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Abstract. Many of today’s information systems record the execution of
(business) processes in great detail. Process mining utilizes such data and
aims to extract valuable insights. Process discovery, a key research area
in process mining, deals with the construction of process models based
on recorded process behavior. Existing process discovery algorithms aim
to provide a “push-button-technology”, i.e., the algorithms discover a
process model in a completely automated fashion. However, real data
often contain noisy and/or infrequent complex behavioral patterns. As a
result, the incorporation of all behavior leads to very imprecise or overly
complex process models. At the same time, data pre-processing tech-
niques have shown to be able to improve the precision of process models,
i.e., without explicitly using domain knowledge. Yet, to obtain superior
process discovery results, human input is still required. Therefore, we
propose a discovery algorithm that allows a user to incrementally extend
a process model by new behavior. The proposed algorithm is designed to
localize and repair nonconforming process model parts by exploiting the
hierarchical structure of the given process model. The evaluation shows
that the process models obtained with our algorithm, which allows for
incremental extension of a process model, have, in many cases, supe-
rior characteristics in comparison to process models obtained by using
existing process discovery and model repair techniques.

Keywords: Process mining · Incremental process discovery · Process
trees · Process model repair.

1 Introduction

Process discovery is one of the three main fields in process mining, along with
conformance checking and process enhancement [4]. In process discovery, the
data generated during process executions and stored in information systems are
utilized to generate a process model that describes the observed behavior. We
refer to such data as event data. The obtained process models are used for a
variety of purposes, e.g., to provide insights about the actual process performed
and to analyze and improve performance and compliance problems.
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Most process discovery techniques are fully automated, i.e., no interaction
with the algorithm is possible during discovery. These techniques require event
data as input and return a process model that describes the given observed
behavior. Moreover, it is not directly possible, i.e., using process discovery tech-
niques, to extend an existing process model with additional behavior, except
by re-applying the algorithm to the entire extended event data. Process model
repair techniques have been developed to add additional behavior to an existing
model. However, they are not designed to be applied iteratively to a given event
log to mimic an (incremental) process discovery algorithm.

In this paper, we propose an approach to incrementally discover process mod-
els. The algorithm allows the user to incrementally discover a process model by
adding the behavior, trace by trace, to an existing process model. Thereby, the
process model under construction gets incrementally extended. Hence, our ap-
proach combines the usually separate phases of event data filtering and discovery.
In addition, the algorithm offers the possibility at any point in time to “auto-
complete”, i.e., observed behavior not yet processed is automatically added to
the process model under construction. Our approach takes behavior that is not
yet described by the process model and detects which parts of the process model
must be altered. We focus on hierarchical, also called block-structured, process
models and exploit their structure to determine the process model parts that
must be changed. The evaluation of our proposed approach shows that the ob-
tained process models have a comparable and in many cases superior quality
compared to non-incremental process discovery algorithms, which have to be ex-
ecuted on the whole extended event data each time behavior is added. Further-
more, the conducted experiments show that our proposed approach outperforms
an existing process model repair technique [12] in many cases.

The remainder of the paper is structured as follows. We present related work
in Section 2. In Section 3, we present concepts, notations and definitions used
throughout the paper. In Section 4, we present our novel approach to incremen-
tally discover process models. Afterwards, we discuss the results of the conducted
experiments in Section 5. Finally, we summarize the paper in Section 6.

2 Related Work

Various process discovery algorithms exist. An overview is beyond the scope of
this paper, hence, we refer to [11]. We mainly focus on process model repair
techniques, incremental and interactive process discovery.

The term process model repair was introduced in [12] and an extended algo-
rithm to repair a process model was presented in [13]. In the paper, an event log
L and a process model P is assumed, i.e., a Petri net, which does not accept all
traces in L. The goal is to find a process model P ′ that accepts L. In comparison
to our proposed approach, an essential goal for the authors is that the repaired
model P ′ is structurally similar to the original model P since their focus is on
model repair and not on process discovery. Since our proposed approach is an
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incremental algorithm for process discovery, similarity of the resulting model to
the original model is not a requirement.

In [15], an incremental process discovery architecture was introduced that is
based on merging new discovered process models into existing ones. In detail,
an existing process model P is assumed and, for unseen behavior, a new process
model is discovered and then merged into the existing model P . Furthermore,
the approach is explicitly designed to work in an automated fashion. Two other
approaches [14,19] calculate ordering relations of activities based on the given
process model and on a yet unprocessed event log. The two obtained relations
are then merged together and are used to retrieve a model. In [7] the authors
describe a repair approach that incrementally highlights deviations in a process
model with respect to a given event log. The user has to manually repair this
deviations under the guidance of the algorithm.

Next to incremental process discovery algorithms, there is the field of inter-
active process mining [9]. In [10] an interactive process discovery algorithm is
presented that assumes constant feedback from a user. Moreover, the user con-
trols the algorithm by specifying how the process model should be altered. The
algorithm supports the user by indicating favourable actions, e.g, where to place
an activity in the process model (and also provides an “auto-complete option”).
Furthermore, the algorithm ensures that the process model under construction
retains certain properties, i.e., soundness.

3 Background

In this section, we introduce notations and definitions used in this paper.

Given an arbitrary set X, we denote the set of all sequences over X as X∗,
e.g., 〈a, b, b〉∈{a, b, c}∗. We denote the empty sequence by 〈〉. For a given sequence
σ, we denote its length as |σ| and for i∈{1, . . . , |σ|}, σ(i) represents the i-th
element of σ. Given two sequences σ and σ′, we denote the concatenation of these
two sequences by σ·σ′. For instance, 〈a〉·〈b, c〉=〈a, b, c〉. We extend the · operator
to sets of sequences, i.e., let S1, S2⊆X∗ then S1·S2={σ1·σ2 |σ1∈S1 ∧ σ2∈S2}.
For given traces σ, σ′, the set of all interleaved sequences is denoted by σ � σ′.
For example, 〈a, b〉�〈c〉={〈a, b, c〉, 〈a, c, b〉, 〈c, a, b〉}. We extend the � operator to
sets of sequences. Let S1, S2 be two sets of sequences. S1�S2 denotes the set of
interleaved sequences, i.e., S1�S2 = {σ1�σ2|σ1∈S1 ∧ σ2∈S2}.

For a set X, a multi-set over X allows multiple appearances of the same
element. Formally, a multi-set is a function f :X→N0 that assigns a multiplicity
to each element in X. For instance, given X={a, b, c}, a multi-set over X is
[a3, c], which contains three times an element a, no b and one c. We denote all
possible multi-sets over X as B(X). Furthermore, given two multi-sets X and
Y , X]Y denotes the union of two multi-sets, e.g., [x2, a]][x, y2]=[x3, a, y2].

Next, we introduce projection functions. Given a set X, a sequence σ∈X∗
and X ′⊆X. We recursively define σ↓X′∈X ′∗ with: 〈〉↓X′ =〈〉, (〈x〉·σ)↓X′ =〈x〉·σ↓X′

if x∈X ′ and (〈x〉·σ)↓X′ =σ↓X′ otherwise.
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Table 1: Example of an event log
Event-id Case-id Activity name Timestamp · · ·
· · · · · · · · · · · · · · ·
200 13 create order (c) 2020-01-02 15:29:24 · · ·
201 27 receive payment (r) 2020-01-02 15:44:34 · · ·
202 43 dispatch order (d) 2020-01-02 16:29:24 · · ·
203 13 pack order (p) 2020-01-02 19:12:13 · · ·
204 13 cancel order (a) 2020-01-03 11:32:21 · · ·
· · · · · · · · · · · · · · ·

Let t=(x1, . . . , xn)∈X1× . . .×Xn be an n-tuple over n sets. We define projec-
tion functions that extract a specific element of t, i.e., π1(t)=x1, . . . , πn(t)=xn.
For example, π2 ((a, b, c)) =b.

Analogously, given a sequence of length m with n-tuples σ=〈(x11, . . . , x1n), . . . ,
(xm1 , . . . , x

m
n )〉, we define π∗1(σ)=〈x11, . . . , xm1 〉, . . . , π∗n(σ)=〈x1n, . . . , xmn 〉. For in-

stance, π∗2(〈(a, b), (a, c), (b, a)〉)=〈b, c, a〉.

3.1 Event Data & Event Logs

The execution of (business) processes generates event data in the corresponding
information systems. Such data describe the activities performed, which process
instance they belong to and they contain various metadata about the activities
performed. Activities performed in the context of a specific process instance are
referred to as a trace, i.e., a sequence of activities.

Consider Table 1 in which we present an example of an event log. For in-
stance, if we consider all events related to the case-id 13, we observe the trace
〈create order (c), pack order (p), cancel order (a)〉. For simplicity, we abbreviate
activities with letters. A variant describes a unique sequence of activities which
can occur several times in an event log. Since, in the context of this paper, we are
only interested in the traces that occurred, we define an event log as a multiset
of traces. Note that, event data as depicted in Table 1 can be translated easily
into a multiset of traces.

Definition 1 (Event Log). Let A denote the universe of activities. An event
log is a multiset of sequences over A, i.e., L∈B(A∗).

3.2 Process Models

A process model describes the (intended) behavior of a process. Many process
modeling formalisms exist, ranging from informal textual descriptions to math-
ematical models with exact execution semantics. In the field of process mining,
workflow nets [1] are often used to represent process models since concurrent be-
havior can be modelled in a compact manner. In this paper we focus on process
trees that represent hierarchical structured, sound workflow nets, i.e., block-
structured workflow nets [16]. We formally define process trees in Definition 2.
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Fig. 1: Example of a process tree T0

Definition 2 (Process Tree). Let A be the universe of activities and let τ /∈A.
Let ⊕={→,×,∧,	} be the set of process tree operators.

– given an arbitrary a ∈ A∪{τ}, a is a process tree

– given n ≥ 1 process trees T1, T2, . . . , Tn and an operator •∈{→,×,∧}, T =
•(T1, T2, . . . , Tn) is a process tree

– given two process trees T1, T2, T=	(T1, T2) is a process tree

We denote the set of all process trees over A as TA. Furthermore, we denote
for a process tree T the set of its leaf nodes by LT . Note that, by definition, leaf
nodes always contain activities or the silent activity τ , and inner nodes and the
root node always contain process tree operators. Consider Fig. 1 which shows an
example of a process tree T0. Note that the tree can also be presented textually:
→ (	 (×(→ (a, b),∧(c, d)), τ),∧(e, f)).

For given process trees T and T ′, we call T ′ a subtree of T if T ′ is contained
in T . For instance, T3.2 is a subtree of T1.1 (Fig. 1). Given two subtrees Tx, Ty
of a tree T , we define the lowest common ancestor (LCA) as the tree TLCA such
that the distance between T ’s root node and TLCA’s root node is maximal and
Tx, Ty are contained in TLCA. For example, given the two subtrees T4.2 and T2.2
of T0 (Fig. 1), T1.1 is the LCA of T4.2 and T2.2.

In the following, we first informally describe the semantics of a process tree
and afterwards, present formal definitions. The sequence operator → indicates
that the subtrees have to be sequentially executed. For example, the root of
process tree T0 is a sequence operator. Hence, the left subtree T1.1 has to be
executed before the right one T1.2. The loop operator 	, which has by definition
two subtrees, contains a loop body which is the first subtree and a redo part, the
second subtree. The loop body has to be executed at least once. Afterwards, the
redo part can be optionally executed. In case the redo part is executed, the loop
body must be executed afterwards again. The choice operator ×, i.e., exclusive
or, indicates that exactly one subtree must be executed. The parallel operator ∧
indicates a parallel (interleaved) execution of the subtrees. For instance, for the
tree T1.2 the activities e and f can be executed in any order.
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Fig. 2: Two possible alignments for process tree T0 (Fig. 1) and 〈a, b, c, f〉

We denote the language of a process tree T ∈ TA, i.e., the set of accepted
traces overA, as L(T ). For instance, 〈a,b,f ,e〉, 〈d,c,a,b,e,f〉∈L(T0) and 〈d,c,a,e,f〉,
〈a,c,e,f〉/∈L(T0). Next, we define the semantics of process trees based on [4].

Definition 3 (Semantics of Process Trees). For a process tree T∈TA, we
recursively define its language L(T ).

– if T=a∈A, L(T )={〈a〉}
– if T=τ , L(T )={〈〉}
– if T=→(T1, . . . , Tn), L(T )=L(T1) · . . . · L(Tn)
– if T=∧(T1, . . . , Tn), L(T )=L(T1) � . . . � L(Tn)
– if T=×(T1, . . . , Tn), L(T )=L(T1) ∪ . . . ∪ L(Tn)
– if T=	(T1, T2), L(T )={σ1 ·σ′1 ·σ2 ·σ′2 . . . ·σm | m≥1∧∀1≤i≤m(σi∈L(T1))∧
∀1≤i≤m(σ′i∈L(T2))}

3.3 Alignments

Alignments have been developed to map observed behavior onto modeled behav-
ior [5]. They are used to determine if a given trace conforms to a given process
model. In the case of deviations, alignments indicate the detected deviations in
the process model and in the trace.

In Fig. 2, two possible alignments for the process tree T0 (Fig. 1) and the
trace 〈a, b, c, f〉 are given. The first row, the trace part, always corresponds to the
given trace (ignoring the skip symbol�). The second row, the model part, always
corresponds to a trace that is accepted by the given process model (ignoring�).

An alignment move corresponds to a single column in Fig. 2. We distinguish
four different alignment moves. Synchronous moves, highlighted in light gray,
indicate that the observed behavior in the trace can be replayed in the process
model. For example, the first two moves of the left alignment in Fig. 2 represent
synchronous moves, i.e., the observed activities a and b could be replayed in
the process model. Log moves, highlighted in black, indicate additional observed
behavior that cannot be replayed in the process model and therefore represent
a deviation. Model moves, highlighted in dark gray, indicate that behavior is
missing in the given trace according to the process model. Model moves can
be further differentiated into visible and invisible model moves. Given the first
alignment from Fig. 2, the first model move represents an invisible model move
because the executed activity is the silent activity τ . Note that invisible model
moves do not represent deviations. The second model move represents a visible
model move since the executed activity d 6=τ . Visible model moves represent
deviations because a modeled activity was not observed.
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(a) Alignment and listing of subtrees containing the exe-
cuted process tree leave nodes

T0 [〈a, b, c, d, a, b, e, f〉]

T1.1 [〈a, b, c, d, a, b〉]

T2.1 [〈a, b〉2, 〈c, d〉]
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T3.2 [〈c, d〉]

T1.2 [〈e, f〉]

(b) Sub event logs

Fig. 3: Calculation of the sub event log for T0 (Fig. 1) and L=[〈a, b, c, d, a, b, e, f〉]

Definition 4 (Alignment). Let A denote the universe of activities, let σ∈A∗
be a trace and let T∈TA be a process tree with the set of leaf nodes LT . A sequence
γ∈ ((A∪{�})×(LT∪{�}))∗ is an alignment iff:

1. σ=π∗1(γ)↓A
2. π∗2(γ)↓LT

∈L(T )
3. (�,�)/∈γ
4. (a1, a2)/∈γ for a1∈A, a2∈LT s.t. a1 6=a2

For given T and σ, the set of all possible alignments is denoted by Γ (σ, T ).
Since many alignments exist for a given trace and a process model, there is
the concept of optimal alignments. In general, an optimal alignment minimizes
the number of mismatches between the process model and the trace. To deter-
mine optimal alignments, costs are assigned to alignment moves. A cost minimal
alignment for a given trace and a process model is considered to be an optimal
alignment. In this paper, we assume the standard cost function that assigns cost
0 to synchronous and invisible model moves. Furthermore, it assigns cost 1 to
visible model and log moves. Note that there can be several optimal alignments
for a given model and trace. The calculation of optimal alignments was shown
to be reducible to the shortest path problem [5]. Note that there can be several
optimal alignments.

We denote the set of optimal alignments for σ and T by Γ̄ (σ, T ). Observe that,
under the standard cost function, an alignment γ∈Γ̄ (σ, T ) indicates a deviation
between the trace σ and the process tree T if the costs are higher than 0.

3.4 Sub Event Logs for Process Trees

In this section, we define the concept of a sub event log. Assume a process tree
T and a perfectly fitting event log L, i.e., {σ∈L}⊆L(T ). We define for each
subtree in T a sub event log that reflects which parts of the given traces from L
are handled by the subtree.

Assume the event log L=[〈a, b, c, d, a, b, e, f〉] and the process tree T0 (Fig. 1).
The event log L is perfectly fitting because the only trace σ=〈a, b, c, d, a, b, e, f〉 in
L is accepted by T0, i.e., σ∈L(T0). To calculate sub event logs, we first calculate
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Algorithm 1: Calculation of sub event logs for process trees

Input: L∈B(A∗),T∈TA (Assumption: {σ∈L}⊆L(T )))
Output: sub event log for each subtree of T , i.e., s : TA → B(A∗)
begin

1 forall subtrees T ′ of T do
2 s(T ′)← [ ] // initialize sub event logs

3 forall σ∈L do
4 let γ∈Γ̄ (σ, T ) // calculate optimal alignment for σ and T

5 forall subtrees T ′ of T do
6 t(T ′)← 〈〉 // initialize trace for each subtree

7 for i∈{1, . . . , |γ|} do
8 m← γ(i) // extract i-th alignment move

9 Tl ← π2(m) // extract executed process leaf node

10 forall subtrees T ′ of T do
11 if Tl is subtree of T ′ ∨ Tl=T

′ then
12 t(T ′)← t(T ′)·〈π2(m)〉 // add executed activity to T ′’s trace

13 else if t(T ′) 6=〈〉 then
14 s(T ′)← s(T ′)][t(T ′)] // add trace to T ′’s sub event log

15 t(T ′)← 〈〉 // reset trace

16 return s

alignments for each trace in the given event log. The alignment of σ and T0 is
depicted in the upper part of Fig. 3a. Since σ is accepted by T0, we only observe
invisible model moves and synchronous moves. Below the depicted alignment, all
subtrees are listed that contain the executed leaf nodes. For example, the first
executed leaf node a (T4.1) is a subtree of T0, T1.1, T2.1 and T3.1.

Obviously, all executed leaf nodes are subtrees of T0. Hence, we add the
complete trace to T0’s sub event log (Fig. 3b). Note that the sub event log
of the whole process tree, i.e., T0, is always equal to the given event log. The
subtree T1.1 contains all executed leaf nodes from the 1st leaf a (T4.1) to the
last execution of b (T4.2). This sequence of executed leaf nodes corresponds to
the trace 〈a, b, c, d, a, b〉 that is added to T1.1’s sub event log. The subtree T2.1
contains the first two executed leaf nodes, i.e., a (T4.1) and b (T4.2). The 3rd

executed leaf node τ (T2.2) is not contained in T2.1. Therefore, we add the trace
that corresponds to the first two executed leaf nodes, i.e., 〈a, b〉, to T2.1’s sub
event log. The 4th and 5th executed leaf nodes are again a subtree of T2.1, but not
the 6th leaf node. Hence, we add the trace 〈c, d〉, which corresponds to the 4th

and 5th executed leaf node, to T2.1’s sub event log. The 7th and 8th executed leaf
nodes are again subtrees of T2.1, and therefore, we add the trace 〈a, b〉 to T2.1’s
sub event log. By processing the alignment for each subtree in the presented
way, we obtain sub event logs for each subtree in T0 as shown in Fig. 3b.

In Alg. 1 we present a formal description of the sub event log calculation. We
successively calculate an alignment for each trace in L (line 4). First, we initialize
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an empty trace for each subtree T ′ of T that will be eventually added to T ′’s sub
log (line 6). Next, we iterate over the alignment, i.e., the executed process tree
leaf nodes since the alignment contains only synchronous and invisible model
moves. For every subtree that contains the current executed leaf node, we add
the corresponding activity to its trace (line 14). If the current executed leaf
node is not contained in a subtree T ′, we add the corresponding trace, if it is
not empty, to T ′’s sub log (line 14) and reset the trace (line 15).

4 Incremental Discovery of Process Trees

In this section, we present our approach to incrementally discover process trees.
In general, we assume an initially given process tree T , which is incrementally
modified trace by trace. If a new trace σi is not accepted by the current process
tree T , we calculate an optimal alignment and localize the nonconforming parts
in T . We then modify the identified process tree part(s) to make the obtained
process tree T ′ accept σi. Afterwards, we continue with T ′ and process the next
trace σi+1 analogously. In case a trace is already accepted by the current process
tree, we move on to the next trace without modifying the current process tree.

The remainder of this section is structured as follows. First, we introduce an
approach to repair a single deviation.We then present a more advanced approach
that additionally handles blocks of deviations and uses the previously mentioned
approach as a fallback option.

4.1 Repairing Single Deviations

In this section, we present an approach to repair a single alignment move which
corresponds to a deviation in a process tree. We assume that a process tree
T , a trace σ and an alignment γ∈Γ̄ (T, σ) are given. Moreover, we assume that
potential deviations in the given alignment γ are repaired from left to right.
Next, we present process tree modifications to repair various deviations.

Assume that the given alignment contains a visible model move, i.e., γ =
· · · � · · ·
· · · a · · · . Since a model move indicates that a modeled activity was not observed,

we make the corresponding leaf node a optional. Therefore, we replace the leaf
node a by the choice construct ×(a, τ) (Fig. 4a). This ensures that the activity
is optional in the process model and no longer causes a model move.

If the alignment contains a log move, we have to differentiate two cases, i.e.,
the standard case and the root case. For the standard case the alignment is of
the form γ= · · · a b · · ·

· · · a � · · · or γ= · · · � b · · ·
· · · τ � · · · , i.e., directly before the deviation,

there is either a synchronous or an invisible model move. In this case, we extend
the process tree such that we ensure that after the activity a or τ it is possible
to optionally execute the missing activity in the process model. Therefore, we
replace the leaf node a by →(a,×(b, τ)) (Fig. 4b). Accordingly, we change the
process tree for a preceding invisible model movement, i.e., we replace τ by
×(τ, b) (Fig. 4c). In the other case, the root case, the log move is at the beginning
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(d) Repairing a log move (root case)

Fig. 4: Repairing a single deviation - process tree repair modifications

of the alignment, i.e., γ= a · · ·
� · · · . In this case, we add the possibility to optionally

execute the missing activity a before the current tree. Let T be the given process
tree, we alter T to→ (×(a, τ), T ) (Fig. 4d), i.e., we extend the given process tree
at the root node. Since we assume that deviations in an alignment are repaired
from left to right, one of the two cases always applies to log moves.

The presented approach allows us to fix multiple deviations in an align-
ment by separately repairing all deviations from left to right. Furthermore, the
approach is deterministic because in each iteration we repair a deviation of the
given alignment. Moreover, we always add behavior to the process tree and never
remove behavior, i.e., we always extend the language of accepted traces. In the
next section, we present a further approach that additionally handles blocks of
deviations and uses the presented approach as a fallback option.

4.2 Repairing Blocks of Deviations

In this section, we present our more advanced approach that additionally handles
blocks of deviations. First, we present the conceptual idea and an example.
Afterwards, we introduce the algorithm.

Conceptual Idea The proposed LCA approach assumes an initial process tree
T , a perfectly fitting event log L, i.e., {σ∈L}⊆L(T ), and a trace σ. The event log
L represents the traces processed so far, i.e., traces that must be accepted by the
process tree T . Furthermore, the LCA approach assumes a process tree discovery
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→
[〈a, b, c, d, a, b, e, f〉]

	

[〈a, b, c, d, a, b〉]

×

[〈a, b〉2,
〈c, d〉]

→
[〈a, b〉2]

a b

∧
[〈c, d〉]

c d

τ

∧
[〈e, f〉]

e f

LCA

→
[〈a, b, c, d, a, b, e, f〉]

	

[〈a, b, c, d, a, b〉]

×

[〈a, b〉2,
〈c, d〉]

→

[〈a, b〉2,
〈a, b, b〉]

a 	

b τ

∧
[〈c, d〉]

c d

τ

∧
[〈e, f〉]

e f

⇒

Fig. 5: Conceptual idea of the proposed LCA approach

algorithm disc : B(A∗)→TA that, given any event log, returns a perfectly fitting
process tree.3 The proposed LCA approach returns a process tree T ′ such that
the given trace σ and the log L are accepted.

Assume the process tree T0 (Fig. 1), the event log L=[〈a, b, c, d, a, b, e, f〉] and
the trace σ=〈a, b, b, e, f〉, which is not accepted by T0. When we apply the LCA
approach, we first calculate an optimal alignment.

a b b e f
a

(T4.1)
� b

(T4.2)
e

(T2.3)
f

(T2.4)

We always repair the first occurring (block of successively occurring) devia-
tion(s). In the given example, we observe a log move on b and before and after
the deviation a synchronous move. Next, we calculate the LCA of a (T4.1) and
b (T4.2) that encompass the deviation. The LCA is T3.1 and its sub event log is
[〈a, b〉2] as depicted in the left process tree in Fig. 5. The calculated LCA cor-
responds to a subtree that causes the deviation and must therefore be changed.
Hence, we add the trace 〈a, b, b〉 to T3.1’s sub event log and apply the given disc
algorithm on the extended sub event log. For instance, we could get→(a,	(b, τ))
depending on the concrete instantiation of disc. Finally, we replace T3.1 by the
discovered process tree, i.e., T ′0=→(	(×(→(a,	(b, τ)),∧(c, d)), τ),∧(e, f)).

Next, we again compute an alignment of the updated process tree T ′0 and
γ. In case of further deviations, we repair them in the above-described man-
ner. Otherwise, we return the modified process tree and the extended event log
L′=L][〈a, b, b, e, f〉]. Hereinafter, we formally describe the algorithm in detail.

Algorithmic Description First, an optimal alignment is calculated for the
given trace σ and the process tree T , i.e., γ∈Γ̄ (T, σ). In case there exist no
deviations, we return T . In case of deviations, we repair the first (block of)
deviation(s). Assume the alignment is of the form as depicted below.

3 For example, the Inductive Miner algorithm [16] fulfills the listed requirements.
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γ =
· · · x′i · · · xi · · · deviation(s) · · · xj · · · x′j · · ·
· · · T ′i · · · Ti · · · deviation(s) · · · Tj · · · T ′j · · ·

We have a (block of) deviation(s), i.e., visible model moves and/or log moves,
and directly before and after the (block of) deviation(s) there is no deviation,
i.e., either a synchronous move or an invisible model move in each position. Let
Ti be the process tree leaf node executed before the deviation(s) and Tj be the
one after the deviation(s). We then calculate the LCA of Ti and Tj , hereinafter
referred to as TLCA. Note that Ti and Tj are subtrees of TLCA.

Next, we check which of the executed process tree leaf nodes preceding Ti are
also a subtree of TLCA. Assume T ′i is a subtree of TLCA and all process tree leafs
from T ′i until Ti are a subtree of TLCA too. Besides, either the process tree leaf
node executed before T ′i is not a subtree of TLCA, or T ′i is the first executed leaf
node in the alignment. Since we repair the first occurring (block of) deviation(s),
we know that before Ti only synchronous or invisible model moves occur.

Analogously, we check which executed process tree leaf nodes after Tj are a
subtree of TLCA. Note that there is a difference because log moves and visible
model moves potentially occur after Tj because we always repair the first (block
of) deviation(s). However, except that we ignore log moves, we proceed as de-
scribed above. Let T ′j be the last leaf node s.t. all executed leaf nodes from Tj to
T ′j are a subtree of TLCA. In addition, either the next executed leaf node after
T ′j is not a subtree of TLCA or there exist no more executed tree leaves after T ′j .

Given T ′i and T ′j , we add the trace 〈x′i, . . . , x′j〉↓A (ignoring�) to TLCA’s sub
event log LTLCA

, i.e., L′TLCA
=LTLCA

][〈x′i, . . . , x′j〉↓A]. Next, we apply the given
disc algorithm on L′TLCA

and replace TLCA by the newly discovered process tree
disc(L′TLCA

). Since the process tree disc(L′TLCA
) accepts the trace 〈x′i, . . . , x′j〉↓A,

we repaired the first (block of) deviation(s). Afterwards, we again calculate an
optimal alignment on the updated process tree and σ. If there are still deviations,
we again repair the first (block of) deviation(s).

In the case that before or after the (block of) deviation(s) no process tree leaf
node was executed and hence, we cannot compute a LCA, we apply the repair
approach from the previous section, which repairs a single deviation, on the first
log or visible model move. Afterwards, we apply the above described algorithm
again on the updated process tree. Thereby, we ensure that the proposed LCA
approach is deterministic since in every iteration a (block of) deviation(s) is
repaired either by rediscovering the determined LCA or by applying the single
deviation repair approach. Next, we refine the calculation of a LCA to minimize
the affected subtrees getting altered.

Lowering an LCA in the Tree Hierarchy For a process tree with a low
height, it is likely that the proposed LCA approach determines the root as LCA
and therefore, re-discovers the entire process tree. This behavior is not desirable
since in this case the quality of the returned process tree solely depends on
the given disc algorithm and most often, deviations can be repaired at a lower
subtree.
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→

T1 Ti Tj Tn· · · · · · · · ·

→

T1 →

Ti Tj

Tn· · · · · ·

· · ·

=⇒
T ′LCA

TLCA

Fig. 6: Pulling down a sequence LCA in the process tree hierarchy

To keep the affected subtrees that get rediscovered small, we introduce ex-
pansion rules to lower the detected LCA in the tree hierarchy. For this purpose,
we use language preserving reduction rules in the reverse direction [17].

Assume that the determined LCA, denoted by TLCA, contains the sequence
operator and has n child nodes. Furthermore, assume that the deviation was lo-
calized between two children of TLCA, i.e., between Ti and Tj . Hence, the process
tree is of the form TLCA=→(T1, . . . , Ti, . . . , Tj , . . . Tn). Then we know that all
child nodes of TLCA which are not between Ti and Tj are not responsible for the
deviation. Hence, we can cut Ti, . . . , Tj and replace the nodes by a new sequence
operator with the cut subtrees as children, i.e., →(T1, . . . ,→(Ti, . . . , Tj), . . . Tn)
(Fig. 6). If we re-compute the LCA, we will get T ′LCA=→(Ti, . . . , Tj).

In case the LCA contains the parallel or choice operator, we lower the de-
tected LCA in a similar manner. Assume the deviation was localized between
two children of TLCA, i.e., between Ti and Tj , and that TLCA has n child
nodes. Hence, the process tree is of the form TLCA=•(T1, . . . , Ti, . . . , Tj , . . . Tn)
for •∈{×,∧}. In this case, we extract the two child nodes Ti and Tj and pull
them one level down in the process tree: TLCA=•(T1, . . . , •(Ti, Tj), . . . Tn).

5 Evaluation

We evaluated the proposed LCA approach on the basis of a publicly available,
real event log. In the following section, we present the experimental setup. Sub-
sequently, we present and discuss the results of the conducted experiments.

5.1 Experimental Setup

In the experiments, we compare the LCA approach against the Inductive Miner
(IM) [16], which discovers a process tree that accepts the given event log, and
the model repair approach presented in [13]. Note that the repair algorithm
does not guarantee to return a hierarchical process model. We implemented the
LCA approach extending PM4Py [8], a process mining library for Python. Since
both the LCA approach and the IM algorithm guarantee the above mentioned
properties for the returned process tree, we use the IM algorithm as a comparison
algorithm. Furthermore, we use the IM algorithm inside our LCA approach as
an instantiation of the disc-algorithm, which is used for rediscovering subtrees.
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As input, we use a publicly available event log that contains data about a
road fine management process [18]. We use the complete event log, e.g., we do not
filter outliers. We sorted the event log based on variant frequencies in descending
order, i.e., the most occurring variant first. We chose this sorting since in real
applications it is common to consider first the most frequent behavior and filter
out infrequent behavior. Note that the order of traces influences the resulting
process model in our approach and in the model repair approach.

To compare the obtained process models, we use the f-measure regarding the
whole event log. The f-measure takes the harmonic mean of the precision and
the fitness of a process model with respect to a given event log. Fitness reflects
how good a process model can replay a given event log. In contrast, precision
reflects how much additional behavior next to the given event log is accepted by
the process model. The aim is that both the fitness and the precision and thus,
the f-measure are close to 1. We use alignment-based approaches for fitness [2]
and precision calculation [6].

The procedure of the conducted experiments is described below. First, we
discover a process tree on the first variant with the IM algorithm since the LCA
approach and the model repair algorithm require an initial process model. Note
that the LCA approach can be used with any initial model. Afterwards, we add
variant by variant to the initially given process model with the LCA approach.
Analogously, we repair the initially given process model trace by trace with the
model repair algorithm. In addition, we iteratively apply the IM algorithm on
the 1st variant, the 1st+2nd variant, etc.

5.2 Results

In Fig. 7 we present the obtained results. We observe that the f-measures (Fig. 7a)
of the process models obtained by the LCA approach are higher compared to
models obtained by the IM and the model repair algorithm for the majority
of processed variants. Note that the IM algorithm returns process trees with a
higher f-measure in the end. However, for real process discovery applications it
is unusual to incorporate the entire behavior in an event log. Reasons for not
trying to incorporate all observed behavior are data quality issues, outliers and
incomplete behavior. Furthermore, observe that after processing the first 15% of
all variants, we already cover >99% of all recorded traces (Fig. 7b) and obtain
a process model with the LCA approach that outperforms the other techniques
(Fig. 7a). The jump in the f-measure for the IM algorithm at 70% processed
variants results from the fact that the IM gets more behavior as input, i.e., a
larger event log, and therefore, detects a more suited pattern which leads to a
more precise process tree in this case.

In Fig. 7c the precision values are depicted. These influence the f-measure
most because we guarantee perfect fitness w.r.t. the added trace variants. Also
here we can see that for most of the processed variants the LCA approach delivers
more precise models. However, if we add more than 70% of all variants, the
IM algorithm suddenly delivers more precise models. For fitness (Fig. 7d) the
differences between LCA and IM are minor.
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(a) F-measure (b) Event log coverage

(c) Precision (d) Fitness

Fig. 7: Results on f-measure, precision, fitness and event log coverage

The higher f-measure of the LCA approach in many cases compared to the
IM algorithm can be explained by the differences in the representational bias [3].
The LCA approach may return models that have duplicate labels, i.e., the same
activity can occur in multiple leaf nodes. In comparison, the models returned
by the IM algorithm do not allow for duplicate labels. Note that also the model
repair algorithm allows duplicate labels.

6 Conclusion

In this paper, we presented a novel algorithm to incrementally discover a process
tree. The approach utilizes the hierarchical structure of a process tree to localize
the deviating subtree and rediscovers it. The conducted experiments show that
the obtained process models have in many cases better quality in comparison
to models produced by a process discovery and model repair algorithm with
same guarantees about the resulting model, i.e., replay fitness. Actually, it is
surprising that our incremental discovery approach works so well. We do not use
domain knowledge and see many ways to improve the technique. The potential
to outperform existing approaches even further is therefore high.
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While most process discovery algorithms are fully automated, i.e., they as-
sume an event log and return a process model, the LCA approach is able to
incrementally add behavior to an existing model. Therefore, it can be used to
evolve a process model trace by trace. This makes it easy for the user to see the
impact on the process model when a trace is added. Thus, by the incremental
selection of traces by a user, the usually separated phases of event data filtering
and process discovery are connected. Hence, our approach enables the user to
interactively discover a process model by selecting iteratively which behavior
should be covered by the process model.

As future work, we plan to investigate both the impact of the initially given
model and the ordering of traces incrementally given to the LCA approach on
the resulting process model. Furthermore, we plan to explore different strate-
gies for determining the deviating subtree next to the LCA calculation. We also
plan to further develop this algorithm into an advanced interactive process dis-
covery algorithm that provides further user interaction possibilities next to the
incremental selection of traces/observed behavior.
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