
Conformance Checking
over Uncertain Event Data?

Marco Pegoraro[0000−0002−8997−7517], Merih Seran Uysal[0000−0003−1115−6601],
and Wil M.P. van der Aalst[0000−0002−0955−6940]

Process and Data Science Group (PADS)
Department of Computer Science, RWTH Aachen University, Aachen, Germany

{pegoraro,uysal,wvdaalst}@pads.rwth-aachen.de
http://www.pads.rwth-aachen.de/

Abstract. The strong impulse to digitize processes and operations in
companies and enterprises have resulted in the creation and automatic
recording of an increasingly large amount of process data in informa-
tion systems. These are made available in the form of event logs. Process
mining techniques enable the process-centric analysis of data, includ-
ing automatically discovering process models and checking if event data
conform to a given model. In this paper, we analyze the previously un-
explored setting of uncertain event logs. In such event logs uncertainty
is recorded explicitly, i.e., the time, activity and case of an event may
be unclear or imprecise. In this work, we define a taxonomy of uncertain
event logs and models, and we examine the challenges that uncertainty
poses on process discovery and conformance checking. Finally, we show
how upper and lower bounds for conformance can be obtained by aligning
an uncertain trace onto a regular process model.

Keywords: Process Mining · Uncertain Data · Partial Order.

1 Introduction

Over the last decades, the concept of process has become more and more central
in formally describing the activities of businesses, companies and other similar
entities, structured in specific steps and phases. A process is thus defined as a
well-structured set of activities, potentially performed by multiple actors (re-
sources), which contribute to the completion of a specific task or to the achieve-
ment of a specific goal. In this context, a very important notion is the concept of
case, that is, a single instance of a process. For example, in a healthcare process,
a case may be a single hospitalization of a patient, or the patient themself; if the
process belongs to a credit institution, a case may be a loan application from a
customer, and so on. The case notion allows us to define a process as a proce-
dure that defines the steps needed to handle cases from inception to completion.

? We thank the Alexander von Humboldt (AvH) Stiftung for supporting our research
interactions. We acknowledge Elisabetta Benevento for her valuable input. Please do
not print this document unless strictly necessary.

ar
X

iv
:2

00
9.

14
45

2v
2

 [
cs

.A
I]

 2
3

N
ov

 2
02

0

http://www.pads.rwth-aachen.de/

2 Pegoraro et al.

A process model defines such procedure, and can be expressed in a number of
different formalisms (transition systems, Petri nets, BPMN and UML diagrams,
and many more). Consequently, the study and adoption of analysis techniques
specifically customized to deal with process data and process models has enable
the bridging of business administration and data science and the development
of dedicated disciplines like business intelligence and Business Process Manage-
ment (BPM).

The processes that govern the innards of business companies are increas-
ingly supported by software tools. Performing specific activities is both aided
and recorded by Process-Aware Information Systems (PAISs), which support
the definition and management of processes. The information regarding the ex-
ecution of processes can then be extracted from PAISs in the form of an event
log, a database or file containing the digital footprint of the operations carried
out in the context of the execution of a process and recorded as events. Event
logs can vary in form, and contain differently structured information depending
on the information system that enacted data collection in the organization. Al-
though many different event attributes can be recorded, it is typically assumed
that three basic features of an event are available in the log: the time in which
the event occurred, the activity that has been performed, and the case identifier
to which the event belong. This last attribute allows to group events in clusters
belonging to the same case, and these resulting clusters (usually organized in se-
quences sorted by timestamp) are called process traces. The discipline of process
mining is concerned with the automatic analysis of event logs, with the goal of
extracting knowledge regarding e.g. the structure of the process, the conformity
of events to a specific normative process model, the performance of the agents
executing the process, the relationships between groups of actors in the process.

In this paper, we will consider the analysis of a specific class of event logs:
logs that contain uncertain event data. Uncertain events are recordings of exe-
cutions of specific activities in a process which are enclosed with an indication
of uncertainty in the event attributes. Specifically, we consider the case where
the attributes of an event are not recorded as a precise value but as a range or
a set of alternatives.

Uncertain event data are common in practice, but often uncertainty is not
made explicit. The Process Mining Manifesto [5] describes a fundamental prop-
erty of event data as trustworthiness, the assumption that the recorded data can
be considered correct and accurate. In a general sense, uncertainty – as defined
here – is an explicit absence of trustworthiness, with an indication of uncer-
tainty recorded together with the event data. In the taxonomy of event data
proposed in the Manifesto, the logs at the two lower levels of quality frequently
lack trustworthiness, and thus can be uncertain. This encompasses a wide range
of processes, such as event logs of document and product management systems,
error logs of embedded systems, worksheets of service engineers, and any pro-
cess recorded totally or partially on paper. There are many possible causes of
uncertainty:

Conformance Checking over Uncertain Event Data 3

– Incorrectness. In some instances, the uncertainty is simply given by errors
that occurred while recording the data themselves. Faults of the information
system, or human mistakes in a data entry phase can all lead to missing
or altered event data that can be subsequently modeled as uncertain event
data.

– Coarseness. Some information systems have limitations in their way of record-
ing data - often tied to factors like the precision of the data format - such that
the event data can be considered uncertain. A typical example is an informa-
tion system that only records the date, but not the time, of the occurrence of
an event: if two events are recorded in the same day, the order of occurrence
is lost. This is an especially common circumstance in the processes that are,
partially or completely, recorded on paper and then digitalized. Another fac-
tor that can lead to uncertainty in the time of recording is the information
system being overloaded and, thus, delaying the recording of data. This type
of uncertainty can also be generated by the limited sensibility of a sensor.

– Ambiguity. In some cases, the data recorded is not an identifier of a certain
event attribute; in these instances, the data needs to be interpreted, either
automatically or manually, in order to obtain a value for the event attribute.
Uncertainty can arise if the meaning of the data is ambiguous and cannot
be interpreted with precision. Examples include data in the form of images,
text, or video.

These factors cause the presence of implicit uncertainty in the event log. It is
important to note that, in order to be analyzed, these indications of imprecision
or incorrectness have to be translated into explicit uncertainty. Explicit uncer-
tainty is contained directly in the event log in the form of event attributes. It
is possible to think of explicit uncertainty as metadata complementing the in-
formation regarding events. This metadata describes the type and magnitude
of the imprecision affecting some event attributes, which might be part of the
control-flow perspective or an additional data perspective present in the event
log.

Aside from the possible causes, we can individuate other types of uncer-
tain event logs based on the frequency of uncertain data. Uncertainty can be
infrequent, when a specific attribute is only seldomly recorded together with ex-
plicit uncertainty; the uncertainty is rare enough that uncertain events can be
considered outliers. Conversely, frequent uncertain behavior of the attribute is
systematic, pervasive in a high number of traces, and thus not to be considered
an outlier. The uncertainty can be considered part of the process itself. These
concepts are not meant to be formal, and are laid out to distinguish between
logs that are still processable regardless of the uncertainty, and logs where the
uncertainty is too invasive to analyze them with existing process mining tech-
niques.

The diagram in Figure 1 shows an overview of the main elements of process
mining over uncertainty. The schema shows some additional elements with re-
spect to classical process mining: we can see that we can combine raw process
data from information systems (containing implicit uncertainty) with domain

4 Pegoraro et al.

knowledge provided by a process expert to obtain an uncertain event log, which
contains explicit uncertainty. The data in an uncertain event log can be ab-
stracted in a graph representation, which enables the inspection of its causes.
Lastly, the graph representations also allows to perform the tasks of process
discovery and conformance checking on uncertain event data.

Agents

Process

Domain
knowledge

Raw data

Uncertain
event log

Graph
representation

Process model

Records

Abstracts

Process
discovery

Conformance
checking

Fig. 1. The overall schema for process mining over uncertain event data.

In this paper, we propose a taxonomy of the different types of explicit un-
certainty in process mining, together with a formal, mathematical formulation.
As an example of practical application, we will consider the case of conformance
checking [14], and we will apply it to uncertain data by assessing what are the
upper and lower bounds on the conformance score for possible values of the
attributes in an uncertain trace.

The main drivers behind this work is to provide the means to treat uncer-
tainty as a relevant part of a process; thus, we aim not to filter it out but to model
and explain it. In conclusion, there are two novel aspects regarding uncertain
data that we intend to address in this work. The first novelty is the explicitness
of uncertainty : we work with the underlying assumption that the actual value of
the uncertain attribute, while not directly provided, is described formally. This is
the case when meta-information about the uncertainty in the attribute is avail-
able, either deduced from the features of the information system(s) that record
the logs or included in the event log itself. Note that, as opposed to all previous
work on the topic, the fact that uncertainty is explicit in the data means that
the concept of uncertain behavior is completely separated from the concept of
infrequent behavior. The second novelty is the explicit modeling of uncertainty :

Conformance Checking over Uncertain Event Data 5

we consider uncertainty part of the process. Instead of filtering or cleaning the
log we introduce the uncertainty perspective in process mining by extending the
currently available techniques to incorporate it.

The rest of this paper is organized as follows. Section 2 proposes a taxon-
omy of the different possible types of uncertain process data. Section 3 con-
tains the formal definitions needed to manage uncertainty. Section 4 presents
the main contribution of this paper, a framework able to describe an array of
types and classifications of uncertain behavior. Section 5 describes a practical
application of process mining over uncertain event data, the case of conformance
checking through alignments. Section 6 shows experimental results on comput-
ing conformance checking scores for synthetic uncertain data, as well as a case
of application on real-life data. Section 7 discusses previous and related work on
the management of uncertain data and on the topic of conformance checking.
Finally, Section 8 concludes the paper and discusses future work.

2 A Taxonomy of Uncertain Event Data

The goal of this section of the paper is to propose a categorization of the different
types of uncertainty that can appear in process mining. In process management,
a central concept is the distinction between the data perspective (the event log)
and the behavioral perspective (the process model). The first one is a static
representation of process instances, the second summarizes the behavior of a
process. Both can be extended with a concept of explicit uncertainty: this concept
also implies an extension of the process mining techniques that have currently
been implemented.

In this paper, we will focus on uncertainty in event data, rather than applying
the concept of uncertainty to models. Specifically, we will consider computing
the conformance score of uncertain process data on classical models, extending
the approach shown in [25]. An application of process discovery in the setting of
uncertain event data have been presented in [26].

We can individuate two different notions of uncertainty:

– Strong uncertainty : the possible values for the attributes are known, but the
probability that the attribute will assume a certain instantiation is unknown
or unobservable.

– Weak uncertainty : both the possible values of an attribute and their respec-
tive probabilities are known.

In the case of a discrete attribute, the strong notion of uncertainty consists
on a set of possible values assumed by the attribute. In this case, the probability
for each possible value is unknown. Vice-versa, in the weak uncertainty scenario
we also have a discrete probability distribution defined on that set of values. In
the case of a continuous attribute, the strong notion of uncertainty can be repre-
sented with an interval for the variable. Notice that an interval does not indicate
a uniform distribution; there is no information on the likelihood of values in it.
Vice-versa, in the weak uncertainty scenario we also have a probability density

6 Pegoraro et al.

function defined on a certain interval. Figure 2 summarizes these concepts. This
leads to very simple representations of explicit uncertainty.

Fig. 2. The four different types of uncertainty.

In this paper, we consider only the control flow and time perspective of a
process – namely, the attributes of the events that allow us to discover a process
model. These are the unique identifier of a process instance (case ID), the times-
tamp (often represented by the distance from a fixed origin point, e.g. the Unix
Epoch), and the activity identifier of an event. Case IDs and activities are values
chosen from a finite set of possible values; they are discrete variables. Times-
tamps, instead, are represented by numbers and thus are continuous variables.

We will also describe an additional type of uncertainty, which lays on the
event level rather than the attribute level:

– Indeterminate event : the event may have not taken place even though it
was recorded in the event log. Indeterminate events are indicated with a ?
symbol, while determinate (regular) events are marked with a ! symbol.

Examples of strongly and weakly uncertain traces are shown in Tables 1 and 2
respectively. Additionally, we present a time diagram of the trace in Table 1:
this representation shows the time relationship between events in the trace in
absolute scale. This diagram is shown in Figure 3

Lastly, we need to put forward an additional assumption which is important
for our formalization and analysis. The probabilities related to uncertain events
can in principle be dependent, since they are part of the same process where
agents interact with the subject of a specific case, as well as with one another.

Conformance Checking over Uncertain Event Data 7

Table 1. An example of a strongly uncertain trace. For sake of clarity, the timestamp
field only reports dates.

Case ID Timestamp Activity Indet. event

{ID327, ID412} 2011-12-05 A !

ID327 2011-12-07 {B, C, D} !

ID327 [2011-12-06, 2011-12-10] D ?

ID327 2011-12-09 {A, C} !

{ID327, ID412, ID573} 2011-12-11 E ?

Table 2. An example of a weakly uncertain trace. For sake of clarity, the timestamp
field only reports dates.

Case ID Timestamp Activity Indet. event

{ID313:0.9, ID370:0.1} 2011-12-05 A !

ID313 2011-12-07 {B:0.7, C:0.3} !

ID313 N (2011-12-08, 2) D ?:0.5

ID313 2011-12-09 {A:0.2, C:0.8} !

{ID313:0.4, ID370:0.6} 2011-12-11 E ?:0.7

06-12-2011 00:00:00

07-12-2011 00:00:00

08-12-2011 00:00:00

09-12-2011 00:00:00

10-12-2011 00:00:00

11-12-2011 00:00:00

A

B, C, D

D

A, C

E

Fig. 3. Time diagram of the trace in Table 1. This diagram shows the time information
of an uncertain trace in an absolute scale. Note that some types of uncertainty (namely,
indeterminate events and uncertainty on case IDs) are not depicted.

Toward the analysis presented in this paper, our assumption is that probabilities
are independent. This enables a clearer and simpler formalization; we reserve to

8 Pegoraro et al.

examine the case where indeed there is dependency between probabilities in
future work.

The taxonomy presented in this section is summarized in Table 3. This table
encodes all types of uncertainty illustrated here. Through this taxonomy we can
indicate the types of uncertainty that might affect an uncertain event log.

Table 3. Summary of the types of uncertainty that can affect a log over the attributes
of its events. The last column provides an encoding for each type of uncertainty.

Attribute Attribute type Uncertainty type Encoding

Event
(indeterminacy)

Discrete
Weak [E]W
Strong [E]S

Case Discrete
Weak [C]W
Strong [C]S

Activity Discrete
Weak [A]W
Strong [A]S

Timestamp Continuous
Weak [T]W
Strong [T]S

Other attribute
Discrete

Weak [ATD]W
Strong [ATD]S

Continuous
Weak [ATC]W
Strong [ATC]S

More types of uncertainty can be combined to described an uncertain event
log. For example, an event log with strong uncertainty on events, activities and
timestamps would be an [E, A, T]S-type log. An uncertain log can also be charac-
terized by different types of uncertainty on different attributes: a log with strong
uncertainty on events and weak uncertainty on activities is a [E]S[A]W-type log.

In the next section, we will describe these different types of uncertainty in
a mathematical framework that will, in turn, enable process mining analyses on
uncertain event data.

3 Preliminaries

Let us introduce some preliminary definitions in order to describe uncertainty
in process mining in a formal way. These definitions will provide the means to
represent the behavior contained in uncertain data, and enable process mining
tasks such as process discovery and conformance checking.

3.1 Basic Definitions

Firstly, we will define some basic mathematical structures.

Definition 1 (Power Set). The power set of a set A is the set of all possible
subsets of A, and is denoted with P(A). PNE(A) denotes the set of all the non-
empty subsets of A: PNE(A) = P(A) \ {∅}.

Conformance Checking over Uncertain Event Data 9

Definition 2 (Multiset). A multiset is an extension of the concept of set that
keeps track of the cardinality of each element. B(A) is the set of all multisets
over some set A. Multisets are denoted with square brackets, e.g. b1 = [] (the
empty multiset), b2 = [a, a, b], b3 = [a, b, c], b4 = [a, b, c, a, a, b] are all multisets
over A = {a, b, c}. In multiset the order of representation of the elements is
irrelevant, and they can also be denoted with the cardinality of their elements, e.g.
b4 = [a, b, c, a, a, b] = [a3, b2, c]. We denote with b(x) the cardinality of element
x ∈ A in b, e.g. b4(a) = 3, b4(c) = 1, and b4(d) = 0.

We can extend to multiset standard set operators such as membership (e.g.
a ∈ b2 and c /∈ b2), union (e.g. b2] b3 = b4), difference (e.g. b4 \ b3 = b2) and
total cardinality (e.g. |b4| = 6).

Definition 3 (Sequence, Subsequence and Permutation). Given a set X,
a finite sequence over X of length n is a function s ∈ X∗ : {1, . . . , n} → X, and
it is written as s = 〈s1, s2, . . . , sn〉. We denote with 〈 〉 the empty sequence, the
sequence with no elements and of length 0. Over the sequence s we define |s| = n,
s[i] = si and x ∈ s ⇔ ∃1≤i≤n s = si. The concatenation between two sequences
is denoted with 〈s1, s2, . . . , sn〉 · 〈s′1, s′2, . . . , s′m〉 = 〈s1, s2, . . . , sn, s′1, s′2, . . . , s′m〉.
Given two sequences s = 〈s1, s2, . . . , sn〉 and s′ = 〈s′1, s′2, . . . , s′m〉, s′ is a sub-
sequence of s if and only if there exists a sequence of strictly increasing natural
numbers 〈i1, i2, . . . , im〉 such that ∀1≤j≤m sij = s′j. We indicate this with s′ ⊆ s.
A permutation of the set X is a sequence xS that contains all elements of X
without duplicates: xS ∈ X, X ∈ xS , and for all 1 ≤ i ≤ |xS | and for all
1 ≤ j ≤ |xS |, xS [i] = xS [j] → i = j. We denote with SX all such permutations
of set X.

Definition 4 (Sequence Projection). Let X be a set and Q ⊆ X one of its
subsets.�Q : X∗ → Q∗ is the sequence projection function and is defined recur-
sively: 〈 〉�Q= 〈 〉 and for σ ∈ X∗ and x ∈ X:

(〈x〉 · σ)�Q=

{
σ�Q if x 6∈ Q
〈x〉 · σ�Q if x ∈ Q

For example, 〈y, z, y〉�{x,y}= 〈y, y〉.

Definition 5 (Applying Functions to Sequences). Let f : X 6→ Y be a
partial function. f can be applied to sequences of X using the following recursive
definition: f(〈 〉) = 〈 〉 and for σ ∈ X∗ and x ∈ X:

f(〈x〉 · σ) =

{
f(σ) if x 6∈ dom(f)

〈f(x)〉 · f(σ) if x ∈ dom(f)

Next, so as to manage the possible different orders between events in a trace
with uncertain timestamps, we introduce formalisms to denote strict partial
orders.

10 Pegoraro et al.

Definition 6 (Transitive Relation and Correct Evaluation Order). Let
X be a set of objects and R be a binary relation R ⊆ X×X. R is transitive if and
only if for all x, x′, x′′ ∈ X we have that (x, x′) ∈ R∧(x′, x′′) ∈ R⇒ (x, x′′) ∈ R.
A correct evaluation order is a permutation s ∈ SX of the elements of the set X
such that for all 1 ≤ i < j ≤ |s| we have that (s[i], s[j]) ∈ R.

Definition 7 (Strict Partial Order). Let S be a set of objects. Let s, s′ ∈ S.
A strict partial order ≺ over S is a binary relation that satisfies the following
properties:

– Irreflexivity: s ≺ s is false.
– Transitivity: see Definition 6.
– Antisymmetry: s ≺ s′ implies that s′ ≺ s is false. Implied by irreflexivity and

transitivity [19].

Definition 8 (Directed Graph). A directed graph G is a tuple (V,E) where
V is the set of vertices and E ⊆ V × V is the set of directed edges. The set UG
is the graph universe. A path in a directed graph G = (V,E) is a sequence of
vertices p ∈ V such that for all 1 < i < |p| − 1 we have that (pi, pi+1) ∈ E. We
denote with PG the set of all such possible paths over the graph G. Given two
vertices v, v′ ∈ V , we denote with pG(v, v′) the set of all paths beginning in v and
ending in v′: pG(v, v′) = {p ∈ PG | p[1] = v∧p[|p|] = v′}. v and v′ are connected

(and v′ is reachable from v), denoted by v
G7→ v′, if and only if there exists a path

between them in G: pG(v, v′) 6= ∅. Conversely, v
G

67→ v′ ⇔ pG(v, v′) = ∅. We omit
the superscript G if it is clear from the context. A directed graph G is acyclic if
there exists no path p ∈ PG satisfying p[1] = p[|p|].

Definition 9 (Topological Sorting). Let G = (V,E) ∈ UG be an acyclic
directed graph. A topological sorting [22] oG ∈ SV is a permutation of the vertices
of G such that for all 1 ≤ i < j ≤ |oG| we have that oG[j] 67→ oG[i]. We denote
with OG ⊆ SV all such possible topological sortings over G.

Definition 10 (Transitive Reduction). A transitive reduction of a graph
G = (V,E) ∈ UG [9] is the function ρ : UG → UG such that for the graph ρ(G) =
(V,Er) we have Er ⊆ E and every pair of vertices connected in ρ(G) is not
connected by any other path: for all (v, v′) ∈ Er, pG(v, v′) = {〈v, v′〉}. ρ(G)
is the graph with the minimal number of edges that maintain the reachability
between edges of G. The transitive reduction of a directed acyclic graph always
exists and is unique [9].

3.2 Process Mining Definitions

Let us now define the basic artifacts needed to perform process mining.

Definition 11 (Universes). Let UI be the set of all the event identifiers. Let
UC be the set of all the case ID identifiers. Let UA be the set of all the activity
identifiers. Let UT be the totally ordered set of all the timestamp identifiers.

Conformance Checking over Uncertain Event Data 11

Definition 12 (Events and event logs). Let us denote with EC = UI ×UC ×
UA × UT the universe of certain events. A certain event log is a set of events
LC ⊆ EC such that every event identifier in LC is unique.

Definition 13 (Simple certain traces and logs). Let {(e1, c1, a1, t1), (e2, c2,
a2, t2), . . . , (en, cn, an, tn)} ⊆ LC be a set of certain events such that c1 = c2 =
· · · = cn and t1 < t2 < · · · < tn. A simple certain trace is the sequence of
activities 〈a1, a2, . . . , an〉 ∈ UA∗ induced by such a set of events. T = UA∗ denotes
the universe of certain traces. L ∈ B(T) is a simple certain log. We will drop
the qualifier “simple” if it is clear from the context.

As a preliminary application of process mining over uncertain event data, we
will consider conformance checking. Starting from an event log and a process
model, conformance checking verifies if the event data in the log conforms to the
model, providing a diagnostic of the deviations. Conformance checking serves
many purposes, such as checking if process instances follow a specific normative
model, assessing if a certain execution log has been generated from a specific
model, or verifying the quality of a process discovery technique.

The conformance checking algorithm that we are applying in this paper
is based on alignments. Introduced by Adriansyah [6], conformance checking
through alignments finds deviations between a trace and a Petri net model of
a process by creating a correspondence between the sequence of activities exe-
cuted in the trace and the firing of the transitions in the Petri net. The following
definitions are partially from [2].

Definition 14 (Petri Net). A Petri net is a tuple N = (P, T, F) with P the
set of places, T the set of transitions, P ∩ T = ∅, and F ⊆ (P × T) ∪ (T × P)
the flow relation. A Petri net N = (P, T, F) defines a directed graph (V,E) with
vertices V = P ∪ T and edges E = F . A marking M ∈ B(P) is a multiset of
places.

A marking defines the state of a Petri net, and indicates how many tokens

each place contains. For any x ∈ P ∪ T ,
N• x = {x′ | (x′, x) ∈ F} denotes the set

of input nodes and x
N• = {x′ | (x, x′) ∈ F} denotes the set of output nodes. We

omit the superscript N if it is clear from the context.
A transition t ∈ T is enabled in marking M of net N , denoted as (N,M)[t〉,

if each of its input places •t contains at least one token. An enabled transition
t may fire, i.e., one token is removed from each of the input places •t and one
token is produced for each of the output places t•. Formally: M ′ = (M \ •t)] t•
is the marking resulting from firing enabled transition t in marking M of Petri
net N . (N,M)[t〉(N,M ′) denotes that t is enabled in M and firing t results in
marking M ′.

Let σT = 〈t1, t2, . . . , tn〉 ∈ T ∗ be a sequence of transitions. (N,M)[σT 〉(N,M ′)
denotes that there is a set of markings M0,M1, . . . ,Mn such that M0 = M ,
Mn = M ′, and (N,Mi)[ti+1〉(N,Mi+1) for 0 ≤ i < n. A marking M ′ is reachable
from M if there exists a σT such that (N,M)[σT 〉(N,M ′).

12 Pegoraro et al.

Definition 15 (Labeled Petri Net). A labeled Petri net N = (P, T, F, l) is
a Petri net (P, T, F) with labeling function l : T 6→ UA where UA is some uni-
verse of activity labels. Let σ = 〈a1, a2, . . . , an〉 ∈ UA∗ be a sequence of activi-
ties. (N,M)[σ B (N,M ′) if and only if there is a sequence σT ∈ T ∗ such that
(N,M)[σT 〉(N,M ′) and l(σT) = σ.

If t /∈ dom(l), it is called invisible. To indicate invisible transitions, we use
the placeholder symbol τ /∈ UA; for any invisible transition t we define l(t) = τ .
An occurrence of visible transition t ∈ dom(l) corresponds to observable activity
l(t).

Definition 16 (System Net). A system net is a triplet SN = (N,Minit ,Mfinal)
where N = (P, T, F, l) is a labeled Petri net, Minit ∈ B(P) is the initial marking,
and Mfinal ∈ B(P) is the final marking. USN is the universe of system nets. Over
a system net we define the following:

– Tv(SN) = dom(l) is the set of visible transitions in SN ,
– Av(SN) = rng(l) is the set of corresponding observable activities in SN ,
– Tuv (SN) = {t ∈ Tv(SN) | ∀t′∈Tv(SN) l(t) = l(t′) ⇒ t = t′} is the set of

unique visible transitions in SN (i.e., there are no other transitions having
the same visible label),

– Auv (SN) = {l(t) | t ∈ Tuv (SN)} is the set of corresponding unique observable
activities in SN ,

– φ(SN) = {σ | (N,Minit)[σB (N,Mfinal)} is the set of visible traces starting
in Minit and ending in Mfinal , and

– φf (SN) = {σT | (N,Minit)[σT 〉(N,Mfinal)} is the corresponding set of com-
plete firing sequences.

Figure 4 shows a system net with initial and final markings Minit = [start]
and Mfinal = [end]. Given a system net, φ(SN) is the set of all possible visible
activity sequences, i.e., the labels of complete firing sequences starting in Minit

and ending in Mfinal projected onto the set of observable activities. Given the
set of activity sequences φ(SN) obtainable via complete firing sequences on a
certain system net, we can define a perfectly fitting event log as a set of traces
which activity projection is contained in φ(SN).

3.3 Conformance Checking Definitions

The task of conformance checking consist in comparing an event log and a model,
in order to assess the deviations of event data with respect to the expected
behavior of the process. This is usually done to verify if the process conforms to
a de iure model designed by process experts, which describes how the process
should ideally run. We will now describe a conformance checking technique, in
order to extend it to the uncertain setting.

Definition 17 (Perfectly Fitting Log). Let L ∈ B(T) be a certain event log
and let SN = (N,Minit ,Mfinal) ∈ USN be a system net. L is perfectly fitting SN
if and only if {σ ∈ L} ⊆ φ(SN).

Conformance Checking over Uncertain Event Data 13

The definitions described so far allow us to build alignments in order to
compute the fitness of trace on a certain model. An alignment is a correspondence
between a sequence of activities (extracted from the trace) and a sequence of
transitions with the relative labels (fired in the model while replaying the trace).
The first sequence indicates the “moves in the log” and the second indicates the
“moves in the model”. If a move in the model cannot be mimicked by a move in
the log, then a “�” (“no move”) appears in the top row; conversely, if a move
in the log cannot be mimicked by a move in the model, then a “�” (“no move”)
appears in the bottom row.“no moves” not corresponding to invisible transitions
point to deviations between the model and the log. A move is a pair (x, (y, t))
where the first element refers to the log and the second element to the model.
A “�” in the first element of the pair indicates a move on the model, in the
second element it indicates a move on the log.

Definition 18 (Legal Moves). Let L ∈ B(T) be a certain event log, let A ⊆
UA be the set of activity labels appearing in the event log, and let SN = (N,Minit ,
Mfinal) ∈ USN be a system net with N = (P, T, F, l). ALM = {(x, (x, t)) | x ∈
A ∧ t ∈ T ∧ l(t) = x} ∪ {(�, (x, t)) | t ∈ T ∧ l(t) = x} ∪ {(x,�) | x ∈ A} is
the set of legal moves.

An alignment is a sequence of legal moves such that after removing all “�”
symbols, the top row corresponds to a trace in the log and the bottom row
corresponds to a firing sequence starting in Minit and ending in Mfinal . Notice
that if t /∈ dom(l) is an invisible transition, the activation of t is indicated by a
“�” on the log in correspondence of t and the placeholder label τ . Hence, the
middle row corresponds to a visible path when ignoring the τ steps. Figure 4
shows a system net with two examples of alignments, σ1 of a fitting trace and
σ2 of a non-fitting trace.

Definition 19 (Alignment). Let σ ∈ L be a certain trace and σT ∈ φf (SN)
a complete firing sequence of system net SN . An alignment of σ and σT is a
sequence γ ∈ ALM ∗ such that the projection on the first element (ignoring “�”)
yields σ and the projection on the last element (ignoring “�” and transition
labels) yields σT .

A trace and a model can have several possible alignments. In order to select
the most appropriate one, we introduce a function that associates a cost to
undesired moves - the ones associated with deviations.

Definition 20 (Cost of Alignment). Cost function δ : ALM → IN assigns
costs to legal moves. The cost of an alignment γ ∈ ALM ∗ is the sum of all costs:
δ(γ) =

∑
(x,y)∈γ δ(x, y).

Moves where log and model agree have no costs, i.e., δ(x, (x, t)) = 0 for all
x ∈ A. Moves on model only have no costs if the transition is invisible, i.e.,
δ(�, (τ, t)) = 0 if l(t) = τ . δ(�, (x, t)) > 0 is the cost when the model makes
an “x move” without a corresponding move of the log (assuming l(t) = x 6= τ).

14 Pegoraro et al.

δ(x,�) > 0 is the cost for an “x move” only on the log. In this paper, we
often use a standard cost function δS that assigns unit costs: δS(x, (x, t)) = 0,
δS(�, (τ, t)) = 0, and δS(�, (x, t)) = δS(x,�) = 1 for all x ∈ A.

Definition 21 (Optimal Alignment). Let L ∈ B(T) be a certain event log
and let SN ∈ USN be a system net with φ(SN) 6= ∅.

– For σ ∈ L, we define: Γσ,SN = {γ ∈ ALM ∗ | ∃σT∈φf (SN) γ is an alignment of
σ and σT }.

– An alignment γ ∈ Γσ,SN is optimal for trace σ ∈ L and system net SN if
for any γ′ ∈ Γσ,SN : δ(γ′) ≥ δ(γ).

– λSN : T → ALM
∗ is a deterministic mapping that assigns any trace σ to an

optimal alignment, i.e., λSN (σ) ∈ Γσ,SN and λSN (σ) is optimal.
– costs(L,SN , δ) =

∑
σ∈L δ(λSN (σ)) are the misalignment costs of the whole

event log.

σ ∈ L is a (perfectly) fitting trace for the system net SN if and only if δ(λSN (σ)) =
0. L is a (perfectly) fitting event log for the system net SN if and only if
costs(L,SN , δ) = 0.

Fig. 4. Example of alignments on a system net. The alignment γ1 shows that the
trace 〈a, d, b, e, h〉 is perfectly fitting the net. The alignment γ2 shows that the trace
〈a, b, d, b, e, h〉 is misaligned with the net in one point, indicated by “�”. Partially
from [3].

The technique to compute the optimal alignment [6] is as follows. Firstly,
it creates an event net, a sequence-structured system net able to replay only
the trace to align. The transitions in the event net have labels corresponding to

Conformance Checking over Uncertain Event Data 15

the activities in the trace. Then, a product net should be computed. A product
net is the union of the event net and the model together, with synchronous
transitions added. These additional transitions are paired with transitions in
the event net and in the process model that have the same label. Then, they
are connected with arcs from the input places and to the output places of those
transitions. The product net is able to represent moves on log, moves on model
and synchronous moves by means of firing transitions. In fact, the transitions of
the event net correspond to moves on log, the transitions of the process model
correspond to moves on model, the added synchronous transitions correspond
to synchronous moves. The union of the initial and final markings of the event
net and the process model constitute respectively the initial and final marking
of the product net, while every complete firing sequence on the product net
corresponds to a possible alignment. Lastly, the product net is translated to a
state space, and a state space exploration via the A∗ algorithm is performed in
order to find the complete firing sequence that yields the lowest cost.

Let us define formally the construction of the event net and the product net:

Definition 22 (Event Net). Let σ ∈ T be a certain trace. The event net
en : T → USN of σ is a system net en(σ) = (P, T, F, l,Minit,Mfinal) such that:

– P = {pi | 1 ≤ i ≤ |σ|+ 1},
– T = {ti | 1 ≤ i ≤ |σ|},
– F =

⋃
1≤i≤|σ|{(pi, ti), (ti, pi+1)}

– l : T → UA such that for all 1 ≤ i ≤ |σ|, l(ti) = σ[i],
– Minit = [p1],
– Mfinal = [p|P |].

Note that the labeling function l of an event net is a total function: no invis-
ible transitions are contained in an event net, since for each event we generate a
transition labeled with the corresponding activity label.

Definition 23 (Product of two Petri Nets [36]). Let S1 = (P1, T1, F1, l1,
Minit1 ,Mfinal1) and S2 = (P2, T2, F2, l2,Minit2 ,Mfinal2) be two system nets.
The product net of S1 and S2 is the system net S = S1⊗S2 = (P, T, F, l,Minit,
Mfinal) such that:

– P = P1 ∪ P2,
– T ⊆ (T1 ∪ {�} × T2 ∪ {�}) such that T = {(t1,�) | t1 ∈ T1} ∪ {(�, t2) |
t2 ∈ T2} ∪ {(t1, t2) ∈ (T1 × T2) | l1(t1) = l2(t2) 6= τ},

– F ⊆ (P × T) ∪ (T × P) such that
F = {(p1, (t1,�)) | p1 ∈ P1 ∧ t1 ∈ T1 ∧ (p1, t1) ∈ F1} ∪
{((t1,�), p1) | t1 ∈ T1 ∧ p1 ∈ P1 ∧ (t1, p1) ∈ F1} ∪
{(p2, (t2,�)) | p2 ∈ P2 ∧ t2 ∈ T2 ∧ (p2, t2) ∈ F2} ∪
{((t2,�), p2) | t2 ∈ T2 ∧ p2 ∈ P2 ∧ (t2, p2) ∈ F2} ∪
{(p1, (t1, t2)) | p1 ∈ P1 ∧ (t1, t2) ∈ T ∩ (T1 × T2) ∧ (p1, t1) ∈ F1} ∪
{(p2, (t1, t2)) | p2 ∈ P2 ∧ (t1, t2) ∈ T ∩ (T1 × T2) ∧ (p2, t2) ∈ F2} ∪
{((t1, t2), p1) | p1 ∈ P1 ∧ (t1, t2) ∈ T ∩ (T1 × T2) ∧ (t1, p1) ∈ F1} ∪
{((t1, t2), p2) | p2 ∈ P2 ∧ (t1, t2) ∈ T ∩ (T1 × T2) ∧ (t2, p2) ∈ F2}

16 Pegoraro et al.

– l : T → UA such that for all (t1, t2) ∈ T , l((t1, t2)) = l1(t1) if t2 =�,
l((t1, t2)) = l2(t2) if t1 =�, and l((t1, t2)) = l1(t1) otherwise,

– Minit = Minit1]Minit2 ,
– Mfinal = Mfinal1]Mfinal2 .

4 Uncertainty in Process Mining

In this section, we will extend the definitions of event, trace, and event log to
the uncertain case. Let us first define the identifiers necessary to express event
indeterminacy.

Definition 24 (Determinate and indeterminate event qualifiers). Let
UO = {!, ?}, where the “!” symbol denotes determinate events, and the “?”
symbol denotes indeterminate events.

For strong uncertainty, attribute values are replaced by a set of possible
values. In the case of weak uncertainty, a continuous function f provides the
probability density for the combinations of attribute values in the uncertain
event. Notice that the total mass of probabilities described by f might be lower
than 1: this is so we can aptly represent the case of an indeterminate event.

Definition 25 (Uncertain events). Let ES = UI × PNE(UC) × PNE(UA) ×
PNE(UT)×UO denote the universe of strongly uncertain events. EW = {(ei, f) ∈
UI × ((UC ×UA ×UT) 6→ [0, 1]) |

∑
(c,a,t)∈dom(f) f(c, a, t) ≤ 1} is the universe of

weakly uncertain events1.

The probability of a weakly uncertain event of having been recorded but not
happening in reality is equal to 1−

∑
(c,a,t)∈dom(f) f(c, a, t).

Now that the definitions of strongly and weakly uncertain events are given,
let us aggregate them in uncertain event logs.

Definition 26 (Uncertain event logs). A strongly uncertain event log is a
set of events LS ⊆ ES such that every event identifier in LS is unique. A weakly
uncertain event log is a set of events LW ⊆ EW such that every event identifier
in LW is unique.

For a strongly uncertain event e = (ei, cs, as, ts, o) ∈ LS we define the fol-
lowing projection functions: πLS

c (e) = cs ∈ PNE(UC), πLS
a (e) = as ∈ PNE(UA),

πLS
t (e) = ts ∈ PNE(UT) and πLS

o (e) = o ∈ UO.

A weakly uncertain event log LW ⊆ EW has a corresponding strongly un-
certain event log LW = LS ⊆ ES such that LS = {(ei, cs, as, ts, o) ∈ ES |
∃(ei′,f)∈LW

ei = ei
′ ∧

cs = {c ∈ UC | ∃a,t (c, a, t) ∈ dom(f) ∧ f(c, a, t) > 0} ∧
as = {a ∈ UA | ∃c,t (c, a, t) ∈ dom(f) ∧ f(c, a, t) > 0} ∧
1 We assume here that dom(f) is finite. It is easy to generalize to the infinite case by

employing an integral.

Conformance Checking over Uncertain Event Data 17

ts = {t ∈ UT | ∃c,a (c, a, t) ∈ dom(f) ∧ f(c, a, t) > 0} ∧
(o = !⇔

∑
(c,a,t)∈dom(f) f(c, a, t) = 1) ∧

(o = ?⇔
∑

(c,a,t)∈dom(f) f(c, a, t) < 1)}.
Notice that representing the density of probability for combinations of values

of case ID, time and activity with a single function f is an approximation that
assumes probabilistic independence between event attributes.

Definition 27 (Realization of an event log). LC ⊆ EC is a realization of
LS ⊆ ES if and only if:

– For all (ei, c, a, t) ∈ LC there is a distinct (ei
′, cs, as, ts, o) ∈ LS such that

ei = ei
′, c ∈ cs, a ∈ as and t ∈ ts;

– For all (ei, cs, as, ts, o) ∈ LS with o = ! there is a distinct (ei
′, c, a, t) ∈ LC

such that ei = ei
′, c ∈ cs, a ∈ as and t ∈ ts.

RL(LS) is the set of all such realizations of the log LS.

Note that these definitions allow us to transform a weakly uncertain log into
a strongly uncertain one, and a strongly uncertain one in a set of certain logs.

In this paper we focus on three types of uncertainty:

– Strong uncertainty on the activity;

– Strong uncertainty on the timestamp;

– Strong uncertainty on indeterminate events.

All three can happen concurrently. Following the taxonomy presented in Sec-
tion 2, this setting corresponds to a [E, A, T]S-type log. It is worth noting that
the specific case of uncertainty on the case ID causes a problem; since an event
can have many possible case IDs, it can belong to different traces. In data format
where the events are already aggregated into traces, such as the very common
XES standard, this means that the information related to a trace can be non-
local to the trace itself, but can be stored in some other points of the log. We
will focus on the problem of uncertainty on the case ID attribute in future work.

Firstly, we will lay down some simplified notation in order to model the
problem at hand in a more compact way.

Definition 28 (Simple uncertain events, traces and logs). Let ei ∈ UI ,
as ∈ PNE(UA), tmin ∈ UT , tmax ∈ UT and o ∈ UO such that tmin < tmax.
eSU = (ei, as, tmin, tmax, o) is a simple uncertain event. Let us denote with ESU ⊆
UI × PNE(UA) × UT × UT × UO the universe of all simple uncertain events.
σU ⊆ ESU is a simple uncertain trace if all the event identifiers in σU are unique.
TU denotes the universe of simple uncertain traces. LU ∈ P(TU) is a simple
uncertain log if all the event identifiers in LU are unique. For σU ∈ LU and
eSU = (ei, as, tmin, tmax, o) ∈ σU we define the following projection functions:
πLU
a (eSU) = as ∈ PNE(UA), πLU

tmin
(eSU) = tmin ∈ UT , πLU

tmax
(eSU) = tmax ∈ UT and

πLU
o (eSU) = o ∈ UO.

18 Pegoraro et al.

In a simple uncertain event eSU = (ei, as, tmin, tmax, o), the true activity label
of the event is one of the labels contained in the set as, the true timestamp is one
of the values contained in the closed interval [tmin, tmax], while the indeterminacy
symbol o indicates whether the event has certainly occurred, or if it is possible
that it did not occur even though it has been recorded in an event log.

Simple uncertain events are best illustrated with a running example. Let us
consider the following process instance, a simplified version of anomalies that
are actually occurring in processes of the healthcare domain. An elderly patient
enrolls in a clinical trial for an experimental treatment against myeloproliferative
neoplasms, a class of blood cancers. The enrollment in this trial includes a lab
exam and a visit with a specialist; then, the treatment can begin. The lab exam,
performed on the 8th of July, finds a low level of platelets in the blood of the
patient, a condition known as thrombocytopenia (TP). At the visit, on the 10th
of May, the patient self-reports an episode of night sweats on the night of the
5th of July, prior the lab exam: the medic notes this, but also hypothesized
that it might not be a symptom, since it can be caused not by the condition
but by external factors (such as very warm weather). The medic also reads the
medical records of the patient and sees that, shortly prior to the lab exam, the
patient was undergoing a heparine treatment (a blood-thinning medication) to
prevent blood clots. The thrombocytopenia found with the lab exam can then be
primary (caused by the blood cancer) or secondary (caused by other factors, such
as a drug). Finally, the medic finds an enlargement of the spleen in the patient
(splenomegaly). It is unclear when this condition has developed: it might have
appeared in any moment prior to that point. The medic decides to admit the
patient in the clinical trial, starting 12th of July. These events are collected and
recorded in the trace shown in Table 4 in the information system of the hospital.
For readability, the timestamp field only indicates the day of the month. This
trace includes all types of uncertainty contained in a [E, A, T]S-type log, the
setting we are considering for the application of conformance checking.

Table 4. The uncertain trace of an instance of healthcare process used as a running
example. For sake of clarity, we have further simplified the notation in the timestamps
column, by showing only the day of the month.

Case ID Event ID Timestamp Activity Indet. event

ID192 e1 5 NightSweats ?

ID192 e2 8 {PrTP, SecTP} !

ID192 e3 [4, 10] Splenomeg !

ID192 e4 12 Adm !

In the notation of Definition 28, the trace σU in Table 4 is denoted as:

σU = {(e1, {NightSweats}, 5, 5, ?), (e2, {PrTP,SecTP}, 8, 8, !),
(e3, {Splenomeg}, 4, 10, !), (e4, {Adm}, 12, 12, !)}.

Conformance Checking over Uncertain Event Data 19

We can also draw the time diagram of this example of uncertain trace, which
can be seen in Figure 5.

05-07-2011 00:00:00

06-07-2011 00:00:00

07-07-2011 00:00:00

08-07-2011 00:00:00

09-07-2011 00:00:00

10-07-2011 00:00:00

11-07-2011 00:00:00

12-07-2011 00:00:00

NightSweat

PrTP, SecTP

Splenomeg

Adm

Fig. 5. Time diagram of the trace in Table 4.

In the reminder of the paper, when defining simple uncertain traces and
events, we always assume that these belong to a corresponding simple uncertain
log. Thus, for simplicity, we will omit the qualifier “LU” when denoting the
corresponding projection functions.

These simplified traces and logs can be related to the more general framework
described in the previous section through the following transformation: let LS ⊆
ES be a strongly uncertain log and let g : UI 6→ UC be a function mapping event
identifiers onto cases such that dom(g) = {ei | (ei, cs, as, ts, u) ∈ LS} and for
all (ei, cs, as, ts, u) ∈ LS , g(ei) ∈ cs. Thus, for c ∈ rng(g), g−1(c) = {ei ∈
UI | g(ei) = c}. The simple uncertain event log defined by g on LS is given as
LU = {{(ei, πLS

a (e),min(πLS
t (e)),max(πLS

t (e)), πLS
o (e)) | ei ∈ g−1(c)∧πLS

i (e) =
ei} | c ∈ rng(g)}.

In order to more easily work with timestamps in simple uncertain events, let
us frame their time relationship as a strict partial order.

Definition 29 (Strict partial order over simple uncertain events). Let
e, e′ ∈ ESU be two simple uncertain events. ≺E is a strict partial order defined on
the universe of strongly uncertain events ESU as:

e ≺E e′ ⇔ πtmax
(e) < πtmin

(e′)

20 Pegoraro et al.

Proposition 1 (≺E is a strict partial order).

Proof. All properties characterizing strict partial orders are fulfilled by ≺E . For
all e, e′, e′′ ∈ ESU we have:

– Irreflexivity: this property is always verified, since πtmax(e) < πtmin(e) is
false (see Definition 25).

– Transitivity: since πtmax(e) < πtmin(e′) ≤ πtmax(e′) < πtmin(e′′) and UT
is totally ordered, we have that πtmax(e) < πtmin(e′′) and this property is
always verified.

ut

Lemma 1 (Uncomparable events share possible timestamp values). Let
e, e′ ∈ ESU be two strongly uncertain events. e and e′ are uncomparable with
respect to the strict partial order ≺E (i.e., neither e ≺E e′ nor e′ ≺E e are true)
if and only if e and e′ share some possible values of their timestamp.

Proof.
(⇒) From Definition 29, it follows that two events e, e′ ∈ ESU are comparable
if and only if either πtmax

(e) < πtmin
(e′) or πtmax

(e′) < πtmin
(e). If both are

false, then πtmin
(e′) ≤ πtmax

(e) and πtmin
(e) ≤ πtmax

(e′). If we assume that
πtmin(e) ≤ πtmin(e′) then πtmin(e) ≤ πtmin(e′) ≤ πtmax(e), while if πtmin(e) >
πtmin(e′) then πtmin(e′) < πtmin(e) ≤ πtmax(e′). In both cases, there are values
common to both uncertain timestamps.

(⇐) If the two events share timestamp values, it follows that at least one of the
extremes of one event is encompassed by the extremes of the other. Assume that e
encompasses at least one of the extremes of e′ (the other case is symmetric): then
either πtmin

(e) ≤ πtmin
(e′) ≤ πtmax

(e) or πtmin
(e) ≤ πtmax

(e′) ≤ πtmax
(e). In the

first case, considering that UT is totally ordered and that πtmin(e′) ≤ πtmax(e′),
we have that both πtmin(e′) ≤ πtmax(e) and πtmin(e) ≤ πtmax(e′) are true, and e
and e′ are uncomparable. The second case is proved analogously. ut

Definition 30 (Realizations of simple uncertain traces). Let σU ∈ TU be
a simple uncertain trace. An order-realization σO ∈ SσU

is a permutation of the
events in σU such that for all 1 ≤ i < j ≤ |σO| we have that σO[j] ⊀E σO[i], i.e.,
σO is a correct evaluation order for σU over ≺E , and the (total) order in which
events are sorted in σO is a linear extension of the strict partial order ≺E . We
denote with RO(σU) the set of all such order-realizations of the trace σU .

Given an order-realization σO ∈ RO(σU), the sequence σ = 〈a1, a2, . . . , an〉 ∈
UA∗ is a realization of σO if there exists a total function f : {1, 2, . . . , n} → σO
such that:

– For all 1 ≤ i ≤ n, ai ∈ πa(f(i)),

– 〈f(1), f(2), . . . , f(n)〉 is a subsequence of σO,

– For all e ∈ σO with πo(σO) = ! there exists 1 ≤ i ≤ n such that f(i) = e.

Conformance Checking over Uncertain Event Data 21

We denote with R′(σO) ⊆ UA∗ the set of all such realizations of the order-
realization σO. We denote with R(σU) ⊆ UA∗ the union of the realizations
obtainable from all the order-realizations of σU : R(σU) =

⋃
σO∈RO(σU)R′(σO).

Let us see some examples of realizations of uncertain traces. Let σU be the un-
certain trace shown in Table 4. We then have that σU has three order-realizations:

RO(σU) = {〈e3, e1, e2, e4〉, 〈e1, e3, e2, e4〉, 〈e1, e2, e3, e4〉}

We can then compute the realizations of one of the order-realizations of σU :

R′(〈e1, e2, e3, e4〉) = {〈NightSweats,PrTP,Splenomeg,Adm〉,
〈NightSweats,SecTP,Splenomeg,Adm〉,

〈PrTP,Splenomeg,Adm〉,
〈SecTP,Splenomeg,Adm〉}

Simple uncertain traces and logs carry less information than their certain
counterparts. Nevertheless, it is possible to extend existing process mining algo-
rithms to extract the information in a simple uncertain log to design a process
model that describes its possible behavior, or verify that it conforms to a given
normative model.

5 Conformance Checking on Uncertain Event Data

Depending on the possible values for as, tmin, tmax, and u there are multiple
possible realizations of a trace. This means that, given a model, a simple uncer-
tain trace could be fitting for certain realizations, but non-fitting for others. The
question we are interested in answering is: given a simple uncertain trace and
a Petri net process model, is it possible to find an upper and lower bound for
the conformance score? Usually we are interested in the optimal alignments (the
ones with the minimal cost). However, we are now interested in the minimum
and maximum cost of alignments in the realization set of a simple uncertain
trace.

Definition 31 (Upper and Lower Bound on Alignment Cost for a Trace).
Let σU ∈ TU be a simple uncertain trace, and let SN ∈ USN be a system net.
The upper bound for the alignment cost is a function δmax : TU → N such that
δmax(σU) = maxσ∈R(σU) δ(λSN (σ)). The lower bound for the alignment cost is
a function δmin : TU → N such that δmin(σU) = minσ∈R(σU) δ(λSN (σ)).

A simple way to compute the upper and lower bounds for the cost of any
uncertain trace is using a brute-force approach: enumerating the possible real-
izations of the trace, then searching for the costs of optimal alignments for all
the realizations, and picking the minimum and maximum as bounds. We now
present a technique which improves the performance of calculating the lower
bound for conformance cost with respect to a brute-force method.

22 Pegoraro et al.

We will produce a version of the event net that embeds the possible behaviors
of the uncertain trace. We define a behavior net, a Petri net that can replay all
and only the realizations of an uncertain trace. As an intermediate step in order
to obtain such a Petri net, we first build the behavior graph, a dependency graph
representing the uncertain trace. This graph contains a vertex for each uncertain
event in the trace and contains an edge between two vertices if the corresponding
uncertain events happen one directly after the other in at least one realization
of the uncertain trace.

Definition 32 (Behavior Graph). Let σU ∈ TU be a simple uncertain trace.
A behavior graph β : TU → UG is the transitive reduction of a directed graph
ρ(G), where G = (V,E) ∈ UG is defined as:

– V = {e ∈ σU},
– E = {(v, w) | v, w ∈ V ∧ v ≺E w}.

The behavior graph provides a structured representation of the uncertainty
on the timestamp: when a specific vertex has two or more outbound edges,
the events corresponding to the destination vertices can occur in any order,
concurrently with each other. We can see the result on the example trace in
Figures 6 and 7.

NightSweats

e1

{PrTP, SecTP}

e2

Splenomeg

e3

Adm

e4

Fig. 6. The graph of the trace in Table 4
before applying the transitive reduction.
All the nodes in the graph are pairwise
connected based on precedence relation-
ships; pairs of nodes for which the order is
unknown are not connected. The dashed
node represents an indeterminate event.

NightSweats

e1

{PrTP, SecTP}

e2

Splenomeg

e3

Adm

e4

Fig. 7. The behavior graph of the trace
in Table 4. The transitive reduction re-
moved the arc between e1 and e4, since
they are reachable through e2. This graph
has a minimal number of arcs while con-
serving the same reachability relationship
between nodes.

Theorem 1 (Correctness of behavior graphs). Let σU ∈ TU be a simple
uncertain trace and bg(σU) = (V,E) be its behavior graph. The behavior graph
bg(σU) is acyclic; additionally, the set of all topological sortings of the behavior
graph corresponds to the set of order-realizations of σU : Obg(σU) = RO(σU).

Proof. From Proposition 1 we know that ≺E is a strict partial order. Let p =
〈p1, p2, . . . , pm〉 ∈ Pbg be a path in the behavior graph: if p was a cycle, that

Conformance Checking over Uncertain Event Data 23

means that according to Definition 32 we have p1 ≺E p2 ≺E · · · ≺E pm ≺E p1.
Since ≺E is transitive, we have that p1 ≺E pm and pm ≺E p1, which would violate
the antisymmetry property in Definition 7 and would contradict Proposition 1.
Thus the behavior graph is necessarily acyclic.

The result Obg(σU) = RO(σU) immediately follows from Definitions 9, 30
and 32, and from Proposition 1. ut

Lemma 2 (Semantics of behavior graphs). Events connected by paths in a
given behavior graph have a precedence relationship; events not connected by any
paths share possible values for their timestamps and thus might have happened
in any order.

Proof. Immediately follows from Proposition 1, Theorem 1, and from Lemma 1.
ut

We then obtain a behavior net by replacing every vertex in the behavior
graph with one or more transitions in an XOR configuration, each representing
an activity contained in the πa set of the corresponding uncertain event. Every
edge of the behavior graph becomes a place in the behavior net, connected from
and to the transitions corresponding to, respectively, its source and target nodes
in the graph.

Definition 33 (Behavior Net). Let σU ∈ TU be a simple uncertain trace,
and let bg(σU) = (V,E) be the corresponding behavior graph. A behavior net
bn : TU → USN is a system net bn(σU) = (P, T, F, l,Minit,Mfinal) such that:

– P = E ∪
{(start, v) | v ∈ V ∧ @v′∈V (v′, v) ∈ E} ∪
{(v,end) | v ∈ V ∧ @v′∈V (v, v′) ∈ E},

– T = {(v, a) | v ∈ V ∧ a ∈ πa(v)} ∪ {(v, τ) | v ∈ V ∧ πo(v) = ?},
– F = {((start, v1), (v2, a)) ∈ E × T | v1 = v2} ∪
{((v1, a), (v2, w)) ∈ T × E | v1 = v2} ∪
{((v, w1), (w2, a)) ∈ E × T | w1 = w2} ∪
{((v1, a), (v2,end) ∈ T × E | v1 = v2},

– l = {((v, a), a) | (v, a) ∈ T ∧ a 6= τ},
– Minit = [(start, v) ∈ P | v ∈ V],
– Mfinal = [(v,end) ∈ P | v ∈ V].

In Figure 8, we can see the behavior net corresponding to the uncertain trace
in Table 4. It is important to note that every set of edges in the behavior graph
with the same source vertex generates an AND split in the behavior net, and
a set of edges with the same destination vertex generates an AND join. At the
same time, the transitions whose labels correspond to different possible activities
in an uncertain event will appear in an XOR construct inside the behavior net.

Thus, in the behavior net, every set of events which timestamps share some
possible values will be represented by transitions inside an AND construct, and
will then be able to execute in any order allowed by their uncertain timestamp
attributes. In the same fashion, an event with uncertainty on the activity will

24 Pegoraro et al.

(start, e1)

NightSweats

(e1, NightSweats)

NightSweats

(e1, τ)

(e1, e2)

PrTP

(e2, PrTP)

SecTP

(e2, SecTP)

(e2, e4)

(start, e3) (e3, e4)

Splenomeg

(e3, Splenomeg)

Adm

(e4, Adm) (e4, end)

Fig. 8. The behavior net corresponding to the uncertain trace in Table 4. The labels
show the objects involved in the construction of Definition 33. The initial marking is
displayed; the gray “token slot” represents the final marking.

be represented by a number of transitions in an XOR construct. This allows to
replay any possible choice for the activity attribute. It follows that, by construc-
tion, for a certain simple uncertain trace σU we have that φ(bn(σU)) = R(σU).

We can use the behavior net of an uncertain trace σU in lieu of the event net
to compute alignments with a model SN ∈ USN ; the search algorithm returns
an optimal alignment, a sequence of moves (x, (y, t)) with x ∈ UA, y ∈ UA and
t transition of the model SN . After removing all “�” symbols, the sequence of
first elements of the moves will describe a complete firing sequence σbn of the
behavior net. Since σbn is complete, σbn ∈ φ(bn(σU)) and, thus, σbn ∈ R(σU). It
follows that σbn is a realization of σU , and the search algorithm ensures that σbn
is a realization with optimal conformance cost for the model SN : δ(λSN (σbn)) =
minσ∈R(σU) λSN (σ) = δmin(σU).

Theorem 2 (Correctness of behavior nets). Let σU ∈ TU be a simple un-
certain trace and let bg(σU) = (V,E) be its behavior graph. The corresponding
behavior net bn(σU) = (P, T, F, l,Minit,Mfinal) can replay all and only the re-
alizations of σU : φ(bn(σU)) = R(σU).

Proof. Let (v, v′) ∈ E be an edge of the behavior graph, which also defines a
place in the behavior net: (v, v′) = pv,v′ ∈ P . Let us denote with Tv the set of
transitions in the behavior net generated from the vertex v: Tv = {(v′, a) ∈ T |
v′ = v}.

(⊆) Let σ = 〈a1, a2, . . . , an〉 ∈ φ(bn(σU)) be any certain trace accepted by
bn(σU). Let σT = 〈t1, t2, . . . , tn〉 ∈ φf (bn(σU)) be a complete firing sequence
of bn(σU) yielding σ, i.e., l(σT) �UA= σ. Let 〈v1, v2, . . . , vn〉 be a sequence of
vertices in bg(σU) such that t1 = (v1, a1), t2 = (v2, a2), . . . , tn = (vn, an) and
t1 ∈ Tv1 , t2 ∈ Tv2 , . . . , tn ∈ Tvn . Let V be the set of all such sequences; by the
flow relation in Definition 33 there must exist a sequence σO = 〈v1, v2, . . . , vn〉 ∈
V such that ((v1, a1), (v1, v2)) ∈ F, ((v1, v2), (v2, a2)) ∈ F, ((v2, a2), (v2, v3)) ∈

Conformance Checking over Uncertain Event Data 25

F, ((v2, v3), (v3, a3)) ∈ F, . . . , ((vn−1, an−1), (vn−1, vn)) ∈ F, ((vn−1, vn), (vn, an))
∈ F . This implies that (v1, v2) ∈ E, (v2, v3) ∈ E, . . . , (vn−1, vn) ∈ E. From Def-
inition 32 we then have that v1 �E v2 �E · · · �E vn. Furthermore, since there
exist a Tv for all v ∈ V and for all 1 ≤ i ≤ n exactly one transition ti ∈ Tvi
has to fire to complete the firing sequence, we have that for all v ∈ V , v ∈ σO
and is unique. Thus, σO ∈ SV is a permutation of the vertices in bg(σU). Be-
cause all vertices in σO are sorted by a linear extension of ≺E , we also have
that σO ∈ Obg(σU) is a topological sorting of the vertices in bg(σU). By Defi-
nition 32, we then have that σO is an order-realization of σU : σO ∈ RO(σU).
Since, by construction, l(ti) ∈ πa(vi) if πo(vi) = ! and l(ti) ∈ πa(vi) ∪ {τ} if
πo(vi) = ?, we have that σ = l(σT)�UA∈ R(σU). Since this construction is valid
for any σ ∈ φ(bn(σU)), every complete firing sequence of the behavior net is a
realization of σU : φ(bn(σU)) ⊆ R(σU).

(⊇) Let σO ∈ RO(σU) be any order-realization of σU , and let n = |σU |. Since
σO[1] ≺E σO[2] ≺E · · · ≺E σO[n] (by Definition 30), there exists a path p ∈
Pbg(σU) such that p = 〈v1, v2, . . . , vn〉 = 〈σO[1], σO[2], . . . , σO[n]〉 (by Theorem 1).
Let p1,2 = (v1, v2), p2,3 = (v2, v3), and so on. Let t1 ∈ Tv1 , t2 ∈ Tv2 , . . . , tn ∈ Tvn
and let σT = 〈t1, t2, . . . , tn〉. By the construction in Definition 33, in bn(σU) = N
we have that

(N,Minit)[t1〉(N,M1,2)[t2〉(N,M2,3)[t3〉, . . . , [tn−1〉(N,Mn−1,n)[tn〉(N,Mfinal)

where:

M1,2 = (Mstart \ [(start , v1)])] [p1,2]

M2,3 = (M1,2 \ [p1,2])] [p2,3]

. . .

Mn−1,n = (Mn−2,n−1 \ [pn−2,n−1])] [pn−1,n]

Mfinal = (Mn−1,n \ [pn−1,n])] [(vn, end)]

This construction implies that (N,Minit)[σT B (N,Mfinal) and therefore σT ∈
φf (bn(σU)).

The definition of the labeling function in the behavior net is such that, for all
1 ≤ i ≤ n, we have that (vi, a) ∈ Tvi ⇔ a ∈ πa(vi). By Definition 30, the labeling
of the sequence 〈t1, t2, . . . , tn〉 projected on the universe of activities is then a
realization of the uncertain trace σU obtained from the possible activity labels
of σO: l(σT)�UA= R(σU). Since this construction is valid for any σO ∈ RO(σU),
the behavior net can replay any realization of σU : R(σU) ⊆ φ(bn(σU)). ut

Theorem 3 (Correctness of uncertain alignments). Let σU ∈ TU be a
simple uncertain trace and let SN ∈ USN be a system net. Computing an align-
ment using the product net between SN and the behavior net bn(σU) yields the
alignment with the lowest cost among all realizations of σU : δ(λSN (σbn)) =
minσ∈R(σU) λSN (σ) = δmin(σU).

26 Pegoraro et al.

Proof. Recall from Definition 21 that λSN : T → ALM
∗ is a deterministic map-

ping that assigns any trace σ to an optimal alignment. Adriansyah [6] details
how to compute such a function λSN through a state-based A∗ search over a
state space defined by the reachable markings of the product net SN ⊗ en(σ)
between a reference system net SN and the event net a certain trace σ ∈ T . As
per Definition 19, this search retrieves an alignment which is optimal with re-
spect to a certain cost function δ and, ignoring “�”, is composed by a complete
firing sequence of the system net σT ∈ φf (SN) and the only complete firing
sequence of the event net en(σ), which corresponds to σ by construction. Given
a system net SN ∈ USN , an uncertain trace σU ∈ TU and its respective behavior
net bn(σU), the same search algorithm for λSN over SN ⊗ bn(σU) yields an op-
timal alignment containing a complete firing sequence for the reference system
net σT ∈ φf (SN) and a complete firing sequence for the behavior net of the un-
certain trace σ ∈ φ(bn(σU)). Since λSN minimizes the cost and σ ∈ R(σU) is a
valid realization of σ due to Theorem 2, the resulting alignment has the minimal
cost possible over all the possible realizations of the uncertain trace. ut

6 Experiments

The framework for computing conformance bounds for uncertain event data
illustrated in this paper raises some research questions that need to be addressed
in a practical and empirical manner. The questions that we aim to answer are:

– Q1 : how do conformance bounds behave, when computed on uncertain data?
– Q2 : what is the impact of different deviating behavior and different types of

uncertain behaviors on the conformance score of uncertain event logs?
– Q3 : what is the impact on the efficiency of computing uncertain alignments

utilizing the behavior net as opposed to the baseline method of enumerating
and aligning all realizations?

– Q4 : what is the impact of computing uncertain alignments utilizing the
behavior net on different types of uncertain behavior?

– Q5 : is it possible to apply uncertain alignments to real-life data to obtain a
best- and worst-case scenario for the execution of process instances?

The technique to compute conformance for strongly uncertain traces and to
create the behavior net hereby described has been implemented in the Python
programming language, thanks to the facilities for log importing, model cre-
ation and manipulation, and alignments provided by the library PM4Py [12].
Uncertainty has been represented in the XES standard through meta-attributes
and constructs such as lists, such that any XES importer can read an uncertain
log file. The algorithm was designed to be fully compatible with any event log
in the XES format (both including and not including uncertainty); the meta-
attributes for uncertainty were designed to be backward compatible with other
process mining algorithms – meta-attributes describing the possible values for
an uncertain activity or the interval of an uncertain timestamp can also specify
a “fallback value” which other process mining software will read as (certain)
activity or timestamp value.

Conformance Checking over Uncertain Event Data 27

6.1 Qualitative and Quantitative Experiments on Synthetic Data

The first four research questions listed above have been addressed by tests on
synthetic uncertain event logs. To this end, we implemented the following soft-
ware components necessary to the experiments:

– a noise generator, to introduce deviations in a controlled way in an event log.
This component allows to alter the activity label, swap the order of events or
add redundant events to an event log with a given probability or frequency.

– an uncertainty generator, to alter the XES attributes present in the log by
appending additional meta-information which is then interpreted as uncer-
tainty. The component introduces uncertainty information in an event log,
with the possibility to add any of the strongly uncertain attributes described
in the taxonomy of Section 2. This also allows for exporting the generated
uncertain event log through the XES exporter of the PM4Py library.

– a number of smaller extensions to PM4Py functionalities, also useful for
other process mining applications. Examples are the generation of all possible
process variants (language) of a PM4Py Petri net, and a memoized version
of alignments, which allows to trade off space in memory in order to speed
up the computation of the conformance of an event log and a model.

In order to answer to Q1 and Q2, we set up an experiment with the goal
to inspect the quality of bounds for conformance scores as increasingly more
uncertainty is added to an event log. We ran the tests on synthetic event logs
where we added simulated uncertainty. In this way, we can control the amounts
and types of uncertainty in event data.

Every iteration of this experiment is as follows:

1. We generate a random Petri net with a fixed dimension (n = 10 transitions)
through the ProM plugin “Generate block-structured stochastic Petri nets”.

2. We play out an event log consisting of 100 traces generated from the Petri
net.

3. We randomly alter the activity label of a specific percentage da of events,
swapping it with another label sampled from the universe of activities.

4. We randomly swap a specific percentage ds of events with their successor. For
each event sampled for the swap, we randomly select either the predecessor
or the successor (with 50% probability each), and we swap the timestamps
of the two events, effectively inverting their order. We skip the selection of
the swap direction if we select the first event in a trace (which is swapped
with the second) or the last event in a trace (which swaps with the second
to last).

5. We randomly duplicate a specific percentage dd of events. For each event
selected for duplication, we create a new event in the trace with identical case
ID and activity label, and with timestamp equal to the average between the
timestamp of this selected event and the timestamp of the following event.
If we select the last event in a trace for duplication, we simply add a fixed
delta to the timestamp of the duplicate.

28 Pegoraro et al.

6. We randomly introduce uncertainty in activity labels for a specific percentage
ua of events. Each event selected for uncertainty on activity labels receives
one additional activity label, different from the one it already have, sampled
from the universe of activity labels.

7. We randomly introduce uncertainty in timestamps for a specific percentage
ut of events. For each event sampled for timestamp uncertainty we randomly
choose either the predecessor or the successor (with 50% probability each);
the timestamp of the sampled event becomes an interval which extremes are
the original timestamp and the timestamp of the predecessor or successor,
effectively causing them to mutually overlap. In case the sampled event is
the first (resp., last) event in a trace, we skip the selection of the predecessor
or successor and we directly consider the successor (resp., predecessor) for
the extremes of the uncertain timestamp.

8. We randomly transform a specific percentage ui of events in indeterminate
events. To these sampled events, we add the “?” attribute, in order to mark
them as indeterminate.

9. We measure upper and lower bounds for conformance score with increasing
percentage p of uncertainty.

All sampling operations mentioned in the previous list are performed over a
uniform probability distribution over the possible values.

In terms of amount of deviation to be considered in each configuration, we
aimed at recreating a situation where there is significant deviating behavior
with respect to the normative model; for each kind of deviation considered, we
introduced anomalous behavior in 30% of events. Thus, we consider four different
settings for the addition of deviating behavior to events logs: Activity labels =
{da = 30%, ds = 0%, dd = 0%}, Swaps = {da = 0%, ds = 30%, dd = 0%}, Extra
events = {da = 0%, ds = 0%, dd = 30%} and All = {da = 30%, ds = 30%, dd =
30%}.

We consider four different settings for the addition of uncertain behavior to
events logs: Activities = {ua = p, ut = 0%, ui = 0%}, Timestamps = {ua =
0%, ut = p, ui = 0%}, Indeterminate events = {ua = 0%, ut = 0%, ui = p}
and All = {ua = p, ut = p, ui = p}. We test all four different configurations of
deviation against each of the four configurations of uncertainty, with increasing
values of p, for a total of 16 separate experiments.

Figure 9 summarizes our findings. The plots on this figure represent the
average of 10 runs as described above.

We can observe that, in general, all plots show the expected behavior: the
upper and lower bound for conformance coincide at percentage of uncertain
events p = 0 for all experiments, to then diverge while p increases. A number
of additional observations can be made looking at individual configurations for
deviation or uncertainty, or at specific scatter plots. When only uncertainty on
activity labels is added to the event log, we see a deterioration of the upper
bound for conformance cost, but the lower bound does not improve – in fact, it
is essentially constant.

Conformance Checking over Uncertain Event Data 29

40
0

50
0

60
0

70
0

80
0

Activitylabels

99
.8

5
98

.8
3

98
.5

4
98

.2
3

10
8.

35

11
6.

95

12
5.

48

13
3.

97

99
.8

3
99

.7
3

99
.6

5
99

.1
7

10
4.

49
11

0.
29

11
5.

13
12

0.
93

97
.8

7
95

.0
7

92
.8

8
90

.9
9

10
4.

93
10

8.
89

11
3.

63
11

8.
7

96
.6

4
93

.8
9

90
.9

6
87

.1
2

11
7.

8

13
2.

8

14
7.

08

15
9.

5

30
0

40
0

50
0

60
0

70
0

Swaps

99
.8

99
.8

9
99

.7
8

99
.6

4

11
3.

06

12
6.

29

13
9.

37

15
2.

82

97
.3

7
92

.5
1

89
.9

3
87

.1
1

10
8.

64
11

4.
32

12
3.

52
13

1.
82

96
.5

6
93

.3
4

89
.9

9
87

.1
9

10
6.

8
11

3.
7

12
0.

3
12

6.
79

92
.7

9
85

.8
2

80
.8

2
75

.8
7

12
7.

71

14
9.

8

17
5.

42

19
6.

36

20
0

30
0

40
0

50
0

60
0

70
0

Extraevents

10
0.

0
10

0.
0

10
0.

0
10

0.
0

11
8.

15

13
8.

28

15
9.

56
17

7.
06

10
0.

0
10

0.
0

10
0.

0
10

0.
0

11
5.

7
13

0.
39

14
4.

08
15

9.
78

91
.6

8
84

.8
77

.0
6

69
.3

9

10
8.

79
11

8.
87

12
7.

4
13

6.
51

92
.1

1
83

.8
3

77
.3

1
70

.7
2

14
0.

66

18
0.

48

22
1.

68

25
5.

38

0.
00

0
0.

02
5

0
.0

50
0.

07
5

0.
10

0
0.

12
5

0.
1
50

A
ct

iv
it

ie
s

80
0

90
0

1
00

0

1
10

0

All

99
.2

1
98

.8
1

98
.1

4
97

.4
6

10
2.

24
10

4.
44

10
6.

92
10

9.
61

0.
00

0
0.

0
2
5

0.
05

0
0
.0

7
5

0
.1

00
0.

1
2
5

0.
15

0

T
im

es
ta

m
p

s

99
.3

1
98

.7
1

98
.2

1
97

.1
8

10
1.

21
10

2.
28

10
3.

37
10

4.
31

0.
0
00

0.
02

5
0
.0

5
0

0
.0

75
0.

10
0

0.
12

5
0
.1

50

In
d

et
er

m
in

at
e

ev
en

ts

96
.3

8
92

.8
9

89
.3

5
86

.0
8

10
1.

2
10

2.
55

10
3.

62
10

5.
16

0.
00

0
0
.0

25
0
.0

5
0

0.
0
75

0
.1

0
0

0
.1

2
5

0
.1

50

A
ll

94
.7

3

90
.5

7

85
.9

5

80
.2

8

10
4.

55

10
9.

86
11

3.
24

11
7.

49

U
nc

er
ta

in
ty

(t
yp

e
an

d
p

er
ce

nt
ag

e)

Conformancecost

F
ig
.
9
.

U
p
p

er
(r

ed
,

d
a
sh

ed
)

a
n
d

lo
w

er
(b

lu
e,

d
o
tt

ed
)

b
o
u
n
d

fo
r

co
n
fo

rm
a
n
ce

co
st

fo
r

sy
n
th

et
ic

ev
en

t
lo

g
s

w
it

h
in

cr
ea

si
n
g

u
n
ce

rt
a
in

ty
.

E
v
er

y
p
lo

t
sh

ow
s

a
d
iff

er
en

t
co

n
fi
g
u
ra

ti
o
n

o
f

d
ev

ia
ti

o
n

a
d
d
ed

to
th

e
lo

g
a
n
d

ty
p

es
o
f

u
n
ce

rt
a
in

ty
si

m
u
la

te
d

in
th

e
ev

en
t

d
a
ta

.
T

h
e

x
-a

x
is

sh
ow

s
th

e
p

er
ce

n
ta

g
e

o
f

u
n
ce

rt
a
in

ty
p

a
d
d
ed

to
th

e
lo

g
s;

th
e

y
-a

x
is

sh
ow

s
th

e
a
m

o
u
n
t

o
f

d
ev

ia
ti

o
n
s,

co
m

p
u
te

d
w

it
h

a
li
g
n
m

en
ts

.
T

h
e

la
b

el
s

in
si

d
e

th
e

g
ra

p
h

in
d
ic

a
te

th
e

re
la

ti
v
e

ch
a
n
g
e

in
d
ev

ia
ti

o
n

sc
o
re

w
it

h
re

sp
ec

t
to
p

=
0
,

in
p

er
ce

n
ta

g
e.

T
h
e

g
ra

y
co

n
ti

n
u
o
u
s

li
n
e

in
d
ic

a
te

s
th

e
n
u
m

b
er

o
f

d
ev

ia
ti

o
n
s

a
t
p

=
0

a
s

a
re

fe
re

n
ce

.

30 Pegoraro et al.

This can be attributed to the fact that, since to generate uncertainty on ac-
tivity label we sample from the set of labels randomly, the chances of observing
a realization of a trace where an uncertain activity label matches the alteration
introduced by the deviations are small. Uncertainty on timestamps makes the
lower bound decrease only when the introduced deviations are swaps: as ex-
pected, the possibility of changing the order of pairs of events does not have a
sensible improvement in the lower bound for deviation when extra events are
added or activity labels of existing events are altered.

Conversely, the possibility to “skip” some critical events has a positive effect
on the lower bound of all possible configurations for deviations: in fact, when
marking some events as indeterminate in a log where extra events were added
as deviations, the average conformance cost drops by 30.61% at p = 16%, the
largest drop among all the experiments. The experiment with all three types of
uncertainty and extra events as deviations essentially displays the same effect
(improvement in lower bound is slightly lower, but not significantly, with a de-
crease in deviation of 29.38% at p = 16%). For the experiments where all types of
deviations were added at once, we can see that, as could be anticipated, the dif-
ferences in deviation scores on the two bounds become smaller in relative terms
(because of the very high amount of deviations p = 0%), but larger in absolute
terms. As per the previous experiments, the largest contributor in decreasing
the conformance cost of the lower bound is the addition of indeterminate events,
which by itself decreases the deviation cost by 13.92% at p = 16%. In general, the
vast variability in measuring the conformance of an uncertain log shows that, if
all types of uncertainty can occur with high frequency in a process, the business
owner should act on the uncertainty sources, since they will be a major obsta-
cle in obtaining accurate measurements of process conformance. Vice versa, in
the case of limited occurrences of uncertainty in event data the algorithm here
proposed is able to provide actionable bounds for conformance score, together
with descriptions of best- and worst-case scenarios of process conformance for a
given trace.

The second experiment we set up aims to answer questions Q3 and Q4, and
is concerned with the performance of calculating the lower bound of the cost via
the behavior net versus the brute-force method of listing all the realizations of
an uncertain trace, evaluating all of them through alignments, then picking the
best value. We used a constant percentage of uncertain events of p = 5% and
logs of 100 traces for this test, with progressively increasing values of n. We ran
4 different experiments, each with one of the four configurations for uncertain
behavior Activities, Timestamps, Indeterminate events and All illustrated above.

Figure 10 summarizes the results. As the diagram shows, the difference in
time between the two methods tends to diverge quickly even on a logarithmic
scale. The largest model we could test was n = 20, a Petri net with 20 transitions,
which is comparatively tiny in practical terms; however, even at these small scales
the brute-force method takes roughly 3 orders of magnitude more than the time
needed by the behavior net, when all the types of uncertainty are added with p
= 5%.

Conformance Checking over Uncertain Event Data 31

This shows a very large improvement in the computing time for the lower
bound computation; thus, the best-case scenario for the conformance cost of an
uncertain trace can be obtained efficiently thanks to the structural properties of
the behavior net. This graph also shows the dramatic impact on the number of
realizations of a behavior net – and thus, the time needed to perform a brute-force
computation of alignments – when the effects of different kinds of uncertainty
are compounded.

10 20

Activities

10−1

100

101

102

M
ea

n
ti

m
e

(s
ec

on
d

s)

10 20

Timestamps

10 20

Indeterminate events

10 20

All

Uncertainty (type and percentage)

Fig. 10. Effect on the time performance of calculating the lower bound for conformance
cost with the brute-force method (blue) vs. the behavior net (red) on four different
configurations for uncertain events.

32 Pegoraro et al.

6.2 Applications on Real-Life Data

As illustrated in Section 1, uncertainty in event data can originate from a num-
ber of different causes in real-world applications. One prominent source of un-
certainty is missing data: attribute values not recorded in an event log can on
occasions be described by uncertainty, through domain knowledge provided by
process owners or experts. Then, as described in this paper, it is possible to
obtain a detailed analysis of the deviations of a best- and worst-case scenario for
the conformance to a process model.

To seek to answer research question Q4 through a direct application of confor-
mance checking over uncertainty, let us consider a process related to the medical
procedures performed in the Intensive Care Unit (ICU) of a hospital. Figure 11
shows a ground truth model for the process:

Accesst1

Triage

t2

R1

t3

R2

t4

R3

t5

R4

t6

Laboratory

t7

Visit

t8

Consultancy - Begin

t9

Consultancy - End

t10

Consultancy

t11

Laboratory - Begin

t12

Laboratory - End

t13

Laboratory

t14

Dismissal
t15

Exit t16

Fig. 11. The Petri net that models the process related to the treatment of patients in
the ICU ward of an Italian hospital. The activities R1 through R4 are abbreviations
for the four phases of a radiology exam: respectively, Radiology - Submitted Request,
Radiology - Accepted Request, Radiology - Exam, Radiology - Results.

An execution log containing events that concern this ICU process is available.
Throughout the process, some anomalies with attribute values can be spotted
– namely, a number of anomalies affecting the timestamp attributes. This is a
[E]S-type uncertain log.

Conformance Checking over Uncertain Event Data 33

The alterations on the timestamps in this event log happen for a number of
reasons. The domain experts reported that the human error is a frequent source
of anomaly, which is worsened by the fact that operators often do not input data
in real-time, but the information is recorded after a certain delay (e.g., at the
end of a shift). Moreover, the information systems of the ICU ward and other
wards (such as radiology, for instance) do not allow for automatic transmission
of data between one another, so in some occurrences the timestamp of visits by
specialists is not recorded in the ICU information system.

Tables 5 and 6 show two examples of traces with anomalous timestamp be-
havior. We can see that in the trace of Table 5 the event Triage has an imprecise
timestamp – only the day has been recorded. This can be modeled with an un-
certain timestamp encompassing a range of 24 hours. The column Preprocessed
Timestamp shows the results of this preprocessing step.

Table 5. Events relative to one case of the ICU process. The timestamp of the “Triage”
event is imprecise: through domain knowledge, we are able to represent this uncertainty
in an explicit way within the event attributes in the log.

Event ID Raw Timestamp Preprocessed Timestamp Activity

e1 2017-02-20 23:59:31 2017-02-20 23:59:31 Access

e2 2017-02-21 00:02:58 2017-02-21 00:02:58 Visit

e3 2017-02-21 00:06:30 2017-02-21 00:06:30 Consultancy - Begin

e4 2017-02-21 00:29:12 2017-02-21 00:29:12 R1

e5 2017-02-21 00:41:00 2017-02-21 00:41:00 R2

e6 2017-02-21 00:41:00 2017-02-21 00:41:00 R3

e7 2017-02-21 01:02:00 2017-02-21 01:02:00 R4

e8 2017-02-21 01:56:26 2017-02-21 01:56:26 Consultancy - End

e9 2017-02-21 02:01:37 2017-02-21 02:01:37 Dismissal

e10 2017-02-21 02:02:36 2017-02-21 02:02:36 Exit

e11 2017-02-21 [2017-02-21 00:00:00, 2017-02-21 23:59:59] Triage

Some of the events in the trace of Table 6 are missing the timestamp value
entirely. In this case, we can resort to domain knowledge provided by the process
owners: it is known that events related to the Radiology exams happen after the
Triage event, and before the Dismissal event. This allows to represent the times-
tamp with ranges of possible values. Notice that such a small interval of time,
obtainable from the domain knowledge available, is preferable to larger possible
intervals (e.g., 2017-08-27 00:00:00 to 2017-08-27 23:59:59), since it minimizes
the amount of possible overlaps in time with other events in the trace. In turn,
this means that the number of possible realizations of the uncertain trace is
smaller, granting a faster conformance checking. As before, the results of mod-
eling timestamp uncertainty are shown in the column Preprocessed Timestamp.

Once uncertainty is made explicit using the event log formally defined in
this paper, it is possible to apply conformance checking over uncertainty. The
technique of alignments illustrated here provides two results, corresponding to

34 Pegoraro et al.

Table 6. Events relative to one case of the ICU process. Some of the timestamp at-
tributes are missing: through domain knowledge, we are able to represent them with
uncertainty within a small interval of time. The timestamps in bold and italic of the
“Raw Timestamp” column are used to set the interval boundaries for uncertain times-
tamps.

Event ID Raw Timestamp Preprocessed Timestamp Activity

e1 2017-08-27 11:47:46 2017-08-27 11:47:46 Access

e2 2017-08-27 11:47:53 2017-08-27 11:47:53 Triage

e3 2017-08-27 12:14:25 2017-08-27 12:14:25 Visit

e4 2017-08-27 12:33:24 2017-08-27 12:33:24 R1

e5 2017-08-27 13:04:11 2017-08-27 13:04:11 Consultancy - Begin

e6 2017-08-27 13:04:53 2017-08-27 13:04:53 Dismissal

e7 2017-08-27 13:08:07 2017-08-27 13:08:07 Exit

e8 NULL [2017-08-27 11:47:53, 2017-08-27 13:04:53] Consultancy - End

e9 NULL [2017-08-27 11:47:53, 2017-08-27 13:04:53] R2

e10 NULL [2017-08-27 11:47:53, 2017-08-27 13:04:53] R3

e11 NULL [2017-08-27 11:47:53, 2017-08-27 13:04:53] R4

the lower and upper bound for the conformance score. The traces shown in
Tables 5 and 6 have a best-case scenario alignment in common, which is shown
in Table 7; aligning through the behavior net of these traces has allowed the
algorithm to select a value for the uncertain timestamps of the traces (translated
in a specific ordering) such that the deviations between data and model is the
smallest possible. For both traces, the best-case scenario has a cost equal to 0,
thus, no deviations occur in that case.

Table 7. A valid alignment for both traces of Tables 5 and 6. This alignment has
a deviation cost equal to 0, and corresponds to a best-case scenario for conformance
between the process model and both uncertain traces.

Access Triage Visit Consultancy - Begin R1 R2 R3 R4 Consultancy - End � Dismissal Exit
Access Triage Visit Consultancy - Begin R1 R2 R3 R4 Consultancy - End τ Dismissal Exit
t1 t2 t8 t9 t3 t4 t5 t6 t10 t14 t15 t16

Let us now look at the worst-case scenarios. One of the alignments with the
worst possible score for the trace in Table 5 is shown in Table 8. In this scenario,
the deviations are one move on model (the Triage activity should have occurred
after the Access but did not), and one move on log (the activity Triage occurs
in the data at an unexpected moment in the process).

A worst-case scenario for the trace in Table 6 is illustrated in Table 9. In this
case, the deviation is equal to 6, given by the wrong order of the event related to
the Radiology exam. Note that, in this example, we assume that every deviation
has a unit cost, but the alignment technique allows to define different costs
for different types of deviations based on impact in the process. For example,
a patient that exits the hospital without official dismissal might have a worse

Conformance Checking over Uncertain Event Data 35

Table 8. A valid alignment for the trace of Table 5. This alignment has a deviation
cost equal to 2 (1 move on log and 1 move on model), and corresponds to a worst-case
scenario for conformance between the process model and the uncertain trace.

Access � Visit Consultancy - Begin R1 R2 R3 R4 Consultancy - End � Dismissal Exit Triage
Access Triage Visit Consultancy - Begin R1 R2 R3 R4 Consultancy - End τ Dismissal Exit �
t1 t2 t8 t9 t3 t4 t5 t6 t10 t14 t15 t16

Table 9. A valid alignment for the trace of Table 6. This alignment has a cost equal to
6 (3 moves on log and 3 moves on model), and corresponds to the worst-case scenario
for conformance between the process model and the uncertain trace.

Access Triage Visit Consultancy - Begin � � � R4 R3 R2 R1 Consultancy - End � Dismissal Exit
Access Triage Visit Consultancy - Begin R1 R2 R3 R4 τ τ τ Consultancy - End τ Dismissal Exit
t1 t2 t8 t9 t3 t4 t5 t6 t10 t14 t15 t16

impact than an unauthorized laboratory exam. For simplicity, in this case, we
assume that all types of deviation have a unit cost.

Uncertain alignments provide novel insights, not obtainable through existing
conformance techniques. The process owner can utilize these results to gain
insights and decide actions in regard of the process. The potential violation
shown in the worst-case scenario for the trace in Table 5 can be investigated,
as well as the source of said uncertainty; the process owner can, furthermore,
decide whether the consequences and the likelihood of the worst-case scenario
are indicative of a need for a process restructuration, or whether the risk of such
potential violation of the normative process model are not critical for the process
execution.

7 Related Work

7.1 Conformance Checking

The discipline of conformance checking, a subfield of process mining, is concerned
with defining metrics to compare how well an event log matches a given process
model. The input for this task consists of an execution log and a process model
(most commonly a labeled Petri net) and the output is a measurement of the
distance – that is, the deviation – between the model and the log, or the traces
that compose the log. The two main goals of conformance checking are measuring
the quality of a process discovery algorithm by comparing the discovered process
model with the source event log, to verify the extent to which the model fits
the log; and comparing an execution log with a normative process model (often
defined partially or completely by hand) in order to verify the deviations between
the rules governing the process and the tasks carried out in reality. Often, the
conformance measure defined between logs (or traces) and models includes not
only a distance in absolute terms, but also an indication of where and what
deviated from the norm in the process. Conformance checking was introduced
by Rozinat and van der Aalst [29], who obtained a conformance measure by
tracking counts of tokens during replay of traces in a Petri net. Despite the

36 Pegoraro et al.

elevated computational complexity, state-of-the-art approaches are mostly based
on alignments, introduced by Adriansyah et al. [7].

7.2 Event Data Uncertainty

As mentioned, the occurrence of data containing uncertainty – in a broad sense
– is common both in more classic disciplines like statistics and data mining [21]
and in process mining [5]; and logs that show an explicit uncertainty in the
control flow perspective can be classified in the lower levels of the quality ranking
proposed in the process mining manifesto.

To historically position the topic of uncertain data, let us mention some pre-
vious work in the domain of data mining. A survey work offering a panoramic
view of mining uncertain data is the one by Aggarwal and Philip [8], which
focuses with particular attention on the problem of uncertain data querying.
Such data is represented on the basis of probabilistic databases [33], a founda-
tional notion in the setting of uncertain data mining. A branch of data mining
particularly related to process mining is frequent itemsets mining: an efficient
algorithm to search for frequent itemsets over uncertain data, the U-Apriori,
have been presented by Chui et al. [15].

Within process mining there exist various techniques to deal with a kind of
uncertainty different, albeit closely related, from the one that we analyze here:
missing or incorrect data. This can be considered as a form of non-explicit un-
certainty: no measure or indication on the nature of the uncertainty is given in
the event log. The work of Suriadi et al. [34] provides a taxonomy of this type
of issues in event logs, laying out a series of data patterns that model errors in
process data. In these cases, and if this behavior is infrequent enough to allow
the event log to remain meaningful, the most common way for existing pro-
cess mining techniques to deal with missing data is by filtering out the affected
traces and performing discovery and conformance checking on the resulting fil-
tered event log. A case study illustrating such situation is, e.g., the work of
Benevento et al. [11]. While filtering out missing values is straightforward, vari-
ous methodologies of event log filtering have been proposed in the past to solve
the problem of incorrect event attributes: the filtering can take place thanks
to a reference model, which can be given as process specification [35], or from
information discovered from the frequent and well-formed traces of the same
event log; for example extracting an automaton from the frequent traces [17],
computing conditional probabilities of frequent sequences of activities [30], or
discovering a probabilistic automaton [37]. In the latter cases, the noise is iden-
tified as infrequent behavior.

Some previous work attempt to repair the incorrect values in an event log.
Conforti et al. [16] propose an approach for the restoration of incorrect times-
tamps based on a log automaton, that repairs the total ordering of events in
a trace based on correct frequent behavior. Fani Sani et al. [31] define outlier
behavior as the unexpected occurrence of an event, the absence of an event that
is supposed to happen, and the incorrect order of events in the trace; then, they
propose a repairing method based on probabilistic analysis of the context of an

Conformance Checking over Uncertain Event Data 37

outlier (events preceding or following the anomalous event). Again, both of these
methods define anomalous/incorrect behavior on the basis of the frequency of
occurrence.

The definition of uncertainty on activity labels as defined in the taxonomy
of Section 2 has not been, to the best of our knowledge, previously employed in
the field of process mining. There are, however, related examples of anomalies or
uncertainties on activity labels of events: for instance, the problem of matching
event identifiers to normative activity labels [10]. In this case, an event is asso-
ciated with only one activity label, but this association is not known. There are
a number of techniques to estimate the correct association, included some that
consider the data perspective, together with the control flow perspective [32]. Us-
ing this setting, van der Aa et al. [18] proposed a technique to estimate bounds
of conformance scores for event logs with unknown or partially known event-to-
activity mapping. Another related domain is the many-to-one abstraction from
low level events to a higher order of activity labels, which can be performed via
clustering events in minimal conflict groups [20] or representing low-level pat-
terns with data Petri nets which then discovers high-level activities by matching
patterns through alignments [24].

A kind of anomaly in event data which is even more related to uncertainty
as discussed in this paper is incompleteness in the order of events in a trace.
This occurs when total ordering among events is lost or not available, and only
a partial order is known. In the field of concurrent and distributed systems, the
absence of a total order among logged activities has historically been relevant
by virtue of being both caused by, and a necessary condition for, the presence
of concurrency in a system (refer e.g. to Beschastnikh et al. [13]). An important
concept at the base of this paper is the representation of uncertainties in the
timestamp dimension through directed acyclic graphs, which express these par-
tial orders. This intuition was first presented by Lu et al. [23], also in the context
of conformance checking, in order to produce partially ordered alignments. More
recently, van der Aa et al. [1] proposed a technique to resolve such order uncer-
tainty, through estimates based on probabilistic inference aided by a normative
process model.

In process mining, a notion well known for a long time is the fact that in
many cases the definition of the case is not part of the normative information
immediately accessible to the process analyst, so there needs to be a decision on
which attribute or attributes constitutes the case of the process. In some cases,
multiple definitions of cases are possible and analysis on a subset of them is
desirable. This specific setting, which can be interpreted as uncertainty on the
case notion, has a long history both in terms of mathematical formalization and
in terms of implementation and definition of data standards. For an introduction
to this subfield of process mining we refer to [4].

This paper presents an extended version of the preliminary analysis on un-
certain event data in process mining shown in [25], in which we presented a
preliminary description of uncertain event data and their taxonomy, as well as a
description of an approach to find upper and lower bound for the conformance

38 Pegoraro et al.

score of an uncertain process trace through alignments. We elaborate on this
previous work adding an extended formalization, proving theorems on uncer-
tainty in process mining, and reporting on new experiments. The framework
for uncertain data proposed in this paper has also been expanded by providing
an algorithm capable of process discovery on uncertain event data through the
definition of directly-follows relationship in uncertain settings and the compu-
tation of an uncertain directly-follows graph, which enables process discovery
techniques [26]. On the topic of efficient uncertain data management, we pre-
sented an improved algorithm that allows to preprocess uncertain traces into
behavior graphs in quadratic time, enabling fast uncertainty analysis [27]. The
exploration of uncertain event data can also ba facilitated by a memory-efficient
representation method and the definition of the concept of uncertain process
variants [28].

8 Conclusion

As the need to quickly and effectively analyze process data has arisen in the
recent past and is growing to this day, many new types of information regarding
events are recorded; this calls for new techniques able to provide an adequate
interpretation of the new data. Not only more and more event data is available
to the analyst, but these data are accessible in association with a wealth of in-
formation and meta-information about the process, the resources that executed
activities, data about the outcome of those actions, and many other types of
knowledge about the nature of events, activities, and the process as a whole. In
this paper, we presented a new paradigm for process mining applied to event
data: explicit uncertainty. We described the possible form it can assume, build-
ing a taxonomy of different types of uncertainty, and we provided examples of
how uncertainty can originate in a process, and how uncertainty information
can be inferred from the available data and from domain knowledge provided
by process experts. We then designed a framework to define the various flavors
of uncertainty shown in the taxonomy. Then, in order to assess the practical
applications of the uncertainty framework, we applied it to a well consolidated
technique for conformance checking: aligning data to a reference Petri net. This
application of uncertainty analysis is integrated by theorems that prove the cor-
rectness of the techniques developed and illustrated here within the framework
previously described. The results can provide insights on the possible violations
of process instances recorded with uncertainty against a normative model. The
behavior net provides an efficient way to compute the lower bound for the confor-
mance cost – i.e., the best-case scenario for conformity of uncertain process data
– with a large improvement in time performance with respect to a brute-force
procedure.

The approaches shown here can be extended in a number of ways. From a
performance perspective, to improve the usability of alignments over uncertainty
the computation of the upper bound of the conformance cost should either be
optimized, or replaced by an approximate algorithm. Another direction for fu-

Conformance Checking over Uncertain Event Data 39

ture work is extending the conformance checking technique to logs with weak
uncertainty, weighting the deviation by means of the probability distributions
attached to activities, timestamps and indeterminate events. Additionally, in-
vestigation on real-life data is an important important milestone for this line of
research, and it is vital to analyze in depth a complete use case in real life of
process mining in the presence of uncertain event data.

References

1. van der Aa, H., Leopold, H., Weidlich, M.: Partial order resolution of event logs
for process conformance checking. Decision Support Systems p. 113347 (2020)

2. van der Aalst, W.M.P.: Decomposing Petri nets for process mining: A generic
approach. Distributed and Parallel Databases 31(4), 471–507 (2013)

3. van der Aalst, W.M.P.: Process mining: data science in action. Springer (2016)
4. van der Aalst, W.M.P.: Object-centric process mining: Dealing with divergence and

convergence in event data. In: International Conference on Software Engineering
and Formal Methods. pp. 3–25. Springer (2019)

5. van der Aalst, W.M.P., Adriansyah, A., De Medeiros, A.K.A., Arcieri, F., Baier, T.,
Blickle, T., Bose, J.C., van Den Brand, P., Brandtjen, R., Buijs, J., et al.: Process
mining manifesto. In: International Conference on Business Process Management.
pp. 169–194. Springer (2011)

6. Adriansyah, A.: Aligning observed and modeled behavior. Ph.D. thesis, Eindhoven
University of Technology (2014)

7. Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Towards robust confor-
mance checking. In: International Conference on Business Process Management.
pp. 122–133. Springer (2010)

8. Aggarwal, C.C., Philip, S.Y.: A survey of uncertain data algorithms and appli-
cations. IEEE Transactions on knowledge and data engineering 21(5), 609–623
(2008)

9. Aho, A.V., Garey, M.R., Ullman, J.D.: The transitive reduction of a directed graph.
SIAM Journal on Computing 1(2), 131–137 (1972)

10. Baier, T., Mendling, J.: Bridging abstraction layers in process mining by automated
matching of events and activities. In: Business process management, pp. 17–32.
Springer (2013)

11. Benevento, E., Dixit, P.M., Sani, M.F., Aloini, D., van der Aalst, W.M.P.: Evaluat-
ing the effectiveness of interactive process discovery in healthcare: A case study. In:
International Conference on Business Process Management. pp. 508–519. Springer
(2019)

12. Berti, A., van Zelst, S.J., van der Aalst, W.M.P.: Process Mining for Python
(PM4Py): Bridging the Gap Between Process- and Data Science. In: ICPM Demo
Track (CEUR 2374). p. 13–16 (2019)

13. Beschastnikh, I., Brun, Y., Ernst, M.D., Krishnamurthy, A., Anderson, T.E.: Min-
ing temporal invariants from partially ordered logs. In: Managing Large-scale Sys-
tems via the Analysis of System Logs and the Application of Machine Learning
Techniques, pp. 1–10 (2011)

14. Carmona, J., van Dongen, B., Solti, A., Weidlich, M.: Conformance Checking:
Relating Processes and Models. Springer (2018)

15. Chui, C.K., Kao, B., Hung, E.: Mining frequent itemsets from uncertain data.
In: Pacific-Asia Conference on knowledge discovery and data mining. pp. 47–58.
Springer (2007)

40 Pegoraro et al.

16. Conforti, R., La Rosa, M., ter Hofstede, A.: Timestamp repair for business process
event logs (2018), http://hdl.handle.net/11343/209011, [preprint]

17. Conforti, R., La Rosa, M., ter Hofstede, A.H.: Filtering out infrequent behavior
from business process event logs. IEEE Transactions on Knowledge and Data En-
gineering 29(2), 300–314 (2017)

18. van Der Aa, H., Leopold, H., Reijers, H.A.: Efficient process conformance check-
ing on the basis of uncertain event-to-activity mappings. IEEE Transactions on
Knowledge and Data Engineering 32(5), 927–940 (2019)

19. Flaška, V., Ježek, J., Kepka, T., Kortelainen, J.: Transitive closures of binary
relations. i. Acta Universitatis Carolinae. Mathematica et Physica 48(1), 55–69
(2007)

20. Günther, C.W., van der Aalst, W.M.P.: Mining activity clusters from low-level
event logs. Beta, Research School for Operations Management and Logistics (2006)

21. Han, J., Pei, J., Kamber, M.: Data mining: concepts and techniques. Elsevier (2011)
22. Kalvin, A.D., Varol, Y.L.: On the generation of all topological sortings. Journal of

Algorithms 4(2), 150–162 (1983)
23. Lu, X., Fahland, D., van der Aalst, W.M.P.: Conformance checking based on par-

tially ordered event data. In: International conference on business process manage-
ment. pp. 75–88. Springer (2014)

24. Mannhardt, F., De Leoni, M., Reijers, H.A., van der Aalst, W.M.P., Toussaint,
P.J.: From low-level events to activities-a pattern-based approach. In: International
conference on business process management. pp. 125–141. Springer (2016)

25. Pegoraro, M., van der Aalst, W.M.P.: Mining uncertain event data in process
mining. In: 2019 International Conference on Process Mining (ICPM). pp. 89–96.
IEEE (2019)

26. Pegoraro, M., Uysal, M.S., van der Aalst, W.M.P.: Discovering process models
from uncertain event data. In: International Conference on Business Process Man-
agement. pp. 238–249. Springer (2019)

27. Pegoraro, M., Uysal, M.S., van der Aalst, W.M.P.: Efficient construction of be-
havior graphs for uncertain event data. In: International Conference on Business
Information Systems. Springer (2020)

28. Pegoraro, M., Uysal, M.S., van der Aalst, W.M.P.: Efficient time and space repre-
sentation of uncertain event data. Algorithms 13(11), 285–312 (2020)

29. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on
monitoring real behavior. Information Systems 33(1), 64–95 (2008)

30. Sani, M.F., van Zelst, S.J., van der Aalst, W.M.P.: Improving process discovery
results by filtering outliers using conditional behavioural probabilities. In: Interna-
tional Conference on Business Process Management. pp. 216–229. Springer (2017)

31. Sani, M.F., van Zelst, S.J., van der Aalst, W.M.P.: Repairing outlier behaviour
in event logs. In: International Conference on Business Information Systems. pp.
115–131. Springer (2018)

32. Senderovich, A., Rogge-Solti, A., Gal, A., Mendling, J., Mandelbaum, A.: The
road from sensor data to process instances via interaction mining. In: International
Conference on Advanced Information Systems Engineering. pp. 257–273. Springer
(2016)

33. Suciu, D., Olteanu, D., Ré, C., Koch, C.: Probabilistic databases. Synthesis lectures
on data management 3(2), 1–180 (2011)

34. Suriadi, S., Andrews, R., ter Hofstede, A.H., Wynn, M.T.: Event log imperfection
patterns for process mining: Towards a systematic approach to cleaning event logs.
Information Systems 64, 132–150 (2017)

http://hdl.handle.net/11343/209011

Conformance Checking over Uncertain Event Data 41

35. Wang, J., Song, S., Lin, X., Zhu, X., Pei, J.: Cleaning structured event logs: A
graph repair approach. In: Data Engineering (ICDE), 2015 IEEE 31st International
Conference on. pp. 30–41. IEEE (2015)

36. Winskel, G.: Petri nets, algebras, morphisms, and compositionality. Information
and Computation 72(3), 197–238 (1987)

37. van Zelst, S.J., Sani, M.F., Ostovar, A., Conforti, R., La Rosa, M.: Filtering spuri-
ous events from event streams of business processes. In: International Conference
on Advanced Information Systems Engineering. pp. 35–52. Springer (2018)

	Conformance Checkingover Uncertain Event Data
	1 Introduction
	2 A Taxonomy of Uncertain Event Data
	3 Preliminaries
	3.1 Basic Definitions
	3.2 Process Mining Definitions
	3.3 Conformance Checking Definitions

	4 Uncertainty in Process Mining
	5 Conformance Checking on Uncertain Event Data
	6 Experiments
	6.1 Qualitative and Quantitative Experiments on Synthetic Data
	6.2 Applications on Real-Life Data

	7 Related Work
	7.1 Conformance Checking
	7.2 Event Data Uncertainty

	8 Conclusion

