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Abstract. Much time in process mining projects is spent on finding
and understanding data sources and extracting the event data needed.
As a result, only a fraction of time is spent actually applying techniques
to discover, control and predict the business process. Moreover, current
process mining techniques assume a single case notion. However, in real-
life processes often different case notions are intertwined. For example,
events of the same order handling process may refer to customers, orders,
order lines, deliveries, and payments. Therefore, we propose to use Multi-
ple Viewpoint (MVP) models that relate events through objects and that
relate activities through classes. The required event data are much closer
to existing relational databases. MVP models provide a holistic view on
the process, but also allow for the extraction of classical event logs using
different viewpoints. This way existing process mining techniques can
be used for each viewpoint without the need for new data extractions
and transformations. We provide a toolchain allowing for the discovery
of MVP models (annotated with performance and frequency informa-
tion) from relational databases. Moreover, we demonstrate that classical
process mining techniques can be applied to any selected viewpoint.

Keywords: Process Mining · Process Discovery · Artifact-Centric Pro-
cess Models · Relational Databases.

1 Introduction

Process mining is a growing branch of data science that aims to extract in-
sights from event data recorded in information systems. Examples of process
mining techniques include process discovery algorithms that are able to find de-
scriptive process models, conformance checking algorithms that compare event
data with a given process model to find deviations, and predictive algorithms
that use the discovered process model to anticipate bottlenecks or compliance
problems. Gathering high-quality event data is a prerequisite for the successful
application of process mining projects. However, event data are often hidden in
existing information systems (e.g., the ERP systems of SAP, Microsoft, Oracle).
Most systems are built on top of relational databases, to ensure data integrity
and normalization. Relational databases contain entities (tables) and relations

ar
X

iv
:2

00
1.

02
56

2v
1 

 [
cs

.D
B

] 
 8

 J
an

 2
02

0



2 Alessandro Berti and Wil van der Aalst

between entities. Events correspond to updates of the database, i.e., changes of
the “state” of the information system. These updates may have been stored in
tables of the databases (through in-table versioning like the change tables in
SAP or any table that contains dates or timestamps) or can be retrieved using
some database log (like redo logs [37,28] explicitly storing all database updates).

Extracting events from a database requires domain knowledge and may be
very time-consuming. One of the reasons is that process mining techniques re-
quire a classical event log where each event needs to refer to a case. The case
notion is used to “correlate” events and the corresponding process model shows
the life-cycle model for the selected case notion. However, in the same process
there may be suppliers, customers, orders, order lines, deliveries, and payments.
These correspond to objects of the class model describing the database. One
event may refer to a subset of such objects. A payment may refer to the pay-
ment itself, a customer, and an order. A delivery may refer to the delivery itself,
but also to a subset of order lines or even multiple orders. Several views on
the database could be retrieved, this means that, for the same database, several
event logs and process models need to be extracted. When the process involves
many different entities, the construction of the view is not easy. While there are
some methods to automatically infer a/some case notion(s) from unstructured
data [2,15,6], in most cases the specification happens manually. Moreover, the
data extractions and transformations may be time-consuming and one quickly
loses the overview. This often leads to divergence and convergence errors: events
are forgotten or inadvertently duplicated leading to incorrect conclusions.

This paper introduces a new modeling technique that is able to calculate a
graph where relationships between activities are shown without forcing the user
to specify a case notion, since different case notions are combined in one succint
diagram. The resulting models are called MVP models. Such models belong to
the class of artifact-centric models [11,31] that combine data and process in a
holistic manner to discover patterns and check compliance [22]. MVP models
are annotated with frequency and performance information (e.g., delays) and
provide a holistic view on the whole process. The colors of the relationships refer
to the original classes. Using frequency based filtering and selections the MVP
model can be seamlessly simplified. Any non-empty subset of classes provides a
viewpoint. Given a viewpoint and an MVP model, we can automatically generate
a classical event log and apply existing process mining techniques. Hence, the
holistic view of the MVP model is complemented by detailed viewpoint models
using conventional notations like Petri nets, BPMN models, process trees, or
simple directly-follows graphs.

The techniques have been implemented using PM4Py (pm4py.org). In-memory
computation is used to handle large data sets quickly. The approach has been
evaluated using a log extracted from a real-life information system, and has
proven to scale linearly with the number of events, classes and asymptotically
linearly with the number of objects per class, while the execution time grows
quadratically with the number of activities. This is a stark contrast with existing
techniques (like OCBC models) with significantly worse complexity.

pm4py.org
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(a) Database model of a concert database.

(b) MVP model annotated with frequencies.

Fig. 1. Illustration of the approach using an example database taken from [29]. The
classes are highlighted using different colors and labels on arcs. Based on a viewpoint
(i.e., a set of classes) a classical event log can be generated and analyzed.
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In Section 7.4, an assessment on real-life database event logs is done. More-
over, a comparison with some existing techniques (OpenSLEX [29,27] and OCBC
models [1]) is performed, considering the execution time and the usability of these
approaches.

The remainder of the paper is organized as follows. Section 2 presents re-
lated work. In Section 3 classical and database event logs are introduced. Sec-
tion 4 presents our approach to discover Multiple Viewpoint (MVP) models
including Event-to-Object (E2O) graphs, Event-to-Event (E2E) multigraphs,
and Activity-to-Activity (A2A) multigraphs. Section 5 introduces the notion of
viewpoints and the automatic creation of classical event logs. Section 6 presents
our implementation using PM4Py. In Section 7, we evaluate MVP models and
our implementation by comparing results for real-life data sets with competing
techniques.

2 Related Work

Fig. 2. Comparison of four different process mining ETL scenarios. Classical log ex-
traction consider different queries, possibly targeting different tables, to prepare event
logs for classic process mining techniques. OpenSLEX provides an easier access point
to retrieve event data, but still requires the manual specification of database queries.
OCBC technique extracts a single process model from the database schema, that could
be useful for the purpose of understanding and checking the schema, but provide no
way to retrieve a classical event log. The MVP technique, on the other hand, provides
an easy visualization of the relationships between activities on top of a database, more-
over it provides the possibility to get formal models (directly from the MVP models)
and event logs to use with classic process mining techniques.
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Related work may be divided into different categories:

– Approaches to extract event data from databases and to make queries easier.
– Representation of Artifact-centric models.
– Discovery of process models combining several case notions.

A few example approaches are shown in Fig. 2 and related to MVP models.

2.1 Related Work: Extracting Event Data From Databases

There has been earlier work on making SQL queries easier [8,5]. The basic idea
is to provide the business analyst a way to express queries in a simpler language
(SPARQL query). Some other papers related to database querying in the context
of process management are [26,21,33,25,35].

In [32], an automated technique to discover, for each notion of data object in
the process, a separate process model that describes the evolution of this object,
is presented. The technique is based on relational databases, and decomposes
the data source into multiple logs, each describing the cases of a separate data
object.

The OpenSLEX [29,27] is an high-level meta-model, that permits easier
queries, obtained from the raw database data scattered through tables (for ex-
ample, the case identifier, the activity and the timestamp may be columns of
different tables that need to be joined together). The aim of OpenSLEX is to
let user focus on the analysis, dealing only with elements such as events, ac-
tivities, cases, logs, objects, objects versions, object classes and attributes that
are introduced in [29]. The meta-model could be seen as a schema that cap-
tures all the pieces of information necessary to apply process mining to database
environments. To obtain classical event logs, a case notion (connecting events
to each other) needs to be used. The OpenSLEX implementation provides in-
deed some connectors for database logs (redo logs, in-table versioning, or specific
database formats [27,18]). In the implementation described in [29], OpenSLEX
is supported by an SQLite database.

2.2 Related Work: Representation of Artifact-Centric Models

Business artifacts (cf. [11,30]) combine data and process in an holistic manner as
the basic building block. These correspond to key business entities which evolve
as they pass through the business’s operation.

In [4] a formal artifact-based business model, and declarative semantics based
on the use of business rules, are introduced along with a preliminary set of
technical results on the static analysis of the semantics of an artifact-based
business process model.

The Guard-Stage-Milestone (GSM) meta-model [17,16] is a formalism for
designing business artifacts in which the intended behavior is described in a
declarative way, without requiring an explicit specification of the control flow.

Some approaches which focus on compliance checking are introduced in
[19,24]. In [19], support for data-aware compliance rules is proposed in a scalable
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way thanks to an abstraction approach that can serve as preprocessing step to
the actual compliance checking. In [24], compliance rule graphs are introduced,
that are a framework with support for root cause analysis, and that can provide
assistance in proactively enforcing compliance by deriving measures to render the
rule activation satisfied. In [14], conformance checking on artifact-centric pro-
cesses is approached by partitioning the problem into behavioral conformance of
single artifacts and interaction conformance between artifacts, solving behavioral
conformance by a reduction to existing techniques.

In [34], the concept of relational process structure is introduced, aiming to
overcome some limitations of small processes such as artifacts, object lifecycles,
or proclets. In these paradigms, a business process arises from the interactions
between small processes. However, many-to-many relationships support is lack-
ing. The relational process structure provides full support for many-to-many
relationships and cardinality constraints at both design- and run-time.

2.3 Related Work: Discovery of Process Models Using Several Case
Notions

Fig. 3. Representation of a small Object-centric Behavioral Constraint (OCBC) model
(taken from [1]).

In this category, we aim to describe some models that could be discovered
by combining several case notions, or studying the interactions between the
different case notions: interacting artifacts [23], multi-perspective models [13],
object-centric models [1].

In [23], a semi-automatic approach is presented to discover the various objects
supporting the system from the plain database of an ERP (Enterprise Resources
Planning) system. An artifact-centric process model is identified describing the
system’s objects, their life-cycles, and some detailed information about interac-
tions between objects.

Multi-instance mining [13] was introduced to discover models where different
perspectives of the process can be identified. Instead of focusing on the events or
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activities that are executed in the context of a particular process, the focus is on
the states of the different perspectives and on the discovery of the relationships
between them. The Composite State Machine Miner [12] supports the approach
[13]. It quantifies and visualises the interactions between perspectives to provide
additional process insights.

Object-centric models [1] are process models, involving entities and relations
in the ER model, where multiple case notions may coexist. A small OCBC
model is represented in Fig. 3. In the representation, the lower part (yellow)
represents the class model, and the upper part represents the activities and the
constraints between them. The activities and the classes are connected by arcs
if they are in relationship. OCBC models can be discovered, and can be used for
compliance checking, from XOC logs. The XOC format is important because it
extends the XES format with support to database-related information (related
objects, relationships, state of the object model), and is one of the few choices
to store database event logs along with instances of the OpenSLEX meta-model.
XOC logs are using XML and contain a list of events. Each event is referring
some objects, and contains the status of the database at the moment the event
happened. In [20], the algorithm to infer OCBC models is described, that takes
an XOC log as well as a set of possible behavioral constraint types as input, that
means users can specify the constraint type set based on their needs. ProM 6
plug-ins have been realized to import XOC logs, for the discovery of a process
model, and for conformance checking on top of OCBC models. The discovery
algorithm can discover constraints of 9 different types.

3 Database Event Logs

Relational databases are organized in entities (classes of objects sharing some
properties), relationships (connections between entities [10]), attributes (proper-
ties of entities and relationships). Events can be viewed as updates of a database
(e.g. insertion of new objects, changes to existing objects, removal of existing ob-
jects). Some ways to retrieve events from databases are:

– Using redo logs (see [29]). These are logs where each operation in the database
is saved with a timestamp; this helps to guarantee consistency, and possibil-
ity to rollback and recovery.

– Using in-table versioning. In this case, the primary key is extended with a
timestamp column. For each phase of the lifecycle of an object, a new entry
is added to the in-table versioning, sharing the base primary key values but
with different values for the timestamp column.

An event may be linked to several objects (for example, the event that starts
a marketing campaign in a CRM system may be linked to several customers),
and an object may be linked to several events (for example, each customer can
be related to all the tickets it opens). For the following definition, let UE be the
universe of events (all the events happening in a database context), UC be the
universe of case identifiers, UA be the universe of activities (names referring to
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a particular step of a process), Uattr be the universe of attribute names (all the
names of the attributes that can be related to an event), Uval be the universe of
attribute values (all the possible values for attributes).

In this paper we consider event data closer to real-life information systems.
Before providing a definition for database event logs, we define the classical event
log concept.

Definition 1 (Classical Event Log) A log is a tuple L = (CI , E,A, case ev,
act, attr,≤) where:

– CI ⊆ UC is a set of case identifiers.
– E ⊆ UE is a set of events.
– A ⊆ UA is the set of activities.
– case ev ∈ CI → P(E)\{∅} maps case identifiers onto set of events (belonging

to the case).
– act ∈ E → UA maps events onto activities.
– attr ∈ E → (Uattr 6→ Uval) maps events onto a partial function assigning

values to some attributes.
– ≤ ⊆ E × E defines a total order on events.

This classical event log notion matches the XES storage format [36], that is the
common source of information for process mining tools like Disco, ProcessGold,
Celonis, QPR, Minit, . . . An example attribute of an event e is the timestamp
attr(e)(time) which refer to the time the event happened. While, in general, an
event belongs to a single case, in Def. 1 the function case ev might be such that
cases share events.

For events extracted from a database, the function case ev is not given, since
an event may be related to different objects, and different case notions may exist.
In the following Def. 2, database event logs are introduced.

Definition 2 (Database Event Log) Let UO be the universe of objects (all
the objects that are instantiated in the database context) and UOC be the universe
of object classes (a class defines the structure and the behavior of a set of objects).
A database event log is a tuple LD = (E,O,C,A, class, act, attr,EO,≤) where:

– E ⊆ UE is the set of events.
– O ⊆ UO is the set of objects.
– C ⊆ UOC is the set of object classes.
– A ⊆ UA is the set of activities.
– class : O → C is a function that associates each object to the corresponding

object class.
– act ∈ E → A maps events onto activities.
– attr ∈ E → (Uattr 6→ Uval) maps events onto a partial function assigning

values to some attributes.
– EO ⊆ E ×O relates events to sets of object references.
– ≤ ⊆ E × E defines a total order on events.
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This definition differs from Def. 1 because a case notion is missing (no case ev
function) and events are related to objects in a possible many-to-many relation.
A function EO is introduced that relates events to sets of object references.
Moreover, the sets of objects and classes in the event log are specified, and a
function class that associates each object to its class is introduced.

4 Approach to Obtain MVP models

In this section, the different ingredients of MVP models will be introduced. The
E2O graph will be obtained directly from the database logs; the E2E multigraph
will be obtained in linear complexity by calculating directly-follows relationships
between events in the perspective of some object; the A2A multigraph will be ob-
tained in linear complexity by calculating directly-follows relationships between
activities in the perspective of some object class, using the information stored
in the E2E multigraph. The A2A multigraph is the main contributor to the vi-
sualization of the MVP model. A projection function will be given in Section 5
to obtain a classical event log when a so-called viewpoint is chosen.

Fig. 4. Visualization of part of the E2O graph of an example database event log (found
in the erp.xoc test file). Events (red nodes) are connected to objects (white nodes).

MVP models are composed of several graphs (E2O, E2E, A2A) and auxiliary
functions (a complete definition will be presented at the end of this section),
and are constructed by reading a representation of event data retrieved from a
database (importing from intermediate structures like OpenSLEX or XOC logs).

Definition 3 (E2O Graph) Let LD = (E,O,C,A, class, act, attr,EO,≤) be
a database event log. The Event-to-Object graph (E2O) corresponding to the
database event log LD can be defined as:

E2O(LD) = (E ∪O,EO)

Here, the nodes are the events (E) and the objects (O), and EO (as retrieved
from the log) is a subset of E ×O.
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Fig. 5. Visualization of part of the E2E multigraph of an example database event
log (erp.xoc test file). Events are connected to events; in the edge label, the (object)
perspective has been reported.

The E2O graph is obtained directly from the data without any transformation.
The remaining steps in the construction of an MVP model are the construction
of the E2E multigraph and of the A2A multigraph.

Definition 4 (Sequence of related events) Let LD = (E,O,C,A, class, act,
attr,EO,≤) be a database event log. For o ∈ O, the following sequence of related
events is defined:

Õ(o) = {e1, . . . , en}

such that {e1, e2, . . . , en} = {e | (e, o) ∈ EO} and ∀1≤i<j≤n ei < ej.

Definition 5 (E2E Multigraph) Let LD = (E,O,C,A, class, act, attr,EO,≤
) be a database event log. The Event-to-Event multigraph (E2E) on the database
event log LD can be defined as:

E2E(LD) = (E,FE , Π
E
perf)

Where the nodes are the events (E) and the set of edges FE is defined as:

FE = {(e1, e2, o) ∈ E × E ×O | ∃2≤i≤|Õ(o)| Õi−1(o) = e1, Õi(o) = e2}

and ΠE
perf : FE → R+ ∪ {0}, ΠE

perf(e1, e2, o) = attr(e2)(time) − attr(e1)(time)
associates each edge to a non-negative real number expressing its duration (per-
formance).
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The introduction of the set FE is useful for the definition of the A2A multi-
graph. Although it does not make sense to represent the overall E2E multigraph,
involving relationships between all events, it may be useful to display directly-
follows relationships involving a small subgroup of events.

Fig. 6. Visualization of the A2A multigraph of an example database event log (erp.xoc
test file). Activities are connected to activities; in the edge label, the (class) perspective
along with the count of the occurrences has been reported.

Definition 6 (A2A Multigraph) Let LD = (E,O,C,A, class, act, attr,EO,≤
) be a database event log. Let AE : A × A × C → P(E × E × O) such that for
a1, a2 ∈ A and c ∈ C:

AE(a1, a2, c) = {(e1, e2, o) ∈ FE | act(e1) = a1 ∧ act(e2) = a2 ∧ class(o) = c}

The AE function associates to each triple (a1, a2, c) the set of all the events of the
corresponding activities and classes. The Activity-to-Activity multigraph (A2A)
on the database event log LD can be defined as:

A2A(LD) = (A,FA, Π
A
count, Π

A
perf)

Where the nodes are the activities (A), the set of edges FA is defined as:

FA = {(a1, a2, c) ∈ A×A× C | AE(a1, a2, c) 6= ∅}

and:
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– ΠA
count(a1, a2, c) = |AE(a1, a2, c)| is the number of occurrences associated to

the edge (a1, a2, c) ∈ FA, that is the number of corresponding edges contained
in AE(a1, a2, c).

– ΠA
perf(a1, a2, c) =

∑
fE∈AE(a1,a2,c)Π

E
perf(fE)

ΠA
count(a1,a2,c)

is the performance associated to the

edge (a1, a2, c) ∈ FA, that is the average of the duration of the corresponding
edges contained in AE(a1, a2, c). An high average duration may correspond
to a bottleneck in the process.

The following definitions are useful for the representation of an MVP model,
introducing clear start and end points for each class and contributing to the
possibility to filter out edges.

Definition 7 (Start and End Activities of a Class)
Let LD = (E,O,C,A, class, act, attr,EO,≤) be a database event log. Let c ∈ C
be a class. The following functions are defined:

– STARTA(LD) : C → P(A), STARTA(LD)(c) = {act(Õ1(o)) | o ∈ O ∧
|Õ(o)| ≥ 1 ∧ class(o) = c} is the set of start activities of class c.

– ENDA(LD) : C → P(A), ENDA(LD)(c) = {act(Õ|Õ(o)|(o)) | o ∈ O∧|Õ(o)| ≥
1 ∧ class(o) = c} is the set of end activities of class c.

Definition 8 (Dependency Threshold between Activities given a Class)

Let LD = (E,O,C,A, class, act, attr,EO,≤) be a database event log. Let FA
be the set of edges in A2A(LD). For (a1, a2, c) ∈ FA it is possible to define a
dependency measure in the following way:

depA(LD) : FA → [0, 1]

depA(LD)(a1, a2, c) =


ΠA

count(a1,a2,c)

ΠA
count(a1,a2,c)+1

if a1 = a2 ∨ (a2, a1, c) 6∈ FA
ΠA

count(a1,a2,c)−Π
A
count(a2,a1,c)

ΠA
count(a1,a2,c)+Π

A
count(a2,a1,c)+1

if a1 6= a2 ∧ (a2, a1, c) ∈ FA

Definition 9 (MVP Discovery) Let LD = (E,O,C,A, class, act, attr,EO,≤)
be a database event log. We define as MVP model discovered from the log LD,
and we refer to it as MVP(LD), the following object:

MVP(LD) = (LD,E2O(LD),E2E(LD),A2A(LD),STARTA(LD),

ENDA(LD), depA(LD))

Given a dependency threshold d ∈ [−1, 1], a representation of an MVP
model draws as many edges between a couple of activities (a1, a2) ∈ A × A
as the number of classes c ∈ C such that depA(LD)(a1, a2, c) is defined and
depA(LD)(a1, a2, c) ≥ d.

The visualization of a MVP model is valuable:
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Fig. 7. Visualization of the MVP Model of an example database event log (erp.xoc test
file). Activities are connected to activities; in the edge label, the (class) perspective
along with the count of the occurrences has been reported. In addition to the A2A
multigraph, start and end nodes are associated to each class; moreover, the edges that
are reported in the A2A multigraph are filtered according to the dependency threshold
(in this simple example, no arc is filtered).

– An holistic view on the classes and the activities of the database, and on the
order in which they happen, is provided.

– Arcs are decorated with frequency/performance information. Frequency in-
formation helps to understand the most frequent paths of a process, and
performance information helps to discover the bottlenecks of a process.

5 Viewpoints: Retrieval of DFGs and Logs

The goal of this section is to provide some ways to retrieve, from an MVP model
MVP(LD), built upon the database event log LD, a particular viewpoint on the
model.
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Definition 10 (Viewpoint)
Let LD = (E,O,C,A, class, act, attr,EO,≤) be a database event log. Let

MVP(LD) = (LD,E2O(LD),E2E(LD),A2A(LD),STARTA(LD),

ENDA(LD), depA(LD))

be an MVP model. A viewpoint is a set of classes V (LD) ⊆ C. A viewpoint is
corresponding to a subset of edges in the E2E graph (that is FE):

VE(LD) = {(e1, e2, o) ∈ FE | o ∈ V (LD)}

From a view, we can obtain two different final outputs.

– A Directly-Follows Graph (DFG), that includes the edges related to the
classes contained in V (LD).

– A classical event log, that includes all the events that are related to the
objects having a class contained in V (LD).

An example of projection could be found in Fig. 8, where a singleton view-
point containing a single class is chosen, a Directly-Follows Graph is obtained
and a Petri net is obtained through the application of Inductive Miner Directly-
Follows.

5.1 Projection on a Directly-Follows Graph

The concept of a Directly-Follows Graph is introduced in the following definition:

Definition 11 (DFG) A Directly-Follows Graph is a weighted directed graph:

DFG = (NDFG, EDFG, cDFG)

Where NDFG (the nodes) are the activities, and EDFG ⊆ NDFG × NDFG is the
set of all the edges between activities that happened in direct succession, and
cDFG : EDFG → R+ is the count function that aims to represent how many
times two different activities happened in direct succession.

Fig. 8. Petri net extracted using Inductive Miner Directly-Follows from the projection
of the MVP model extracted from the erp.xoc test file on the viewpoint containing the
supplier order class.

From a viewpoint V (LD) on MVP(LD), it is possible to obtain a Directly-
Follows Graph as explained in the following definition:
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Definition 12 (DFG given a viewpoint) Given a viewpoint V (LD) on MVP(LD),
a DFG could be obtained taking:

– NDFG =
⋃

(e1,e2,o)∈VE(LD){act(e1), act(e2)}
– EDFG =

⋃
(e1,e2,o)∈VE(LD){(act(e1), act(e2))}

– cDFG(a1, a2) = |{(e1, e2, o) ∈ VE(LD) | act(e1) = a1 ∧ act(e2) = a2}|

where VE(LD) is obtained as in Def. 10.

An example could be provided. Let VE(LD) = {(e1, e2, o1), (e2, e3, o1), (e4, e5, o2),
(e5, e6, o2)} be the set of edges associated to a viewpoint, such that:

– act(e1) = act(e4) = A

– act(e2) = act(e5) = B

– act(e3) = C

– act(e6) = D

Then the DFG is such thatNDFG = {A,B,C,D}, EDFG = {(A,B), (B,C), (B,D)},
cDFG(B,C) = cDFG(B,D) = 1, cDFG(A,B) = 2.

5.2 Projection on a Log

The projection of an MVP model MVP(LD) obtained from a database event log
LD to a classical event log (see Section 3) could be introduced when a viewpoint
V (LD) ⊆ C is chosen.

Indeed, the information contained in an MVP model could be used to de-
termine a case notion CD that is used to transform the database event log LD
into a classical event log, in a way that events belonging to the same process
execution can be grouped.

The definition of case notion on database event logs could be introduced:

Definition 13 (Case Notion) Let LD = (E,O,C,A, class, act, attr,EO,≤) be
a database event log. A case notion is a set of sets of events CD ⊆ P(E) \ {∅}.

The case notion does not need to cover all the events contained in E, moreover
the intersection between sets of events contained in the case notion may also not
be empty.

An example of case notion could be provided. Let E = {e1, e2, e3, e4, e5, e6}
be a set of events. Then a case notion might be CD = {{e1, e2}, {e3, e4}, {e1, e4, e5}}.
Let’s note that the union of all these sets is not E, and the intersection between
{e1, e2} and {e1, e4, e5} is not empty.

When a case notion is defined, it is possible to define the projection function
from the database event log LD to the classical event log. An assumption is that
the case notion CD is contained in the universe of case identifiers UC . This helps
to define the function case ev in a simpler way.
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Definition 14 (Projection function) Let LD = (E,O,C,A, class, act, attr,
EO,≤) be an event log in a database context. Let CD ⊆ P(E) \ {∅} be a case
notion. Then it is possible to define a projection function from a database event
log to a classical event log as:

proj(LD, CD) = (CD, E,A, case ev, act, attr,≤)

where case ev ∈ CD → P(E) \ {∅} is such that for all c ∈ CD, case ev(c) = c.

Given an MVP model MVP(LD) and a viewpoint V (LD) on that defines a
set of edges VE(LD) in the E2E multigraph, a case notion is defined as:

CD =

 ⋃
o′∈O,class(o′)∈V (LD),Õ(o)∩Õ(o′)6=∅

Õ(o′) | o ∈ O, class(o) ∈ V (LD)


A classical event log is obtained as L = proj(LD, CD).

6 Tool

MVP Models have been implemented in a feature branch of the PM4Py Pro-
cess Mining library1 [3]. The architecture of the tool provides a clear separation
between the management of the log (object), the MVP discovery algorithm and
the MVP visualization. Moreover, utilities have been provided to generate a
database event log and to visualize the E2O and the E2E multigraphs. A ref-
erence technical manual with a description of the features provided in tool is
contained in http://www.alessandroberti.it/technical.pdf.

The provided features are:

– Log management: log importing (XOC, OpenSLEX, Parquet), log export-
ing (XOC, Parquet).

– Model discovery: discovery of a MVP model with frequency or perfor-
mance decoration.

– Visualization: E2O graphs, E2E and A2A multigraphs, MVP models (with
possibility to filter out edges with a dependency measure that is below the
threshold).

– Database log generation: the option to generate an MVP model specify-
ing the number of events, activities, classes and a number of objects for each
class is provided.

– Projection on a Viewpoint: projection on a DFG and on a log.
– Storage of MVP models: importing/exporting of MVP models into a

dump file.

Example logs are provided in the tests folder of the repository, in particular:

1 The repository can be accessed at the URL https://github.com/Javert899/

pm4py-source

http://www.alessandroberti.it/technical.pdf
https://github.com/Javert899/pm4py-source
https://github.com/Javert899/pm4py-source
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event id event activity event timestamp supplier order supplier order line

create order15 create order 2016-10-21 11:38:26 supplier order15 NaN
approve order15 approve order 2016-10-21 11:38:53 supplier order15 NaN
make order1027 make order 2016-10-21 11:40:00 NaN NaN
make order1027 make order 2016-10-21 11:40:00 supplier order15 NaN
make dispatch19 make dispatch 2016-10-21 11:42:31 NaN NaN
make dispatch19 make dispatch 2016-10-21 11:42:31 NaN supplier order line22
make dispatch18 make dispatch 2016-10-21 11:42:31 NaN NaN
make dispatch18 make dispatch 2016-10-21 11:42:31 NaN supplier order line23
receive partial order1028 receive partial order 2016-10-21 11:43:00 NaN NaN
make dispatch21 make dispatch 2016-10-21 11:44:25 NaN NaN
make dispatch21 make dispatch 2016-10-21 11:44:25 NaN supplier order line22
make dispatch20 make dispatch 2016-10-21 11:44:25 NaN NaN
make dispatch20 make dispatch 2016-10-21 11:44:25 NaN supplier order line23
receive total order1029 receive total order 2016-10-21 11:45:00 NaN NaN
receive total order1029 receive total order 2016-10-21 11:45:00 supplier order15 NaN
create invoice17 create invoice 2016-10-21 11:45:46 NaN NaN
create invoice17 create invoice 2016-10-21 11:45:46 NaN NaN
create payment11 create payment 2016-10-21 11:46:14 NaN NaN
create payment11 create payment 2016-10-21 11:46:14 NaN NaN
create payment12 create payment 2016-10-21 11:46:29 NaN NaN
create payment12 create payment 2016-10-21 11:46:29 NaN NaN
create order16 create order 2016-10-21 11:56:35 supplier order16 NaN
approve order16 approve order 2016-10-21 11:56:50 supplier order16 NaN
make order1033 make order 2016-10-21 11:57:00 NaN NaN
make order1033 make order 2016-10-21 11:57:00 supplier order16 NaN
make dispatch22 make dispatch 2016-10-21 11:57:28 NaN NaN
make dispatch22 make dispatch 2016-10-21 11:57:28 NaN supplier order line24
receive total order1034 receive total order 2016-10-21 11:58:00 NaN NaN
receive total order1034 receive total order 2016-10-21 11:58:00 supplier order16 NaN
create invoice18 create invoice 2016-10-21 11:58:36 NaN NaN
create invoice18 create invoice 2016-10-21 11:58:36 NaN NaN

Fig. 9. Representation of a database log in the Parquet columnar format. This is
different from classic CSV event logs since the same event is repeated in multiple rows,
one for each related object. Both information related to events and related objects are
columns of a table. This structure reflects the way information is stored inside the
in-memory Pandas dataframe that supports the filtering and the discovery operations.

– logOpportunities.parquet is the database log used in the assessment and ex-
tracted from the Dynamics CRM system.

– metamodel.slexmm provides the OpenSLEX metamodel of the Concert database.

– erp.xoc provides an example XOC log extracted from a Dollibar ERP system.

The storage used in the tool for the database event logs is represented in
Fig. 9. Several rows are associated to an event, and contain an ID, an activity,
a timestamp, and a single object identifier in the column corresponding to its
class. This permits to store events in a tabular format using basic types for the
columns (strings, integers, dates) to maximize the query performance.

7 Assessment

The assessment of MVP models will show how they perform against two compet-
ing approaches (OCBC models [20] and OpenSLEX [29]), both considering the
execution time and the simplicity/readability/amount of information contained
in the models. These approaches have been chosen because are very recent. The
scalability of the MVP models implementation contained in PM4Py will be an-
alyzed on some synthetic logs. Moreover, an assessment using a real information
system (Microsoft Dynamics CRM) will be shown.
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Fig. 10. Comparison between MVP models and OCBC models, in (a) size on disk of
the proposed log storage b) discovery speed. The XOC format that is tested is the one
described in [1].

7.1 Comparison with Related Approaches

OCBC models are powerful descriptions of the relationships between activities
and classes at the database level. Having said that, OCBC models have scalabil-
ity issues: XOC logs as proposed in [1] store a snapshot of the object model per
event, this becomes quickly unfeasible also for few hundred database events (as
it will shown in the assessment). In [9], an updated version of XOC, storing in
each event the updates to the object model, has been proposed, although a XOC
event log in such format is not public available. Moreover, the final visualization
(even if it can be filtered on some types of constraints) lacks understandability.
A serious issue is the lack of support for frequency/performance decoration (i.e.
the number of occurrences of the arc, the time passed between activity).

OpenSLEX provides a way to ingest a database event log into a meta-model
instance that is easier to query. An issue is that they do not offer any visual clue
on underlying relationships between activities, making the life difficult to the
user in first instance. Moreover, although the queries on OpenSLEX are easier
than the queries done directly on the database, there is an effort required by the
user to understand the concepts described in [29].

7.2 Evaluation of the Execution Time

OCBC models (tests have been performed on the original version of XOC, pro-
posed in [1], for which several logs are public available) have scalability problems
with regards to the log format (XOC), that requires the storage, for each event,
of the status of the entire object model. In Fig. 10 (a), the size on disk (in KB)



Extracting MVP Models from Databases 19

Fig. 11. Usability assessment: example model illustrating the main ingredients of
OCBC models.

of a log containing the specified number of events has been considered. To ob-
tain an OCBC model, for a log with just 661 events, a XOC log of 512 MB is
required, that is 17476 greater than the amount of disk space that permits to
discover an MVP model from the same database.

In Fig. 10 (b), the execution speed of the discovery procedure has been com-
pared between MVP models and OCBC models. To obtain an OCBC model, for
a log with just 249 events, a time of 4 minutes and 20 seconds is required, while
for discovering an MVP model from the same database 2 seconds are required,
that is 127 times faster. This result holds also for the new version of the XOC
format [9], since in the later version the object model is built in-memory by the
discovery algorithm starting from the updates described in the event log.

With OpenSLEX, the comparison is more tight, although the final goal is
different: OpenSLEX require a query to get a classical event log, while MVP
models do not require this effort. There is only a meta-model instance available
in public, that has been extracted from a synthetic database on concert man-
agement. The amount of storage required to store the OpenSLEX instance is
11 MB, while the amount of storage that permits to discover an MVP model
is 222 KB (storing using Parquet format). To compare the (time) performance
of OpenSLEX and MVP models, a query on the OpenSLEX instance needs to
be performed. Starting in both cases from the concert database instance of the
OpenSLEX meta-model, if an example query2 is chosen, the execution speed of
the query on the OpenSLEX instance is 1.73 seconds. The time needed for MVP

2 The example query is provided in the technical report available at the address http:
//www.alessandroberti.it/technical.pdf

http://www.alessandroberti.it/technical.pdf
http://www.alessandroberti.it/technical.pdf
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Fig. 12. Usability assessment: performance/bottleneck visualization provided by MVP
models.

models to obtain a complete model with frequency and performance information
is 1.96 seconds, this without requiring the specification of any query by the user.

7.3 Usability of the Approaches

OCBC and MVP models both provide ways to discover a model on top of
database event logs. The amount of information and constraints extracted by
OCBC models is very high, and although filtering is provided to keep only some
constraints, the resulting process model is complex to understand. An explana-
tion of some ingredients of OCBC models is provided by [20] and represented in
Fig. 11. This amount of information is insane, but it is very difficult also for a
process analyst to be able to understand it without proper training.

Moreover, this class of models does not provide frequency/performance in-
formation, that can be useful for the process analyst in order to detect the
bottlenecks. MVP models, as represented in Fig. 12, can provide a graph in
which edges are decorated by frequency/performance information. With MVP
models, the following features are also available, that are not available on OCBC
models:
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the increase of the number of objects
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the increase of the number of events in
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Fig. 13. Scalability assessment of MVP models, with regards to a) the number of
activities b) the number of objects per class c) the number of classes d) the number of
events in the log.
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– Projection to a classic directly-follows graph to be used with techniques like
Inductive Miner Directly-Follows and the Heuristics Miner.

– Projection to a classical event log to be used with mainstream process mining
techniques.

OpenSLEX do not provide a visualization of a process model on top of the
database, but require to the user the specification of a query to retrieve an event
log. This is an unavoidable step, and requires time and expertise by the user. So,
the retrieval of a process model using MVP requires less time and less knowledge
than the retrieval from OpenSLEX.

7.4 Scalability of the Approach

In the previous section, MVP models have shown greater scalability and usability
in comparison to some competing approaches. In this section, the goal is to
understand more clearly the performance of the current implementation.

An assessment of the approach on simulated logs (through the log generator
included in PM4Py) has been done (see Fig. 13) to see which variables influence
the execution time in a quadratic way, and which variables influence it in a linear
way:

– a) assesses the performance of MVP discovery with the increase of the num-
ber of activities, when the number of classes, the number of objects per class
and the number of events in the log is kept fixed. The execution time (in
seconds) grows quadratically with the number of activities.

– b) assesses the performance of MVP discovery with the increase of the num-
ber of objects per class, when the number of classes, the number of activities
and the number of events in the log is kept fixed. Although the behavior in
the figure looks erratic, the execution time (in seconds) grows asymptotically
linearly with the number of objects per class.

– c) assesses the performance of MVP discovery with the increase of the num-
ber of classes, when the number of objects per class, the number of activities
and the number of events in the log is kept fixed. The execution time (in
seconds) grows linearly with the number of classes.

– d) assesses the performance of MVP discovery with the increase of the num-
ber of events in the log, when the number of classes, the number of objects
per class and the number of activities in the log is kept fixed. The execution
time (in seconds) grows linearly with the number of events.

7.5 Evaluation using CRM Data

This section presents a study of data extracted from a Microsoft Dynamics CRM
demo and analyzed using MVP discovery. A Customer Relationship Management
system (CRM) [7] is an information system used to manage the commercial
lifecycle of an organization, including management of customers, opportunities
and marketing campaigns.
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Fig. 14. Representation in one model of four perspectives (opportunities, opportuni-
typroducts, campaigns, connections) of the Dynamics CRM database (only part of the
diagram is reported).
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Fig. 15. Petri net obtained by applying Inductive Miner Directly-Follows on the pro-
jection of the Dynamics CRM MVP model on a viewpoint containing only the ’op-
portunities’ class. Black boxes represent invisible transitions (transitions that can be
executed without correspondence with the activities of the log).

Many companies actually involve a CRM system for helping business and
sales people to coordinate, share information and goals. Data extracted from
Microsoft Dynamics CRM is particularly interesting since this product manages
several processes of the business side, providing the possibility to define work-
flows and to measure KPI also through connection to the Microsoft Power BI
business intelligence tool. For evaluation purposes, a database log has been gen-
erated containing data extracted from a Dynamics CRM demo. The database
supporting the system contains several entities, and each entity contains sev-
eral entries related to activities happening in the CRM. Each entry could be
described by a unique identifier (UUID), the timestamp of creation/change, the
resource that created/modified the entry, and some UUIDs of other entries be-
longing to the same or to different entities. Moreover, each entry is uniquely
associated with the entity it belongs to.

The following strategy has been pursued in order to generate a log:

– For each entry belonging to an entity, two events have been associated: cre-
ation event (with the timestamp of creation and lifecycle start) and modify
event (with the timestamp of modification and lifecycle complete).

– Each entry belonging to an entity has also been associated with an object.
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– Relationships between events and objects are created accordingly to the
relationships expressed by the entries (an entry may cite several UUIDs of
other entries stored in the database).

The previous construction means that for the same entry there are two events
(start+complete) and one object in the log.

The database log contains 5863 events, 4413 objects, 120 activities and 80
object classes, and could be stored in a 386 KB Parquet file. The complete
MVP model (525 edges) can be calculated and represented in 5 seconds. Taking
a viewpoint containing only classes related to opportunities management (e.g.
opportunities, opportunityproducts, campaigns, connections), and choosing the
frequency metric, the model obtained is represented in Fig. 14. Projecting the
MVP model on a viewpoint containing only the ’opportunities’ class and apply-
ing Inductive Miner Directly-Follows, the process model represented in Fig. 15
is obtained.

Being able to handle this complex database schema and visualize a model that
unifies the different classes, in a very reasonable time, is a thing that is impossible
with competing approaches like OCBC models (due to severe scalability issues)
and OpenSLEX instances (because the resulting query would be more complex
than selecting a viewpoint from an holistic model).

8 Conclusion

This paper introduces Multiple Viewpoint models (MVP), providing an holistic
view on a process supported by a database. MVP models are annotated with
frequency and performance measures (e.g., delays), supporting the detection of
the most frequent paths and of the bottlenecks without the specification of any
case notion. At the same time, a viewpoint (a non-empty subset of classes)
can be chosen on the MVP models in order to get classical objects (DFGs and
logs) to use with the mainstream process mining techniques. Hence, the holistic
view of the MVP model is complemented by detailed viewpoint models using
conventional notations like Petri nets, BPMN models and process trees. This
possibility is not provided by the competing techniques described in Section 2:
the focus is either on the specification of a case notion, or on the retrieval of
an artifact-centric model. However, the relationships between the classes are not
calculated and represented in the process model, in contrast to the technique of
OCBC models. Moreover, the lack of a clear execution semantic of MVP models
makes the application of conformance checking techniques possible only after
choosing a viewpoint, in contrast with the OCBC technique that provides a
(theoretically) powerful conformance checking approach on top of the model.

An MVP model has been discovered from a database event log extracted
from a Microsoft Dynamics Customer Relationship Management (CRM) system,
showing the possibility to apply the techniques described in this paper to real-life
information systems.

Moreover, a comparison considering execution time and usability has been
performed against two of the most recent process mining approaches on databases



26 Alessandro Berti and Wil van der Aalst

(OpenSLEX and OCBC models); MVP models are relatively well performing and
easy to use, since an holistic view could be obtained without any effort from the
user, and any viewpoint could be chosen on the MVP model.

Scalability testing proved that MVP models scale linearly with the num-
ber of events, classes and asymptotically linearly with the number of objects
contained in the database event log, while they scale quadratically with the
number of activities (due to the edges calculation in the A2A multigraph). This
is a remarkable result in comparison to OCBC models that show an exponential
complexity on the number of events (they become unmanageable also for a small
number of events).

The techniques described in this paper could in principle be implemented
starting from the logs of any relational database. Hence MVP discovery supports
process mining analysis directly from real-life complex information systems.
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