
algorithms

Article

Efficient Time and Space Representation of Uncertain
Event Data

Marco Pegoraro * , Merih Seran Uysal and Wil M. P. van der Aalst

Process and Data Science Group (PADS), Department of Computer Science, RWTH Aachen University,
52062 Aachen, Germany; uysal@pads.rwth-aachen.de (M.S.U.); wvdaalst@pads.rwth-aachen.de (W.M.P.v.d.A.)
* Correspondence: pegoraro@pads.rwth-aachen.de

Received: 30 September 2020; Accepted: 6 November 2020; Published: 9 November 2020 ����������
�������

Abstract: Process mining is a discipline which concerns the analysis of execution data of operational
processes, the extraction of models from event data, the measurement of the conformance
between event data and normative models, and the enhancement of all aspects of processes.
Most approaches assume that event data is accurately captured behavior. However, this is not
realistic in many applications: data can contain uncertainty, generated from errors in recording,
imprecise measurements, and other factors. Recently, new methods have been developed to
analyze event data containing uncertainty; these techniques prominently rely on representing
uncertain event data by means of graph-based models explicitly capturing uncertainty. In this
paper, we introduce a new approach to efficiently calculate a graph representation of the behavior
contained in an uncertain process trace. We present our novel algorithm, prove its asymptotic
time complexity, and show experimental results that highlight order-of-magnitude performance
improvements for the behavior graph construction.

Keywords: process mining; uncertain data; partial order

1. Introduction

The pervasive diffusion of digitization, which gained momentum thanks to advancements in
electronics and computing at the end of the last century, has brought a wave of innovation in the tools
supporting businesses and companies. Recent decades have seen the rise of Process-Aware Information
Systems (PAISs)—useful to structurally support processes in a business—as well as research disciplines
such as Business Process Management (BPM) and process mining.

Process mining [1] is a field of research that enables process analysis in a data-driven manner.
Process mining analyses are based on recordings of tasks and events in a process, memorize in
an ensemble of information systems which support business operations. These recordings are exported
and systematically collected in databases called event logs. Using an event log as a starting point,
process mining techniques can automatically obtain a process model illustrating the behavior of the
real-life process (process discovery) and identify anomalies and deviations between the execution data
of a process and a normative model (conformance checking). Process mining is a subfield of data science
which is quickly growing in interest both in academia and industry. Over 30 commercial software tools
are available on the market for analyzing processes and their execution data. Process mining tools are
used by process experts to analyze processes in tens of thousands of organizations, e.g., within Siemens,
over 6000 employees actively use process mining to improve internal procedures.

Commercial process mining software can discover and build a process model from an event
log. Most of the process discovery algorithms implemented in these tools are based on tallying the
number of directly-follows relationships between activities in the execution data of the process. The more
frequently a specific activity immediately follows another one in the execution log of a process,

Algorithms 2020, 13, 285; doi:10.3390/a13110285 www.mdpi.com/journal/algorithms



Algorithms 2020, 13, 285 2 of 27

the stronger a causality and/or precedence implication between the two activities is understood
to be. Such directly-follows relationships are also the basis for the identification of more complex
and abstract constructs in the workflow of a process, such as interleaving or parallelism of activities.
These relationships between activities are often represented in a labeled directed graph called the
Directly-Follows Graph (DFG).

In recent times, a new type of event logs has gained research interest: uncertain event logs [2].
Such execution logs contain, rather than precise values, an indication of the possible values that event
attributes can acquire. In this paper, we will consider the setting where uncertainty is represented by
either an interval or a set of possible values for an event attribute. Moreover, we will consider the case
in which an event has been recorded in the event log albeit it did not happen in reality.

Uncertainty in event logs is best illustrated with a real-life example of a process that can generate
uncertain data in an information system. Let us consider the following process instance, a simplified
version of anomalies that are actually occurring in processes of the healthcare domain. An elderly
patient enrolls in a clinical trial for an experimental treatment against myeloproliferative neoplasms,
a class of blood cancers. The enrollment in this trial includes a lab exam and a visit with a specialist;
then, the treatment can begin. The lab exam, performed on the 8th of July, finds a low level of platelets
in the blood of the patient, a condition known as thrombocytopenia (TP). At the visit, on the 10th of
May, the patient self-reports an episode of night sweats on the night of the 5th of July, prior the lab
exam: the medic notes this, but also hypothesized that it might not be a symptom, since it can be caused
not by the condition but by external factors (such as very warm weather). The medic also reads the
medical records of the patient and sees that shortly prior to the lab exam, the patient was undergoing
a heparine treatment (a blood-thinning medication) to prevent blood clots. The thrombocytopenia
found with the lab exam can then be primary (caused by the blood cancer) or secondary (caused by
other factors, such as a drug). Finally, the medic finds an enlargement of the spleen in the patient
(splenomegaly). It is unclear when this condition has developed: it might have appeared in any
moment prior to that point. The medic decides to admit the patient in the clinical trial, starting 12th
of July.

These events generate the trace of Table 1 in the information system of the hospital. For clarity,
the timestamp field only reports the day of the month.

Table 1. The uncertain trace of an instance of healthcare process used as running example. The “Case
ID” is a unique identifier for all events in a single process case; the “Event ID” is a unique identifier
for the events in the trace. The “Timestamp” field indicates either the moment in time in which the
event has happened, or the interval of time in which the event may have happened. The “Activity”
field indicates the possible choices for the activity instantiated by the event. Lastly, the “Indeterminate
event” field contains a “!” if the corresponding event has surely occurred, and a “?” if it might have
been recorded despite not occurring in reality. For the sake of readability, in the timestamps column
only reports the day of the month.

Case ID Event ID Timestamp Activity Indet. Event

ID327 e1 5 NightSweats ?
ID327 e2 8 {PrTP, SecTP} !
ID327 e3 [4, 10] Splenomeg !
ID327 e4 12 Adm !

Event e2 has been recorded with two possible activity labels (PrTP or SecTP). This is an example
of uncertainty on activities. Some events, e.g., e3, do not have a precise timestamp but a time interval
in which the event could have happened has been recorded: in some cases, this causes the loss of
a precise ordering of events (e.g., e2 and e3). This is an instance of uncertainty on the time dimension,
i.e., on timestamps. As evident by the “?” symbol, e1 is an indeterminate event: it has been recorded,
but it is not guaranteed to have actually happened. Conversely, the “!” symbol indicates that the



Algorithms 2020, 13, 285 3 of 27

event has been recorded while certainly occurring in reality, i.e., it has been recorded correctly in the
information system (e.g., the event e4).

Quality problems and imprecision in data recording such as the ones described in the running
example as source of uncertainty are not uncommon; in some settings, they are a frequent occurrence.
Healthcare processes are specifically know to be afflicted by these sorts of data anomalies, especially if
parts of the process rely on recording information on paper [3,4]. Existing process mining software
cannot manage such uncertain event data. When mining the processes where uncertainty in execution
data is prominent, a natural first approach is to filter the event log eliminating cases where uncertainty
appear. Unfortunately, in processes with a large portion of cases are affected by such data anomalies,
filtering without losing essential information about the process is not feasible.

Consequently, new process mining methods to inspect and analyze it must be developed.
Uncertain timestamps are the most prominent and critical source of uncertain behavior in a process
trace. For example, if n events have uncertain timestamps such that their order is unknown, the possible
configurations that the control-flow of the trace can assume are all the n! permutations of the events,
in the case where all events in a case have timestamps defined by mutually overlapping intervals.
This is the worst possible scenario in terms of amount of uncertain behavior introduced by uncertainty
on the timestamps of the events ins a trace. Thus, it is important to capture the time relationships
between events in a compact and effective way. This is accomplished by the construction of a behavior
graph, a directed acyclic graph that expresses precedence between events. Figure 1 shows the
behavior graph of the process trace in Table 1; every known precedence relationship between events is
represented by the edges of the graph, while the pairs of event for which the order is unknown remain
unconnected. Effectively, this creates a representation of the partial order where the arcs are defined by
the possible values of the timestamps contained in the trace, and where the nodes may refer to sets
of possible activities. As we will see, this construct is central to effectively implement both process
discovery and conformance checking applied to uncertain event data.

NightSweats

e1

{PrTP, SecTP}

e2

Splenomeg

e3

Adm

e4

Figure 1. The behavior graph of the trace in Table 1. Every node represents an event; the labels in
the nodes represent the activity, or set of activities, associated with the event. The arcs represent the
partial order relationship between events as defined by their timestamps. The indeterminate event,
which might not have occurred, is represented by a dashed node.

In a previous paper [5], we presented a time-effective algorithm for the construction of the
behavior graph of an uncertain process trace, attaining quadratic time complexity on the number of
events in the trace.

This paper elaborates on this previous result, by providing the proof of the correctness of the
new algorithm. Additionally, we will show the improvement in performance both theoretically,
via asymptotic complexity analysis, and in practice, with experiments on various uncertain event
logs comparing computation times of the baseline method against the novel construction algorithm.
Furthermore, the version of the algorithms presented in this paper is refined so to preprocess uncertain
traces in linear time, individuating the variants—which share the same behavior graph–, and proceed
to perform the construction of the behavior graph only once per variant. This slightly improves
performance, and more importantly, enables the representation of an uncertain event log as a multiset of



Algorithms 2020, 13, 285 4 of 27

behavior graphs, greatly reducing the memory requirements to store the log. This enables a streamlined
application of process mining techniques on event data where uncertainty is present.

The algorithms have been implemented within the PROVED (PRocess mining OVer uncErtain
Data) library (https://github.com/proved-py/proved-core/tree/Efficient_Time_and_Memory_
Representation_for_Uncertain_Event_Data), based on the PM4Py process mining framework [6].

The reminder of the paper is structured as follows: Section 2 motivates the study of uncertainty
in process mining by illustrating an example of conformance checking over uncertain event data.
Section 3 strengthens the motivation showing the discovery of process models of uncertain event logs.
Section 4 provides formal definitions, describes the baseline technique for our research, and shows
a new and more efficient method to obtain a behavior graph of an uncertain trace. Section 5 presents
the analysis of asymptotic complexity for both the baseline and the novel method. Section 6 shows
results of experiments on both synthetic and real-life uncertain event logs comparing the efficiency of
both methods to compute behavior graphs. Section 7 explores recent related works in the context of
uncertain event data and the management of alterations of data in process mining. Finally, Section 8
discusses the output of the experiments and concludes the paper.

2. Conformance Checking over Uncertain Data

Conformance checking is one of the main tasks in process mining, and consists of measuring the
deviation between process execution data (usually in the form of a trace) and a reference model. This is
particularly useful for organization, since it enables them to compare historical process data against
a normative model created by process experts to identify anomalies and deviations in their operations.

Let us assume that we have access to a normative model for the disease of the patient in the
running example, shown in Figure 2.

t1

NightSweats

t2

t4

Splenomeg

t3

PrTP

t5

Adm

t6

Figure 2. A normative model for the healthcare process case in the running example. The initial
marking is displayed; the gray “token slot” represents the final marking.

This model essentially states that the disease is characterized by the occurrence of night sweats
and splenomegaly on the patient, which can be verified concurrently, and then should be followed by
primary thrombocytopenia. We would like to measure the conformance between the trace in Table 1
and this normative model. A very popular conformance checking technique works via the computation
of alignments [7]. Through this technique, we are able to identify the deviations in the execution of
a process, in the form of behavior happening in the model but not in the trace, and behavior happening
in the trace but not in the model. These deviations are identified, and used as basis to compute
a conformance score between the trace and the process model.

The formulation of alignments in [7] is not applicable to an uncertain trace. In fact, depending
on the instantiation of the uncertain attributes of events—like the timestamp of e3 in the trace—the
order of event may differ, and so may the conformance score. However, we can look at the best-
and worst-case scenarios: the instantiation of attributes of the trace that entails the minimum and
maximum number of deviations with respect to the reference model. In our example, two possible
outcomes for the sample trace are 〈NightSweats, Splenomeg, PrTP, Adm〉 and 〈SecTP, Splenomeg, Adm〉;
both represent the sequence of event that might have happened in reality, but their conformance score
is very different. The alignment of the first trace against the reference model can be seen in Table 2,
while the alignment of the second trace can be seen in Table 3. These two outcomes of the uncertain



Algorithms 2020, 13, 285 5 of 27

trace in Table 1 represent, respectively, the minimum and maximum amount of deviation possible with
respect to the reference model, and define then a lower and upper bound for conformance score.

Table 2. An optimal alignment for 〈NightSweats, Splenomeg, PrTP, Adm〉, one of the possible
instantiations of the trace in Table 1, against the model in Figure 2. This alignment has a deviation cost
equal to 0, and corresponds to the best-case scenario for conformance between the process model and
the uncertain trace.

� NightSweats Splenomeg � PrTP Adm

τ NightSweats Splenomeg τ PrTP Adm
t1 t2 t3 t4 t5 t6

Table 3. An optimal alignment for 〈SecTP, Splenomeg, Adm〉, one of the possible instantiations of the
trace in Table 1, against the model in Figure 2. This alignment has a deviation cost equal to 3, caused by
2 moves on model and 1 move on log, and corresponds to the worst-case scenario for conformance
between the process model and the uncertain trace.

� SecTP � Splenomeg � � Adm

τ � NightSweats Splenomeg τ PrTP Adm
t1 t2 t3 t4 t5 t6

The minimum and maximum bounds for conformance score of an uncertain trace and a reference
process model can be found with the uncertain version of the alignment technique that we first
described in [2]. To find such bounds, it is necessary to build a Petri net able to simulate all possible
behaviors in the uncertain trace, called the behavior net. Obtaining a behavior net is possible through a
construction that uses behavior graphs as a starting point, using the structural information therein
contained to connect places and transitions in the net. The behavior net of the trace in Table 1 is shown
in Figure 3.

(START, e1)

NightSweats

(e1, NightSweats)

NightSweats

(e1, τ)

(e1, e2)

PrTP

(e2, PrTP)

SecTP

(e2, SecTP)

(e2, e4)

(START, e3)
(e3, e4)

Splenomeg

(e3, Splenomeg)

Adm

(e4, Adm) (e4, END)

Figure 3. The behavior net representing the behavior of the uncertain trace in Table 1 and obtained
thanks to its behavior graph. The initial marking is displayed; the gray “token slot” represents the final
marking. This artifact is necessary to perform conformance checking between uncertain traces and
a reference model.

The alignments in Tables 2 and 3 show how we can get actionable insights from process mining
over uncertain data. In some applications it is reasonable and appropriate to remove uncertain data
from an event log via filtering, and then compute log-level aggregate information—such as total
number of deviations, or average deviations per trace—using the remaining certain data. Even in
processes where this is possible, doing so prevents the important process mining task of case diagnostic.
Conversely, uncertain alignments allow not only to have best- and worst-case scenarios for a trace,
but also to individuate the specific deviations affecting both scenarios. For instance, the alignments of



Algorithms 2020, 13, 285 6 of 27

the running example can be implemented in a system that warns the medics that the patient might have
been affected by a secondary thrombocytopenia not explained by the model of the disease. Since the
model indicates that the disease should develop primary thrombocytopenia as a symptom, this patient
is at risk of both types of platelets deficit simultaneously, which is a serious situation. The medics can
then intervene to avoid this complication, and performing more exams to ascertain the cause of the
patient’s thrombocytopenia.

3. Process Discovery over Uncertain Data

Process discovery is another main objective in process mining, and involves automatically
creating a process model from event data. Many process discovery algorithms rely on the concept of
directly-follows relationships between activities to gather clues on how to structure the process model.
Uncertain Directly-Follows Graphs (UDFGs) enable the representation of directly-follows relationships in
an event log under conditions of uncertainty in the event data; they consist of directed graphs where
the activity labels appearing in an event log constitute the nodes, and the edges are decorated with
information on the minimum and maximum frequency observable for the directly-follows relation
between pair of activities.

Let us examine an example of UDFG. To build a significant example, we need to introduce an
entire uncertain event log; since the full table notation for uncertain traces becomes cumbersome for
entire logs, let us use a shorthand simplified notation. In a trace, we represent an uncertain event with
multiple possible activity labels by listing all the associated labels between curly braces.

When two events have mutually overlapping timestamps, we write their activity labels between
square brackets, and we indicate indeterminate events by overlining them. Notice that this notation
does not allow for the representation of every possible uncertain trace: in the case of timestamp
uncertainty, it can only express mutual overlapping of time intervals. However, this notation is
adequate to illustrate an example for process discovery under uncertainty.

For instance, the trace 〈a, {b, c}, [d, e]〉 is a trace containing 4 events, of which the first is an
indeterminate event with activity label a, the second is an uncertain event that can have either b or c
as activity label, and the last two events have an interval as timestamp (and the two ranges overlap).
Let us consider the following event log: 〈a, b, e, f , g, h〉80, 〈a, {b, c}, [e, f ], g, i〉15, 〈a, {b, c, d}, [e, f ], g, j〉5.

For each pair of activities, we can count the minimum and maximum occurrences of
a directly-follows relationship that can be observed in the log. The resulting UDFG is shown in
Figure 4.

This graph can be then used to discover process models of uncertain logs via process discovery
methods based on directly-follows relationships. In a previous work [8] we illustrated this principle
by applying it to the Inductive Miner, a popular discovery algorithm [9]; the edges of the UDFG can be
filtered via the information on the labels, in such a way that the final model can represent all possible
behavior in the uncertain log, or only a part. Figure 5 shows some process models obtained through
inductive mining of the UDFG, as well as a description regarding how the model relate to the original
uncertain log.

UDFGs of uncertain event data are obtained on the basis of the behavior graphs of the traces
in an uncertain event log, making their construction a necessary step to perform uncertain process
discovery. In fact, the frequency information labeling the edges of UDFGs are obtained through a search
among the possible connections within the behavior graphs of all the traces in an uncertain log.



Algorithms 2020, 13, 285 7 of 27

a

b

c

d

e

f

g

h

i

j

[80, 100]

[0, 20]

[0, 5]

[80, 100]

[0, 20]

[0, 20]

[0, 20]

[0, 5]

[0, 5]

[80, 100][0, 20]

[0, 20]

[80, 100]

[80, 80]

[15, 15]

[0, 5]

[100, 100]

[80, 80]

[15, 15]

[0, 5]

Figure 4. The Uncertain Directly-Follows Graph (UDFG) computed based on the uncertain event
log 〈a, b, e, f , g, h〉80, 〈a, {b, c}, [e, f ], g, i〉15, 〈a, {b, c, d}, [e, f ], g, j〉5. The arcs are labeled with the
minimum and maximum number of directly-follows relationship observable between activities in the
corresponding trace. Notice the large amount of connections extracted from a single and rather short
trace. Uncertain directly-follows relationships are inferred from the behavior graphs of the traces in the
log. The construction of this object is necessary to perform automatic process discovery over uncertain
event data.

a b e f g

h

i

(a) A process model that can only replay the relationships appearing in the certain
parts of the traces in the uncertain log. Here, information from uncertainty has
been excluded completely.

a

b

c

e

f

g

h

i

(b) A process model that can replay some–but not all–the relationships
appearing in the uncertain parts of the traces in the uncertain log.
This process model mediates between representing only certain observation
and representing all the possible behavior in the process.

Figure 5. Cont.



Algorithms 2020, 13, 285 8 of 27

a

b

d

c

e

f

g

i

j

h

k

(c) A process model that can replay all possible configurations of certain and
uncertain traces in the uncertain log. This process model has the highest
possible replay fitness, but is also very likely to contain some noisy or otherwise
unwanted behavior.

Figure 5. Three different process models for the uncertain event log 〈a, b, e, f , g, h〉80,
〈a, {b, c}, [e, f ], g, i〉15, 〈a, {b, c, d}, [e, f ], g, j〉5 obtained through inductive mining over an uncertain
directly-follows graph. The different filtering parameters for the UDFG yield models with
distinct features.

Thus, the construction of behavior graphs for uncertain traces is the basis of both process discovery
and conformance checking on uncertain event data, since the behavior graph is a necessary processing
step to mine information from uncertain traces. It is then important to be able to build the behavior
graph of any given uncertain trace quickly and efficiently, in order to enable performant process
discovery and conformance checking.

4. Materials and Methods

4.1. Preliminaries

Let us illustrate some basic concepts and notations, partially from [1]:

Definition 1 (Power set). The power set of a set A is the set of all possible subsets of A, and is denoted with
P(A). PNE(A) denotes the set of all the non-empty subsets of A: PNE(A) = P(A) \ {∅}.

Definition 2 (Multiset). A multiset is an extension of the concept of set that keeps track of the cardinality
of each element. B(A) is the set of all multisets over some set A. Multisets are denoted with square brackets,
e.g., b = [x, x, y], or with the cardinality of the elements as superscript, e.g., b = [x2, y]. We denote the empty
multiset with [ ]. The operator (·) retrieves the cardinality of an element of the multiset, e.g., b(x) = 2, b(y) = 1,
b(z) = 0. Over multisets we define x ∈ b⇔ b(x) ≥ 1, and set(b) = {x ∈ b}. The multiset union b = b1 ] b2

is the multiset b such that for all x we have b(x) = b1(x) + b2(x).

Definition 3 (Sequence and permutation). Given a set X, a finite sequence over X of length n is a function
s ∈ X∗ : {1, . . . , n} → X, and is written as s = 〈s1, s2, . . . , sn〉. For any sequence s we define |s| = n,
s[i] = si, x ∈ s ⇔ x ∈ {s1, s2, . . . , sn} and s ⊕ s0 = 〈s1, s2, . . . , sn, s0〉. A permutation of the set X is
a sequence xS that contains all elements of X without duplicates: xS ∈ X, X ∈ xS , and for all 1 ≤ i ≤ |xS | and
for all 1 ≤ j ≤ |xS |, xS [i] = xS [j]→ i = j. We denote with SX all such permutations of set X. We overload
the notation for sequences: given a sequence s = 〈s1, s2, . . . , sn〉, we will write Ss in place of S{s1,s2,...,sn}.

Definition 4 (Transitive relation and correct evaluation order). Let X be a set of objects and R be a binary
relation R ⊆ X × X. R is transitive if and only if for all x, x′, x′′ ∈ X we have that (x, x′) ∈ R ∧ (x′, x′′) ∈



Algorithms 2020, 13, 285 9 of 27

R→ (x, x′′) ∈ R. A correct evaluation order is a permutation s ∈ SX of the elements of the set X such that for
all 1 ≤ i < j ≤ |s| we have that (s[i], s[j]) ∈ R.

Definition 5 (Strict partial order). Let S be a set of objects. Let s, s′ ∈ S. A strict partial order (≺, S) is
a binary relation that have the following properties:

• Irreflexivity: s ≺ s is false.
• Transitivity: s ≺ s′ and s′ ≺ s′′ imply s ≺ s′′.
• Antisymmetry: s ≺ s′ implies that s′ ≺ s is false. It is implied by irreflexivity and transitivity [10].

Definition 6 (Directed graph). A directed graph G ∈ UG is a tuple (V, E) where V is the set of vertices and
E ⊆ V ×V is the set of directed edges. The set UG is the graph universe. A path in a directed graph G = (V, E)
is a sequence of vertices p such that for all 1 < i < |p| − 1 we have that (pi, pi+1) ∈ E. We denote with PG
the set of all such possible paths over the graph G. Given two vertices v, v′ ∈ V, we denote with pG(v, v′) the
set of all paths beginning in v and ending in v′: pG(v, v′) = {p ∈ PG | p[1] = v ∧ p[|p|] = v′}. v and v′ are

connected (and v′ is reachable from v), denoted by v G7→ v′, if and only if there exists a path between them in G:

pG(v, v′) 6= ∅. Conversely, v
G
6 7→ v′ ⇔ pG(v, v′) = ∅. We drop the superscript G if it is clear from the context.

A directed graph G is acyclic if there exists no path p ∈ PG satisfying p[1] = p[|p|].

Definition 7 (Topological sorting). Let G = (V, E) be an acyclic directed graph. A topological sorting [11]
oG = 〈v1, v2, . . . , v|V|〉 ∈ SV is a permutation of the vertices of G such that for all 1 ≤ i < j ≤ |V| we have
that vj 6 7→ vi. We denote with OG ⊆ SV all such possible topological sortings over G.

Definition 8 (Transitive reduction). A transitive reduction [12] ρ : G → G of a graph G = (V, E) is a graph
ρ(G) = (V, Er) with Er ⊆ E where every pair of vertices connected in ρ(G) is not connected by any other path:
for all (v, v′) ∈ Er, pG(v, v′) = {〈v, v′〉}. ρ(G) is the graph with the minimal number of edges that maintain
the reachability between edges of G. The transitive reduction of a directed acyclic graph always exists and is
unique [12].

This paper proposes an analysis technique on uncertain event logs. These execution logs contain
information about uncertainty explicitly associated with event data. A taxonomy of different types of
uncertain event logs and attribute uncertainty has been described in [2]; we will refer to the notion of
simple uncertainty, which includes uncertainty without probabilistic information on the control-flow
perspective: activities, timestamps, and indeterminate events.

Definition 9 (Universes). Let UI be the set of all the event identifiers. Let UC be the set of all case ID
identifiers. Let UA be the set of all the activity identifiers. Let UT be the totally ordered set of all the timestamp
identifiers. Let UO = {!, ?}, where the “!” symbol denotes determinate events, and the “?” symbol denotes
indeterminate events.

Definition 10 (Simple uncertain events). e = (ei, A, tmin, tmax, o) is a simple uncertain event, where
ei ∈ UE is its event identifier, A ∈ PNE(UA is the set of possible activity labels for e, tmin and tmax are
the lower and upper bounds for the value of its timestamp, and o indicates if it is an indeterminate event.
Let UE = (UI × PNE(UA)× UT × UT × UO) be the set of all simple uncertain events. Over the uncertain
event e = (ei, A, tmin, tmax, o) we define the projection functions πa(e) = A, πtmin(e) = tmin, πtmax(e) = tmax

and πo(e) = o.

Definition 11 (Simple uncertain traces and logs). σ ⊆ UE is a simple uncertain trace if for any
(ei, A, tmin, tmax, o) ∈ σ, tmin < tmax and all the event identifiers are unique. TU denotes the universe of
simple uncertain traces. L ⊆ TU is a simple uncertain log if all the event identifiers in the log are unique.



Algorithms 2020, 13, 285 10 of 27

Definition 12 (Strict partial order over simple uncertain events). Let e, e′ ∈ ES
U be two simple uncertain

events. (≺, ES
U) is an order defined on the universe of strongly uncertain events ES

U as:

e ≺ e′ ⇔ πtmax (e) < πtmin(e
′)

Definition 13 (Order-realizations of simple uncertain traces). Let σ ∈ TU be a simple uncertain trace.
An order-realization σO = 〈e1, e2, . . . , e|σ|〉 ∈ Sσ is a permutation of the events in σ such that for all 1 ≤ i <
j ≤ |σ| we have that ej ⊀ ei, i.e., σO is a correct evaluation order for σ over (≺, ES

U), and the (total) order in
which events are sorted in σO is a linear extension of the strict partial order (≺, ES

U). We denote withRO(σ)

the set of all such order-realizations of the trace σ.

A necessary step to allow for analysis of simple uncertain traces is to obtain their behavior graph.
A behavior graph is a directed acyclic graph that synthesizes the information regarding the uncertainty
on timestamps contained in the trace.

Definition 14 (Behavior graph). Let σ ∈ TU be a simple uncertain trace. Let the identification function
id : σ → {1, 2, . . . , |σ|} be a bijection between the events in σ and the first |σ| natural numbers. A behavior
graph β : TU → UG is the transitive reduction of a directed graph ρ(G), where G = (V, E) ∈ UG is defined as:

• V = {(id(e), πa(e), πo(e)) | e ∈ σ}
• E = {(v, w) | v, w ∈ V ∧ πtmax(v) < πtmin(w)}

The set of topological sortings of a behavior graph β(σ) corresponds to the set of all the order-realizations of
the trace σ:

A technical note: this definition for the nodes of the behavior graph is slightly different from the
one in [2], to simplify the notation in algorithms. The two definitions are functionally identical.

Figures 6 and 7 show the transitive reduction operation on the running example.

NightSweats

e1

{PrTP, SecTP}

e2

Splenomeg

e3

Adm

e4

Figure 6. The behavior graph of the trace in Table 1 before applying the transitive reduction. All the
nodes in the graph are pairwise connected based on precedence relationships; pairs of nodes for which
the order is unknown are not connected.

NightSweats

e1

{PrTP, SecTP}

e2

Splenomeg

e3

Adm

e4

Figure 7. The same behavior graph after the transitive reduction. The arc between e1 and e4 is removed,
since they are reachable through e2. This graph has a minimal number of arcs while conserving the
same reachability relationship between nodes.

The semantics of a behavior graph can efficaciously communicate time and order information
concerning the time relationships among events in the corresponding uncertain trace in a compact
manner. For a behavior graph β(σ) = (V, E) and two events e1 ∈ σ, e2 ∈ σ, (e1, e2) ∈ E holds if and
only if e1 is immediately followed by e2 for some possible values of the timestamps of the events in the



Algorithms 2020, 13, 285 11 of 27

trace. A consequence of this fact is that if a pair of events in the graph are unreachable, they might
have occurred in any order.

Definition 14 is meaningful and clear from a theoretical point of view. It rigorously defines
a behavior graph and the semantics of its parts. Although helpful to understand the function of
behavior graphs, obtaining them from process traces following this definition—that is, using the
transitive reduction—is inefficient and slow. This hinders the analysis of logs with a large number of
events, and with longer traces. It is nonetheless possible to build behavior graphs from process traces
in a faster and more efficient way.

4.2. Efficient Construction of Behavior Graphs

The set of steps to efficiently create a behavior graph from an uncertain trace is separated into
two distinct phases, described by Algorithms 1 and 2. An uncertain event e is associated with a time
interval which is determined by two values: minimum and maximum timestamp of that event πtmin(e)
and πtmax(e). If an event e has a certain timestamp, we have that πtmin(e) = πtmax(e).

We will examine here the effect of Algorithms 1 and 2 on a running example, the process
trace shown in Table 4. Notice that in this running example, no uncertainty on activity labels nor
indeterminate events are present: this is because of the fact that the topology of a behavior graph only
depends on the (uncertain) timestamps in the events belonging to the corresponding trace.

Algorithm 1: TIMESTAMPLIST(σ)
Input : An uncertain trace σ.
Output : The list of timestamps L of σ.
L∗ ← 〈 〉 ; // Support list
L ← 〈 〉 ; // List of event attributes
E← SORT(σ) ; // Sorts uncertain events by minimum timestamp
i← 1
while i ≤ |E| do
L∗ ← L∗ ⊕ (πtmin(e), i, e, ’MIN’)
L∗ ← L∗ ⊕ (πtmax(e), i, e, ’MAX’)
i← i + 1

end
SORT(L∗) ; // Sorts the list based on timestamp value
i← 1
while i ≤ |L∗| do

(t, id, e, type)← L∗[i]
L ← L⊕ (id, πa(e), πo(e), type)
i← i + 1

end
return L

Table 4. Running example for the creation of the behavior graph.

Case ID Event ID Activity Timestamp Event Type

872 e1 a 5 December 2011 !
872 e2 b [6 December 2011, 10 December 2011] !
872 e3 c 7 December 2011 !
872 e4 d [8 December 2011, 11 December 2011] !
872 e5 e 9 December 2011 !
872 e6 f [12 December 2011, 13 December 2011] !



Algorithms 2020, 13, 285 12 of 27

Algorithm 2: BEHAVIORGRAPH(TIMESTAMPLIST(σ))
Input : The list L = TIMESTAMPLIST(σ) of an uncertain trace σ.
Output : The behavior graph β(σ) = (V, E).
V ← {(id, πa(e), πo(e)) | (id, πa(e), πo(e), type) ∈ L}
E← ∅
i← 1
while i < |L| do

(id, a, o, type)← L[i]
if type = ’MAX’ then

j← i + 1
while j ≤ |L| do

(id∗, a∗, o∗, type∗)← L[j]
if type∗ = ’MIN’ then

E← E ∪ {((id, a, o), (id∗, a∗, o∗))}
else if ((id, a, o), (id∗, a∗, o∗)) ∈ E then

break
end
j← j + 1

end
end
i← i + 1

end
return (V, E)

The construction of the graph relies on a preprocessing step shown in Algorithm 1,
where a support list L is created (lines 4–8). Every entry in this list is a tuple of four elements.
For each event e in the trace, we insert two entries in the list—one for each timestamp πtmin and πtmax

appearing in a trace. The four elements in each tuple contained in the list are:

• an identifier, which in the list construction is an integer representing the rank of the uncertain
event by minimum timestamp (computed in line 3);

• the activity labels associated with the event πa(e);
• the attribute πo(e), which will carry the information regarding indeterminate events;
• the type of timestamp that generated this entry—if it is a minimum or maximum of an interval.

As we can see, the list is designed to contain all information about an uncertain event except the
values of minimum and maximum timestamps, which we use to sort the list (line 9) and then discard
prior to returning the list (lines 10–15).

The events of the trace in Table 4 are represented in the list L∗ by entries shown in Table 5.
These entries are then sorted by Algorithm 1 yielding the following list L:

L = 〈(1, {a}, !, ’MIN’), (1, {a}, !, ’MAX’), (2, {b}, !, ’MIN’), (3, {c}, !, ’MIN’),

(3, {c}, !, ’MAX’), (4, {d}, !, ’MIN’), (5, {e}, !, ’MIN’), (5, {e}, !, ’MAX’),

(2, {b}, !, ’MAX’), (4, {d}, !, ’MAX’), (6, { f }, !, ’MIN’), (6, { f }, !, ’MAX’)〉



Algorithms 2020, 13, 285 13 of 27

Table 5. Entries for the list L generated by each event in the uncertain trace. Every event e has two
associated entries, one marked as ’MIN’ and the other as ’MAX’. Each entry is a 4-uple containing
an integer that acts as event identifier, the set of possible activity labels πa(e) of the uncertain event,
the indeterminate event attribute πo(e), and the type of timestamp (’MIN’ or ’MAX’).

Event List L∗ Entry
(Minimum Timestamp)

List L∗ Entry
(Maximum Timestamp)

e1 (5 December 2011, 1, {a}, !, ’MIN’) (5 December 2011, 1, {a}, !, ’MAX’)
e2 (6 December 2011, 2, {b}, !, ’MIN’) (10 December 2011, 2, {b}, !, ’MAX’)
e3 (7 December 2011, 3, {c}, !, ’MIN’) (7 December 2011, 3, {c}, !, ’MAX’)
e4 (8 December 2011, 4, {d}, !, ’MIN’) (8 December 2011, 4, {d}, !, ’MAX’)
e5 (9 December 2011, 5, {e}, !, ’MIN’) (9 December 2011, 5, {e}, !, ’MAX’)
e6 (12 December 2011, 6, { f }, !, ’MIN’) (13 December 2011, 6, { f }, !, ’MAX’)

One of the purposes the list L serves is gathering the structural information to create the behavior
graph; in fact, visiting the list in order is equivalent of sweeping the events of the trace on the time
dimension, encountering each timestamp (minimum or maximum) sorted through time. We can
visualize this on the Gantt diagram representation of the trace of Table 4, visible in Figure 8.

Figure 8. A Gantt diagram visualizing the time perspective of the events in Table 4. The horizontal
blue bars represent the interval of possible timestamps of uncertain events: such interval is ample for
the event with activity label “c”, which has an uncertain timestamp, and is narrow to indicate a precise
point in time for the other events. This diagram can show the order relationship between events in a
trace, as well as the dimensions of their interval of possible timestamps in scale.

Every segment representing an uncertain event in the diagram is translated by TIMESTAMPLIST

into two entries in a sorted list, representing the two extremes of the segment. Events without
an uncertain timestamp collapse into a single point in the diagram, and their corresponding two entries
in the list are characterized by the same timestamp.

Now, let us examine Algorithm 2. The idea leading the algorithm is to analyze the time relationship
among uncertain events in a more precise manner, as opposed to adding a large number of edges
to the graph and then removing them via transitive reduction. This is attained by searching all the
viable successors of each event in the sorted timestamp list L. We scan the list L with two nested loops,
and we use the inner loop to look for successors of the entry selected by the outer loop. According to the
semantics of behavior graphs, events with overlapping intervals as timestamps must not be connected



Algorithms 2020, 13, 285 14 of 27

by a path; thus, we draw outgoing edges from an event only when, reading the list, we arrive at a point
in time in which the event has certainly occurred. This is the reason outgoing edges are not drawn
when inspecting minimum timestamps (line 6) and incoming edges are not drawn when inspecting
maximum timestamps (line 10).

First, we initialize the set of nodes with all the triples (id, πa(e), πo(e)) in the entries of L, and we
initialize the edges with an empty set (lines 1–2). For each maximum timestamp that we encounter in
the list, we start searching for successors in the following entries (lines 3–9), so we proceed in looking
for the successors of (id, a, o, type) only if type = ’MAX’.

If, while searching for successors of the entry (id, a, o, ’MAX’), we encounter the entry
(id∗, a∗, o∗, type∗) corresponding to a minimum timestamp (type∗ = ’MIN’), we connect (id, a, o) and
(id∗, a∗, o∗) in the graph, since their timestamps do not have any possible value in common. The search
for successors must continue, since it is possible that other events took place before the maximum
timestamp of the event corresponding to (id∗, a∗, o∗, type∗). This configuration occurs for events e1 and
e3 in Table 4. As can be seen in Figure 8, e3 can indeed follow e1, but the still undiscovered event e2 is
another possible successor for e1.

If the entry (id∗, a∗, o∗, type∗) corresponds to a maximum timestamp (line 12), so type∗ = ’MAX’,
there are two separate situations to consider. Case 1: (id, a, o) was not already connected to
(id∗, a∗, o∗). Then, the timestamps of the events corresponding to (id, a, o) and (id∗, a∗, o∗) overlap
with each other—if they did not, the two nodes would have already been connected, since we would
have encountered (id∗, a∗, o∗, ’MIN’) from (id, a, o, ’MAX’) before encountering (id∗, a∗, o∗, ’MAX’).
Thus, (id, a, o) must not be connected to (id∗, a∗, o∗) and the search must continue. Events e3 and e4 are
an example: when the maximum timestamp of e4 is encountered during the search for the successor of
e3, the two are not connected, so the search for a viable successor of e3 has to continue. Case 2: (id, a, o)
and (id∗, a∗, o∗) are already connected. This means that we had already encountered (id∗, a∗, o∗, ’MIN’)
during the search for the successors of (id, a, o). Since the entire time interval representing the possible
timestamp of the event associated with (id∗, a∗, o∗) is detected after the occurrence of (id, a, o), there are
no further events to consider as successors of (id, a, o) and the search stops (line 13). In the running
example, this happens between e5 and e6: when searching for the successors of e5, we first connect it
with e6 when we encounter its minimum timestamp; we then encounter its maximum timestamp, so no
other successive event can be a successor for e5. This concludes the walkthrough of the procedure,
which shows why Algorithms 1 and 2 can be used to correctly compute the behavior graph of a trace.
The behavior graph of the trace in Table 4 obtained through this procedure is shown in Figure 9.

a
e1

c
e3

d
e4

e
e5

b
e2

f
e6

Figure 9. The behavior graph of the trace in Table 4.

Let us now prove, in more formal terms, the correctness of these algorithms. We will show that
the procedures BEHAVIORGRAPH and TIMESTAMPLIST are able to construct a behavior graph with the
semantics illustrated in Definition 14.



Algorithms 2020, 13, 285 15 of 27

Theorem 1 (Correctness of the behavior graph construction). Let σ ∈ TU be an uncertain trace. Let bg =

(V, E) = BEHAVIORGRAPH(TIMESTAMPLIST(σ)) be the behavior graph of σ obtained through Algorithms 1
and 2. The graph bg follows the behavior graph semantics: for all pairs of events e ∈ σ and e′ ∈ σ such that
id(e) = eid, πa(e) = ea, πo(e) = eo, id(e′) = e′id, πa(e′) = e′a, πo(e′) = e′o, we have that the node (eid, ea, eo)

is connected to the node (e′id, e′a, e′o) if and only if πtmax(e) < πtmin(e
′) and there exists no event e′′ ∈ σ such

that πtmax(e) < πtmin(e
′′) ≤ πtmax(e

′′) < πtmin(e
′). Thus, bg = β(σ).

Proof. Let us first define a suitable id function for the behavior graph using the list E created in
TIMESTAMPLIST(σ). For all events e∗ ∈ σ and for i ∈ N such that E[i] = e∗, we define id(e∗) = i.
Since id is just an enumeration of the events in σ, it is trivially bijective.

(⇐) Assume πtmax(e) < πtmin(e
′). By construction, we have that L =

〈. . . , (eid, ea, eo, ’MAX’), . . . , (e′id, e′a, e′o, ’MIN’), . . . 〉. The checks in line 6 and line 10 only allow
for edges to be linked from entries of type ’MAX’ to entries of type ’MIN’ that only appear in a later
position in the list L. Thus, the configuration πtmax(e) < πtmin(e

′) is a strict prerequisite for (eid, ea, eo)

and (e′id, e′a, e′o) to be connected: ((eid, ea, eo), (e′id, e′a, e′o)) ∈ E⇒ πtmax(e) < πtmin(e
′).

(⇒) Assume πtmax(e) < πtmin(e
′), and that the algorithm is currently searching the successors

for the entry (eid, ea, eo, ’MAX’). Eventually, the inner loop will consider as a successor the entry
(e′id, e′a, e′o, ’MIN’), and since it is of type ’MIN’, (eid, ea, eo) and (e′id, e′a, e′o) will necessarily be connected
unless the algorithm executes the break at line 13. To execute it, the algorithm needs to find a list entry
(e′′id, e′′a , e′′o , ’MAX’) such that there already exist an arc between (eid, ea, eo) and (e′′id, e′′a , e′′o ), and this is
only possible if (e′′id, e′′a , e′′o , ’MIN’) has been encountered while searching for successors of (eid, ea, eo).
This implies that

L = 〈. . . , (eid, ea, eo, ’MAX’), . . . , (e′′id, e′′a , e′′o , ’MIN’), . . .

. . . , (e′′id, e′′a , e′′o , ’MAX’), . . . , (e′id, e′a, e′o, ’MIN’), . . . 〉

which by construction of L, is only possible if there exist some e′′ ∈ σ such that

πtmax(e) < πtmin(e
′′) ≤ πtmax(e

′′) < πtmin(e
′)

As mentioned earlier, the procedure of constructing a behavior graph has been structured in two
different algorithms specifically to enable further optimization in processing uncertain process trace.
This becomes evident once we consider the problem of converting in behavior graphs all the traces in
an event log, as opposed as one single uncertain trace.

First, it is important to notice that different uncertain traces can have the same list L. Similarly to
directly-follows relationships in more classical process mining, which can ignore the amount of time in
absolute terms elapsed between two consecutive events, specific values of timestamps in an uncertain
trace are not necessarily meaningful with respect to the connection in the behavior graph; their order,
conversely, is crucial.

This fact enables further optimization at the log level. The construction of the list L in
TIMESTAMPLIST(σ) is engineered in a way that allows for computing the behavior graph without
direct lookup to the events in the trace. This implies that it is possible to extract a multiset of lists L
from the event log, and to compute the conversion to behavior graph only for the set of lists induced by
this multiset. This allows the saving of computation time in converting an entire event log to behavior
graphs; furthermore, it enables a more compact representation of the log in memory, since we only
need to store a smaller number of graphs to represent the whole log.

The procedure to efficiently convert an event log into graphs is detailed in Algorithm 3.
These considerations allow us to extend to the uncertain scenario some concepts that are essential

in classical process mining. First, we can now derive the definition of variant, highly important for
preexisting process mining techniques, to uncertain event data.



Algorithms 2020, 13, 285 16 of 27

Algorithm 3: PROCESSUNCERTAINLOG

Input : An uncertain log L.
Output : A multiset of behavior graphs BG.
ML← [ ]
VL ← [ ]
for σ ∈ L do

ML← ML] [TIMESTAMPLIST(σ)]
end
for L ∈ ML do
VL ← VL ] [BEHAVIORGRAPH(L)ML(L)]

end
return BG

Definition 15 (Uncertain variants). Let L ⊆ TU be a simple uncertain event log. The variants of L
denoted by VL, are the multisets of behavior graphs for the uncertain traces in L, and are computed with
PROCESSUNCERTAINLOG(L).

The computational advantage in representing a log through a multiset of behavior graphs is
evident in the procedure described in Algorithm 2. We see that all data necessary to the creation of
a behavior graph is contained in the list L, fact that justifies the log representation method illustrated
in Algorithm 3.

Lemma 1. Two uncertain traces σ1 ∈ L and σ2 ∈ L belong to the same variant, and share the same behavior
graph, if and only if they result in the same timestamp list L: TIMESTAMPLIST(σ1) = TIMESTAMPLIST(σ2).

Another central concept in process mining is the so-called control-flow perspective of event data.
In certain process traces, where timestamps have a total order, events have a single activity label
and no event is indeterminate, the control-flow information is represented by a sequence of activity
labels sorted by timestamp. Although there are many analysis approaches that also account for
other perspectives (e.g., the performance perspective that considers the duration of events and
their distance in time, or the resource perspective that accounts for the agents that execute the
activities), a vast amount of process mining techniques, including most popular algorithms for
process discovery and conformance checking, rely only on the control-flow perspective of a process.
Analogously, behavior graphs carry over the control-flow information of an uncertain trace: instead of
describing the flow of events like their certain counterpart, the behavior graph describes all possible
flows of events in the uncertain trace.

5. Asymptotic Complexity

In this section, we will provide some values for the asymptotic complexity of the algorithms seen
in this paper.

In a previous paper [2] we introduced the concept of behavior graph for the representation of
uncertain event data, together with a method to obtain such graphs. Definition 14 describes such
a baseline method for the creation of the behavior graph consisting of two main parts: the construction
of the starting graph and the computation of its transitive reduction. Let us consider an uncertain
process trace σ ∈ TU with |σ| = n events, and the graph G = (V, E) generated in Definition 14 before
the transitive reduction.

The starting graph is created by inspecting the time relationship between every pair of events;
this corresponds to checking if an edge exists between each pair of vertices in G, which needs
O(n2) time.

The transitive reduction of graphs can be obtained through many methods. A simple and efficient
method to compute the transitive reduction on sparse graphs is to test reachability through a search



Algorithms 2020, 13, 285 17 of 27

(either breadth-first or depth-first) from each edge. This method costsO(V · E) time (here, for simplicity,
we resort to a widely adopted abuse of notation in asymptotic complexity analysis: we indicate a set
instead of its cardinality, e.g., we use O(V) in place of O(|V|)). However, in the initial graph each
event e ∈ V has an inbound arc from each event certainly preceding e and an outbound arc to each
event certainly following e. Fewer events with overlapping intervals as timestamps of uncertain events
imply fewer arcs in G; the initial graph G of a trace with no uncertainty has |E| = n(n−1)

2 = O(V2)

edges. Thus, except for rare, very uncertain cases, the graph G is dense.
Aho et al. [12] presented a technique to compute the transitive reduction in O(n3) time,

more appropriate in the case of dense graphs, and proved that the transitive reduction has the same
computational complexity of the matrix multiplication problem. The problem of matrix multiplication
was generally regarded as having an optimal time complexity ofO(n3), until Volker Strassen presented
an algorithm [13] able to multiply matrices in O(n2.807355) time. Subsequent improvements have
followed, by Coppersmith and Winograd [14], Stothers [15] and Williams [16]. The asymptotically
fastest algorithm known to date has been illustrated by Le Gall [17] and has an execution time
of O(n2.3728639). However, these faster algorithms are very seldomly used in practice, due to the
existence of large constant factors in their computation time that are hidden by the asymptotic
notation. Moreover, they have vast memory requirements. The Strassen algorithm is helpful in
real-life applications only when applied on very large matrices [18], and the Coppersmith-Winograd
algorithm and subsequent improvements are more efficient only with inputs so large that they are
effectively classified as galactic algorithms [19].

Bearing in mind these considerations, for the vast majority of event logs, the most efficient way to
implement the creation of the behavior graph via transitive reduction runs in O(n2) +O(n3) = O(n3)

time in the worst-case scenario.
It is straightforward to find upper bounds for the complexity of Algorithms 1 and 2.
Line 3 of TIMESTAMPLIST require O(n log n) to be executed. Lines 5–8 require O(n) time. Line 9

requires O(2n log(2n)) = O(n log n) time to be run. Lines 11–14 require 2n = O(n) time to be run.
Lines 1–4 and 10 have a constant cost O(1). Thus, TIMESTAMPLIST has a total asymptotic cost of
O(1) + 2 · O(n log n) + 2 · O(n) = O(n log n) in the worst-case scenario.

Let us now examine BEHAVIORGRAPH. Lines 1–3 and line 11 run in O(1) time. Lines 11–30
consist of two nested loops over the list L, and we have |L| = 2n, resulting in an asymptotic cost of
O((2n)2) = O(n2). The total running time for the novel construction method is then O(1) +O(n2) =

O(n2) time in the worst-case scenario.
We can also obtain a lower bound for the complexity in the worst-case scenario by analyzing the

possible size of the output. The complete directed bipartite graph with n vertices, usually indicated
with K n

2 , n
2
, is a DAG that has ( n

4 )
2 = O(n2) edges. It is easy to see that the complete bipartite graph

fulfills the requirements to be a behavior graph: it is in fact acyclic, and no edge can be removed
without changing the reachability of the graph—specifically, it is equivalent to its transitive reduction.
We can show that a behavior graph with such a shape exists employing a simple construction: a trace
composed by n events with timestamps such that the first n

2 events all have overlapping timestamps,
the last n

2 also all have overlapping timestamps, and the maximum timestamp of each of the first n
2 is

smaller than the minimum timestamp of each of the last n
2 events. The construction, together with

an example, is illustrated in Figure 10. Since lines 11–30 of the algorithm build this graph with O(n2)

edges, the algorithm runs in Ω(n2) time, and thus also in Θ(n2) time. This also proves the asymptotic
optimality of the algorithm: no algorithm to build behavior graphs can run in less than Θ(n2) time in
the worst-case scenario.



Algorithms 2020, 13, 285 18 of 27

.
[1, k]

.
[2, k+1]

.
[3, k+2]

...

.
[k, 2k-1]

.
[2k, 3k]

.
[2k+1, 3k+1]

.
[2k+2, 3k+2]

...

.
[3k-1, 4k-1]

.
[1, 4]

.
[2, 5]

.
[3, 6]

.
[4, 7]

.
[8, 12]

.
[9, 13]

.
[10, 14]

.
[11, 15]

Figure 10. Construction of the class of behavior graphs isomorphic to a complete bipartite graph and
an instantiated example. For any n = 2k, it is possible to have a behavior graph isomorphic to the
graph Kk,k, which thus has a number of edges quadratic in the number of vertices.

6. Experimental Results

The formal definition of our novel construction method for the behavior graph was used
to show its asymptotic speedup with respect to the construction using the transitive reduction.
To empirically confirm this improvement, we built a set of experiments to measure the gain in speed
and memory usage.

6.1. Performance of Behavior Graph Construction

In this section, we will show a comparison between the running time of the naïve behavior
graph construction—which employs the transitive reduction—versus the improved method detailed
throughout the paper. The experiments are set to investigate the difference in performance between
the two algorithms, and most importantly how this difference scales when the size of the event log
increases, as well as the amount of events in the log that have uncertain timestamps. In designing the
experiments, we took into consideration the following research questions:

• Q1: how does the computation time of the two methods compare when run on logs with
an increasing number of traces?

• Q2: how does the computation time of the two methods compare when run on logs with increasing
trace lengths?

• Q3: how does the computation time of the two methods compare when run on logs with increasing
percentages of events with uncertain timestamps?

• Q4: what degree of reduction in memory consumption for the representation of an uncertain log
can we attain with the novel method?

• Q5: do the answers obtained for Q3 hold when simulating uncertainty on real-life event data?

Both the baseline algorithm based on transitive reduction [2] and the new algorithm for
the construction of the behavior graph are implemented in Python, within the PROVED project.
The implementation of both methods is available online, as well as the full code for the experiments
presented here (see the reference in Section 1).

For each series of experiments exploring Q1 through Q4, we generate a synthetic event log
with a number n of traces of length l (in number of events belonging to the trace). Uncertainty on
timestamps is then artificially added to the events in the log. A specific percentage p of the events
in the event log will have an uncertain timestamp, causing it to overlap with an adjacent event.



Algorithms 2020, 13, 285 19 of 27

Finally, behavior graphs are built from all the traces in the event log with either algorithm, while the
execution time is measured. All results in this section are presented as the mean of the measurements
for 10 runs of the corresponding experiment. In the diagrams, we will label with “TrRed” the naïve
method using the transitive reduction, and with “Improved” the faster algorithm illustrated in this
paper. Additionally, the data series for the novel method are labeled with the relative variation in
running time for each specific data point in the experiment, expressed in percentage.

To answer Q1, the first experiment inspects how the efficiency of the two algorithms scales with
log dimension in number of traces. We generate logs with a fixed uncertainty percentage of p = 0.5,
and trace length of l = 20. The number of traces in the uncertain log progressively scales from n = 1000
to n = 10,000. As shown in Figure 11, our proposed algorithm outperforms the baseline algorithm,
showing a much smaller slope in computation time. As anticipated by the theoretical analysis,
the computing time to build behavior graphs increases linearly with the number of traces in the event
log for both methods; in the novel method, the constant factors are much smaller, thus producing
the speedup that we can observe in the graph. Please note that in this experiment the novel method
requires between 18% and 26% of the time with respect to the baseline method.

2,000 4,000 6,000 8,000 10,000

Log size (number of traces)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

B
eh

av
io

r
gr

ap
h

b
u

ild
in

g
ti

m
e

(s
ec

on
d

s)

22.78%
23.27%

22.2%
25.11% 22.37%

23.34% 18.92%

26.13%
22.63%

21.79%

TrRed

Improved

Figure 11. Time in seconds for the creation of the behavior graphs for synthetic logs with traces of
length l = 20 events and p = 0.5 of uncertain events, with increasing number of traces n. The solid
blue line indicates the time needed for the naïve construction; the dashed red line shows the building
time of the improved algorithm, and is labeled with the relative time variation (in percentage).

The second experiment is designed to answer Q2. We analyze the effect of the trace length on
the total time needed for behavior graph creation. Therefore, we created logs with n = 100 traces
of increasing lengths in number of events, and added uncertain timestamps to events with p = 0.5.
The results, illustrated in Figure 12, meet our expectations: the computation time of the baseline
method scales much worse than the computation time required by our new technique, due to its
cubic asymptotic time complexity. This confirms the results of the analysis of the asymptotic time
complexity analysis detailed in Section 5. We can notice an order-of-magnitude increase in speed.
At trace length l = 600, the new algorithm computes the graphs in only 0.35% of the time required by
the baseline algorithm.



Algorithms 2020, 13, 285 20 of 27

100 200 300 400 500 600

Trace length (number of events)

10− 1

100

101

102
B

eh
av

io
r

gr
ap

h
b

u
ild

in
g

ti
m

e
(s

ec
on

d
s)

5.64%

4.63% 1.95%

1.59%
1.16%

0.87%
0.68% 0.6% 0.49%

0.43% 0.38% 0.35%

TrRed

Improved

Figure 12. Time in seconds for the creation of the behavior graphs for synthetic logs with n = 100
traces and p = 0.5 of uncertain events, with increasing trace length l.

The next experiment tackles Q3, by inspecting the difference in execution time for the two
algorithms in function of the percentage of events with an uncertain timestamp in the event log.
Keeping constant the values n = 100 and l = 100, we progressively increased the percentage p of
events with an uncertain timestamp and measured computation time. As presented in Figure 13,
the time required for behavior graph construction remains almost constant for our proposed algorithm,
while it is very slightly decreasing for the baseline algorithm. This behavior is expected, and is justified
by the fact that the worst-case scenario for the baseline algorithm is a trace that has no uncertainty
on the timestamp: in that case, the behavior graph is simply a chain of nodes representing the total
order in a sequence of events with certain timestamps, thus the transitive reduction needs to find
and remove a higher number of edges from the directed graph. This worst-case scenario occurs at
p = 0, explaining why the computation time needed by the transitive reduction is at its highest. It is
important to note, however, that for all values of p our new algorithm runs is significantly more
efficient than the baseline algorithm: with p = 0, the new algorithm takes 0.47% of the time needed by
the naïve construction, while for p = 1 this figure grows to 4.39%.

An additional experiment is illustrated to provide an answer to Q4. As with the first experiment,
we increase the number of traces n in the uncertain log, while keeping the other parameters fixed:
l = 10 and p = 0.5. We then perform the behavior graph construction with both methods, and we
measure the memory consumption derived from the transitive reduction method (keeping in memory
one behavior graph for each uncertain trace) versus the improved method (which generates a multiset
of behavior graphs, one for each variant in the uncertain log).

The results are summarized in Figure 14. Please note that when n increases, more and more
uncertain traces are characterized by the same behavior graph, and can then be grouped in the same
variant. This allows the improved algorithm to store the uncertain log more effectively. At n = 15,000,
the space needed by the multiset of behavior graphs is 59.2%, a sizable improvement in memory
requirements when analyzing uncertain event logs of substantial dimensions. This improvement in
memory consumption is a consequence of the new technique used in this paper to obtain the timestamp
list, which enables such refinement with respect to the technique illustrated in [5].



Algorithms 2020, 13, 285 21 of 27

0.0 0.2 0.4 0.6 0.8 1.0

Uncertainty (%)

0

1

2

3

4

5

6

B
eh

av
io

r
gr

ap
h

b
u

ild
in

g
ti

m
e

(s
ec

on
d

s)

0.47%
2.59% 4.0% 4.77% 3.07% 4.51% 3.53% 4.08% 4.1% 4.33% 4.39%

TrRed

Improved

Figure 13. Time in seconds for the creation of the behavior graphs for synthetic logs with n = 100
traces of length l = 100 events, with increasing percentages of timestamp uncertainty p.

2,000 4,000 6,000 8,000 10,000 12,000 14,000

Log size (number of traces)

0.5

1.0

1.5

2.0

M
em

or
y

o
cc

u
p

at
io

n
(b

yt
es

)

× 108

93.97%
89.9%

86.33%

82.92%

80.21%

77.46%

74.9%
72.31%

69.51%
67.52%

65.47%
64.37%

62.04%
60.69%

59.2%

TrRed

Improved

Figure 14. Memory consumption in bytes needed to store the behavior graphs for synthetic uncertain
event logs with traces of length l = 10 events and timestamp uncertainty of p = 0.5, with an increasing
number of traces n.

Finally, to elucidate research question Q5 we compared the computation time for behavior graphs
creation on real-life event logs, where we artificially inserted timestamp uncertainty in progressively
higher percentage of uncertain events p as described for the experiments above. We considered three
event logs: an event log tracking the activities of the help desk process of an Italian software company,



Algorithms 2020, 13, 285 22 of 27

a log related to the management of road traffic fines in an Italian municipality, and a log from the BPI
Challenge 2012 related to a loan application process.

The results, presented in Figure 15, closely adhere to the findings of the experiments with
synthetically generated uncertain event data: the novel method provides a substantial speedup that
remains rather stable with respect to the percentage p of uncertain events added in the log.

0.0 0.2 0.4

Uncertainty (%)

10

20

30

40

50

B
eh

av
io

r
gr

ap
h

b
u

ild
in

g
ti

m
e

(s
ec

on
d

s)

BPIC 2012

0.0 0.2 0.4

Uncertainty (%)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

HelpDesk

0.0 0.2 0.4

Uncertainty (%)

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

RTFM

Figure 15. Execution times in seconds for real-life event logs with increasing percentages p of timestamp
uncertainty.

6.2. Applications of the Behavior Graph Construction

In Section 1 we saw how building the behavior graph is a fundamental preprocessing step for
both process discovery and conformance checking when dealing with uncertain event logs. In the
previous section, we showed in practice how the novel algorithm presented in this paper impacts the
computation time for the construction of behavior graphs. Now, let us have a glance into the effect of
the speedup when applied to process mining techniques.

In this additional experiment we consider the conformance checking problem. In [2] we proposed
an approach to compute upper and lower bounds for the conformance score of a trace against
a reference Petri net through the alignment technique, which yields alignments for the best- and
worst-case scenarios of an uncertain trace as illustrated in Section 1. The experiment is set up to assess
the effect of the new behavior graph construction on the overall performance of conformance checking
over uncertain data. We first generate a Petri net with t transitions, simulate a log by playing out
n = 500 traces, and add timestamp uncertainty with p = 0.1. We then compute the lower bound for
conformance between the uncertain event log and the Petri net used as a source, and compare the
overall execution time for conformance using the two different methods for the creation of the behavior
graph. In this specific experiment, we also considered the other types of uncertainty in process mining
illustrated in the taxonomy of [2], as well as all types of uncertainty simulate on the same log.

The results are shown in Figure 16. We can see that on very small nets (t = 5), the alignment
algorithm takes a short time to execute, so the speedup provided by the improved behavior graph
construction has a larger impact on the total computation time (taking as little as 30.71% of the time to
calculate alignments). With the increase of t, the computation time for conformance checking using the
fast construction of the behavior graph appears to stabilize around 65% of the time needed if we employ



Algorithms 2020, 13, 285 23 of 27

the naïve construction when considering only one type of uncertainty in isolation. This translates
in a reduction of roughly 35% of computation time for the very common problem of calculating the
conformance score between event data and a reference model, a significant impact on performances
of concrete applications of process mining over uncertain data. When compounding all types of
uncertainty we see a similar effect, although for t = 5 the improved method takes 52.22% of the time
required by the baseline construction, a less dramatic effect than the other uncertainty settings. This is
because even at such small scales, the high number of realizations of traces slow down the alignment
phase in the computation.

10 20 30 40

Number of transitions

30

40

50

60

70

T
im

e
va

ri
at

io
n

(%
)

30.34%

58.84%

65.22%

71.08%

67.33%
65.85% 66.69%

64.19%

Activities

10 20 30 40

Number of transitions

20

40

60

T
im

e
va

ri
at

io
n

(%
)

18.15%

51.66%

60.81%

66.17% 66.95% 65.53% 65.08% 64.01%

Timestamps

10 20 30 40

Number of transitions

20

40

60

T
im

e
va

ri
at

io
n

(%
)

14.43%

48.93%

59.28%

64.93% 64.83% 64.84% 63.75% 64.25%

Indeterminate events

10 20 30 40

Number of transitions

60

70

T
im

e
va

ri
at

io
n

(%
)

52.22%

71.58%

77.18%

75.21%
74.23%

70.87%
69.54%

67.42%

All

Figure 16. Relative variation in computation time obtained through the improved behavior graph
construction when applied to the computation of conformance bounds between a synthetic uncertain
log and a Petri net with an increasing number of transitions. The synthetic uncertain logs have n = 500
traces and timestamp uncertainty has been introduced with p = 0.1.

In evaluating this result, it is important to consider that alignments are a notoriously time-intensive
technique [20], since the technique is based on an A∗ search on a state space that consists of pairs of the
activities in the trace combined with the possible actions in the model. As a consequence, the impact
of the algorithm presented in this paper is limited by the characteristics of the implementation of such
alignment technique; combining it with more refined alignment algorithms would further improve the
gain in speed.

In summary, the outcomes of the experiments show how our new algorithm hereby presented
outperforms the previous method for creating the behavior graph on all the parameters in which the
problem instance can scale in dimensions, in both the time and space dimensions. The experiment
designed to answer Q3 shows that like the naïve algorithm, our novel method being is essentially
insensitive to the percentage of events with uncertain timestamps contained in a trace. This fact is also
verified by the experiment associated with Q5 on real-life data with added time uncertainty. While for



Algorithms 2020, 13, 285 24 of 27

every combination of parameters we benchmarked the novel algorithm runs in a fraction of time
required by the baseline method, the experiments also confirm the improvements in asymptotic time
complexity demonstrated through theoretical complexity analysis.

7. Related Work

The topic of process mining analysis over uncertain event data is relatively new, and little research
has been carried out. The work introducing the concept of uncertainty in process mining, together
with a taxonomy of the various types of uncertainty, specifically illustrated that if a trace displays
uncertain attributes, it contains behavior, which can be effectively represented through graphical
models—specifically, behavior graphs and behavior nets [2]. Differently to classic process mining,
where we have a clearly defined separation between data and model and between the static behavior
of data and the dynamic behavior of models, the distinction between data and models becomes
more unclear in the presence of uncertainty, because of the variety in behavior that affects the data.
Representing traces through process models is used in [2] for the computation of upper and lower
bounds for conformance scores of uncertain process traces against classic reference models. Another
practical application of behavior graphs in the field of process mining over uncertain event data is
presented in [8]. Behavior graphs of uncertain traces are employed to determine the number of possible
directly-follows relationships between uncertain events, with the end goal of automatically discovering
process models from uncertain event data.

Albeit, as said, the application of the concept of uncertainty in data to process mining is recent,
the same idea has precedents in the older field of data mining. Aggarwal and Philip [21] offer
an overview of the topic of uncertain data and its analysis, with a strong focus on querying. Such data
is modeled based on probabilistic databases [22], a foundational concept in the setting of uncertain
data mining. A branch of data mining particularly close to process mining is frequent itemsets mining:
an efficient algorithm to search for frequent itemsets over uncertain data, the U-Apriori, have been
described by Chui et al. [23].

Behavior graphs are Directed Acyclic Graphs (DAGs), which are widely used throughout many
areas of science to represent with a graph-like model dependencies, precedence relationships, time
information, or partial orders. They are effectively used in circular dependency analysis in software [24],
probabilistic graphical models [25], dynamic graphs analytics [26], and compiler design [27]. In process
mining, Conditional Partial Order Graphs (CPOGs)—which consist of collections of DAGs—have been
exploited by Mokhov et al. [28] to aid the task of process discovery.

We have seen throughout the paper that uncertainty on the timestamp dimension—specifically,
representing at which time an event occurred with an interval of possible timestamps—generates,
on the precedence relationships of events, a partial order. Although uncertainty research in process
mining provides a novel justification of partial ordering that spawns from specific attribute values,
the idea of having a partial order instead of a total order among events in a trace has precedents in
process mining research. Lu et al. [29,30] examined the problem of conformance checking through
alignments in the case of partially ordered traces, and developed a construct to represent conformance
called a p-alignment. Genga et al. [31] devised a method to identify highly frequent anomalous patterns
in partially ordered process traces. More recently, van der Aa et al. [32] developed a probabilistic
infrastructure that allows an inference of the most likely linear extension of a partial order between
events in a trace, with the goal of “resolving” the partial order.

An important aspect to notice is that conformance checking over uncertain event data is not
to be confused with stochastic conformance checking, which concerns measuring conformance of
certain event data against models enriched with probabilistic information. The probabilities decorating
a stochastic model do not derive from uncertainties in event data, but rather from frequency of
activities [33] or from performance indicators [34].



Algorithms 2020, 13, 285 25 of 27

A review of related work on the topic of the asymptotic complexity of the transitive reduction
and the equivalent problem of matrix multiplication is provided with the complexity analysis of the
algorithms examined by this paper, in Section 5.

8. Conclusions

The creation of the behavior graphs—a graphical structure of paramount importance for the
analysis of uncertain data in the domain of process mining—plays a key role as initial processing
step for both conformance checking and process discovery of process traces containing events with
timestamp uncertainty, the most critical type of uncertain behavior. It allows, in fact, to represent
the time relationship between uncertain events, which can be in a partial order. The behavior graph
also carries the information regarding other types of uncertainty, like uncertain activity labels and
indeterminate events. Such a representation is vital to establish which possible sequence of events
in an uncertain trace most adhere to the behavior prescribed by a reference model, thereby enabling
conformance checking; and to measure the number of possible occurrences of the directly-follows
relationship between activities in an event log, making process discovery over uncertainty possible.
Extracting behavior graphs from uncertain event data is thus concomitantly crucial and time
consuming. In this paper, we show an improvement for the performance of uncertainty analysis by
proposing a new algorithm that enables the creation of behavior graphs in quadratic time in the number
of events in the trace. This novel method additionally allows for the representation of an uncertain
log as a multiset of behavior graphs, which relevance is two-fold: it allows the representation of the
control-flow information of an uncertain event log in a more compact manner by using less memory,
and naturally extends the concept of variant—central throughout the discipline of process mining—to
the uncertain domain. We proved the correctness of this novel algorithm, we showed asymptotic
upper and lower bounds for its time complexity, and implemented performance experiments for this
algorithm that effectively show the gain in computing speed it entails in real-world scenarios.

Author Contributions: The conceptualization and methodology of this research was a collaborative effort shared
among all authors. Other tasks were divided as follows: software and experiment implementation, result analysis
and draft preparation, M.P.; editing, critical reviewing, supervising, M.S.U. and W.M.P.v.d.A.; funding acquisition,
W.M.P.v.d.A. All authors have read and agreed to the published version of the manuscript.

Funding: We thank the Alexander von Humboldt (AvH) Stiftung for supporting our research interactions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Van der Aalst, W.M.P. Process Mining: Data Science in Action; Springer: Berlin/Heidelberg, Germany, 2016.
2. Pegoraro, M.; van der Aalst, W.M.P. Mining uncertain event data in process mining. In Proceedings of the

2019 International Conference on Process Mining (ICPM), Aachen, Germany, 24–26 June 2019; pp. 89–96.
3. Van Der Aalst, W.; Adriansyah, A.; De Medeiros, A.K.A.; Arcieri, F.; Baier, T.; Blickle, T.; Bose, J.C.;

Van Den Brand, P.; Brandtjen, R.; Buijs, J.; et al. Process mining manifesto. In International Conference
on Business Process Management; Springer: Berlin/Heidelberg, Germany, 2011; pp. 169–194.

4. Kurniati, A.P.; Rojas, E.; Hogg, D.; Hall, G.; Johnson, O.A. The assessment of data quality issues for process
mining in healthcare using Medical Information Mart for Intensive Care III, a freely available e-health record
database. Health Inform. J. 2019, 25, 1878–1893. [CrossRef] [PubMed]

5. Pegoraro, M.; Uysal, M.S.; van der Aalst, W.M.P. Efficient construction of behavior graphs for uncertain
event data. In International Conference on Business Information Systems (BIS); Springer: Berlin/Heidelberg,
Germany, 2020.

6. Berti, A.; van Zelst, S.J.; van der Aalst, W.M.P. Process Mining for Python (PM4Py): Bridging the Gap
Between Process- and Data Science. arXiv 2019, arXiv:1905.06169.

7. Adriansyah, A.; van Dongen, B.F.; van der Aalst, W.M.P. Towards robust conformance checking.
In International Conference on Business Process Management; Springer: Berlin/Heidelberg, Germany, 2010;
pp. 122–133.



Algorithms 2020, 13, 285 26 of 27

8. Pegoraro, M.; Uysal, M.S.; van der Aalst, W.M.P. Discovering Process Models from Uncertain Event Data.
In International Conference on Business Process Management; Springer: Berlin/Heidelberg, Germany, 2019;
pp. 238–249.

9. Leemans, S.J.J.; Fahland, D.; van der Aalst, W.M.P. Discovering block-structured process models from
event logs-a constructive approach. In International Conference on Applications and Theory of Petri Nets and
Concurrency; Springer: Berlin/Heidelberg, Germany, 2013; pp. 311–329.

10. Flaška, V.; Ježek, J.; Kepka, T.; Kortelainen, J. Transitive closures of binary relations. I. Acta Univ. Carol.
Math. Phys. 2007, 48, 55–69.

11. Kalvin, A.D.; Varol, Y.L. On the generation of all topological sortings. J. Algorithms 1983, 4, 150–162. [CrossRef]
12. Aho, A.V.; Garey, M.R.; Ullman, J.D. The transitive reduction of a directed graph. SIAM J. Comput. 1972,

1, 131–137. [CrossRef]
13. Strassen, V. Gaussian elimination is not optimal. Numer. Math. 1969, 13, 354–356. [CrossRef]
14. Coppersmith, D.; Winograd, S. Matrix multiplication via arithmetic progressions. J. Symb. Comput. 1990,

9, 251–280. [CrossRef]
15. Stothers, A.J. On the Complexity of Matrix Multiplication. Ph.D. Thesis, University of Edinburgh,

Edinburgh, UK, 2010.
16. Williams, V.V. Multiplying matrices faster than Coppersmith-Winograd. In Proceedings of the ACM

Symposium on Theory of Computing (STOC), New York, NY, USA, 19–22 May 2012; Volume 12, pp. 887–898.
17. Le Gall, F. Powers of tensors and fast matrix multiplication. In Proceedings of the 39th international

symposium on symbolic and algebraic computation, Kobe, Japan, 23–25 July 2014; pp. 296–303.
18. D’Alberto, P.; Nicolau, A. Using recursion to boost ATLAS’s performance. In High-Performance Computing;

Springer: Berlin/Heidelberg, Germany, 2005; pp. 142–151.
19. Le Gall, F. Faster algorithms for rectangular matrix multiplication. In Proceedings of the 53rd

Annual Symposium on Foundations of Computer Science, New Brunswick, NJ, USA, 20–23 October 2012;
pp. 514–523.

20. Lee, W.L.J.; Verbeek, H.M.W.; Munoz-Gama, J.; van der Aalst, W.M.P.; Sepúlveda, M. Replay using
recomposition: Alignment-based conformance checking in the large. In Proceedings of the BPM Demo
Track and BPM Dissertation Award co-located with 15th International Conference on Business Process
Management (BPM 2017), Barcelona, Spain, 13 September 2017.

21. Aggarwal, C.C.; Philip, S.Y. A survey of uncertain data algorithms and applications. IEEE Trans. Knowl.
Data Eng. 2008, 21, 609–623. [CrossRef]

22. Suciu, D.; Olteanu, D.; Ré, C.; Koch, C. Probabilistic databases. Synth. Lect. Data Manag. 2011, 3, 1–180.
[CrossRef]

23. Chui, C.K.; Kao, B.; Hung, E. Mining frequent itemsets from uncertain data. In Proceedings of the Pacific-Asia
Conference on Knowledge Discovery and Data Mining, Nanjing, China, 22–25 May 2007; pp. 47–58.

24. Al-Mutawa, H.A.; Dietrich, J.; Marsland, S.; McCartin, C. On the shape of circular dependencies
in Java programs. In Proceedings of the 2014 23rd Australian Software Engineering Conference,
Milsons Point, Australia, 7–10 April 2014; pp. 48–57.

25. Bayes, T. LII. An Essay towards solving a problem in the doctrine of chances. By the late Rev. Mr. Bayes,
F.R.S. communicated by Mr. Price, in a letter to John Canton, A.M.F.R.S. Philos. Trans. R. Soc. Lond. 1763, 53,
370–418.

26. Mariappan, M.; Vora, K. GraphBolt: Dependency-Driven Synchronous Processing of Streaming Graphs.
In Proceedings of the Fourteenth EuroSys Conference 2019, Dresden, Germany, 25–28 March 2019; p. 25.

27. Aho, A.; Lam, M.; Sethi, R.; Ullman, J.; Cooper, K.; Torczon, L.; Muchnick, S. Compilers: Principles, Techniques
and Tools; Addison Wesley: Boston, MA, USA, 2007.

28. Mokhov, A.; Carmona, J.; Beaumont, J. Mining conditional partial order graphs from event logs.
In Transactions on Petri Nets and Other Models of Concurrency XI; Springer: Berlin/Heidelberg, Germany, 2016;
pp. 114–136.

29. Lu, X.; Fahland, D.; van der Aalst, W.M.P. Conformance checking based on partially ordered event data.
In International Conference on Business Process Management; Springer: Berlin/Heidelberg, Germany, 2014;
pp. 75–88.



Algorithms 2020, 13, 285 27 of 27

30. Lu, X.; Mans, R.S.; Fahland, D.; van der Aalst, W.M.P. Conformance checking in healthcare based on partially
ordered event data. In Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA),
Barcelona, Spain, 16–19 September 2014; pp. 1–8.

31. Genga, L.; Alizadeh, M.; Potena, D.; Diamantini, C.; Zannone, N. Discovering anomalous frequent patterns
from partially ordered event logs. J. Intell. Inf. Syst. 2018, 51, 257–300. [CrossRef]

32. Van der Aa, H.; Leopold, H.; Weidlich, M. Partial order resolution of event logs for process conformance
checking. Decis. Support Syst. 2020, 136, 113347. [CrossRef]

33. Leemans, S.J.J.; Polyvyanyy, A. Stochastic-Aware Conformance Checking: An Entropy-Based Approach.
In International Conference on Advanced Information Systems Engineering; Springer: Berlin/Heidelberg,
Germany, 2020; pp. 217–233.

34. Rogge-Solti, A.; van der Aalst, W.M.P.; Weske, M. Discovering stochastic petri nets with arbitrary
delay distributions from event logs. In International Conference on Business Process Management; Springer:
Berlin/Heidelberg, Germany, 2013; pp. 15–27.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).


	Introduction
	Conformance Checking over Uncertain Data
	Process Discovery over Uncertain Data
	Materials and Methods
	Preliminaries
	Efficient Construction of Behavior Graphs

	Asymptotic Complexity
	Experimental Results
	Performance of Behavior Graph Construction

	Related Work
	Conclusions
	References



