

Available online at www.sciencedirect.com

ScienceDirect

Procedia Computer Science 00 (2019) 000–000
www.elsevier.com/locate/procedia

1877-0509 © 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the CENTERIS - International Conference on ENTERprise Information Systems /
ProjMAN – International Conference on Project MANagement / HCist - International Conference on Health and Social Care Information
Systems and Technologies

CENTERIS - International Conference on ENTERprise Information Systems / ProjMAN -
International Conference on Project MANagement / HCist - International Conference on Health

and Social Care Information Systems and Technologies

A practitioner's guide to process mining:
Limitations of the directly-follows graph

Wil M.P. van der Aalsta,b*
aProcess and Data Science (PADS), RWTH Aachen University, Aachen, Germany

bFraunhofer Institute for Applied Information Technology, Sankt Augustin, Germany

Abstract

Process mining techniques use event data to show what people, machines, and organizations are really doing. Process mining
provides novel insights that can be used to identify and address performance and compliance problems. In recent years, the adoption
of process mining in practice increased rapidly. It is interesting to see how ideas first developed in open-source tools like ProM,
get transferred to the dozens of available commercial process mining tools. However, these tools still resort to producing Directly-
Follows Graphs (DFGs) based on event data rather than using more sophisticated notations also able to capture concurrency.
Moreover, to tackle complexity, DFGs are seamlessly simplified by removing nodes and edges based on frequency thresholds.
Process-mining practitioners tend to use such simplified DFGs actively. Despite their simplicity, these DFGs may be misleading
and users need to know how these process models are generated before interpreting them. In this paper, we discuss the pitfalls of
using simple DFGs generated by commercial tools. Practitioners conducting a process-mining project need to understand the risks
associated with the (incorrect) use of DFGs and frequency-based simplification. Therefore, we put these risks in the spotlight.

© 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the CENTERIS - International Conference on ENTERprise
Information Systems / ProjMAN – International Conference on Project MANagement / HCist - International Conference on Health
and Social Care Information Systems and Technologies

Keywords: process mining, process discovery, directly-follows graphs, conformance checking

* Corresponding author. Tel.: +49 241 80 21901 E-mail address: wvdaalst@pads.rwth-aachen.de

http://www.sciencedirect.com/science/journal/22107843
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 Wil M.P. van der Aalst/ Procedia Computer Science 00 (2019) 000–000

1. Introduction

Process mining starts from event data, as shown in Table 1. Input for process mining is an event log. An event log
views a process from a particular angle. Each event in the log refers to (1) a particular process instance (called case),
(2) an activity, and (3) a timestamp. There may be additional event attributes referring to resources, people, costs, etc.,
but these are optional. With some effort, such data can be extracted from any information system supporting
operational processes. Process mining uses these event data to answer a variety of process-related questions. Process
mining techniques such as process discovery, conformance checking, model enhancement, and operational support
can be used to improve performance and compliance [1].

 Table 1. Small fragment of a larger event log capturing the Purchase-to-Pay (P2P) process.

case id (here an order) activity timestamp resource costs customer

… … … … … ..

2019-88201 create purchase requisition 25-07-2019:09.15 John €20.20 9950

2019-88201 create purchase order 25-07-2019:09.35 Mary €48.30 9950

2019-88201 approve purchase order 25-07-2019:09.55 Sue €30.70 9950

2019-88202 create purchase requisition 25-07-2019:10.15 John €28.20 9955

2019-88202 create purchase order 25-07-2019:10.25 Mary €29.30 9955

2019-88202 approve purchase order 25-07-2019:10.40 Sue €37.60 9955

2019-88201 receive order confirmation 25-07-2019:11.50 Mary €42.10 9950

2019-88201 receive goods 27-07-2019:09.35 Peter €50.20 9950

2019-88202 receive order confirmation 27-07-2019:09.45 Mary €42.30 9955

2019-88202 receive invoice 28-07-2019:10.10 Sue €44.90 9955

2019-88201 receive invoice 28-07-2019:10.20 Sue €30.80 9950

2019-88201 pay invoice 29-07-2019:11.05 Sue €30.70 9950

2019-88202 receive goods 29-07-2019:11.35 Peter €51.30 9955

2019-88202 pay invoice 29-07-2019:12.15 Sue €29.20 9955

… .. … … … …

Table 1 only shows a small fragment of a larger event log with events related to the so-called Purchase-to-Pay (P2P)

process. The P2P process includes all business activities related to purchase orders, e.g., requesting (requisitioning),
purchasing, receiving, paying for and accounting for goods and services. The first three columns show the mandatory
event attributes: case (i.e., process instance), activity, and timestamp. Additional information such as the resource
performing the activity is optional.

Event data can be used to discover process models automatically. Process models can be expressed using different
formalisms ranging from Directly-Follows Graphs (DFGs) and accepting automata to Petri nets, BPMN diagrams, and
UML activity diagrams. Fig. 1 shows three process models that could have been discovered based on the events in
Table 1.

 Wil M.P. van der Aalst / Procedia Computer Science 00 (2019) 000–000 3

create purchase
requisition

create purchase
order

approve purchase
order

receive order
confirmation

receive goods

pay invoice

receive invoice

create purchase
requisition

create purchase
order

approve purchase
order

receive order
confirmation

receive goods

pay invoice

receive invoice

create purchase
requisition

create purchase
order

approve purchase
order

receive order
confirmation

receive goods

pay invoice

receive invoice

(a) Petri net (b) BPMN model (c) DFG

Fig. 1. Three process models discovered for the Purchase-to-Pay (P2P) process considering only the frequent "happy paths". The Petri net model
(a) and the Business Process Model and Notation (BPMN) model (b) specify the same behavior. The Directly-Follows Graph (DFG) (c) allows

for traces not allowed in the Petri net and BPMN model (e.g., a loop involving the activities receive goods and receive invoice).

The process models in Fig. 1 are very simple since they only consider the mainstream behavior also referred to as
the "happy paths". For real P2P processes of larger organizations, there will be thousands of observed unique traces
(also known as process variants). The frequency distribution of traces in an event log typically follows a power law
where a small fraction of all variants accounts for most of the cases. For example, more than 80 percent of all cases
can be described by less than 20 percent of all process variants (Pareto principle). For such processes, it is easy to
create a simplified process model covering mainstream behavior. However, the cases not covered by such a simplified
model are typically very diverse and account for most of the process variants. These non-mainstream cases are also
likely to cause most of the performance and compliance problems. Conformance checking can be used to check if
reality, as recorded in the event log, conforms to the model and vice versa. The process model may have been made
by hand or learned using process discover (based on the frequent process variants).

For a comprehensive introduction to process mining, we refer to [1]. Process mining extends far beyond process
discovery and conformance checking. For example, it is possible to predict performance and compliance problems
and recommend process interventions. However, these more advanced techniques are out of scope in this paper.

In March 1968, Edsger Dijkstra's letter "Go To Statement Considered Harmful" was published in the
Communications of the ACM [4]. In his letter, Dijkstra criticized the excessive use of the GOTO statement in
programming languages of the day and advocated structured programming instead. Analogously, this paper could have
been called "Directly-Follows Graphs (DFGs) considered harmful" because DFGs are often used and wrongly
interpreted. Currently, there are more than 30 commercial offerings of process mining software (e.g., Celonis, Disco,
ProcessGold, myInvenio, PAFnow, Minit, QPR, Mehrwerk, Puzzledata, LanaLabs, StereoLogic, Everflow,
TimelinePI, Signavio, and Logpickr). They all start from DFGs for discovery. However, as shown in this paper, there
are several possible problems related to the naïve use of DFGs:

• Activities that have a flexible ordering (e.g., due to concurrency) lead to Spaghetti-like DFGs with loops
even when activities are executed at most once.

4 Wil M.P. van der Aalst/ Procedia Computer Science 00 (2019) 000–000

• DFGs can be simplified using frequency-based thresholds. However, this may lead to all kinds of
interpretation problems due to "invisible gaps" in the model.

• Performance information mapped onto DFGs can be misleading, e.g., the average time reported between
two activities is conditional (only the situations where they directly follow each other are considered).

The remainder of this paper is organized as follows. Section 2 shows the dangers of naïvely using Directly-Follows
Graphs (DFGs). This is relevant for practitioners since DFGs are the "de facto standard" in commercial process mining
tools. Section 3 concludes the paper and provides some pointers for further reading.

2. Beyond directly follows graphs

We first introduce Directly-Follows Graphs (DFGs) and show how they can be discovered from event data. Then,
we discuss the problems mentioned in the introduction.

2.1. Creating a Directly-Follows Graph (DFG)

There are many possible process-modeling notations. Fig. 1 shows three examples. Most of the commercial process
mining tools use DFGs as a first means to explore the event data. The basic idea is very simple, but first, we introduce
some terms to explain the construction of a DFG. An 𝑎𝑎-event is an event that corresponds to activity 𝑎𝑎. A trace (also
called process variant) 𝜎𝜎 = 〈𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3, … , 𝑎𝑎𝑛𝑛〉 is a sequence of activities. #𝐿𝐿(𝜎𝜎) is the number of cases in event log
𝐿𝐿 that correspond to trace 𝜎𝜎. Note that many cases may have the same trace. #𝐿𝐿(𝑎𝑎) is the number of 𝑎𝑎-events in event
log 𝐿𝐿. #𝐿𝐿(𝑎𝑎, 𝑏𝑏) is the number of times an 𝑎𝑎-event is directly followed by a 𝑏𝑏-event within the same case. Without loss
of generality, we assume that each case starts with a start event (denoted ►) and end with an end event (denoted ∎).
If such start and end activities do not exist, they can be added to the start and end of each case. Hence, traces (process
variants) are of the form 𝜎𝜎 = 〈►, 𝑎𝑎2, 𝑎𝑎3, … , 𝑎𝑎𝑛𝑛−1,∎〉 where the start and events only appear at the start and end.

A DFG is a graph with nodes that correspond to activities and directed edges that corresponds to directly-follows
relationships. There are three parameters, i.e., 𝜏𝜏𝑣𝑣𝑣𝑣𝑣𝑣 , 𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎 , and 𝜏𝜏𝑑𝑑𝑑𝑑, that define thresholds for the minimal number of
traces for each variant included (based on #𝐿𝐿(𝜎𝜎)), the minimal number of events for each activity included (based on
#𝐿𝐿(𝑎𝑎)), and the minimal number of direct successions for each relation included (based on #𝐿𝐿(𝑎𝑎, 𝑏𝑏)).

1. Input: event log 𝐿𝐿 and parameters 𝜏𝜏𝑣𝑣𝑣𝑣𝑣𝑣 , 𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎 , and 𝜏𝜏𝑑𝑑𝑑𝑑.
2. Remove all cases from 𝐿𝐿 having a trace with a frequency lower than 𝜏𝜏𝑣𝑣𝑣𝑣𝑣𝑣 , i.e., keep all cases with a trace

𝜎𝜎 such that #𝐿𝐿(𝜎𝜎) ≥ 𝜏𝜏𝑣𝑣𝑣𝑣𝑣𝑣. The new event log is 𝐿𝐿′. Note that the number of cases may have be reduced
considerably, but the retained cases remain unchanged.

3. Remove all events from 𝐿𝐿′ corresponding to activities with a frequency lower than 𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎 , i.e., keep events
for which the corresponding activity 𝑎𝑎 meets the requirement #𝐿𝐿′(𝑎𝑎) ≥ 𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎 . The new event log is 𝐿𝐿′′.
Note that the number of cases did not change, but the number of events may be much lower.

4. Add a node for each activity remaining in the filtered event log 𝐿𝐿′′.
5. Connect the nodes that meet the 𝜏𝜏𝑑𝑑𝑑𝑑 threshold, i.e., activities 𝑎𝑎 and 𝑏𝑏 are connected if and only if

#𝐿𝐿′′(𝑎𝑎, 𝑏𝑏) ≥ 𝜏𝜏𝑑𝑑𝑑𝑑.
6. Output the resulting graph. Nodes are decorated with the activity frequency #𝐿𝐿′′(𝑎𝑎) and edges are

decorated with the directly-follows frequency #𝐿𝐿′′(𝑎𝑎, 𝑏𝑏).
Nodes and edges can also be decorated with timing information. Note that an edge connecting activities 𝑎𝑎 and 𝑏𝑏

corresponds to #𝐿𝐿′′(𝑎𝑎, 𝑏𝑏) observations of activity 𝑎𝑎 being followed by activity 𝑏𝑏. It is easy to compute the sum, mean,
median, minimum, maximum, and standard deviation over these #𝐿𝐿′′(𝑎𝑎, 𝑏𝑏) observations.

2.2. Misleading diagnostics

All commercial process-mining tools support the above algorithm (or a variant of it). However, note that for
performance reasons, most tools implement the third step differently and do no create a new event log 𝐿𝐿′′ where low
frequent activities are removed. Instead, edges are filtered on the overall DFG while removing low frequent activities.
This may lead to misleading results. Consider the trace 〈𝑎𝑎, 𝑏𝑏, 𝑐𝑐〉 and assume that that 𝑏𝑏 is a low frequent activity with
#𝐿𝐿(𝑏𝑏) < 𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎 . After removing activity 𝑏𝑏, trace 〈𝑎𝑎, 𝑏𝑏, 𝑐𝑐〉 becomes trace 〈𝑎𝑎, 𝑐𝑐〉 and 𝑎𝑎 is directly followed by 𝑐𝑐. Filtering

 Wil M.P. van der Aalst / Procedia Computer Science 00 (2019) 000–000 5

edges based on the graph will miss that 𝑎𝑎 is directly followed by 𝑐𝑐 after removing 𝑏𝑏. As a result, removed activities
are not shown in the model, but still influence the statistics. Even when 𝜏𝜏𝑑𝑑𝑑𝑑 is set to 0, the frequency of a selected
node may be different from the sum of the frequencies of the input edges and both may be different from the sum of
the frequencies of the output edges.

a (1000)

b (500)

c (1000)

500 (1 day)

500 (10 days)

500 (1 day)

(a) DFG with all activities
showing both frequencies

and times

a (1000)

c (1000)

1000 (6 days)

(f) correct DFG with only
the two most frequent

activities (b was removed)

a (1000)

c (1000)

500 (10 days)

(g) incorrect DFG with only
the two most frequent

activities (b was removed)

(b) DFG with all
activities in Disco

showing frequencies

(d) DFG with all
activities in Celonis

showing frequencies

(c) DFG with all
activities in Disco

showing times

(e) DFG with all
activities in Celonis

showing times

(h) DFG generated by Disco for
only the most frequent activities

and showing frequencies

(i) DFG generated by Disco
for only the most frequent

activities and showing times

Fig. 2. Different DFGs generated for a simple artificial event log 𝐿𝐿 = [〈𝑎𝑎, 𝑏𝑏, 𝑐𝑐〉500, 〈𝑎𝑎, 𝑐𝑐〉500] showing frequencies and times. The example shows
that it is easy to misinterpret DFGs. One needs to understand the way these models are derived from event data to correctly interpret the results.

Let us consider a simple artificial event log 𝐿𝐿 = [〈𝑎𝑎, 𝑏𝑏, 𝑐𝑐〉500, 〈𝑎𝑎, 𝑐𝑐〉500] to illustrate the subtle but important
differences between alternative DFG computations. Event log 𝐿𝐿 has 1000 cases and two variants: 500 cases follow
trace 〈𝑎𝑎, 𝑏𝑏, 𝑐𝑐〉 and 500 cases follow trace 〈𝑎𝑎, 𝑐𝑐〉. The time in-between activities 𝑎𝑎 and 𝑏𝑏 and the time in-between
activities 𝑏𝑏 and 𝑐𝑐 in the first variant is always precisely one day (i.e., two days in total). The time in-between activities
𝑎𝑎 and 𝑐𝑐 in the second variant is always precisely 10 days. Fig. 2 shows various DFGs generated for this event log. Fig.
2(a) shows the DFG with low values for the thresholds 𝜏𝜏𝑣𝑣𝑣𝑣𝑣𝑣 , 𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎, and 𝜏𝜏𝑑𝑑𝑑𝑑. As a result, all variants, all activities, and
all directly-follows relations are included. Fig. 2(b-e) show the corresponding DFGs generated by Disco (from
Fluxicon, Version 2.2.1, www.fluxicon.com) and Celonis (from Celonis, Version 4.4, www.celonis.com) showing
frequencies and mean times. Now assume that 𝜏𝜏𝑎𝑎𝑐𝑐𝑐𝑐 is set to a value in-between 500 and 1000. As a result, activity 𝑏𝑏 is
removed. Applying the algorithm provided above, we obtain the DFG in Fig. 2(f). This DFG correctly shows that all
1000 𝑎𝑎-events are followed by a 𝑏𝑏-event with on average a delay of 6 days. However, when removing activity 𝑏𝑏
without creating a new log without 𝑏𝑏-events we obtain the DFG in Fig. 2(g). This DFG suggests that activity 𝑎𝑎 is not
always followed by activity 𝑐𝑐 (only 50%) and that the delay between both is 10 days. However, activity 𝑎𝑎 is always
followed by activity 𝑐𝑐 and the total flow time is just 6 days. Fig. 2(h-i) show the corresponding DFGs generated by

6 Wil M.P. van der Aalst/ Procedia Computer Science 00 (2019) 000–000

Disco. These DFGs match the misleading DFG in Fig. 2(g). Note that this is not specific for Disco. Most commercial
process mining tools generate the same DFGs. This illustrates that one should be very careful when interpreting DFGs.

send request

pay with credit
card

pay via bank
transfer

confirm
request

send
information

notify about
change

+

+X

X X

X

archive

Fig. 3. Process model used to generate an event log with 10,000 cases.

One could argue that the misleading results in Fig. 2 stem from an incorrect implementation of the DFG algorithm.
However, also correctly generated DFGs have the problem that different interleavings of the same set of activities
automatically leads to loops even when things are executed only once. Consider, for example, the process model shown
in Fig. 3. The process starts with activity send request and ends with activity archive. In-between these two activities
there are three independent parallel branches: (1) a choice between activity pay with credit card and activity pay via
bank transfer, (2) activity confirm request, and (3) a possible loop involving activities send information and notify
about change. We used CPN Tools to simulate the process and generated 10,000 cases following the process in Fig.
3. In total, the event log has 117,172 events and 7 unique activities. The 10,000 cases correspond to 1159 process
variants. The most frequent variant occurs 96 times. 30% of all variants occurred only once. 80% of the cases are
described by 31% of the variants.

(a) DFG generated by Disco (b) DFG generated by Celonis

Fig. 4. DFGs generated by Disco and Celonis without any filtering (i.e., the lowest possible values were used for the thresholds 𝜏𝜏𝑣𝑣𝑣𝑣𝑣𝑣, 𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎,
and 𝜏𝜏𝑑𝑑𝑑𝑑). Apart from layout differences, both tools produce the same process model. The diagrams are not intended to be readable, but aim to

show the many loops. The DFGs are almost fully connected, not showing the underlying process structure.

 Wil M.P. van der Aalst / Procedia Computer Science 00 (2019) 000–000 7

Fig. 4 shows two DFGs created for the event log just described. One DFG was generated by Disco and the other
DFG was generated by Celonis. The two DFGs are identical apart from their layout. Due to the different ways in which
activities can be ordered, the DFG has many edges and these edges form loops also among activities that are executed
at most once. Activity pay with credit card and activity pay via bank transfer form a length-two loop with confirm
request although none of these activities were executed multiple times for the same case. To address the complexity
and remove loops, one is tempted to simplify the DFG by increasing the thresholds 𝜏𝜏𝑣𝑣𝑣𝑣𝑣𝑣 , 𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎 , and 𝜏𝜏𝑑𝑑𝑑𝑑. Increasing the
value for threshold 𝜏𝜏𝑣𝑣𝑣𝑣𝑣𝑣 is quite harmless because it is clear that the resulting process model only applies to the most
frequent variants. However, also in the most frequent process variants activities do not need to occur in a fixed order.
In an attempt to remove the loops one may also increase the value for thresholds 𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎 and 𝜏𝜏𝑑𝑑𝑑𝑑 leading to new problems.

(a) DFG generated by Disco

(b) DFG generated by Celonis

Fig. 5. DFGs generated by Disco and Celonis using the highest possible threshold for 𝜏𝜏𝑑𝑑𝑑𝑑 allowed by the software while retaining all activities
and variants (i.e., the lowest possible values are used for the thresholds 𝜏𝜏𝑣𝑣𝑣𝑣𝑣𝑣 and 𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎).

Fig. 5 shows two additional DFGs generated by Disco and Celonis. To simplify the models as much as possible,
we removed as many edges as allowed by the software. Due to the different implementations of the DFG algorithm,
the two resulting process models are different. Moreover, both are misleading. At first glance, the DFG generated by
Disco (Fig. 5(a)) seems closest to the process model in Fig. 3. However, the connection between confirm request and
notify about change does not make any sense. Also, the routing logic (AND/XOR-split/join) is missing and the
numbers are very misleading. For example, send request is 10,000 times followed by confirm request and not just
2,530 times. The DFG generated by Celonis (Fig. 5(b)) has even more problems. The loops involving the two payment
types are counter-intuitive. Also, it is odd that payment seems to require activity confirm request and activity send
information (whereas in the real process payments often precede these two activities). It is also quite disturbing that
two tools generate two completely different DFGs allowing for contradictory conclusions.

The DFGs in Fig. 5 can also be used to analyze the bottlenecks in the process. However, most of the traces cannot
be replayed on the DFG and the reported times between two activities are conditional. For example, the average time
between send request and confirm request is 3.5 days (set in simulation model), but Disco and Celonis both report 1.5
days (considering only 2,530 of 10,000 cases). Hence, one cannot rely on DFG-based performance diagnostics.

Fig. 6 shows that one can use other representations that do not have the problems just mentioned. The three process
models in Fig. 6 were discovered using three different process discovery techniques implemented in ProM [1]. All
three models are behaviorally equivalent to the original process model that was used to generate the event log.
Comparing Fig. 6 with the DFGs depicted in Fig. 4 and Fig. 5 illustrates the limited expressiveness of DFGs and the
risks of simplifying DFGs using thresholds.

8 Wil M.P. van der Aalst/ Procedia Computer Science 00 (2019) 000–000

(a) C-net generated by ProM’s Heuristic Miner (HM) (b) Petri net generated by ProM’s Alpha Miner (AM)

(c) Process tree generated by ProM’s Inductive Miner (IM)

Fig. 6. Three process models created by three different mining algorithms implemented in ProM (HM, AM, and IM) and using three different
representations (C-nets, Petri nets, and process trees). All three models are behaviorally equivalent to the original process model in Fig. 3.

3. Conclusion

The process mining discipline is maturing. This is not only reflected by the uptake in industry, but also by the
success of the inaugural International Conference on Process Mining (ICPM) in Aachen in June 2019. ICPM 2019
attracted over 400 participants and the number of new scientific papers on process mining is increasing every year.
However, most practitioners are still using very basic approaches generating simple Directly-Follows Graphs (DFGs).
This paper showed that DFGs can be very misleading and that practitioners need to understand the way that process
models are discovered. DFGs are often wrongly interpreted and can be generated in different ways leading to very
different conclusions. Also, bottleneck information may be deceiving, especially after model simplification.

For more information, we refer to [1]. In [2] we also discuss the role of using different abstractions (DFGs being
one of them). In [3] we discuss another topic highly relevant for process mining practitioners: The selection of an
appropriate set of case notions. Often multiple case notions are intertwined. In [5] various practical hints are given to
deal with recurring problems such as data quality.

Acknowledgments

We thank the Alexander von Humboldt (AvH) Stiftung for supporting our research.

References

[1] Aalst, Wil van der. Process mining: Data science in action. Springer-Verlag, Berlin, 2016.
[2] Aalst, Wil van der. Process discovery from event data: Relating models and logs through abstractions. Wiley Interdisciplinary Reviews: Data

Mining and Knowledge Discovery, 8(3) 2018.
[3] Aalst, Wil van der. Object-centric process mining: Dealing with divergence and convergence in event data. Proceedings of the 17th International

Conference on Software Engineering and Formal Methods (SEFM 2019), LNCS, Springer-Verlag, Berlin, 2019.
[4] Dijkstra, Edsger. Go to statement considered harmful. Communications of the ACM, 11(3):147-148, 1968.
[5] Fluxicon. Process mining in practice, http://processminingbook.com, 2018.

http://processminingbook.com/

