be improper (unbounded).

Because not all conditions are covered by threads
of control, the diagnosis process continues with Step 4
(Confusions and mismatches?). The corresponding di-
alog is also shown in Figure20. This dialog shows that
our example net is unsound: Either conditionc8 needs
to be covered by a thread of control or a confusion needs
to be introduced somewhere.

It may be worthwhile to consider the mismatches at
this point. Woflan indicates that the short-circuited net
has four OR-AND mismatches and five AND-OR mis-
matches. One of the OR-AND mismatches is fully em-
bedded in the non-short-circuited net and corresponds
to the PT-handle shown in Figure4; Woflan marks
this OR-AND mismatch with the label ‘local’. Two
of the AND-OR mismatches are local to the non-short-
circuited net and correspond to the TP-handles of Fig-
ure5. Unfortunately, in this example, it is not straight-

forward to derive any useful information from these
mismatches other than the already known fact that con-
dition c8 is probably the cause of the unsoundness.

Steps 5 and 6 of the diagnosis process that compute
uniform and weighted invariants, respectively, do not
provide any additional information. In both cases, it
turns out that conditionc8 is uncovered.

Step 7 (No improper conditions?) provides us with
the definite information that conditionc8 is improper.
Step 9 (Improper scenarios!) yields two improper sce-
narios, as shown in the dialog in Figure20. Both sce-
narios result in the marking [c5 , c7 , c8 ]. (Recall that
evaluate 0 corresponds to transitiondont of Fig-
ure1. Executing taskarchive at that point results in
marking [c8 ,o], which corresponds to improper com-
pletion.

A this point in the diagnosis, we have to make a cor-
rection. Clearly, the diagnostic information obtained
so far suggests that transitionarchive must remove
a token fromc8 . We correct the process definition
in Protos by adding an arc between conditionc8 and
taskarchive . The resulting process definition is not
shown, but it corresponds to the WF net of Figure
12 (assuming the appropriate renamings as explained
above).

We restart the diagnosis process on the new process
definition. In Steps 1 through 6, Woflan provides the
following diagnostic information. The process defini-
tion is still not covered by threads of control or invari-
ants; in all cases, conditionc8 is still uncovered. How-
ever, the process definition is also not free-choice and
not well-structured. Thus, it might still be sound. Step
7 (No improper conditions?) shows that the process def-
inition is proper. Thus, our correction in the first itera-
tion of the diagnosis process has been an improvement.

It turns out that the process definition has no sub-
states and no dead tasks (Steps 8 and 10 of the diagnosis
process; Step 9 is skipped in this iteration). However,
Woflan reports in Step 11 that all tasks are non-live (in
the short-circuited system). At this point, we know that
the process definition is not sound. Unfortunately, the
information is not sufficiently specific for diagnosing
the error(s). Thus, we let Woflan compute the locking
scenarios of the process definition (Step 13). Woflan
reports the five scenarios already presented (as non-
live sequences) in Section4.4.4. From the discussion
in that section, we may conclude that the execution of
tasktimeout is the probable cause of an error and that
also the cycle consisting of tasksprocess andcheck
(optionredo ) is very likely the cause of a problem. A
closer look at the workflow process definition reveals
that there are indeed two problems. First, the execution
of task timeout does not mark conditionc8 , which
means that tasksprocess and archive cannot be
executed aftertimeout is executed. To correct this
error, we add an arc fromtimeout to c8 . Second,
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Figure 21: A sound version of the example process def-
inition

the cycle consisting of tasksprocess andcheck can
only be executed once, becausec8 is only an input con-
dition (and not an output condition) of the cycle. We
correct this error by adding an arc fromprocess to
c8 .

After adding the two arcs mentioned above in our
Protos model, the process definition looks as in Fig-
ure21. A third iteration of the diagnosis process shows
that the process definition is sound. (The iteration goes
via Steps 1, 2, 3, 10, 11, and 14, which is the shortest
path through the diagnosis process.) Note that the pro-
cess definition of Figure21 is not free-choice (cf. tasks
process andarchive ). Consequently, this process
definition is only feasible when using workflows tools
as Protos or COSA. Staffware, for example, does not
allow the non-free-choice construct in the process def-
inition. It is important to note that corrections to pro-
cess definitions may depend on the workflow system at
hand. When we would have used Staffware for design-
ing our workflow process, we would have had to think
of another way to correct the errors. (It is an interest-
ing exercise to come up with a free-choice variant of the
process definition of Figure21.)

6 Case studies

6.1 Introduction

To evaluate the applicability of Woflan, we performed
two case studies, one focusing on the usefulness of all
the steps in the diagnosis process of Figure16supported
by Woflan and another one testing the applicability of
Woflan and the approach of Figure11 on a workflow
process developed in a real-world context.

For testing the usefulness of the steps of the diagnosis
process of Figure16, we used seventeen Protos mod-
els of the workflow process of a travel agency at a uni-
versity. These seventeen models were chosen from the
work of twenty groups of students that designed Protos

models from an informal description of the workflow
process, as part of an assignment for a course on work-
flow management. There are two reasons why this case
study is particularly useful for evaluating the diagno-
sis process of Woflan. First, Protos supports P/T nets
as a modeling language. Consequently, all steps in the
diagnosis process of Woflan may in principle provide
useful information concerning possible errors in work-
flow process definitions designed in Protos. Second, the
assignment was set up in such a way that the students
had to use a wide variety of routing constructs in their
models. By evaluating seventeen models of this work-
flow process, it is almost guaranteed that these models
also contain a wide variety of errors.

For testing our approach to workflow verification on
a real-world example, we cooperated with Staffware
Benelux. We set up an experiment where a workflow
designer of Staffware Benelux introduced a number of
non-trivial errors in a large workflow that was known to
be correct. We were not familiar with the workflow pro-
cess. Also, the type of errors was not known to us and
neither did we know the total number of errors. The
reason for choosing Staffware, instead of for example
COSA, is that Staffware supports a proprietary mod-
eling language of which the mapping onto P/T nets is
non-trivial. Thus, this case study is a real test of the
approach illustrated in Figure11, in particular of the in-
terpretation of the diagnostic information provided by
Woflan in the Staffware model.

In the remainder of this section, we discuss the results
of both case studies in some detail.

6.2 Protos case

The input for this case study consisted of workflow pro-
cess definitions developed by 42 industrial-engineering
students of the courseWorkflow Management & Group-
ware (1R420; Eindhoven University of Technology)
and 15 computing-science students of the courseWork-
flow Management: Models, Methods, and Tools(25756;
University of Karlsruhe). These students formed 20
groups which independently designed Protos [36] mod-
els of the workflow in a travel agency. Fourteen of these
groups consisted of students from the Eindhoven Uni-
versity of Technology; the other six consisted of stu-
dents of the University of Karlsruhe.

From the Eindhoven collection of models, we se-
lected eleven reasonably looking solutions; three mod-
els were so poor that analyzing them by means of
Woflan was not very meaningful. From the Karlsruhe
collection, all models were selected. The number of
tasks and other building blocks of the models ranged
from 54 to 89. These numbers show that the case study
was performed on workflow models of more than rea-
sonable size. A snapshot of a(n unsound) Protos model
of the travel-agency workflow is shown in Figure22.
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Figure 22: A snapshot of a Protos model of the travel-agency workflow

The groups of Eindhoven consisted of industrial en-
gineers, which had only a little prior experience in mod-
eling and no background in formal verification. Ver-
ification of workflows was only a minor topic of the
courseWorkflow Management & Groupware(1R420)
and the students did not practice with Woflan. Although
the groups were told to simulate the workflow process
by hand (play thetoken game) to test their model, not
one of them was able to produce a sound model.

In contrast to the groups of Eindhoven, the groups
taking the courseWorkflow Management: Models,
Methods, and Tools(25756) in Karlsruhe consisted of
computing-science engineers, which did have a back-
ground in modeling and verification. Furthermore, the
importance of making a correct workflow was empha-
sized and analysis techniques for P/T nets and WF nets
were treated in the course. In addition, they prac-
ticed with a prior version of Woflan on small exam-
ples. However, none of the groups used Woflan to
check their solution to the assignment. In the end, the
Karlsruhe groups delivered better models than the Eind-
hoven groups. Of the seventeen models we analyzed

with Woflan, five appeared to be sound, all from Karl-
sruhe groups.

Table1 shows an overview of our efforts to diagnose
the seventeen workflow models. It contains the follow-
ing information:

• The number of iterations with Woflan needed to
produce a sound workflow process definition.

• Diagnostic information (see below for more de-
tails).

• The estimated time it took us to produce a sound
workflow process definition.

The case study was performed on a Pentium 200 PC
with 128 Mb of RAM running Windows NT 4.0.

The numbers in the column of Table1 containing di-
agnostic information refer to the corresponding steps of
the diagnosis process of Figure16. An entry implies
that, based on the information provided in that step,
a correction was made in the model being diagnosed.
In case a correction was made in Step 4, it is specified
whether this correction was based on a confusion or on
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Group Iterations Diagnosis Time(min) University
1 2 4 (mism) 5 Eindhoven
2 9 4 (mism: 4×), 7 (3×), 9, 13 (2×) 90 Eindhoven
3 4 3, 4 (mism: 4×), 13 30 Eindhoven
4 8 3, 4 (mism: 12×), 13 75 Eindhoven
5 3 3, 4 (conf: 1×; mism: 6×) 30 Eindhoven
6 3 3 (3×) 30 Eindhoven
7 7 3 (2×), 4 (conf: 1×; mism: 8×), 9 60 Eindhoven
8 3 3 (2×) 20 Eindhoven
9 2 4 (mism: 4×) 20 Eindhoven
10 2 3 5 Eindhoven
11 7 3 (2×), 4 (conf: 2×), 9 (3×), 10 50 Eindhoven
12 1 sound < 5 Karlsruhe
13 1 sound < 5 Karlsruhe
14 2 13 5 Karlsruhe
15 1 sound < 5 Karlsruhe
16 1 sound < 5 Karlsruhe
17 1 sound < 5 Karlsruhe

Table 1: Overview of the results of the travel-agency case study

a mismatch. The entries are simply given in increas-
ing order; the corrections are not necessarily made in
that order. For example, when diagnosing the model of
group 3, four corrections based on Step 4 were made in
the initial model, one correction based on Step 13 was
made in the second model, and one correction based on
Step 3 was made in the third model.

The information in Table1 shows that Steps 3
(Threads of control cover?), 4 (Confusions and mis-
matches?), 7 (No improper conditions?), 9 (Improper
scenarios!), 10 (No dead tasks?), and 13 (Locking sce-
narios!) of the diagnosis process of Figure16 are all
used to make one or more corrections. In particular
Steps 3, 4, 9, and 13 are used quite often. To us, this
does not come as a surprise because the diagnostic in-
formation provided in these steps has a clear interpreta-
tion in the workflow domain.

Of course, it is also interesting to see which steps
are not used. All Protos models considered in the case
study corresponded to workflow process definitions.
Consequently, no corrections were made in Step 2 of the
diagnosis process. However, this step is essential in the
process because the WPD milestone guarantees that the
remainder of the diagnosis process is meaningful. The
information in Table1 furthermore shows that Steps 5,
6, 8, 11, and 12 were not used to make corrections.
However, in one occasion (Group 11; final model), Step
5 (Uniform invariant cover?) showed that the process
definition was proper; interestingly, that process defini-
tion was not covered by threads of controls, which is
usually the case. Step 11 (No non-live tasks?) is simply
required in the diagnosis process for showing soundness
of a workflow process definition. Nevertheless, the re-
sults of the case study show that a list of non-live tasks
is generally not sufficient for diagnosing an error; in all
relevant cases, locking scenarios (Step 13) were com-

puted to obtain more detailed information. Further ex-
perience with Woflan might point out that Steps 11 and
13 can be integrated. For similar reasons, also Step 12,
which is simply a variant of Step 11, might be integrated
with Step 13. This leaves Steps 6 (Weighted invariant
cover?) and 8 (No substates?). These steps are usually
only relevant if the process definition is non-safe (see
Definition XIX ). In practice, this is rarely true. How-
ever, both steps might turn out to be useful in these rare
occasions and, furthermore, come almost for free after
Steps 5 and 7, respectively.

Besides the above observations about the usefulness
of the steps in the diagnosis process of Woflan, two
other interesting observation can be made. In the in-
formal description of the travel-agency workflow pro-
cess, a distinction was made between private trips and
business trips. At several points in the process, the ex-
ecution of certain tasks or the order of execution de-
pended on this distinction. Consequently, a workflow
process definition of the travel-agency process almost
always contains a number of choices (OR-splits) that
must be kept consistent. In several models used for
the case study, this consistency was not enforced by
the workflow process definition. The type of a trip is
a typical example of a piece of control data (see Section
3.3.1). As mentioned in Section3.3.3, in our opinion,
one should avoid situations where the logical correct-
ness of a process definition depends on the invariance of
a piece of control data. Fortunately, the diagnostic in-
formation provided by Woflan made it straightforward
to correct these models enforcing the consistency via
the process definition.

Another interesting observation is that the industrial-
engineering students of Eindhoven did not produce
a single correct workflow, whereas the computing-
science students of Karlsruhe handed in only one
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flawed model, which was straightforward to correct. In
our opinion, the different background of the students
causes this discrepancy. Industrial-engineering students
have little background in modeling and verification;
computing-science students are trained in both skills.
Many designers of workflow processes in practice have
also little experience in formal verification. Woflan can
be a useful aid in designing correct workflow processes
that helps to prevent a lot of problems caused by the
implementation of erroneous workflow processes.

Summarizing the results of the travel-agency case
study, Woflan proved to be useful for diagnosing and
correcting all the seventeen models in reasonable time
and with reasonable effort. The results indicate that the
diagnosis process of Figure16is appropriate for verify-
ing complex workflow processes.

6.3 Staffware case

As explained in the introduction to this section, we
set up an experiment in cooperation with Staffware
Benelux to test our approach on a real-world work-
flow process. The starting point of the case study
was a complex process of 114 tasks and other build-
ing blocks (wait steps, complex routers, etc.), devel-
oped by Staffware Benelux using Staffware 2000 [48].
The model contained a number of errors that were
not known to us in advance, but that were known to
Staffware Benelux. We diagnosed the Staffware model
with Woflan 2.1, corrected the Staffware model, and
discussed our diagnosis results with Staffware Benelux.
It turned out that we found six out of seven errors in the
process definition. Another positive result is that the
corrections we made proved to be the appropriate ones.
The error that we did not find was lost in the conver-
sion from Staffware to Woflan. As already mentioned,
the mapping from Staffware models to P/T nets is non-
trivial. Apparently, the error was lost in the abstraction
(see Section3.3) applied during the conversion. How-
ever, in our discussion with Staffware Benelux after the
completion of the case study, it turned out that there is
a straightforward check that can be incorporated in the
conversion process to detect the type of error that we
missed. In the remainder of this subsection, we discuss
the conversion of Staffware models to P/T nets and the
results of the case study in some more detail. Figure23
shows a snapshot of the (unsound) Staffware model.

6.3.1 Conversion

Two important aspects of the Staffware modeling lan-
guage play a role when converting Staffware models
to P/T nets and, in particular, to WF nets. The first
one has already been mentioned before. The Staffware
modeling language abstracts from states in a workflow
process. The second one is that Staffware models do

not necessarily have a single point of exit. Staffware
models may diverge in several independent branches.
A Staffware case is completed if all branches are com-
pleted. These two aspects have consequences for the
application of Woflan to Staffware models.

To start with the second aspect, the problem is to map
the notion of completion used in Staffware onto our no-
tion of completion. In [11], a solution to this problem
is given. Essentially, the approach of [11] means that a
standard P/T-net construction is used to detect the com-
pletion of all the branches in the Staffware model. The
most important consequence of this construction is that
the resulting P/T net is always bounded and almost al-
ways a WF net.1 Consequently, the first milestone of
the diagnosis process discussed in Section5.2is almost
always satisfied by a Staffware model and the second
one is always satisfied, possibly hiding some errors re-
lated to the structure of the process (WPD milestone) or
to improper completion (Proper WPD milestone). As
already mentioned before, a consequence of the first as-
pect mentioned above is that a WF net corresponding
to a Staffware model is, in principle, free-choice. How-
ever, as already mentioned, Staffware allows one partic-
ular construct that cannot be mapped onto a correspond-
ing free-choice P/T-net construct. Furthermore, the con-
struct for detecting successful completion is generally
not free-choice.

It may be clear that the above observations have
implications for the diagnosis process supported by
Woflan. In particular, we have to be careful with the in-
terpretation of the diagnostic information provided by
Woflan.

Step 1 (Start of diagnosis) During the conversion from
Staffware to Woflan, diagnostic information on the
structure of the process is generated. In the current
version of the conversion, this information focuses
on the connectedness of the model.

Step 2 (Workflow process definition?) As already
mentioned, the P/T net resulting from the conver-
sion is almost always a WF net. In some rare occa-
sions, this may not be true; in such a case, the in-
formation provided by Woflan can be used to cor-
rect the error.

Step 3 (Threads of control cover?) The abovemen-
tioned construction for detecting completion intro-
duced during the conversion implies that the WF
net is generally not covered by threads of control.
However, the diagnostic information provided by
Woflan in this step can still be useful.

1The translation proposed in [11] results in a P/T net which may
have multiple arcs between pairs of nodes. However, multiple arcs
can only occur in the special completion-detection construct. Further-
more, the results presented in this paper extend in a straightforward
way to P/T nets allowing multiple arcs between pairs of nodes and
also Woflan can cope with such nets.
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Figure 23: A snapshot of the Staffware process definition

Step 4 (Confusions and mismatches?) Most likely, the
WF net resulting from a Staffware model has only
one confusion, which is the result of the construc-
tion for detecting completion. Also many of the
mismatches in the net are often caused by this spe-
cial construction. Mismatches that are inherent
in the original Staffware model are identified by
Woflan and may, of course, still provide useful in-
formation.

Step 5 (Uniform invariant cover?) The conversion is
such that the WF net is generally not covered by
uniform invariants.

Step 6 (Weighted invariant cover?) The completion-
detection construction guarantees that the WF net
is covered by weighted invariants. (For this reason,
the Proper-WPD milestone is always satisfied.)

Steps 7, 8, 9, and 12These steps are always skipped
(because of the outcomes in the earlier steps).

Steps 10, 11, 13, and 14These steps are unaffected.

At a first glance, the above list might seem to contradict
our claim that Woflan is workflow-tool independent.

Iterations Diagnosis Time(min)
3 1, 4 (mism: 3×), 13 (2×) 90

Table 2: The results of the Staffware case study

However, note that the tool itself has not been changed
in order to make it useful for analyzing Staffware mod-
els. The only programming effort was put into the con-
version program. Furthermore, some items in the above
list are just simplifications of the diagnosis process of
Figure16 that are not visible to users of Woflan; some
other items explain how certain diagnostic information
should be interpreted in terms of Staffware models. One
could even argue that, despite the large differences be-
tween Staffware models and WF nets, a surprisingly
large part of the diagnosis process and the provided di-
agnostic information is still relevant.

6.3.2 Diagnosis

In this paragraph, we discuss the actual diagnosis of the
Staffware model used for this case study. Table2 sum-
marizes the results. The case study was performed on
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a Pentium III 500 PC with 256 Mb of RAM running
Windows NT 4.0.

Three iterations were needed for the diagnosis, tak-
ing in total about one and a half hour. Given the size
of the workflow process and the fact that we were not
familiar with the process, in our opinion, this effort is
reasonable. In the first two iterations, we found and
corrected six (out of seven) errors; the third iteration
showed that the model resulting from the first two iter-
ations was sound.

During the first iteration, one error was detected dur-
ing the conversion (Step 1: Start of diagnosis). A small
part of the process definition was not connected to the
main part. Furthermore, three structural errors were
found and corrected via mismatches reported in Step
4 (Confusions and mismatches). An OR-join had to be
replaced by an AND-join and two arcs had to be re-
moved. The first error is visible in Figure23: The com-
plex router labeledP6, which acts as an AND-split, is
(partly) complemented by the router labeledORJOIN,
acting as an OR-join. The latter should be replaced by
a wait step, which acts as an AND-join.

In the second iteration, we did not find any more
structural errors, but we did find two behavioral ones.
The locking scenarios of Step 13 of the diagnosis pro-
cess clearly indicated that the process contained two er-
roneous OR-splits. Both are visible in Figure23. The
first one is the choice (the diamond) just before the task
labeled9 Aanmaken Routepl.MP7 . If the choice
has a negative result, the branch terminates. In this
particular case, this implies an error because furtheron
the synchronization via the wait step following com-
plex routerPWwill fail. (This mistake might seem ob-
vious given the three visually similar constructs also
shown in the snapshot; however, recall that the total
workflow consists of over 100 building blocks which
makes it much harder to find the mistake simply via
visual inspection.) The second erroneous OR-split is
the step labeled10 Vullen NCP MP3 . Note that
this step is visually identical (!) to the step labeled8
Vullen C7 NCP MP10 and two of the other steps
shown in the snapshot. However, the scenarios reported
by Woflan indicate that it is not. The erroneous step is
disabled (withdrawn in Staffware terminology) in case
of a timeout, thus causing a synchronization error fur-
theron. The timeouts associated with step8 Vullen
C7 NCP MP10and the other similar steps do not dis-
able the corresponding steps, but simply generate some
kind of warning message.

The two errors found in the second iteration were
straightforward to correct yielding a workflow process
definition that was proved sound in a third iteration.

As already mentioned, we only found six out of seven
errors in the original Staffware model, despite the fact
that Woflan reports that the model resulting after the
corrections described above is sound. The one error

Woflan fails to diagnose is lost in the conversion. It
concerns a type of error that may occur in the timeout
construct of Staffware. As explained in Section3, it
is inherent to our approach that some errors are lost in
the abstractions we apply, particularly if these errors are
not or not closely related to the routing of cases. How-
ever, in this particular case, it is possible to incorporate
a simple check in the conversion process to filter out this
specific type of error. In fact, further experience might
show that also other types of errors can be filtered out
during the conversion of process definitions for use with
Woflan. It is even possible that (some of) the conversion
programs coupling Woflan with the various workflow
products evolve into workflow-tool-specific extensions
of Woflan for diagnosing errors that are specific for that
particular workflow tool.

Summarizing, the main conclusion of this case study
is that Woflan can be a useful aid for detecting and cor-
recting errors in Staffware process definitions. The re-
sults support our belief that workflow-tool-independent
verification as visualized in Figure11 is feasible. Fur-
ther experience is needed to optimize the interface be-
tween Staffware and Woflan.

7 Related work

Petri nets have been proposed for modeling workflow
process definitions long before the term “workflow
management” was coined and workflow management
systems became readily available. An example is the
work on Information Control Nets [20, 21], a variant
of classical Petri nets, originally developed in the late
seventies. For the reader interested in the application
of Petri nets to workflow management, we refer to the
two most recent workshops on workflow management
held in conjunction with the annual International Con-
ference on Application and Theory of Petri Nets [17, 8]
and an elaborate paper on workflow modeling using
Petri nets [3]. Only a few papers in the literature focus
on the verification of workflow process definitions. In
[28], some verification issues have been examined and
the complexity of selected correctness issues has been
identified, but no concrete verification procedures have
been suggested. In [1], [5], and [12], concrete verifica-
tion procedures based on Petri nets have been proposed.
Woflan builds upon the techniques presented in [1, 5].
The technique presented in [12] has been developed for
checking the consistency of transactional workflows in-
cluding temporal constraints. However, the technique
is restricted to acyclic workflows and only gives neces-
sary conditions (i.e., not sufficient conditions) for con-
sistency. In [42], a reduction technique has been pro-
posed. This reduction technique uses a correctness cri-
terion which corresponds to soundness and the class of
workflow processes considered are in essence acyclic
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free-choice P/T nets. Some work on the compositional
verification of workflows, using well-known Petri-net
results such as the refinement rules in [49], can be found
in [5, 6, 51].

As far as we know, only one other tool has been
developed for verifying workflows:FlowMake [41].
FlowMake is a tool based on the reduction technique
described in [42] and can interface with the IBM
MQSeries Workflow product. FlowMake can only
handle acyclic workflows and provides fewer diagnos-
tics than Woflan: Only the reduced workflow graph is
shown.

The work presented in this paper builds on previous
research reported by the authors [1, 5, 10]. The main
contribution of this paper is a complete description of
the latest version of Woflan, the diagnosis process it
supports, and the techniques it is based on. The con-
cept, computation, and application of behavioral error
sequences have not been addressed in previous publica-
tions. Moreover, the experimental results have not been
presented before.

8 Concluding remarks and future
work

Workflow-management technology is rapidly gaining
popularity in the support of business processes. A thor-
ough analysis of workflow processes before their actual
implementation is necessary to guarantee effectiveness
and efficiency. To guide a workflow designer in find-
ing and correcting errors in a workflow process, we de-
veloped a diagnosis process and the accompanying tool
Woflan, both based on Petri-net techniques. We have
evaluated Woflan, version 2.1, in two case studies: one
involving seventeen models of a fairly complex work-
flow designed by students in Protos [36] and one in-
volving a large real-world workflow process designed
in Staffware [48]. A novel analysis technique of be-
havioral error sequences proved to be a useful aid in
diagnosing the workflows. The results are encourag-
ing. They show that the diagnosis process supported
by Woflan is useful and that our approach to workflow-
product-independent verification of workflow processes
is feasible. Nevertheless, we would like to evaluate
Woflan and its analysis techniques in other experiments,
in order to further optimize the diagnosis process.

We are also working on extending the set of work-
flow tools Woflan can interface with. The current
version of Woflan (version 2.1) can import workflow
process definitions from COSA, Staffware, METEOR,
and Protos. On paper, we have also designed trans-
lations from BaanERP/DEM (BaaN), SAP/Workflow
(SAP AG), and ARIS (IDS Prof. Scheer) to Woflan.
The Dynamic Enterprise Modeler (DEM) of BaanERP

is based on a subclass of Petri nets, which means that
the translation is straightforward. SAP/Workflow and
ARIS are both based on event-driven process chains. A
translation of event-driven process chains to WF nets
is described in [4]. In the future, we plan to build the
corresponding interfaces.

Furthermore, we are looking into visualizing
Woflan’s output in a graphical way. The current in-
terface is entirely textual. There are several ways for
displaying the diagnostics in a graphical manner: ei-
ther via diagrams shown directly by Woflan, via dedi-
cated tools such as VIPtool [18], or via an interface in
the workflow tool used to design the workflow process.
The last option is clearly preferable from the viewpoint
of interpreting the diagnostic information provided by
Woflan in terms of the original workflow process def-
inition. However, it also means that the workflow tool
itself has to be extended. Any of the first two options
might be a reasonable compromise between the amount
of effort needed for realizing visual diagnostic informa-
tion and ease of interpretation by workflow designers.

A direction for future research is the use of the
inheritance-preserving transformation rules presented
in [6] for incremental design and verification of work-
flows. Starting from a correct workflow template [35] or
an already verified existing workflow process definition,
these rules allow for safe extensions which preserve the
soundness property. Correctness by design is obviously
preferable over the approach where correctness is veri-
fied only after the design of the complete workflow has
been completed.

As a final remark, note that Woflan can be helpful in
the design and verification of correct workflow process
definitions. However, this does not mean that the entire
workflow is correct. It is still possible that errors are
made in the implementation of the workflow process or
that the process suffers bottlenecks in the performance
due to a poor allocation of resources. To prevent such
kinds of errors, other techniques are needed to comple-
ment Woflan.
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