
Visualizing Token Flows Using
Interactive Performance Spectra

Wil M.P. van der Aalst1,2[0000−0002−0955−6940], Daniel Tacke genannt Unterberg1,
Vadim Denisov2,3, and Dirk Fahland2[0000−0002−1993−9363]

1 Process and Data Science (Informatik 9), RWTH Aachen University, Aachen, Germany
2 Analytics for Information Systems group, Technische Universiteit Eindhoven, The

Netherlands
3 Vanderlande Industries, Veghel, The Netherlands

wvdaalst@rwth-aachen.de

Abstract. Process mining techniques can be used to discover process models
from event data and project performance and conformance related diagnostics
on such models. For example, it is possible to automatically discover Petri nets
showing the bottlenecks in production, administration, transport, and financial
processes. Also basic statistics (frequencies, average delays, standard deviations,
etc.) can be projected on the places and transitions of such nets to reveal perfor-
mance and compliance problems. However, real-life phenomena such as overtak-
ing, batching, queueing, concept drift, and partial blocking of multiple cases re-
main invisible when considering basic statistics. This paper presents an approach
combining Petri-net-based discovery techniques and so-called performance spec-
tra based on token flows. Token production and consumption are visualized such
that the true dynamics of the process are revealed. Our ProM implementation
supports a range of visual-analytics features allowing the user to interact with the
underlying event data and Petri net. Event data related to the handling of orders
are used to demonstrate the functionality of our tool.

Keywords: Process mining · Visual analytics · Petri nets · Performance spec-
trum.

1 Introduction

Process mining techniques can be used to automatically discover process models, di-
agnose compliance and performance problems, predict behaviors, and recommend pro-
cess improvements [1]. Currently, there are over 30 commercial process mining tools
(Celonis, ProcessGold, Disco, Everflow, Lana, Logpickr, Mehrwerk, Minit, MyInvenio,
PAFnow, PuzzleData, Timeline, QPR, etc.) and thousands of organizations are using
process mining to improve their processes.

In process mining, there are two main types of artifacts: event logs and process
models [1]. Each event in an event log refers to an activity possibly executed by a
resource at a particular time and for a particular case. An event may have additional
attributes such as transactional information, costs, customer, location, and unit. Process
discovery techniques can be used to discover process models [1]. Although most of the

2 W. van der Aalst et al.

discovered
process model

aggregated performance
spectrum showing

frequencies and durations

various controls to
support interactive

visualization

selected
places two detailed

performance spectra
showing token flows

Fig. 1. Screenshot visualizing the token flows of the two selected places using three interactive
performance spectra (based on an event log with 39.022 orders and 210.459 events).

commercial systems start by deriving a so-called directly-follows graph (a Markovian
model with activities as states), there is consensus that concurrency should be uncov-
ered to avoid Spaghetti-like underfitting process models [2]. Therefore, all of the more
advanced tools provide ways of discovering higher-level process models such as Petri
nets, process trees, statecharts, or BPMN models [1].

The approach presented in this paper assumes that we have an event log and a cor-
responding Petri net that was automatically discovered. Existing techniques are able to
replay the event log on such a process model to show performance-related diagnostics
by aggregating over all cases, e.g., the frequency of a transition and the average or me-
dian waiting time [1, 10, 11]. This is done by showing numeric values next to places,
transitions, and arcs. It is also possible to use colors and line thickness, e.g., transitions
with long waiting times are colored red and frequent paths are thicker than infrequent
ones. Although existing tools also report minimum times, maximal times, and standard
deviations, they have problems revealing the following phenomena that require com-
paring all individual cases:

– Overtaking: Some cases are handled much faster, thereby bypassing cases that
started earlier. This can only be observed through pairwise comparison.

– Batching: Groups of events are combined into batched activities.
– Queueing: Cases are delayed waiting for shared resources.
– Concept drift: The dynamic behavior is changing over time (periodic, gradual, or

sudden). This can only be observed by plotting the fine-grained behavior over time.
– Partial blocking: Specific subclasses of cases are delayed, whereas others are not.

For example, if the reported average delay in a part of the process is 8.5 days (computed
over the past year), then we cannot say anything about phenomena such as overtaking,
batching, queueing, concept drift, and partial blocking. These phenomena are caused
by interactions between cases and resources that may change over time. Therefore, they
cannot be identified by looking at aggregate data.

To address these limitations, we use so-called performance spectra based on token
flows. A token flow refers to the production of a token for a place and the later consump-

Visualizing Token Flows Using Interactive Performance Spectra 3

tion and also the corresponding two timestamps. Note that a token flow has a duration.
Performance spectra were introduced in [6] to provide fine-grained visualizations of the
performance of business processes and material handling systems along sequences of
activities (rather than process models).

In this paper, we use performance spectra in the context of a Petri net and provide
extensive tool support. We provide a tight integration between process models and per-
formance spectra. By aligning model and log, we can visualize performance spectra for
token flows in concurrent processes instead of along sequences of interleaved events,
thereby overcoming a significant limitation of our prior work [6]. We can now also
handle concurrent processes, thereby exploiting the alignment of model and log.

The approach has been implemented as a ProM plug-in and can be downloaded
from promtools.org (install the package “PerformanceSpectrumIntegration”). Figure 1
shows the tool while analyzing the detailed behavior of token flows of two places (left)
over time (right). The performance spectra reveal concept drift, overtaking, and queue-
ing. These phenomena would not be visible if one would consider basic place-related
statistics such as average waiting times and standard deviations.

Our work can be seen as part of visual analytics [9], also called “the science of
analytical reasoning facilitated by interactive visual interfaces”, since we combine au-
tomated process discovery with interactive visualization. Therefore, we aim to apply
best practices from visual analytics, e.g., interaction, supporting the identification of
patterns, dealing with many data points, and the ability to drill down.

The remainder is organized as follows. Section 2 introduces performance spectra
and Section 3 introduces token flows and how these correspond to performance spectra.
Section 4 shows how token flows can be extracted from event logs, thus enabling the
computation of performance spectra in the presence of concurrency. The implementa-
tion and its application are presented in Section 5. Section 6 concludes the paper.

2 Performance Spectra

Performance spectra were first introduced in [6]. They use the notion of segments. A
segment is defined by a pair of activities (a, b), e.g., two subsequent sensors on a con-
veyor belt or two subsequent stations of an assembly line. Each object (e.g., a bag or
product) flowing from a directly to b is an observation and is characterized by two
timestamps (ta, tb) where ta is the time a occurs directly followed by b at time tb.
These segments can be concatenated and it is possible to show the detailed performance
spectrum with one line for every pair (ta, tb) or the aggregate performance spectrum
aggregating results per time period (yielding a kind of bar chart with periods on the
horizontal axis). The aggregate performance spectrum is based counting the number
of lines (i.e., observations) per time period. Observations can be extended with a class
label c (e.g., fast/slow or compliant/deviating) leading to characterizations of the form
(ta, tb, c). Label c can be used to filter or color the lines in the detailed performance
spectrum. See Figure 2 for an example and [6, 5] for more details (e.g., a taxonomy of
patterns in performance spectra).

Figure 3 shows a few common patterns that should be self-explanatory. For exam-
ple, crossing lines correspond to overtaking, e.g., a LIFO (Last-In-First-Out) queuing

4 W. van der Aalst et al.

a

b

c
time

activity 1

activity 2

activity 3

segment 1

segment 2

ta

tb

Fig. 2. Example of a detailed performance spectrum composed of two segments and three activi-
ties a, b, and c. Each observation (i.e., a line) connects two correlated events. The horizontal axis
represents time. The color indicates the class.

discipline. If the tokens in a place are always consumed in FIFO (First-In-First-Out)
order there are no crossing lines.

Batching corresponds to converging lines. We can also see how patterns change over
time, e.g., due to concept drift. Figure 3(g-i) shows three aggregate performance spectra.
Here, information about frequencies, durations, etc. is aggregated over predefined time
intervals. In all performance spectra, colors can be used to distinguish observations
related to different classes.

Performance spectra have been used to analyze materials-handling systems such as
the handling of luggage in airports and parcels in distribution centers. However, they
can be applied to any operational process to gain novel insights regarding overtaking,
batching, queueing, concept drift, and partial blocking that remain hidden when looking
at traditional performance indicators like frequencies and average durations.

Performance spectra are created using event data. Each observation (i.e., a line)
corresponds to two correlated events. In this paper, we use standard event data where
each event has a timestamp and refers to at least an activity and a case.

Definition 1 (Log Events, Event Log). ULE is the universe of log events. A log event
e ∈ ULE can have any number of attributes. πx(e) is the value of attribute x for event
e. πx(e) = ⊥ if there is no such value. We assume that each log event e has a timestamp
πtime(e) 6= ⊥ and refers to a case πcase(e) 6= ⊥ and an activity πact(e) 6= ⊥.L ⊆ ULE
is an event log describing a collection of recorded events.

Note that events can have many more attributes than the mandatory ones, e.g., for
e ∈ L, πcase(e), πact(e), and πtime(e) need to exist, but also πresource(e), πcosts(e),
and πlocation(e) may be defined.

The case identifier is used to correlate two subsequent events belong to the same
case. The activities are used to build segments. Consider the leftmost observation (first
blue line) in Figure 3. ta and tb refer to the timestamps of the two corresponding events
e1 and e2, i.e. πact(e1) = a, πtime(e1) = ta, πact(e2) = b, and πtime(e2) = tb.
These events are correlated because they have the same case identifier (i.e., πcase(e1) =
πcase(e2)). For example, events e1 and e2 refer to the same bag in a baggage han-
dling system or to a particular car that is assembled. The class label c of an observa-
tion (ta, tb, c) may be based on the event attributes, e.g., πresource(e1), πcosts(e1) or
πtime(e2)− πtime(e1).

Visualizing Token Flows Using Interactive Performance Spectra 5

(a) unordered (b) FIFO (c) LIFO/overtaking

(d) constant speed (e) batching (f) drift

(g) growing (h) stable (i) peak

Fig. 3. Six detailed performance spectra (a-f) and three aggregate performance spectra (g-i).

Although the Performance Spectrum Miner (PSM) presented in [5, 6] uses event
data, the link to process models (e.g. Petri nets) was not supported thus far. Moreover,
the PSM has difficulties dealing with concurrency since direct successions of causally
unrelated activities are hiding the real causalities and durations. Consider, for example,
a process where the traces 〈a, b, c, d〉 and 〈a, c, b, d〉 occur both 100 times. Although
a is always followed by b (i.e., 200 times), without preprocessing, the PSM will only
show this for half of the cases (and show misleading delays).

3 Token Flows

To combine process discovery with performance spectra, we introduce the notion of
token flows. This way, we are able to relate performance spectra to process models and
visualize concurrent processes.

Petri nets are defined as usual [7] and can be discovered using standard process
mining techniques [1]. We assume that the reader is familiar with the basic concepts.

Definition 2 (Petri Net). A Petri net is a tuple N = (P, T, F) with P the set of places,
T the set of transitions such that P ∩ T = ∅, and F ⊆ (P × T) ∪ (T × P) the flow
relation. •x = {y | (y, x) ∈ F} is the preset of a place or transition x ∈ P ∪ T , and
x• = {y | (x, y) ∈ F} its postset.

In a marking, i.e., a state of the Petri net, places may contain tokens. A transition
t ∈ T is enabled if the input places are marked. A transition that occurs (i.e., fires)
consumes one token from each output place and produces one token for each output
place.

We need to relate transition occurrences to events in the event log. Therefore, we
differentiate between the different occurrences of a transition and use events as a unify-
ing notion. Events may refer to transition occurrences (cf. Definition 3) and/or events
recorded in the event log (cf. L ⊆ ULE in Definition 1).

Definition 3 (Transition Events). UTE is the universe of transition events, i.e., all
events having a timestamp and referring to a model transition. A transition event e ∈

6 W. van der Aalst et al.

UTE has a timestamp πtime(e) 6= ⊥ and refers to a transition πtrans(e) 6= ⊥, and can
have any number of attributes. (as before, πx(e) is the value of attribute x for event e
and πx(e) = ⊥ denotes that there is no such value).

A transition event e ∈ UTE refers to the occurrence of a transition πtrans(e) at time
πtime(e). Note that transition events can have any number of attributes (just like log
events). These attributes will be used to determine delays and to correlate transitions
occurrences. Alignments will be used to relate log events and transition events (see
Section 4). Therefore, we only consider the Petri net structure N = (P, T, F) and
abstract from the initial marking, token colors, guards, arc expressions, etc.

A binary token flow refers to the production of a particular token by some transition
occurrence and the subsequent consumption by another transition occurrence. This re-
lates to the notion of a place in an occurrence net and the notion of token flows defined
in [8]. However, we adapt terminology to be able to relate binary token flows to pairs of
events in event logs. Section 4 shows how this is done. Binary token flows correspond
to observations in performance spectra (i.e., the individual lines in Figure 2).

A binary token flow tf = (eprod , p, econs) refers to a transition occurrence eprod
producing a specific token for place p that is later consumed by another transition oc-
currence econs .

Definition 4 (Binary Token Flow). Let N = (P, T, F) be a Petri net. UN
BTF =

{(eprod , p, econs) ∈ UTE × P × UTE | πtrans(eprod) ∈ •p ∧ πtrans(econs) ∈
p • ∧ πtime(econs) ≥ πtime(eprod)} are the possible binary token flows of N .

Note that a binary token flow corresponds to a condition in a partially-ordered run
of the Petri net [7]. It is possible to describe an entire run of a net as a set of binary
token flows. A necessary requirement is that the token flows in this set can only produce
and/or consume one token for each place (of course, the same transition can consume
or produce multiple tokens and a token cannot be consumed before it is produced). We
call such a set a valid token flow set.

Definition 5 (Valid Token Flow Set). Let N = (P, T, F) be a Petri net structure.
TFS ⊆ UN

BTF is a valid token flow set if for any pair of token flows (eprod , p, econs) ∈
TFS and (e′prod , p, e

′
cons) ∈ TFS sharing the same place p: eprod = e′prod if and only

if econs = e′cons (i.e., tokens are produced and consumed only once).

A run of the Petri net N corresponds to a valid token flow set. Such a run may
involve many different cases (e.g., all bags handled in a baggage handling system).
Therefore, we do not define an initial marking or additional annotations (like in colored
Petri nets). Section 4 explains how a valid token flow set can be extracted from an event
log L ⊆ ULE .

Token flows abstract from tokens that are never produced or never consumed (e.g.,
tokens in the initial and final marking). If needed, it is always possible to add dummy
source and sink transitions. Since an event log may contain information about many
cases, this is more natural for process mining.

Definition 6 (Notations). For any binary token flow tf = (eprod , p, econs), we use the
following shorthands: πdur (tf) = πtime(econs)− πtime(eprod) is the duration of a to-
ken flow, πtp(tf) = πtrans(eprod) is the transition starting the token flow, πtime

tp (tf) =

Visualizing Token Flows Using Interactive Performance Spectra 7

πtime(eprod) is the production time, πtc(tf) = πtrans(econs) is the transition complet-
ing the token flow, πtime

tc (tf) = πtime(econs) is the consumption time, and πpl(tf) = p
is the corresponding place. Let TFS ⊆ UN

BTF be a valid token flow set. For any sub-
set of places Q ⊆ P : TFS �Q= {tf ∈ TFS | πpl(tf) ∈ Q} are the token flows
through these places. We can also compute statistics over sets of token flows, e.g.,
avgdur(TFS) =

∑
tf∈TFS πdur (tf)/|TFS | is the average delay.

The above notions facilitate computations over token flows, e.g., avgdur(TFS�{p})
is the average time tokens spend in place p. Minimum, maximum, median, variance, and
standard deviation can be computed in a similar way.

Each binary token flow tf ∈ TFS needs to be converted into an observation of
the form (ta, tb, c) where a represents the start of the segment (i.e., the top line), b
represents the end of the segment (i.e., the bottom line), ta is the start time of the
observation, tb is the end time of the observation, and c is the class. This can be done
as follows. For a we can pick all the transitions producing tokens for place p or a
specific transition in the preset of p, i.e., a = •p or a ∈ •p. For b we can pick all the
transitions consuming tokens from place p or a specific one, i.e., b = p• or b ∈ p• .
For a = •p and b = p• , we create the grouped multiset of observations Obsp =
[(ta, tb, c) | tf ∈ TFS �{p} ∧ ta = πtime

tp (tf) ∧ tb = πtime
tc (tf) ∧ c = class(tf)].

For a ∈ •p and b ∈ p• , we create the ungrouped multiset of observations Obsa,b,p =
[(ta, tb, c) | tf ∈ TFS�{p} ∧ a = πtp(tf) ∧ b = πtc(tf) ∧ ta = πtime

tp (tf) ∧ tb =

πtime
tc (tf) ∧ c = class(tf)]. We use the notations from Definition 6 to define these

two types of multisets. We leave the definition of the classification function class open.
It may be based on properties of the case (e.g. the customer involved), events (e.g.,
the outcome), or some performance related computation (e.g., overall case duration). A
simple example is class(tf) = slow if πdur (tf) ≥ 24 hours and class(tf) = fast if
πdur (tf) < 24 hours.

Using the above, we can create one grouped performance spectrum for place p based
on Obsp or | •p| × |p• | ungrouped spectra based on Obsa,b,p with a ∈ •p and b ∈ p• .

4 Extracting Token Flows From Event Logs

Each binary token flow tf = (eprod , p, econs) in a valid token flow set (i.e., a run of the
Petri net) corresponds to an observation (i.e., a line) in the corresponding performance
spectrum. Attributes and computations such as πdur (tf) can be used to add class labels
(coloring of lines). Hence, given a valid token flow set TFS ⊆ UN

BTF , it is easy to
construct performance spectra. In this section, we show how to obtain valid token flow
sets from event data.

We start with an event log L ⊆ ULE and first discover a Petri net N = (P, T, F)
using existing process discovery techniques (e.g., inductive mining, region-based dis-
covery, etc.) [1]. The Petri net N may also be a discovered model that was modified
or created manually. The event log L is replayed on the Petri net N by computing the
so-called alignments [3, 4]. Alignments make it possible to link each case in the event
log (i.e., tokens having a common case identifier) to a path through the model. This may
imply that events are ignored because they do not fit (called a “move on log”) or that ar-
tificial events need to be introduced (called a “move on model”). In the latter case, also

8 W. van der Aalst et al.

Fig. 4. The Petri net model automatically discovered based on the event log with 39.022 orders
and 210.459 events.

a timestamp needs to be added in-between the synchronous moves (i.e., fitting events
before and after).

Alignments are typically computed per case and several approaches are available
[3, 4]. They all map each case in the log onto a path through the model such that the
differences are minimized. Let c be a case in event log L ⊆ ULE . σc = {e ∈ L |
πcase(e) = c} are the events of c (often represented as sequence of activities). Replay-
ing the firing sequence σc over N yields a collection of transition events γc ⊆ UTE .
Note that events in σc may be ignored (“move on log”) and events may be added (“move
on model”) due to silent transitions or deviating behavior. γc defines a partially-ordered
run [7] for a particular case c. Each condition in such a run describes a token in place
p with its producing event eprod and its consuming event econs . This yields the binary
token flows for case c. Taking the union over all cases yields the overall valid token
flow set TFS ⊆ UN

BTF for event log L. As shown in Section 3, such a TFS can be
visualized in terms of performance spectra.

5 Implementation

The approach has been implemented as a ProM plug-in. Figure 1 already showed a
screenshot analyzing a Petri net discovered from an event log with information about
39.022 orders and 7 activities (210.459 events in total). Figure 4 shows a larger visual-
ization of the discovered process model.

To use the plug-in, install the package “PerformanceSpectrumIntegration” in com-
bination with ProM’s latest Nightly Build from promtools.org. The plug-in “Interactive
Performance Spectrum” takes as input an event log and a Petri net.4. A possible scenario
is to take an arbitrary XES event log, run the “Inductive Visual Miner”, save the result
as an “Accepting Petri Net”, and then run the “Interactive Performance Spectrum” on
the event log and accepting Petri net. Using these simple steps, one immediately gets
the desired result and can now interactively show performance spectra side-by-side with
the process model.

Alignments [3, 4] play a key role in constructing token flows. The “Interactive Per-
formance Spectrum” plug-in first applies the standard alignment techniques to the event

4 Note that there are several variants depending on the type of Petri net, whether the alignment
remains to be constructed, and to configure the class attribute.

Visualizing Token Flows Using Interactive Performance Spectra 9

1

2

3

Fig. 5. Screenshot showing three performance spectra marked ¶, ·, and ¸. The blue diamond
was added to the process model to analyze the token flow between pay order and make delivery.
The colors differentiate between frequent variants (orange) and infrequent variants (green).

log and the discovered Petri net. This is typically the biggest performance bottleneck
and not specific to our approach (alignments are also needed to compute simple statis-
tics for places such as the average waiting time). After this initialization step, the plug-in
shows the Petri net and a variable number of performance spectra. Figure 1 shows three
performance spectra. The top one is an aggregated performance spectrum with infor-
mation about the token flow between activities place order and send invoice (the blue
place). The two other performance spectra show details about the token flow of the
green place, i.e., the place connecting activities place order and pay order and cancel
order. The colors of the lines and bars are based on the overall flow time which is used
as a class attribute.

Figure 5 shows another screenshot of the “Interactive Performance Spectrum” while
analyzing the same process in a different period. Three performance spectra (marked
¶, ·, and ¸) are shown. The first one (i.e., ¶) is a detailed performance spectrum for
the place connecting prepare delivery with confirm payment. As can be seen, work is
sometimes queueing for confirm payment (see the gaps and diverging lines) and things
are handled in FIFO (First-In-First-Out) order (there are no crossing lines). The second
performance spectrum (i.e., ·) shows the token flow for the place connecting prepare
delivery with make delivery. Again we see queueing. However, now things are handled
in a LIFO (Last-In-First-Out) order as illustrated by the crossing lines. The orange
lines refer to token flows belonging to frequent variants and the green lines refer to
token flows belonging to infrequent variants (i.e., cases following a less common path
through the model). The third performance spectrum (i.e., ¸) refers to an artificially
added place (indicated by the blue diamond in the Petri net). The virtual place connects
pay order and make delivery and was added to analyze the token flow between these two
activities. The tool facilitates the addition of such virtual places without recomputing
alignments (the places do not need to be implicit and do influence the alignments; they
are merely used to generate additional diagnostic token flows). Moreover, both detailed
and aggregated performance spectra can be generated for such places.

10 W. van der Aalst et al.

By simply selecting places on the left-hand side, spectra are added on the right-hand
side. It is also possible to add multiple virtual measurement places interactively. Given
a place p, one can show one aggregated token-flow spectrum based on Obsp or show
individual spectra for all pairs of transitions in {(a, b) | a ∈ •p ∧ b ∈ p• } based on
Obsa,b,p (see Section 3). Moreover, there are many ways to adapt the view as illustrated
by the bottom part of Figure 5:

– It is possible to seamlessly rescale the time axis and to zoom-in on selected time
periods using two sliders.

– The density of the lines can be adapted and it is possible to overlay the spectra with
weeks, days, hours, and seconds.

– For smaller event logs, the views are immediately updated, for larger event logs it
is possible to make multiple changes and then update the view.

– Performance spectra can be filtered based on attributes of events in the log or de-
rived attributes such as duration or variant.

– Performance spectra use colors that may be based on event attributes or derived
attributes, i.e., the class(tf) introduced before. This way one can, for example, see
differences between products, customer groups, and departments. However, it can
also be used to highlight exceptional or slow cases.

For aggregated performance spectra (like ¸ in Figure 5) we need to select the time pe-
riod used for binning the token flows. We can use years, quarters, months, weeks, days,
days, hours, minutes or a customized time period. The aggregated performance spec-
trum in Figure 5 uses day as a time period. Each stacked bar corresponds to one day.
The height refers to the number of token flows and the colors refer to classes involved.
One can clearly see the weekends and the varying load and changing mix of cases. Ob-
viously, one cannot see such phenomena using traditional performance visualizations.

The “Interactive Performance Spectrum” plug-in has been applied to most of the
publicly available real-life event logs from the 4TU Center for research data.5 Exper-
iments show that the biggest bottleneck is in the discovery (getting a reasonable Petri
net) and alignment computation (which may be very time consuming).

6 Conclusion

This paper presented the novel “Interactive Performance Spectrum” plug-in (available
as part of ProM’s Nightly Build promtools.org) that visualizes token flows using per-
formance spectra while providing a range of interaction mechanisms. This allows us to
uncover real-life phenomena such as overtaking, batching, queueing, concept drift, and
partial blocking that would otherwise remain invisible. By using a Petri net as the “lens”
to look at event data, we overcome the limitations of our earlier work [6, 5] where con-
currency was not handled and we did not support the link between performance spectra
and process models. This results in problems similar to using directly-follows graphs
for process discovery [2]. Due to the “Interactive Performance Spectrum” plug-in we
are now able to handle concurrency and tightly integrate process models and event data.

5 The site https://data.4tu.nl/repository/collection:event logs synthetic provides 24 sets of real-
life event data and 15 synthetic data sets.

Visualizing Token Flows Using Interactive Performance Spectra 11

The applicability of the approach is mostly limited by the potential complexity of
alignment computations. For large event logs and models, preprocessing may be time-
consuming. Therefore, as future work, we would like to explore approximative align-
ments and apply various forms of sampling.

Acknowledgments We thank the Alexander von Humboldt (AvH) Stiftung and Van-
derlande Industries for supporting our research.

References

1. W.M.P. van der Aalst. Process Mining: Data Science in Action. Springer-Verlag, 2016.
2. W.M.P. van der Aalst. A Practitioner’s Guide to Process Mining: Limitations of the Directly-

Follows Graph. In International Conference on Enterprise Information Systems (Centeris
2019), volume 164 of Procedia Computer Science, pages 321–328. Elsevier, 2019.

3. W.M.P. van der Aalst, A. Adriansyah, and B. van Dongen. Replaying History on Process
Models for Conformance Checking and Performance Analysis. WIREs Data Mining and
Knowledge Discovery, 2(2):182–192, 2012.

4. J. Carmona, B. van Dongen, A. Solti, and M. Weidlich. Conformance Checking: Relating
Processes and Models. Springer-Verlag, 2018.

5. V. Denisov, E. Belkina, D. Fahland, and W.M.P. van der Aalst. The Performance Spectrum
Miner: Visual Analytics for Fine-Grained Performance Analysis of Processes. In Proceed-
ings of the BPM Demo Track, volume 2196 of CEUR Workshop Proceedings, pages 96–100.
CEUR-WS.org, 2018.

6. V. Denisov, D. Fahland, and W.M.P. van der Aalst. Unbiased, Fine-Grained Description of
Processes Performance from Event Data. In International Conference on Business Process
Management (BPM 2018), volume 11080 of Lecture Notes in Computer Science, pages 139–
157. Springer-Verlag, 2018.

7. J. Desel and W. Reisig. Place/Transition Nets. In W. Reisig and G. Rozenberg, editors,
Lectures on Petri Nets I: Basic Models, volume 1491 of Lecture Notes in Computer Science,
pages 122–173. Springer-Verlag, 1998.

8. G. Juhas, R. Lorenz, and J. Desel. Unifying Petri Net Semantics with Token Flows. In
G. Franceschinis and K. Wolf, editors, Proceedings of the 30th International Conference on
Applications and Theory of Petri Nets (Petri Nets 2009), volume 5606 of Lecture Notes in
Computer Science, pages 2–21. Springer-Verlag, 2009.

9. D. Keim, J. Kohlhammer, G. Ellis, and F. Mansmann, editors. Mastering the Informa-
tion Age: Solving Problems with Visual Analytics. VisMaster, http://www.vismaster.eu/book/,
2010.

10. A. Rogge-Solti, W.M.P. van der Aalst, and M. Weske. Discovering Stochastic Petri Nets with
Arbitrary Delay Distributions from Event Logs. In Business Process Management Work-
shops, International Workshop on Business Process Intelligence (BPI 2013), volume 171 of
Lecture Notes in Business Information Processing, pages 15–27. Springer-Verlag, 2014.

11. A. Rozinat, R.S. Mans, M. Song, and W.M.P. van der Aalst. Discovering Colored Petri
Nets From Event Logs. International Journal on Software Tools for Technology Transfer,
10(1):57–74, 2008.

