
1. INTRODUCTION

Workflow management technology aims at the automated
support and coordination of business processes to reduce
costs and flow times, and increase quality of service and pro-
ductivity [19, 22, 23]. A critical challenge for workflow
management systems is their ability to respond effectively to
changes. Changes may range from momentary (ad-hoc)
modifications of the process for a single customer to a com-
plete restructuring for the workflow process to improve effi-
ciency. Today’s workflow management systems are
ill-suited to deal with change; they typically support a more
or less idealized version of the preferred process. However,
the real run-time process is often much more variable than
the process specified at design-time. The only way to handle
changes is to go behind the system’s back. If users are forced
to bypass the workflow management system quite frequent-
ly, the system is more a liability than an asset. Therefore, we
take up the challenge to find techniques to add flexibility
without loosing the support provided by today’s systems.

To clarify terminology, we introduce the basic workflow
terms using the following five perspectives: (1) process per-
spective, (2) organization perspective, (3) information per-
spective, (4) operation perspective, and (5) integration
perspective*. In the process perspective, workflow process
definitions (workflow schemas) are defined to specify which
tasks need to be executed and in what order (i.e., the routing
or control flow). A task is an atomic piece of work. Work-
flow process definitions are instantiated for specific cases.
Examples of cases are: a request for a mortgage loan, an
insurance claim, a tax declaration, an order, or a request for
information. Since a case is an instantiation of a process def-
inition, it corresponds to the execution of concrete work
according to the specified routing. In the organization per-
spective, the organizational structure and the population are
specified. The organizational structure describes relations
between roles (resource classes based on functional aspects)
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and groups (resource classes based on organizational
aspects), and other artifacts clarifying organizational issues
(e.g. responsibility, availability). Resources, ranging from
humans to devices, form the organizational population and
are allocated to roles and groups. The information perspec-
tive deals with control and production data. Control data are
data introduced solely for workflow management purposes,
e.g. variables introduced for routing purposes. Production
data are information objects (e.g. documents, forms, and
tables) whose existence does not depend on workflow man-
agement. The operation perspective describes the elementary
operations performed by resources and applications. Typi-
cally, these operations are used in the process perspective to
create, read, or modify control and production data in the
information perspective. Most operations are (partially)
implemented by applications. The integration perspective is
the linking pin between the other four perspectives (see Fig-
ure 1). Tasks and workflow process definitions identified in
the process perspective are (1) linked to roles, groups, and
resources in the organization perspective, (2) linked to data
elements in the information perspective, and (3) linked to
operations in the operation perspective. Operations in the
operation perspective are linked to data elements in the
information perspective, etc. A workflow definition is the
specification of a workflow covering all aspects. An alterna-
tive term for workflow definition is workflow type. Cases
are instances of a workflow type and are handled according-
ly. A workflow management system aims at supporting the
five perspectives shown in Figure 1. The build-time part of
the workflow management system allows for the specifica-
tion of these perspectives. The run-time part of the workflow
management system takes care of the actual enactment.

The workflow management systems available today
assume that the five perspectives are known a priori (i.e. at
design time) and are not subject to frequent changes. As a
result, two major problems arise:

• At design time parts of the workflow are not specified
(because they are not known or simply too complex)
causing errors and congestion, and forcing users to work
around the system at run-time.

• While the system is in production, changes occur. Typi-
cally, these changes are not anticipated at design time and
result in inconsistencies, breakdowns, and reduced quality
of service.

These challenging problems have made adaptability one of
the major research topics in the area of workflow manage-
ment [3, 5–8, 11–13, 15–17, 20, 21, 24, 25, 27–29]. In this

paper we will not try to solve particular aspects of the prob-
lem. Instead, we structure the possible changes using various
criteria covering all perspectives. The resulting classification
is used to discuss approaches to accommodate change. Thus,
the paper can be regarded as a continuation of work accom-
plished by the authors before [2, 4, 17].

The primary focus of this paper is on correctness and con-
sistency. We identify potential errors resulting from change.
These errors are syntactic or semantic. Besides, single-per-
spective (e.g. a deadlock in the process perspective) and
multiple-perspective (e.g. a task refers to a role that does not
exist any more) errors are identified. Moreover, we distin-
guish between transient (temporary errors not affecting new
cases) and permanent errors (also affecting new cases). In
the second part of the paper, we focus on solutions for the
problems identified in the first part. For this purpose, we dis-
tinguish between flexibility by configuration and flexibility
by adaptation. Flexibility by configuration reduces the need
for change by offering powerful design constructs. To sup-
port flexibility by adaptation we propose the use of advanced
inheritance concepts. The inheritance concepts can be used
to limit change, manage multiple versions/variants, and
avoid errors.

2. ANATOMY OF CHANGE

To make today’s workflow management systems more flexi-
ble, it is crucial to know what kinds of changes need to be
supported. Note that we use the term ‘change’ for both (1)
dealing with unanticipated events resulting from an incom-
plete specification, and (2) handling modifications of the
specification because of changing conditions. In this section
we will use six criteria to classify change.

Criterion 1 (What is the reason for change?)
1. Changes triggered by developments outside the system,

i.e. the context/environment is the primary driver for
change. Basically, there are three kind of circumstances
which may trigger change:

1.1 Changing business context 
The change is motivated by Business Process Reengineering
(BPR) efforts, a changing marketplace (e.g., new competi-
tors, new products), or demands of individual customers.
1.2 Changing legal context
The change is triggered by new legislature (e.g. new laws
for export).
1.3 Changing technological context
New technology is available (e.g. to reduce maintenance
and increase reliability) or the technical infrastructure has
changed (e.g. a business partner forces the use of EDI or a
service provider discontinues particular services).

2. Change triggered by developments inside the system.
These changes are not initiated by the environment but by
problems detected inside the system itself:

2.1 Logical design errors
During the design errors where made that result in run-
time problems such as deadlocks or missing data.
2.2 Technical problems
The performance of the system degrades or the reliability
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Figure 1  Five workflow perspectives



is threatened by failing components.

Criterion 1 locates the root of the change. The second criteri-
on characterizes which cases are affected.

Criterion 2 (What is the effect of change?)
1. Momentary changes affect only one case or a selected

group of cases. Changes occur on an individual or selec-
tive basis. The change is the result of an error, a rare
event, or special demands of the customer. Exceptions
often result in momentary changes. In general, it is not
necessary to change the workflow definition, since the
change will most probably not happen in this constella-
tion again. A typical example of the root of a momentary
change is the need to skip a task in case of an emergency.
This change is often initiated by some external factor. A
typical dilemma related to momentary change is the prob-
lem to decide what kinds of changes are allowed and the
fact that it is impossible to foresee all possible momentary
changes.

2. Evolutionary changes are of a structural nature: from a
certain moment in time, the workflow changes for all new
cases to arrive at the system. Existing cases (i.e., work-in-
progress) may also be influenced by an evolutionary
change. The change is the result of a new business strate-
gy, reengineering efforts, or a permanent alteration of
external conditions (e.g., a change of law). Evolutionary
change is typically initiated by the management to
improve efficiency or responsiveness, or is forced by leg-
islature or changing market demands.

The third criterion is based on the perspectives presented in
the introduction. 

Criterion 3 (Which perspectives are affected?)
1. Changes in the process perspective affect the way cases

are handled; workflow process definitions are added,
deleted, or modified. Typical changes are adding tasks,
deleting tasks, and changing the routing (e.g., making the
process more/less parallel).

2. Changes in the organization perspective change the orga-
nizational structure or the population. Changes of the
organizational structure are adding or deleting roles and
groups and changing the relations between roles and
groups. Adding or deleting resources, or changing the
allocation of resources change the population.

3. The information perspective is changed by adding, delet-
ing, or updating data structures (both control and produc-
tion data), e.g. changing the type of a routing parameter or
introducing a new form.

4. Changes in the operation perspective are adding, deleting,
or modifying operations, e.g. a legacy application is
replaced by a new application.

5. The integration perspective is the glue between the other
four perspectives. This perspective changes if relations
between the different perspectives are altered, e.g. inter-
changing roles assigned to tasks.

For all perspectives but the integration perspective, four
types of changes are possible: extend, reduce, replace, and
re-link. For the integration perspective, re-link is the only
change applicable.

Criterion 4 (What kind of change?)
1. A change is of type extend if new entities are introduced,

e.g. a task or a role is added, or a new employee is added
to the organization’s population.

2. A change is of type reduce if parts are deleted, e.g. a task
is skipped or an application is removed.

3. Changes of type replace are a mixture of reducing and
extending a specific part. For example, a task in a process
definition is replaced by another task.

4. A change is of type re-link if there are no entities added
or deleted but merely rearranged, e.g. another organiza-
tional policy is linked to a task or tasks in a process defi-
nition are reordered.

For momentary changes, the change affects specific cases
(i.e. instances) rather than the specification (i.e. workflow
definition). The moment of change can be limited to the
moment the case is started. For evolutionary changes,
change may be restricted to new cases.

Criterion 5 (When are changes allowed?)
1. Entry time: the moment the case enters the specification

of the perspectives, it is fixed and changes are not allowed
for this instance any more.

2. On-the-fly: changes are allowed at any point in time dur-
ing workflow execution.

Both momentary and evolutionary changes are possible at
entry time and on-the-fly. Customizing the process definition
for a single case before the processing is started corresponds
to a momentary change at entry time. If such a customization
is also allowed after the processing is started, we name it an
on-the-fly change. If evolutionary changes are only possible
at entry time, then only the new cases that are started after
the change took place have to run according to the updated
workflow definition; all other cases run according to the old
workflow definition. On-the-fly evolutionary changes are
more difficult to handle since for each running workflow
instance it must be decided how to deal with the change (cf.
Criterion 6).

Changes are critical when they occur while there are cases
being handled. Therefore, it is important to decide what to
do with these cases (work-in-progress).

Criterion 6 (What to do with existing cases?)
1. Forward recovery: The old cases are aborted and appro-

priate measures are taken (outside the scope of the work-
flow management system).

2. Backward recovery: The old cases are aborted and rolled
back or compensated, then they are restarted according to
the new workflow definition.

3. Proceed: The old cases are handled the old way, new cas-
es are handled the new way. There are multiple versions
of the workflow and every case remains in the same ver-
sion.

4. Transfer: The old cases are transferred to the new work-
flow definition.

5. Detour: For momentary changes it is often wise to allow a
temporary detour such that the unexpected situation can
be cleansed. 

Note that the proceed policy corresponds to restricting
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change to entry time (cf. Criterion 5). The other policies cor-
respond to on-the-fly changes.

To complete our classification of change, we discuss three
terms frequently used in this context: exception, ad-hoc
workflow, and dynamic change. 

There is a lot of literature on exception handling [26] in
the context of workflow management and extended transac-
tion models [15, 21, 26]. Exceptions are considered to be
unexpected undesirable events. Most of the results concen-
trate on failures of applications and networks. Deliberate
change, human failures, and evolving environments are hard-
ly taken into account. Exception handling mechanisms are
primarily used to separate the failure semantics from the pro-
cess logic and thus facilitate the design of readable, compre-
hensible workflow models. Tasks or sub-processes which
fail, return an exception which is interpreted by an exception
handler. The exception handler either takes action (e.g. com-
pensate and restart or rollback) or propagates the exception
to a higher level. Although exceptions fit into our frame-
work, they are not of primary interest for this paper. Excep-
tions trigger changes of a specific nature. If we use the
criteria to characterize the change triggered by a typical
exception, then the following keywords are appropriate:
inside (criterion 1), momentary (criterion 2),
information/operation (criterion 3), replace (criterion 4), on-
the-fly (criterion 5).

Ad hoc workflows are workflows that are defined in an ad
hoc fashion by the end-user of the system before they are
going to be executed. Workflow management systems such
as Ensemble (FileNet) and InConcert (InConcert) support
ad-hoc workflow. We omit-ted ad-hoc workflows because,
in our opinion, it is not possible to handle ad-hoc workflows
adequately by the end-user. This is a consequence of the fol-
lowing observations: (1) modeling workflow types is a diffi-
cult and time con-suming task, and (2) only qualified
persons are able to perform the modeling task. Therefore, the
assumption that an end-user of a workflow management sys-
tem is able to (re-)model a workflow type in an on-the-fly
manner is not justifiable. Consequently, we only consider
momentary (ad hoc) changes. These changes should be sup-
ported in a controlled manner to avoid serious run-time
errors. Among other things, a special editor is needed that
guides the process of re-modeling. Section 4 discusses this
issue.

The term ‘dynamic change’ refers to the problem of han-
dling old cases in a new workflow process definition, e.g.,
how to transfer cases to a new, i.e. improved, version of the
process. Figure 2 illustrates the dynamic change problem†. If
the sequential workflow process (left) is changed into a
workflow process where tasks B and C can be executed in
parallel (right) there are no problems, i.e. it is always possi-
ble to transfer a case from the left to the right. The sequential
process has five possible states and each of these states cor-
responds to a state in the parallel process. For example, the
state with a token in s3 is mapped onto the state with a token
in p3 and p4. In both cases, tasks A and B have been execut-
ed and C and D still need to be executed. Now consider the

situation where the parallel process is changed into the
sequential one, i.e. a case is moved from the right-hand-side
process to the left-hand-side process. For most of the states
of the right-hand-side process this is no problem, e.g. a token
in p1 is moved to s1, a token in p3 and a token p4 are
mapped onto one token in s3, and a token in p4 and a token
p5 are mapped onto one token in s4. However, the state with
a token in both p2 and p5 (A and C have been executed)
causes problems because there is no corresponding state in
the sequential process (it is not possible to execute C before
B). The example in Figure 2 shows that it is not straightfor-
ward to migrate old cases to the new process after a change.
Sometimes it is necessary to postpone the transfer to ensure
the correct processing of a case.

According to the criterions identified above, dynamic
change can be characterized as follows:

• It is not relevant whether the reason for a change is inter-
nal or external.

• A dynamic change is evolutionary; i.e. it modifies the
workflow definition.

• A dynamic change can have an impact on all perspectives,
especially the integration perspective.

• The kind of change is not relevant.
• Only on-the-fly changes have to be investigated.
• Existing cases have to be transferred according to the new

workflow definition.

3. CORRECTNESS ISSUES

In this section we focus on the potential problems caused by
change. Changing a process definition can put all cases into
a deadlock. Changing the organizational model can cause
starvation of the cases in the system while executing the
change. Modifying data structures in the information per-
spective can lead to loss of work or incomplete data. Trans-
ferring a case from one process to another can lead to the
unintentional double execution of a task (e.g. paying for
goods) or the skipping of a vital task (e.g. sending the bill).
These examples illustrate that change can cause many types
of errors. One could say that without certain precautions the
remedy (change) is likely to be worse than the disease (need
for change).

270 computer systems science & engineering

W M P VAN DER AALST AND S JABLONSKI

†In this paper we use Petri nets to illustrate the process-related concepts. In
fact, we use a restricted class of Petri nets, the so-called WF-nets [1, 2]. In a
WF-net there is one source place and one sink place and all other nodes are
on a path from source to sink. Readers not familiar with Petri nets and
workflow modeling are referred to [2,14,19].

Figure 2 The dynamic change problem



The costs of handling errors resulting from change can be
gigantic. One error can affect many cases. Some tasks can-
not be undone, e.g. transferring money or sharing informa-
tion. If a task is not executed properly (i.e. during the
execution there was a failure or the task should not have
been executed at all), there are several countermeasures:
abort, restart, rollback, compensate, rollback/restart, com-
pensate/restart. By aborting, the remainder of the process is
handled outside of the workflow management system.
Restarting a task leads to loss of work. If the effect of an
incorrect or inappropriate execution of a task can be undone,
a rollback is issued. If the effect cannot be undone, then it
may be possible to compensate (e.g. to counterbalance an
inappropriate transfer of money to a supplier by subtracting
the amount from the next payment). Many of these counter-
measures require human intervention causing stagnation,
frustration, and reduced quality of service.

To get more grip on the potential problems we classify the
errors using the following criteria:

• Type of error: syntactic or semantic.
• Duration of error: transient or permanent.
• Scope of error: single-perspective or multiple-

perspective.

In the remainder, we describe these criteria and give exam-
ples for each category.

3.1 Syntactic versus semantic errors

Syntactic correctness is independent of the context, i.e. it
refers to the minimal requirements any workflow should sat-
isfy. For example, there should be no tasks without input
places. Note that syntactic correctness not only refers to the
structure of the workflow process definition but also to the
dynamic behavior and other perspectives. Examples of syn-
tactic errors in the organizational perspective are roles and
groups without any members and cyclic hierarchical rela-
tions. Syntactic errors in the integration perspective are
pointers to entities in another perspective which do not exist,
e.g. a task points to a role which has been removed. Syntac-
tic errors are all errors that can be detected without any
knowledge of the application domain, i.e. all constructs vio-
lating universal, domain independent requirements. There-
fore, it is not restricted to static properties but also includes
the dynamics of the workflow. Potential deadlocks and live-
locks are examples of syntactic errors in the process perspec-
tive. An important correctness criterion is the so-called
soundness property that guarantees proper termination [1, 2].
Proper termination means that the state is reached with a sin-
gle token in the sink place and after termination there are no
dangling references. 

Example 1
Figure 3 shows two workflow process definitions: the left
process (a) is replaced by the right process (b). The left pro-
cess is sound, i.e. it is always possible to terminate properly
with a token in place o. Examples of occurrence sequences
are AEBD, ABCD, ABFEBD, and ACBFBD. However, the
new process shown in Figure 3 (b) is not sound. The execu-
tion of task E before task B will result in a deadlock because

the case gets stuck in the state with just a token in p4. If task
C is executed, then it is possible to execute D but a livelock
is created because it is not possible to escape from the cycle
formed by B and F. After termination (i.e. putting a token in
place o), the case will continuously switch between a state
with a token in p5 and a state with a token in p1, thus caus-
ing an accumulation of tokens in p3. The change illustrated
by Figure 3 is an example of a syntactic error.

Semantic correctness is concerned with the context in
which the change occurs. Intuitively, semantic correctness
deals with similarities between the external properties of the
old workflow and the new workflow. To detect semantic
errors knowledge of the application domain is needed. 

Example 2
Figure 4 shows two fragments (old and new) of a workflow
process definition. The tasks send_bill and send_goods are
swapped to improve customer service and all existing cases
are transferred to the new process. If a case in state s2 (i.e., a
token in place s2) is transferred to state s2 in the new pro-
cess, then the customer receives two bills but no goods. If
the case is transferred to state s1, the customer still receives
two bills. If the case is transferred to state s3, the customer
still does not receive any goods. Clearly the transfer needs to
be postponed. Transferring the case anyway will result in a
semantic error, i.e. knowledge of the meaning of the tasks
and the context is required to detect the error.

To avoid semantic errors it is often desirable that the new
workflow is able to handle cases the old way (but probably
has some more functionality). Consider for example the two
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Figure 3 An example of a syntactic error

Figure 4 An example of a semantic error



process definitions shown in Figure 2. The right-hand pro-
cess can do more than the left-hand process but not vice ver-
sa. Comparing different variants of the same workflow
requires advanced inheritance concepts [4, 9].

3.2 Transient versus permanent errors

Some changes introduce errors which are of a temporary
nature, others cause a continuous stream of errors. A tran-
sient error is a change which causes syntactic and semantic
failures affecting existing cases only, i.e. new cases are not
directly influenced by the error. There is a transitional period
where errors occur which ends once all old cases already
existing prior to the change are handled. Example 2, illustrat-
ed by Figure 4, is an example of a transient error. The fol-
lowing two examples show that transient errors are not
restricted to the process perspective.

Example 3
To improve customer service, a company decides to intro-
duce case management, i.e. every case has a case manager
which handles (or is responsible) for handling the vital tasks
for this case. The running cases do not have a case manager,
therefore there is nobody to execute the tasks. A similar
problem occurs if a case manager is fired. These problems
are of a temporary nature because new cases are not affected.

Example 4
To speed up the access of data a new index is created using an
internal identification number. A new attribute (id) is added to
the set of control variables of each case. If for existing cases
the new attribute is not set correctly, a transient error occurs. 

Note that errors resulting from momentary changes are, by
definition, transient. Evolutionary changes can cause both
transient and permanent errors. 

A permanent error affects, in principle, all new cases.
There is not a transitional period, since only a new structural
change can repair the error. Example 1 is an example of a
permanent error because every new case can cause a dead-
lock or a livelock (see Figure 3).

Example 5
To allow for specialization an existing role in the organiza-
tional structure is split into two new roles. However, there is
still a task referring to the old role obstructing the progress
of cases. Similar problems occur if a role or group has no
members. These errors are permanent since new changes are
needed to correct them.

Example 6
For performance reasons a database application is moved
from one server to another. Unfortunately, some tasks have
hard-coded links to the old server where the application no
longer resides thus causing run-time failures. Follow-up
treatment is needed to remove this permanent error.

3.3 Single- vs. multiple-perspective errors

Some errors resulting from a change are restricted to one
perspective whereas others involve consistency problems

between the different perspectives. Example 1 is a single-
perspective error since it addresses only the process perspec-
tive. Examples 2, 3 and 4 describe single-perspective errors
for similar reasons. Example 5 characterizes a multiple-per-
spective error (task referring to a role which no longer exist)
and a single-perspective error (role without members).
Example 6 is a single-perspective error because its scope is
limited to the operation perspective. If an application fails
because a data structure is changed or a table is moved, then
it is a multiple-perspective error.

It is helpful to know whether an error refers to a single
perspective or to multiple perspectives. Specifically, the con-
cepts ‘flexibility by adaptation’ and ‘workflow inheritance’
which will be dealt with in the next sections can leverage on
this. These two concepts of dealing with changes gain from
this knowledge since adequate error treatment strategies can
be chosen more appropriately.

4. TWO WAYS TO DEAL WITH 
CHANGE

In most situations it is very cumbersome and difficult to cope
with change. So it is advantageous if change could be avoid-
ed as much as possible. Although avoiding change is a pri-
mary goal, situations will be encountered that require
changing either a case or a workflow definition. Specifically
the issues related to Criterion 1 reveal that generally changes
cannot be avoided. Think about a change that is triggered by
new legislature. Many such changes cannot be anticipated
but have to be reflected seriously in case processing.

The remainder of this section can be summarized as fol-
lows. Change is considered to be harmful. Thus, the best
thing to do is to prevent changes as often as possible. The
second best thing to do is to prepare oneself to be able to
cope with changes. These two alternative strategies will be
illustrated in more detail in the following. 

We have elaborated an approach that avoids changes [17].
The main idea is to provide powerful, expressive modeling
constructs that bear many alternative execution paths. Hav-
ing such a variety of alternative executions available, the
need for change is reduced since the new way of having to
execute a workflow might already be covered by the power-
ful, expressive modeling construct. Consider the following
example that clarifies this concept. A business rule says that
the tasks A, B, and C have to be executed sequentially but in
any order (i.e. any interleaving is allowed as long as the tasks
are not executed in parallel). Due to the lack of adequate
control flow constructs the modeler has chosen A → B → C
as execution model. Looking at the executions of workflows
reveals that there are huge delay times since often tasks are
ready for execution but have to wait until their predecessor
tasks have been finished. For example, although task C is
ready, it cannot be executed because B is not done yet. Thus,
the modeler changes the workflow and allows the alternative
execution of B → C or C → B (A → (B → C ⁄ C → B)).
Again, experience tells that this model is still not optimal. If
B or C are ready for execution before A is performed, B and
C would have to be delayed. Again, the workflow definition
must be changed and the change may lead to one of the prob-
lems identified in the former section. 

To deal with such a situation of permanent change and in
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order to reflect the business processes correctly, we intro-
duce powerful expressive control flow constructs that can be
defined by the application modeler. For instance, for the
above situation we introduce the SEQUENCE construct [18,
19] which bears the semantics ‘execute tasks sequentially
but in any order’: SEQUENCE (A,B,C). It is easy to com-
prehend that the changes discussed above are not necessary
any more. We call this concept flexibility by selection (or
more adequate configuration) [17]. Flexibility by configura-
tion supports preventive treatment of changes: many changes
can be avoided since business policies can be modeled more
accurately. However, this feature requires that the workflow
language can be extended by application specific constructs,
in the above case by a new powerful control flow construct.
Flexibility by configuration reduces the need for change.
However, change cannot be avoided completely. Thus, a
strategy must be in place to deal with changes.

In Figure 5 three situations are depicted. At a certain time
a change occurs. Case A has already been terminated before
the change. The change will not have an impact on case A
anymore. Case C will start after the change has occurred.
Usually, this case will be processed according to the new
definition of the workflow. Case B is problematic: a part of
the workflow process has already been executed according
to the old definition of the workflow, the rest of the work-
flow process must still be performed. It has to be decided
whether this remaining part has to be executed according to
the new or the old definition of the workflow.

In a situation as depicted in Figure 5 versions and/or vari-
ants are introduced. There are, in principle, two ways to han-
dle this situation:

• The change produces a new definition of the workflow.
From a certain point in time, all cases have to be executed
according to the new definition of the workflow (cf. crite-
rion 6). We talk of introducing a new version of the work-
flow definition.

• The change produces another valid form of workflow def-
inition. There will be cases that still will have to follow
the old definition of a workflow. But, there will also be
cases that have to run according to the new definition of a
workflow. A new variant of the workflow definition is
introduced.

In both alternatives, the running cases may have to be adapt-
ed to either the new version or the new variant, i.e., poten-
tially on-the-fly changes are needed. Introducing new
variants and/or versions to support change is called flexibili-
ty by adaptation. In contrast to flexibility by configuration,
flexibility by adaptation supports the follow-up treatment of
changes. Without any doubt, flexibility by configuration is
to be preferred since the workflow definition need not to be
changed and thus inconsistencies cannot occur. Flexibility
by adaptation has to be controlled thoroughly to avoid the

problems discussed before. For this purpose, we propose an
approach based on advanced inheritance notions. 

5. WORKFLOW INHERITANCE

In the previous section we concluded that flexibility by con-
figuration is preferable over flexibility by adaptation. How-
ever, we also concluded that adaptation is unavoidable. In
this paper, we have given many examples to illustrate that
such adaptations can cause all kinds of problems
(syntactic/semantic, transient/permanent, single/multiple-
perspective). To support workflow change, we propose an
approach based on inheritance. Inheritance is one of the cor-
nerstones of object-oriented programming and object-orient-
ed design. The basic idea of inheritance is to provide
mechanisms which allow for constructing subclasses that
inherit certain properties of a given superclass. In most
object-oriented methods a class is characterized by a set of
attributes and a set of methods. Attributes are used to
describe properties of an object (i.e. an instance of the class).
Methods symbolize operations on objects (e.g. create,
destroy, and change attribute). The structure of a class is
specified by the attributes and methods of that class. 

The traditional notions of inheritance are applicable to the
information and operation perspective. However, for the pro-
cess perspective the traditional notions of inheritance fall
short. For this perspective, a class corresponds to a workflow
process definition (i.e. a workflow schema) and objects (i.e.
instances of the class) correspond to cases. Traditional
inheritance notions are restricted to the structure of a class
(i.e. attributes and methods). These notions only refer to the
static aspects of the interface. The dynamic behavior of a
class is either hidden inside the methods or modeled explicit-
ly (in UML the life-cycle of a class is modeled in terms of
state machines). Although the dynamic behavior is an intrin-
sic part of the class description (either explicit or implicit),
inheritance of dynamic behavior is not well-understood. (See
[9] for an elaborate discussion on this topic and pointers to
related work.) Given the widespread use of inheritance con-
cepts/mechanisms for the static aspect, this is remarkable.
Moreover, the dynamic behavior is the essence of the pro-
cess perspective. In fact, dynamic behavior is the essence of
workflow management. To our knowledge, the work pre-
sented in [4, 9] is the only work which deals with inheritance
of dynamic behavior in a comprehensive manner. This work
is based on a particular class of Petri nets: the so-called
sound workflow nets (cf. [1,11]) mentioned earlier. This
class of Petri nets corresponds to workflow processes with-
out deadlocks, livelocks, and other anomalies. Other inheri-
tance-based approaches abstract from the causal relations
between tasks/methods. 

Defining inheritance notions for workflow processes (i.e.
processes defined by routing diagrams) is far from trivial.
Consider two workflow processes x and y. When is x a sub-
class of y? x is a subclass of superclass y if x inherits certain
features of y. Intuitively, one could say that x is a subclass of
y if and only if x can do what y can do. Clearly, all tasks pre-
sent in y should also be present in x. Moreover, x will typi-
cally add new tasks. Therefore, it is reasonable to demand
that x can do what y can do with respect to the tasks present
in y. In fact, the behavior with respect to the existing tasks
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should be identical. For distinguishing x and y we only con-
sider the old tasks (i.e. the tasks already present in y). All
other tasks are renamed to τ. One can think of these tasks as
silent, internal, or not observable. Since branching bisimula-
tion (cf. [9]) is used as an equivalence notion, we abstract
from transitions with a τ label, i.e. for deciding whether x is
a subclass of y only the tasks with a label different from τ
are considered. The behavior with respect to these tasks is
called the observable behavior. With respect to new tasks
(i.e. tasks present in x but not in y) there are basically two
mechanisms which can be used. The first mechanism simply
blocks all new tasks and then compares the observable
behavior. This mechanism leads to the following notion of
inheritance.

If it is not possible to distinguish x and y when only tasks of
x that are also present in y are executed, then x is a subclass
of y.

Intuitively, this definition conforms to blocking or encap-
sulating tasks new in x. The resulting inheritance concept is
called protocol inheritance; x inherits the protocol of y, i.e.
the old routing patterns are contained in the new process. In
other words, if the new tasks are not executed (i.e. blocked),
one cannot distinguish any differences. Another mechanism
would be to allow for the execution of new tasks but consid-
er only the old ones. 

If it is not possible to distinguish x and y when arbitrary
tasks of x are executed, but when only the effects of tasks
that are also present in y are considered, then x is a subclass
of y.

This inheritance notion is called projection inheritance; x
inherits the projection of the workflow process y onto the old
tasks. Projection inheritance conforms to hiding or abstract-
ing from tasks new in x. In other words, one can still enact
the old routing patterns as long as one is willing to execute
the appropriate new tasks.

The two mechanisms (i.e. blocking and hiding) result in
two orthogonal inheritance notions. Therefore, we also con-
sider combinations of the two mechanisms. A workflow pro-
cess is a subclass of another workflow process under
protocol/projection inheritance if by both hiding and block-
ing one cannot detect any differences, i.e. it is a subclass
under both protocol and projection inheritance. The two
mechanisms can also be used to obtain a weaker form of
inheritance. A workflow process is a subclass of another
workflow process under life-cycle inheritance if by blocking
some newly added tasks and hiding others one cannot distin-
guish between them. 

We proposed a number of inheritance preserving transfor-
mation rules [4, 9]. These rules correspond to frequently
used design constructs and preserve one or more of the four
inheritance notions. A detailed description of these rules is
beyond the scope of this paper. Therefore, we just mention
the four inheritance preserving transformation rules present-
ed in [9]:

• Transformation rule PT preserves protocol inheritance
and life-cycle inheritance. PT extends the superclass with
new alternatives. In the resulting subclass there are alter-

native routes containing new tasks. 
• Transformation rule PP preserves all four forms of inheri-

tance, i.e. protocol/projection, projection, protocol, and
life-cycle inheritance. Rule PP introduces new tasks
which only postpone behavior.

• Transformation rule PJ preserves projection inheritance
and life-cycle inheritance. Rule PJ inserts new tasks in-
between existing tasks. The extension can be a single task
but also a complex subflow containing many tasks and all
kinds of causality relations.

• Transformation rule PJ3 preserves projection inheritance
and life-cycle inheritance. Rule PJ3 adds parallel behav-
ior. 

The rules correspond to design constructs that are often used
in practice, namely choice, iteration, sequential composition,
and parallel composition. If the designer sticks to these
rules, inheritance is guaranteed. Moreover, if every
variant/version is constructed using the four inheritance pre-
serving transformation rules, then the transfer from one vari-
ant to another does not cause any problems, i.e., every case
can be transferred without any delay and without introducing
anomalies such as deadlocks, livelocks, unintended skipping
of tasks, unnecessary multiple executions of common tasks,
etc. See [3] for formal proofs of these statements.

The inheritance preserving transformation rules PT, PP,
PJ, and PJ3 illustrate that inheritance concepts can be used to
tackle the problems to workflow change. On the one hand,
the rules can be used to limit change such that certain
anomalies are avoided. On the other hand, the rules facilitate
the management of many versions/variants (e.g. only the dif-
ferences have to be stored). For the other perspectives other
inheritance notions are needed. For the information and
operation perspectives the traditional inheritance concepts
are applicable. The organization perspective is similar to the
process perspective in the sense that the traditional notions
fall short. Questions such as ‘Is the new organizational struc-
ture a subclass of the old one?’ are intriguing and require
further research. 

Since inheritance can be used to limit change such that
certain properties are preserved, it is useful for both momen-
tary and evolutionary changes (Criterion 2), and both entry
time and on-the-fly changes (Criterion 5). Each of the per-
spectives can benefit from suitable inheritance notions (Cri-
terion 3). Inheritance is particularly useful for extensions of
the workflow definition (Criterion 4). The inheritance pre-
serving transformation rules mentioned in this section can be
used as a carrier for transferring cases (Criterion 6) without
introducing transient errors. For more information on the use
of inheritance in the context of adaptive workflow, the read-
er is referred to [3].

6. CONCLUSION

The classification of potential errors resulting from change
shows that many things can go wrong and that the problems
are really persistent. Problems caused by changes in the
information and the operation perspective are not new and
have been a subject of extensive research, e.g. schema evo-
lution to transfer data [10] and CORBA to hide cross
machine boundaries and to facilitate upgrades. Research
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efforts on change in organizational perspective have been
focussed mainly on organizational issues (human factors)
rather than the implications on the information system. In
fact, the organizational perspective has been neglected in
most workflow management systems. The problems caused
by changes in the process perspective have been addressed
in several papers [3, 5, 7, 8, 11–13, 17, 20, 21, 24, 27, 28].
However, many problems are persistent and remain
unsolved. Although multiple-perspective errors resulting
from change are not very challenging from a scientific point
of view (most of the problems are caused by dangling refer-
ences), it is not clear how to build flexible systems to avoid
such errors.

Traditional verification techniques are typically used for
analyzing static designs. Evolution or momentary changes
are hardly considered. Figure 6 shows that the traditional
approaches are useful for finding errors which are syntactic
and permanent. Given a new design, these verification tech-
niques can be used to detect undesirable properties such as
deadlocks and livelocks [1]. Transient errors are not consid-
ered because the new situation is analyzed without taking the
work-in-progress into account. Semantic errors depend on
the context and are difficult to detect because it is puzzling
to specify the desirable properties let alone verify them.
Future research should focus on verification techniques for
detecting transient and/or semantic errors when changing a
workflow. For a particular type of change, i.e. extending the
workflow, advanced inheritance concepts seem to be useful.
The inheritance-preserving transformation rules presented in
[4, 9] are a good starting point for solving some the prob-
lems identified. Each of the rules corresponds to a design
construct which is often used in the process perspective,
namely choice, parallel composition, sequential composi-
tion, and iteration. The rules preserve to some extent syntac-
tic and semantic correctness.
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