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Abstract—Business process models can be (re)constructed us-
ing event data recorded during the process’ execution. Similarly,
event data can be used to verify conformance to prescribed
behavior and to analyze and improve the underlying processes.
However, not all events that are related to a process necessarily
relate to its control-flow. Some events occur in the context of the
process. In this work, we introduce the concept of context events
to deal with these types of events. We show how distinguishing
between contextual and control-flow events aids process discovery
to obtain less complex process models. We demonstrate how
visualizing context events on top of process models helps identify
points in the process where context events occur often, aiding
understanding. We analyze these benefits using two case studies
involving real-life processes and event data.

Index Terms—Process Mining, Complex Event Processing,
Context events, Business process intelligence

I. INTRODUCTION

A process comprises a series of activities performed in

order to achieve a specific goal, such as creating a product or

delivering a service. A process model describes the control-
flow of a process, i.e., the order in which its activities should

be executed. Organizations use process models in a normative

and descriptive manner to define the boundaries of a process

and to make sure the process yields the desired result. Modern

processes are supported by information systems in which

they leave digital footprints in the form of event data. Such

events typically represent the occurrence of an instance of

an activity. Analyzing event data is valuable because it can

reveal previously unknown properties of processes. Process

mining is a discipline that analyzes both event data and process

models. It comprises three main use cases: process discovery,

conformance checking, and process enhancement [1].

In many processes, there exist activities that, while bearing

a relation to the process, are not part of its prescribed control-

flow. These activities can occur at any time during the process

execution. For example, lab tests in a hospital are part of

the diagnostic process, but can be executed at any time

during the process. Event data representing activities that may

occur at any time during the process’ execution have proven

problematic for most discovery algorithms [2]. Additionally,

such behavior complicates conformance checking [3]. In con-

clusion, it limits process understanding. Existing methods to

obtain more precise process models exclude such contextual
behavior during process discovery. However, by filtering out

behavior, the discovered process model will not represent any

of the excluded events and lack the complete picture.

It is our aim to both locate contextual behavior in a process

and to represent it in a complete yet precise process model. To

this end, we introduce the concept of context events. Context

events are events that can be linked to cases in a process,

but the activity associated with the event is not part of the

prescribed control-flow for the process. As such, context events

may influence the process, but do not change the control-flow

state. Context events are a new class of events that are useful

to be identified and handled separately from events that are

related to the control-flow as defined by a process model.

Fig. 1 introduces a running example of a compensation

request process to which we will relate the ideas presented in

this paper. The process model for this example is taken from

[1]. We use the alphabet a through h to represent the activities

of the process. We also introduce three activities, x, y and z,

that are related to the process but can not be mapped to an

activity in the process’ control-flow. These activities represent

contact with the customer, which can occur at any given time

in the process. There are few alternatives to represent the

customer contact activities in our process model. Fig. 2a shows
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(a) Process model in Petri net notation.

a. register request g. pay compensation

b. examine thoroughly h. reject request

c. examine casually h. reject request

d. check ticket x. incoming call

e. decide y. incoming chat

f. re-initiate request z. incoming complaint

(b) Legend for the transition labels of Fig. 1a

Fig. 1: Running example of a compensation request process.
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(a) Fig. 1a with context activities added in a parallel branch.
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(b) Discovered process model, using the Inductive Visual Miner (IVM)
[4], based on a example dataset taken from [1] extended with context
events x, y, and z for only 4 out of 1, 391 cases (0.29%).

Fig. 2: Two examples of how the running example can be

extended with context activities x, y and z.

how they can be modelled in a parallel branch. This does

not allow to pinpoint which activity occurs exactly where in

relation to the other activities. Fig. 2b shows a discovered

process model based on an example dataset taken from [1].

The dataset is extended with context events x, y, and z for

only 4 of the 1, 391 cases (0.29%). The discovered model in

Fig. 2b allows activity a to be executed after b,c and d, while

in the dataset this never happens. Likewise, the number of

occurrences of b plus c is no longer equal to the number of

occurrences of d. This shows the influence of only a few events

on a process discovery result. Clearly, neither alternative is

satisfactory. A novel approach is required that captures the

non-control-flow behavior and relates it to the process model.

The remainder of this paper is structured as follows. Section

II discusses related work. Section III introduces preliminary

definitions. Section IV explains our approach, while in Section

V the approach is evaluated using two case studies. Section

VI concludes the paper with suggestions for future work.

II. RELATED WORK

Context is used in many different ways. In [1], the context

in which events of a process are executed is divided into

four categories: case, process, social, and external. These may

influence the execution, performance or outcome of a process.

In [5], Hompes et al. relate process, case, and activity context

information to performance in order to identify possible causal

relationships. The multi-perspective process explorer presented

in [6] allows the user to visualize context information by se-

lecting elements of a process model and comparing aggregated

attribute values between the selected parts of the model. In

[3], contextual information consists of control-flow events that

occur in the neighborhood of a log pattern.

Our approach to distinguish control-flow events from con-

text events could prove beneficial for other process mining

approaches. In both [3] and [7], context is used during process

discovery. However, no distinction is made between control-

flow events and events that occur in the context of the process.

Another way of improving the result of process discovery, is

by filtering out undesired behavior from an event log before

applying a discovery algorithm. An approach for this using

information theory concepts is presented in [8], while in [9]

the probability of an activity occurring in the context of other

activities is used. Finally, a different approach to improving the

result of discovery is the repair approach presented in [10]. A

given process model is repaired to reflect the behavior present

in an event log from the same process. Both model discovery

and model repair techniques can benefit from our approach,

as it helps reduce the number of activities and relations

between those activities, hence reducing the complexity of the

respective task, as shown in Fig. 2.

Visualization, used by many process mining techniques, can

be improved by separating context information and control-

flow information. As mentioned above, the multi-perspective

process explorer [6] allows to aggregate the values of case and

event attributes in the context of a process model. However,

it does not allow to show contextual events in relation to a

process model. Similarly, in [11], an artifact-centered approach

is used to show multiple related (sub-)processes and how

they interact with each other. Since context events are not

necessarily related to one another, applying this approach in a

process with contextual behavior does not lead to meaningful

results. Work by de Leoni et al. creates movies in which the

state of each process activity is calculated at each moment in

time [12]. The result is plotted on top of a process model.

However, there is no option to show events that are not part

of the control-flow, i.e., that are not part of the process model

in the movie. Only the number of unmapped events at any

time during the process is shown in the process movie.

In [13], four questions are raised regarding the overlap

between the fields of complex event processing (CEP) and pro-

cess mining. Our work can be applied towards the challenge of

process mining sensor events. Identifying control-flow-related

sensor events, while keeping track of when other (contextual)

sensor events take place, helps identify those sensor events

that can be transformed into activities. Mandal et al. use an

example from the logistics domain [14]. Goods are transported

from a warehouse to a customer. While on route, incidents may

happen that require recalculating the route. Knowing when

incidents (context events) occur in relation to the transportation

process (control-flow) facilitates the adaptation of the process,

reducing the influence of incidents on the delivery time.

III. PRELIMINARIES

The research reported in this paper builds on a body of

existing research in process mining. Although our approach

is generic and applicable to any modelling language (e.g.,

BPMN, EPC, etc.), we opt for Petri nets due to their simple

and clear semantics. Our approach uses alignments of Petri

nets and event logs for the localisation of context events.
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Processes supported by information systems leave a digital

footprint in event logs. Events have properties identifying

different aspects of the event, such as a timestamp or the

corresponding activity. Events from the same process instance

are grouped into cases, and multiple cases form an event log.

Definition 1 (Event, Event attributes). Let E be the universe
of events, i.e., the universe of unique event identifiers. Let Q be
the universe of event properties and let V be universe of event
property values. Let π ∈ Q → (E � V) be the event property
function. For any property q ∈ Q, π(q) (denoted πq) is a
partial function mapping events onto values. If πq(e) = v,
then event e ∈ E has a property q ∈ Q and the value of
this property is v ∈ V . If e /∈ dom(πq), then event e does
not have property q and we write πq(e) =⊥. Let A be the
universe of activity labels, label ∈ Q, dom(πlabel) = E , and
rng(πlabel) = A, i.e., every event has a label property value.

Definition 2 (Case, Trace, Event log). A case c ∈ E∗ is a
sequence of events, i.e., c = 〈e1, e2, . . . , en〉. A trace σ ∈
A∗ is a sequence of activity labels. We define function trace
to project a case onto its trace, i.e., trace : E∗ → A∗ and
trace(c) = 〈πlabel(e1), πlabel(es), . . . , πlabel(en)〉. Let L be
the universe of event logs. An event log L ∈ L is a set of
cases, i.e., L ⊆ E∗.

Definition 3 (Petri net, Petri net edge). Let N be the universe
of Petri nets. Let P be the universe of places. Let T be the
universe of transitions. Let P ⊆ P be a set of places, T ⊆ T
be a set of transitions, and F ⊆ (P × T ) ∪ (T × P ) be
a flow relation between places and transitions (and between
transitions and places). A Petri net N ∈ N is a tuple N =
(P, T, F ). A Petri net edge f ∈ F is an input edge if f ∈ P×T
and an output edge if f ∈ T ×P . We define function label as
a transition labeling function, i.e., label ∈ T → A ∪ {τ}.

Definition 4 (Marking, System net). A marking M is a
multiset of places, i.e., M ∈ B(P). Let S be the universe of
system nets. A system net S ∈ S is a triplet (N,Minit,Mfinal)
where N ∈ N is a Petri net, Minit ∈ B(P ) is the initial
marking, and Mfinal ∈ B(P ) is the final marking.

Figure 1a shows an example Petri net. Visually, a Petri net

consists of squares, circles, and directed edges, which repre-

sent the transitions, places, and flow relations, respectively.

Transitions represent process activities. The only exceptions

are the invisible transitions labeled τ , which do not represent

pieces of the process’ work but are necessary to properly

model some types of routing of the process. Places may

contain tokens; whereas the structure of the Petri net never

changes, tokens are created and consumed. A transition is

enabled (the activity it represents is allowed to occur at the

current state) if and only if at least one token exists in each

input place of the transition. By firing (i.e., executing) a

transition, a token is consumed from each input place and

a token is produced for each output place. The state of a

Petri net is uniquely determined by the distribution of tokens

over places, which is denoted as its marking. For the Petri

net in Fig. 1a, the initial marking is place start, and the

final marking is place end. A complete firing sequence is a

sequence of transitions leading from the initial marking to the

final marking, indicating a complete execution of a process

instance. The set of all complete firing sequences of a system

net S is denoted by ΨS . For further information on Petri nets

in relation to process mining, readers are referred to [1].

Conformance checking aims to verify whether observed

behavior recorded in an event log matches behavior described

by a process model. The notion of alignments provides a robust

approach to conformance checking, which makes it possible to

pinpoint the deviations causing nonconformity [15]. Building

such alignments between an event log and a process model

is not trivial, since the log may deviate from the model at an

arbitrary number of places. We need to relate “moves” in the

log to “moves” in the model. However, it may be that some

of the moves in the log cannot be mimicked by the model

and vice versa. In other words, not all traces in an event log

may be reproducible by the corresponding Petri net, i.e., not

all traces may correspond to a complete firing sequence.

Definition 5 (Alignment move). Let M be the universe of
alignment moves, i.e., the universe of unique alignment move
identifiers. We define function λ as follows. Given m ∈ M:

• λevent(m) ∈ E ∪ {	},
• λlabel(m) ∈ A ∪ {τ},
• λtrans(m) ∈ T ∪ {	},

where 	 identifies the absence of respectively an event or a
transition, such that

• λevent(m) =	 =⇒ λtrans(m) ∈ T ,
• λtrans(m) =	 =⇒ λevent(m) ∈ E ,
• λevent(m) �=	 =⇒ λlabel(m) = πlabel(λevent(m)),
• λtrans(m) �=	 =⇒ λlabel(m) = label(λtrans(m)).

Definition 6 (Alignment, Alignment set). An alignment γ ∈
M∗ is a finite sequence of alignment moves such that each
alignment move appears only once, i.e., 1 ≤ i < j ≤ |γ| :
γ(i) �= γ(j). An alignment set is Γ ⊆ M∗ such that each
alignment move appears only once. Uγ is the universe of
alignments and UΓ the universe of alignment sets.

For a given alignment move m ∈ M, m is considered a

synchronous move when λevent(m) �=	 ∧ λtrans(m) �=	,

a model move when λevent(m) =	 and λlabel(m) �= τ , a

log move when λtrans(m) =	 and an invisible move when

λlabel(m) = τ . For every alignment γ ∈ Uγ of a system net

S ∈ S and a case c ∈ E∗, the projection on λevent yields c,
and the projection on λtrans yields a path in ΨS .

Multiple alignments are possible for the same case and

model. The aim is to find a complete alignment with a

minimal number of deviations, also known as an optimal
alignment [15]. For the sake of space, we assume here that

all deviations (i.e., model moves for visible transitions and

log moves) have unit cost. In [15], Aalst et al. show how this

assumption can be removed. Different alignment techniques

exist, which we generalize by the alignment function.

Definition 7 (Alignment function). The alignment function
align ∈ L × S → UΓ aligns an event log with a system
net and returns an alignment set consisting of one optimal
alignment for each case in the event log.
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Clearly, different cases may have different (optimal) align-

ments as they contain different events and deviations. For

example, Fig. 3 shows three possible alignments for trace

〈a, e, b, d, g〉 and the Petri net (system net) in Fig. 1a. Here, γ1
contains two deviations: one log move (m12) and one model

move (m15). Furthermore, γ2 contains one invisible move

(m22), a model move (m23), and two log moves (m25 and

m26). Lastly, γ3 contains an invisible move (m32), two model

moves (m33 and m37), and one log move (m34). Since no

alignment exists with less than two asynchronous moves for

visible transitions, γ1 is an optimal alignment for the trace.

IV. PUTTING EVENTS INTO CONTEXT

In this paper, we argue that not all events should be treated

equally. We distinguish two main types of events: control-flow

events and context events. We aim to visualize the process

model using both event types. The concept of alignments is

used to identify where in a process model context events occur.

This requires context events to be identified (Section IV-A) and

that a mapping is created between the context events and the

process model (Section IV-B).

A. Identifying Context Events

In order to identify different types of events, we introduce

an event property type ∈ Q with dom(πtype) = E . In other

words, every event has an event type. The default value is

control-flow. This implies that an event is part of the control-

flow of the process. During analysis, an analyst may define

other event types to relate to context events. For example,

a purchasing process typically consists of activities such as

placing an order, making a payment, receiving a request, and

sending goods. These events would be of type control-flow.

Other events may occur that may influence the process, but do

not change the state of the process. For example, a customer

may call to inquire the status of the order, may file a complaint,

or may visit the website to check the current prices. These

events can be defined as events of type context. Furthermore,

γ1 =

m11 m12 m13 m14 m15 m16

e11 e12 e13 e14 	 e15
a e b d e g
t1 	 t3 t5 t6 t8

γ2 =

m21 m22 m23 m24 m25 m26 m27

e11 	 	 e12 e13 e14 e15
a τ d e b d g
t1 t2 t5 t6 	 	 t8

γ3 =

m31 m32 m33 m34 m35 m36 m37 m38

e11 	 	 e12 e13 e14 	 e15
a τ d e b d e g
t1 t2 t5 	 t3 t5 t6 t8

Fig. 3: Three example alignments of trace 〈a, e, b, d, g〉 with

the system net in Fig. 1a. Columns represent alignment moves.

The rows represents the alignment move identifier, the event

identifier, the label, and the transition, from top to bottom.

multiple event types may be identified to distinguish different

types of contextual events (e.g., call, complaint, website visit).
Process models describe the lifecycle of a single process

instance, i.e., a case. As such, events that are not linked to a

case cannot be logically represented on a process model. To

analyze context events, they need to be included in an event log

and linked to a case. A connection is to be made between the

context events and the control-flow events. Such connections

can be made based on shared event properties (e.g., order id)

or on the time period in which the events occurred.

Figure 4 shows the alignments for the traces 〈a, d, c, g, h〉
and 〈a, d, h〉 with the Petri net in Fig. 1a. Context events

labeled x, y, and z are inserted. Since there are no transitions

in the Petri net labeled x, y, or z, these context events thus

become log moves in the alignment. In order to distinguish

log moves for context events (i.e., events of type context)
from regular log moves (i.e., log moves for events of type

control-flow), we introduce alignment move types. The type

of the move equals the type of the event. If the move does not

correspond to an event, the move is of type control-flow.

Definition 8 (Alignment move type). Let m ∈ M be an
alignment move. We extend function λ such that:

• λevent(m) �=	 =⇒ λtype(m) = πtype(λevent(m))
• λevent(m) =	 =⇒ λtype(m) = control-flow

γ4 =

m41 m42 m43 m44 m45 m46 m47 m48

e41 e42 e43 e44 e45 	 e46 e47
a d x c y e g h
t1 t5 	 t4 	 t6 t8 	

γ5 =

m51 m52 m53 m54 m55 m56 m57 m58

e51 e52 e53 e54 	 	 e55 e56
a d x y τ e h z
t1 t5 	 	 t2 t6 t9 	

Fig. 4: Example of alignments with context moves highlighted

in gray. In γ4 (trace 〈a, d, x, c, y, g, h〉), m43, and m45 are of

type context. In γ5 (trace 〈a, d, x, y, h, z〉), m53, m54, and m58

are of type context.

B. Visualizing Context Moves

In existing literature, when projecting alignment data onto

Petri nets, model moves are commonly associated with tran-

sitions and log moves with places [1]. As such, we have

chosen to associate context moves (i.e., moves of type context)

to Petri net edges as to avoid ambiguity about information

mapped onto the process model. This design decision has

several consequences that need to be addressed.

Firstly, to determine on which edges a context move should

be plotted, we need to determine through which transitions

a case travels, i.e., what its corresponding firing sequence is.

Since context moves occur in-between control-flow moves, it

is enough to determine the preceding and succeeding control-

flow move in the alignment, for each context move. To

do this, we define function enrich. Each context move is

mapped to exactly one control-flow predecessor move and
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one control-flow successor move. If the context move is the

first (respectively last) move in the alignment, the predecessor

(respectively successor) does not exist and we write 	. Figure

5 shows the results of applying function enrich to γ4 and γ5.

Definition 9 (Enrich function). We define function enrich to
enrich each context move in an alignment with it’s preceding
and succeeding control-flow alignment move, i.e.:
enrich : Uγ → M× (M∪ {	})× (M∪ {	}).

enrich(γ4) = {(m43,m42,m44), (m45,m44,m46)}
enrich(γ5) = {(m53,m52,m55), (m54,m52,m55),

(m58,m57,	)}

Fig. 5: Results of enrich(γ4) and enrich(γ5).

Secondly, since transitions might have multiple input and

output edges, if we would associate a context move with every

outgoing edge of the transition corresponding to the preceding

control-flow move and every incoming edge of the transition

corresponding to the succeeding control-flow move, we risk

increasing the total number of context moves associated with

the process model. To avoid this, we assign a weight to every

context move. If a context move is mapped onto n edges, this

weight is calculated as 1
n .

Thirdly, the control-flow moves that precede or succeed a

context move may be model moves, i.e., the labels represented

by their corresponding transitions were expected in the model,

but they did not occur in the event log. In this case, we cannot

be entirely certain that the context move actually occurred

between these two model transitions. We argue that, depending

on whether only one of the surrounding control-flow moves

in the alignment is a model move, or both, the certainty

decreases. This is captured by the function cert. Given a

context move, its predecessor, and its successor, the certainty

is calculated as shown in Fig. 6.

cert(mcont,mpred,msucc) =⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.25 λtrans(mpred) =	 ∧ λtrans(msucc) =	
0.50 λtrans(mpred) =	 ∧ λtrans(msucc) �=	
0.50 λtrans(mpred) �=	 ∧ λtrans(msucc) =	
1.00 λtrans(mpred) �=	 ∧ λtrans(msucc) �=	

Fig. 6: Calculation of the certainty that a context move has

occurred in between two control-flow moves.

We choose this way of calculating weight and certainty

for simplicity and ease of use. Other aspects of the model,

the event log, or their alignment can be taken into account

in order to calculate how certain one can be of a context

move occurring between any two transitions of the model. For

example, the prefix or postfix of the trace, or even the number

of optimal alignments could be used.

Once the context moves are identified and enriched with

their surrounding control-flow moves, they can be mapped

onto a Petri net model. Algorithm 1 shows how context moves

are mapped to Petri net edges. Context moves are plotted

Algorithm 1: Map Context Moves onto Petri net edges

Input: N = (P, T, F ) ∈ N
Input: Γ ∈ UΓ
Output: EF ⊆ F ×M× R× R

EF ← ∅
foreach γ ∈ Γ do

EM ← enrich(γ)
foreach (mcont,mpred,msucc) ∈ EM do

ct← cert(mcont,mpred,msucc)
tp ← λtrans(mpred)
ts ← λtrans(msucc)
fout ← {(tp, pp) ∈ F}
fin ← {(ps, ts) ∈ F}
overlap←{(tp, pp) ∈ fout | ∃(ps, ts) ∈ fin ∧ ps = pp} ∪

{(ps, ts) ∈ fin | ∃(tp, pp) ∈ fout ∧ pp = ps}
if |fout| = 0 ∧ |fin| > 0 then

foreach f ∈ fin do
EF ← EF ∪ {(f,mcont,

1
|fin| , ct)}

else if |fout| > 0 ∧ |fin| = 0 then
foreach f ∈ fout do

EF ← EF ∪ {(f,mcont,
1

|fout| , ct)}
else if |overlap| > 0 then

foreach f ∈ overlap do
EF ← EF ∪ {(f,mcont,

1
|overlap| , ct)}

else if |overlap| = 0 then
foreach f ∈ fin ∪ fout do

EF ← EF ∪ {(f,mcont,
1

|fin|+|fout| , ct)}
return EF

as close as possible to the location in the process model

where they occurred, i.e., as close as possible to the transitions

corresponding to the control-flow moves immediately before

and after the context move. When a context move is positioned

in between two transitions that have a route between them,

then it is mapped on the two edges connecting the transitions

in the Petri net. In Algorithm 1 this is expressed in the

situation where overlap exists between the Petri net places

related to both transitions. When no such overlap exists, the

context move is plotted on all outgoing edges of the transition

corresponding to the preceding control-flow move and on

all incoming edges of the transition corresponding to the

succeeding control-flow move. When the context move does

not have a preceding control-flow move, i.e., it occurred before

the first control-flow move, then the context move is plotted

on the incoming edges of the transition corresponding to the

succeeding control-flow move. Finally, when the context move

does not have a succeeding control-flow move, it is plotted

on the outgoing edges of the transition corresponding to the

preceding control-flow move.

Consider context move m43 of alignment γ4 in Fig. 4. This

move corresponds to event e43 (label x), and is positioned

in between m42 (label d, transition t5), and m44 (label c,
transition t4). Both m42 and m44 are synchronous alignment

moves. This implies that the certainty that e43 occurred

between t5 and t4 is equal to 1. In the Petri net (shown in

Fig. 1a) there are no shared places between the outgoing edges

from transition t5 and the incoming edges from transition t4.

Following Algorithm 1, context event e43 is thus related to

edge (p2, t5) and edge (p1, t4), both with a weight of 1
2 .

69



V. EVALUATION

This section reports on an evaluation of our technique based

on two case studies. The first case study, presented in Section

V-A, is based on a hospital process in which patients are tested

for sepsis. These tests can be executed at any time during the

patients stay in the hospital. The second case study, in Section

V-B, shows an insurance claim process in which customers can

call the insurance company to ask questions regarding their

claim. The approach has been implemented in ProM. 1

A. Case Study Emergency Room Sepsis Process Discovery

This section illustrates how our technique can be beneficial

for process discovery [1]. When selected events in the event

log are marked as context events, they can be kept aside while

executing the process discovery process. Using less activities

in process discovery will lead to a less complex result. After a

model is discovered, the context events can be plotted on top of

this model, highlighting the locations where the context events

are most likely to occur. Visualizing context events in this way

can identify the best locations for modifying the process model

by adding context activities, which relates to model repair.

The process used in the case study in this section was

introduced by Mannhardt et al. in [16]. The data is publicly

available through [17]. The data describes cases that follow

a process starting in the emergency room of a hospital and

ending when the patient is released from the hospital. The

data focuses on activities to detect and handle sepsis. Sepsis

is the presence in tissues of harmful bacteria and their toxins,

typically through infection of a wound. The data consists of

16 activities leading to 15,214 events for 1,050 cases. The

event log has 846 different execution paths (trace variants).

Three activities are related to lab tests, i.e., CRP, Lactic Acid
and Leucocytes. These activities can be performed anywhere

during the process. When events for these activities are

removed from the event log, we still have the same 1,050

cases, however, the number of variants is reduced to 182.

A reduction of 664 variants by only removing these three

activities highlights the complexity caused by considering

those events as control-flow events. The same reduction in

complexity can be observed when Fig. 7 is compared to

Fig. 8. Both figures show the result of a process discovery

analysis using the Directly Follows Miner (DFM) [18]. While

the number of activities is reduced by only three, the number

of connections between the transitions of the process model

is reduced ten-fold. On the other hand, we have removed

information about the execution of the lab tests and it is no

longer visible when they can occur.

To provide insights into when the lab tests are executed,

we use the hand-made Petri net presented in [16]. Next, we

mark the three lab test events in the event log as context

events. The context enriched event log is aligned with the

model and finally, the lab test events are plotted on top of

the model. The resulting enriched process model is shown

in Fig. 9. The figure shows the sum of the weights of the

1ProM is an extensible tool that supports a wide variety of process mining
techniques through plug-ins, see http://www.promtools.org. Our technique is
part of the ContextEvents package.

Fig. 7: Result of the DFM miner [18] on sepsis event log [17],

using all events and the path slider is set to 80%.

Fig. 8: Result of the DFM miner [18] on sepsis event log [17],

not using the lab events and the path slider is set to 80%.

Fig. 9: Absolute context heatmap of sepsis process lab tests.

Fig. 10: Relative context heatmap of sepsis process lab tests.

context events on each edge, highlighted in a red color scale.

An edge is colored black when the edge does not have any

context events mapped to it. The width of the edge indicates

the sum of the weights of all context events that are related to

the edge. The red color intensity of an edge indicates the sum

of the certainties of the context events related to that edge. We

refer to this visualisation as an absolute context heat map. We

use the term heatmap because the figure shows the magnitude

of a phenomenon, i.e., the occurrence of context events. The

variation in color gives a visual cue to the reader about how

certain we are about the magnitude.

Fig. 9 shows that most lab tests are executed after Admission
NC2. Since Admission NC is the activity with the highest

frequency in the event log it is as expected that lab tests have

a high occurrence rate at this point in the process model.

We create a so-called relative context heatmap to put the

cases with context events related to an edge in perspective

of the total number of cases that traverse that edge, i.e., the

percentage of cases with a context event related to that edge

is calculated and plotted.

If we look at the relative context heatmap, presented in

Fig. 10, a different insight emerges. Relatively, most lab tests
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are executed after an admission to a normal or intensive care

department, i.e., Admission NC and Admission IC. Lab tests

also occur immediately following the ER Sepsis Triage activity

when both IV Antibiotics and IV Liquid are not executed.

We can take this analysis a step further by filtering on

cases for which a selected event occurs. In Fig. 11 the data

set is filtered on cases having an event that is aligned to the

Admission IC1 transition, and in Fig. 12 only cases that have

an event that is aligned to the Admission IC2 transition. Fig.

11 shows that from Admission NC1 to Admission IC1 and

immediately after Admission IC1, relatively often a lab test

is executed. Respectively for 54% of cases after Admission
NC1 and 100% after Admission IC1. Fig. 12 shows that after

Admission IC2, always a lab test is executed. Combining

Fig. 11 and Fig. 12 reveals that after the admission to an

intensive care department a lab test is always executed. Adding

a mandatory labtest activity to the process model, immediately

after both the Admission IC activities, would make it possible

to check if the labtest is always executed or not.

Fig. 11: Relative context heatmap of sepsis process lab tests,

filtered on cases that have activity AdmissionIC1.

Fig. 12: Relative context heatmap of sepsis process lab tests,

filtered on cases that have activity AdmissionIC2.

B. Case Study UWV Claim Process

UWV is the social security institute of the Netherlands and

responsible for the implementation of a number of employee

related insurances. The case study focuses on the unem-

ployment benefits claim process of UWV. When employees

become unemployed, they may be entitled to the benefits.

Employees have to file a claim at UWV, which then decides

whether they are entitled to benefits. When claims are ac-

cepted, employees receive benefits with a regular frequency

until they find a new job or the maximum period for their

entitlements is reached. UWV refers to employees who are

making use of their services as customers, therefore we use

the term customer in the remainder of the paper.

The unemployment benefits claim process starts at UWV

when a claim is received. First, the customer is sent a change

form, because the customer is obliged to notify UWV of any

changes during the claim handling process. Next a check is

performed whether all required information is available. If this

is not the case, the customer can be requested to provide the

missing information. The request can be done by two types

of letters or a phone call. When the information is received,

UWV registers a Document IN event. If needed a reminder

can be send to the customer. When all information is received

the decision is made. Finally, the customer is notified of the

decision by the appropriate letter.

Fig. 13: Absolute context heatmap for UWV claim process.

Before, during and after the claim handling process the

customer can contact the UWV call center. Every contact is

registered as a Call IN event including a description of the

questions asked by the customer. The process model used in

this case study is obtained from a process specialist at UWV.

Fig. 13 shows the absolute context heatmap for the UWV

claim process. Incoming calls occur during the whole process

execution as can be seen from almost all edges being colored

red and not being thin. The most incoming calls occur after

the decision is made and before the acceptance letter is sent.

Most customers get accepted (on average 80%). The second

most frequent location of calls is immediately after the first

Change Form OUT, which occurs at the start of the process.

Fig. 14: Relative context heatmap for UWV claim process.

The relative context heatmap in Fig. 14 shows there are

several locations that trigger similar amounts of incoming

calls. The first location is again between the decision and the

acceptance letter. Also, questions come in after information

was requested from the customer by sending a letter. Interest-

ingly, when information was requested by phone, a relatively

smaller number of customers ask questions. This gives rise

to the insight that contacting customers by phone could be

beneficial for UWV to reduce the number of incoming calls.

Next, just before receiving a Change Form IN, questions come

in. Finally, after receiving a negative decision, withdrawing

the claim or when the claim is stopped, more questions are

triggered compared to when the claim is accepted. Providing

a customer with adequate information regarding the decision

could help reduce the number of customers calling UWV. This

analysis shows that knowing when customers call is helpful

when advising UWV on how the process could be improved

from both the customer and UWV’s perspective.
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VI. CONCLUSION

The technique introduced in this paper uses existing process

mining concepts such as event logs, process models, and

alignments to introduce the concept of context events: events

that are part of the event log and can be linked to cases

in a process, but are not part of the process’ control-flow.

Highlighting such events on a process model separately from

the control-flow activities provides added value by showing

novel insights and facilitating process discovery.

The emergency room sepsis case study in Section V-A

shows that keeping selected events aside while doing process

discovery leads to less complex results. The events that are first

kept aside, can, with our technique, be once more related to

the process model. In this way the information contained in the

events is used to improve the discovered model. In the UWV

case study in Section V-B, customers can call UWV while their

unemployment benefits claim is being processed. Identifying

the locations in the process model when relatively the most

customers call, gives input for improving the customer journey.

We foresee several directions for further research on this

topic. For example, up until now, we have only looked at

atomic events, i.e., events without duration. Instead, we could

also look at durative events, i.e., events that have a start and a

complete timestamp. These types of events identify a period

in which they are active. Examples of these types of durative

event are the caseload of a system and the happiness level of a

customer during the process execution. One option of plotting

these periods on top of a process model is to use a heatmap,

reflecting the average caseload of the system or the average

happiness of the customers when the process was executed. In

this way, a more complex context can be related to the model.

In this paper, we have shown how to plot a single context

event type in relation to a process model. Research could be

directed to finding ways to plot multiple context classes on the

same process model. This should be done in a way that is still

comprehensible to the users of the visualization. A simple yet

effective direction would be to use icons attached to the Petri

net edges. Different icons may represent different event types.

Instead of having an analyst identify context events, the

labeling could be done in a semi- or fully automatic way. One

approach would be to use the techniques developed by Tax et

al. [8] to identify so-called chaotic activities.

Another possible direction for future work is to use data

attributes when plotting context events. In this way, context

events can be conditionally plotted or guards could be derived

indicating under which circumstances context events occur.

Inversely, context events themselves can become input for

explanatory data analysis. For example in the work work by de

Leoni et al. [19] on process predictions. In the work by Van der

Aalst et al. [20] on visualizing token flows using interactive

performance spectra the context events can be used as a new

classifier to explain the process behavior.

Finally, while we use calculation heavy alignments in our

current approach, it is also possible to use the more perfor-

mance friendly token-based replay.
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