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Abstract. Adaptability has become one of the major research topicsin the area
of workflow management. Today’'s workflow management systems have prob-
lems dealing with both ad-hoc changes and evolutionary changes. As a result,
the workflow management system is not used to support dynamically changing
workflow processes or the workflow process is supported in arigid manner, i.e.,
changes are not allowed or handled outside of the workflow management system.
In this paper, we focus on a notorious problem caused by workflow change: the
“dynamic change bug” (Elliset al., 1995). The dynamic change bug refersto er-
rorsintroduced by migrating acase (i.e., aprocessinstance) from the old process
definition to the new one. A transfer from the old process to the new process can
lead to duplication of work, skipping of tasks, deadlocks, and livelocks. This pa-
per describes an approach for calculating a safe change region. If acaseisin such
achange region, the transfer is postponed.
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1 Introduction

Workflow management technology aims at the automated support and coordination of
business processes to reduce costs and flow times, and increase quality of service and
productivity. A critical challenge for workflow management systems is their ability to
respond effectively to changes. Changes may range from ad-hoc modifications of the
processfor asingle customer to a complete restructuring of the workflow processto im-
prove efficiency. Today’s workflow management systems are ill suited to dealing with
change. They typically support a more or less idealized version of the preferred pro-
cess. However, the real run-time process is often much more variable than the process
specified at design-time. The only way to handle changesis to go behind the system’s
back. If users are forced to bypass the workflow management system quite frequently,
the system is more aliability than an asset. Therefore, we take up the challenge to find
techniques to add flexibility without loosing the support provided by today’s systems.
Typically, there are two types of changes: (1) ad-hoc changes and (2) evolutionary
changes. Ad-hoc changes are handled on a case-by-case basis. In order to provide cus-
tomer specific solutions or to handle rare events, the processis adapted for asingle case
or a limited group of cases. Evolutionary change is often the result of reengineering



efforts. The process is changed to improve responsiveness to the customer or to im-
prove the efficiency (do more with less). The trend is towards an increasingly dynamic
situation where both ad-hoc and evolutionary changes are needed to improve customer
service and reduce costs. In this paper, we restrict ourselves to evolutionary change. In
fact, ad-hoc changeis partially handled by at least two existing workflow management
systems:. InConcert (Tibco/InConcert) and Ensemble (FileNet).

Fig. 1. The dynamic change bug.

The term dynamic change refers to the problem of handling old cases in a new
process, e.g9., how to transfer casesto anew version of the process. The dynamic change
problem which was first mentioned by Ellis, Keddara, and Rozenberg (Elliset al., 1995)
in 1995. To discuss this problem we use the two Petri nets shown in Figure 1. For an
introduction to Petri nets (Reisig and Rozenberg, 1998) we refer to Appendix A. If the
sequential workflow process (left) is changed into the workflow process where tasks
send_goods and send _bill can be executed in parallel (right) there are no problems, i.e.,
it is always possible to transfer a case from the left to the right. The sequential process
has five possible states and each of these states corresponds to a state in the paralel
process. For example, the state with a token in s3 is mapped onto the state with atoken
in p3 and p4. In both cases, tasks prepare_shipment and send goods have been executed
and send_bill and record_shipment still need to be executed. Now consider the situation
wherethe parallel processis changed into the sequential one, i.e., acaseis moved from
the right-hand-side process to the left-hand-side process. For most of the states of the



right-hand-side process this is no problem, e.g., atoken in pl is moved to sl, a token
in p3 and atoken in p4 are mapped onto one token in s3, and atoken in p4 and atoken
in p5 are mapped onto one token in s4. However, the state with a token in both p2
and p5 (prepare_shipment and send _bill have been executed) causes problems because
there is no corresponding state in the sequential process (it is not possible to execute
send_bill before send_goods). If the case is moved to place s2 or place s3, task send hill
is executed twice. If the case is moved to place $4 or place s3, task send goods is not
executed at al. The examplein Figure 1 shows that it is not straightforward to migrate
old cases to the new process after a change.

The problem illustrated in Figure 1 is aresult of reducing the degree of parallelism
by making the process sequential. Similar problems occur when the order of tasks is
changed, e.g., two sequentia tasks are swapped. Extending the workflow with new
tasks, removing parts, or aggregating a group of tasks into a single task may result
in similar problems. When changing the workflow on-the-fly, i.e., running cases are
transferred to the new process definition, the dynamic change bug is likely to occur.
Therefore, the problem is very relevant for a workflow management system truly sup-
porting adaptive workflow. Today’s workflow management systems are not able to han-
dle this problem. These systems use a versioning mechanism, i.e., every change leads
to anew version and each case refers to the appropriate version. If a case starts using a
version of the process, it will continue to use this version. The versioning mechanism
may be suitable in some situations. An administrative process with a short flow time
is a good candidate for a versioning mechanism. However, there are many situations
where the mechanism is not appropriate. If a case has along flow time, then it is often
not acceptable to handle existing cases this way. Consider for example a process for
handling mortgage loans. Mortgages typically have a duration of 20 to 30 years. If the
process changes every month, this would lead to hundreds of different versions running
in parallel. To reduce cost and to keep the processes manageable, the number of ac-
tive versions (i.e., versions still used by cases) should be kept to a minimum. Also for
processes with a shorter flow time, it may be undesirable to have many versions run-
ning in parallel. In fact, there may be legal reasons (e.g., starting from January 2001 a
new step in the process is mandatory), forcing the transfer of cases to the new process.
Unfortunately, problems such as the one illustrated by Figure 1 make a direct trans-
fer hazardous. Without exterminating the dynamic change bug the next generation of
workflow management systems will be unable to truly support adaptive workflow.

To exterminate the dynamic change bug, we propose an approach that automatically
calculates the change region. The change region is determined by comparing the old
and the new process and extending the regions that have changed with regions that
are affected by the change. Due to the possibly complex mixture of different routing
constructs (choice, synchronization, iteration, etc.), it is far from trivia to compute the
regionsthat are affected. If a case isin the change region, it cannot be transferred. The
transfer is delayed until the change region is empty. We will show that postponing the
migration of a case until the change region is empty, results in the correct execution
of the case. For a short period (depending on the change region), there are multiple
versionshbut as soon asatransfer is safe the caseis handled according to the new process
definition.



The approach differsfrom existing approaches (Aalst and Basten, 2001; Aalst et al.,
2000b; Aalst et al., 2000a; Casati et a., 1998; Reichert and Dadam, 1998; Ellis et al.,
1995; Ellis and Keddara, 2000g; Ellis and Keddara, 2000b; Michelis and Ellis, 1998;
Keddara, 1999; Joeris and Herzog, 1998; Agostini and Michelis, 2000; Sadiq et al.,
2000; Vossen and Weske, 1999; Weske, 2000) in the sense that no local transforma-
tion rules are assumed and that the calculation of the change region is based on the
structure of the workflow graph. Note that we restrict ourselvesto logical errorsin the
control-flow resulting from change. Clearly, there are other types of constraint viola
tions. Moreover, change can also result in resource or data conflicts. These problems
are outside the scope of this paper.

The remainder of this paper is organized as follows. First, we introduce the basic con-
cepts and the techniques we are going to use. The approach presented in this paper is
based on a special subclass of Petri nets (WF-nets) and a notion of correctness named
soundness (Aalst, 1998b; Aalst, 2000). In Section 3, we clearly define to problem (the
dynamic change bug) and give anumber of dynamic change examples. Then, we present
the algorithm to calculate the change region. In Section 5, we compare this approach
with other approaches addressing the dynamic change problem. Finally, we summarize
the results presented and conclude with our future plans.

2 Préiminaries

This section introduces the basic concepts, definitions, and techniques used to tackle
the dynamic change bug. For a more elaborate discussion on these topics, we refer to
(Aadlst, 1998b; Aalst, 2000; Ellis et al., 1995; Ellis and Nutt, 1993). For an introduction
to Petri netswe refer to (Desel and Esparza, 1995; Murata, 1989; Reisig and Rozenberg,
1998) and the appendix.

2.1 Workflow process definitions

The term workflow management (Koulopoulos, 1995; Lawrence, 1997; Jablonski and
Bussler, 1996) refersto the domai n which focuses on thelogistics of business processes.
There are also people who use the term office logistics. The ultimate goal of workflow
management is to make sure that the proper activities are executed by the right person
at the right time. Although it is possible to do workflow management without using
a workflow management system, most people associate workflow management with
workflow management systems. The Workflow Management Coalition (WfMC) defines
a workflow management system as follows (WFMC, 1996): A system that completely
defines, manages, and executes wor kflows through the execution of software whose or-
der of execution is driven by a computer representation of the workflow logic. Other
terms to characterize a workflow management system are: ‘ business operating system’,
‘workflow manager’, ‘ case manager’ and ‘logistic control system’.

Workflows are case-based, i.e., every piece of work is executed for a specific case.
Examples of cases are amortgage, an insurance claim, atax declaration, an order, or a
regquest for information. Cases are often generated by an external customer. However,



it is also possible that a case is generated by another department within the same or-
ganization (internal customer). The goal of workflow management is to handle cases
as efficiently and effectively as possible. A workflow process is designed to handle
similar cases. Cases are handled by executing tasks in a specific order. The workflow
process definition specifies which tasks need to be executed and in what order. Alterna-
tive terms for workflow process definition are: ‘ procedure’, ‘ flow diagram’ and ‘ routing
definition’. Sincetasks are executed in a specific order, it is useful to identify conditions
which correspond to causal dependencies between tasks. A condition holds or does not
hold (true or false). Each task has pre- and postconditions. the preconditions should
hold before the task is executed, and the postconditions should hold after execution of
the task. Many cases can be handled by following the same workflow process definition.
As aresult, the same task has to be executed for many cases. A task that needs to be
executed for a specific caseis called awork item. An example of awork item is. execute
task ‘send refund form to customer’ for case ‘ complaint sent by customer Baker’. Most
work items are executed by aresource. A resourceis either amachine (e.g., aprinter or
afax) or a person (participant, worker, employee). To facilitate the allocation of work
items to resources, resources are grouped into classes. A resource class is a group of
resources with similar characteristics. There may be many resources in the same class
and a resource may be a member of multiple resource classes. If a resource class is
based on the capabilities (i.e., functional requirements) of its members, it is called a
role. If the classification is based on the structure of the organization, such a resource
classiscalled an organizational unit. A work item which is being executed by a specific
resourceis called an activity.

Of all workflow perspectives (e.g., control-flow, data, organization, task, operation)
(Jablonski and Bussler, 1996), the control-flow perspective is the most prominent one,
because the core of any workflow system is formed by the processes it supports. In the
control-flow dimension building blocks such as the AND-split, AND-join, OR-split,
and OR-join are used to model sequential, conditional, parallel and iterative routing
(WFMC, 1996). Clearly, a Petri net can be used to specify the routing of cases. See
Appendix A for an introduction to Petri nets. Tasks are modeled by transitions and
causal dependencies are modeled by places and arcs. In fact, a place correspondsto a
condition which can be used as pre- and/or post-condition for tasks. An AND-split cor-
responds to a transition with two or more output places, and an AND-join corresponds
to atransition with two or more input places. OR-splits’OR-joins correspond to places
with multiple outgoing/ingoing arcs. Moreover, in (Aalst, 1998ag) it is shown that the
Petri net approach also allows for useful routing constructs absent in many workflow
management systems.

A Petri net which models the control-flow dimension of a workflow, is called a
WorkFlow net (WF-net). It should be noted that a WF-net specifies the dynamic behav-
ior of asingle casein isolation.

Definition 1 (WF-net). A Petri net PN = (P, T, F') isaWF-net (WorkFlow net) if and
onlyif:

(i) Thereisonesourceplacei € P suchthat ei = ().
(i) Thereisonesink placeo € P suchthat oe = ().
(iii) Everynodex € P UT isona pathfromi to o.



A WF-net has one input place (i) and one output place (o) because any case handled by
the procedure represented by the WF-net is created when it enters the workflow man-
agement system and is deleted once it is completely handled by the workflow manage-
ment system, i.e., the WF-net specifiesthelife-cycle of acase. Thethird requirementin
Definition 1 has been added to avoid ‘ dangling tasks and/or conditions, i.e., tasks and
conditions which do not contribute to the processing of cases. If there is no confusion
possible we will use i and o to denote the input place and output place of a WF-net. If
confusion is possible, we add a subscript referring to the proper WF-net, i.e., i py and
op denote the input place and output place of the WF-net PN .
Given the definition of a WF-net it is easy derive the following properties.

Proposition 1 (Propertiesof WF-nets). Let PN = (P, T, F) be Petri net.

— If PN is WF-net with source place i, then for any placep € P: ep # (J or p = 1,
i.e., i isthe only source place.

— If PN isWF-net with sink place o, then for any placep € P: pe £ or p = o, i.€,
o isthe only sink place.

— If PN isa WF-net and we add a transition ¢t * to PN which connects sink place o
with source placei (i.e, ot* = {o} and t*e = {i}), then theresulting Petri net is
strongly connected.

— If PN has a source place i and a sink place o and adding a transition ¢ * which
connects sink place o with source place i yields a strongly connected net, then
everynodez € P U T isonapathfromitooin PN and PN isaWF-net.

time_out

process_questionnaire

evaluate no_processing

. .“ processing_OK

ssing

OO0,

processing_required process_complaint

processing_NOK

Fig. 2. A WF-net for the processing of complaints.



Figure 2 shows a WF-net which models the processing of complaints. First the
complaintisregistered (task register), thenin parallel aquestionnaireis sent to the com-
plainant (task send_questionnaire) and the complaint is evaluated (task evaluate). If the
complainant returnsthe questionnaire within two weeks, the task process _questionnaire
is executed. If the questionnaireis not returned within two weeks, the result of the ques-
tionnaire is discarded (task time_out). Based on the result of the evaluation, the com-
plaint is processed or not. The actual processing of the complaint (task process.compl-
aint) is delayed until condition c5 is satisfied, i.e., the questionnaire is processed or a
time-out has occurred. The processing of the complaint is checked viatask check pro-
cessing. Finally, task archiveis executed. Note that sequential, conditional, parallel and
iterative routing are present in this example.

The WF-net shown in Figure 2 clearly illustrates that we focus on the control-flow
dimension. We abstract from resources, applications, and technical platforms. More-
over, we also abstract from case variables and triggers. Case variables are used to
resolve choices (OR-split), i.e., the choice between processing required and no pro-
cessing is (partially) based on case variables set during the execution of task evaluate.
The choice between processing-OK and processing NOK is resolved by testing case
variables set by check_processing. In the WF-net we abstract from case variables by
introducing non-deterministic choices in the Petri-net. If we don't abstract from this
information, we would have to model the (unknown) behavior of the applications used
in each of the tasks and analysis would become intractable. In Figure 2 we have not in-
dicated that time_out and process_questionnaire requiretriggers. Task time_out requires
atimetrigger (‘two weeks have passed’) and process_questionnaire requires a message
trigger (‘the questionnaire has been returned’). A trigger can be seen as an additional
condition which needs to be satisfied. In the remainder of this paper, we abstract from
these trigger conditions. We assume that the environment behaves fairly, i.e., the live-
ness of atransition is not hindered by the continuous absence of a specific trigger. Asa
result, every trigger condition will be satisfied eventually.

2.2 Soundness property

In this subsection we summarize some of the basic results for WF-nets presented in
(Aalst, 2000). The remainder of this paper will build on these results.

The three requirements stated in Definition 1 can be verified staticaly, i.e., they
only relate to the structure of the Petri net. However, thereis another requirement which
should be satisfied:

For any case, the procedure will terminate eventually and the moment the pro-
cedureterminatesthereisatokenin place o and all the other places are empty.

Moreover, there should be no dead tasks, i.e., it should be possible to execute an arbi-
trary task by following the appropriate route though the WF-net, and the WF-net should
be safe. These additional requirements for WF-nets correspond to the so-called sound-
ness property.

Definition 2 (Sound). A procedure modeled by a WF-net PN = (P, T, F') is sound if
and only if:



(i) For every state M reachable from state 4, there exists a firing sequence leading
from state M to state o. Formally:*

V(i = M) = (M = o)

(ii) Sate o isthe only state reachable from state ¢ with at least one token in place o.
Formally:
Vu(i =5 M A M>o0)= (M =o)

(iii) There areno dead transitionsin (PN ,4). Formally:

Veer I i = M 5 M
(iv) (PN,i) issafe.

Note that the soundness property relates to the dynamics of aWF-net. Thefirst require-
ment in Definition 2 states that starting from the initial state (state i), it is always possi-
ble to reach the state with one token in place o (state 0). If we assume a strong notion
of fairness, then the first requirement implies that eventually state o is reached. Strong
fairness means that in every infinite firing sequence, each transition fires infinitely of-
ten. The fairness assumption is reasonabl e in the context of workflow management: All
choices are made (implicitly or explicitly) by applications, humans or external actors.
Clearly, they should not introduce an infinite loop. Note that the traditional notions of
fairness (i.e., weaker forms of fairness with just local conditions, e.g., if a transition
is enabled infinitely often, it will fire eventually) are not sufficient. See (Aalst, 1998b;
Kindler and Aalst, 1999) for more details. The second requirement states that the mo-
ment a token is put in place o, al the other places should be empty. Sometimes the
term proper termination is used to describe the first two requirements (Gostellow et al.,
1972). The third requirement states that there are no dead transitions (tasks) in the ini-
tial statei. The last requirement states that the WF-net should be safe, i.e., for asingle
caseinisolation, it is not allowed to have multiple tokens in one place.

Figure 2 isan example of aWF-net whichis sound. Figure 3 shows a WF-net which
is not sound. This WF-net is an attempt to simplify the one shown in Figure 2: The
tokenin c5isnow actually removed by process_complaint, i.e., process_complaint does
not return the token and, therefore, archive no longer needs to remove the remaining
token in ¢5. Although this may seem to be a good idea, there are several deficiencies.
First of al, tasks may be executed after completion, e.g., after firing register, evaluate,
no_processing, and archive there is a token in place o indicating completion, but at
the same time send_questionnaire is enabled. Second, there is a potential deadlock: If
processing_NOK fires, then the WF-net gets stuck in the state with just a token in c7.
Any attempt to executetask processing_complaint multipletimeswill lead to adeadl ock
situation. Clearly, the WF-net is not sound.

Given a WF-net PN = (P, T, F), we want to decide whether PN is sound. In
(Adlst, 2000) we have shown that soundness correspondsto liveness and boundedness.
To link soundness to liveness and boundedness, we define an extended net PN =

! Note that there is an overloading of notation: the symbol i is used to denote both the place i
and the state with only one token in place i (see Appendix A).
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Fig. 3. Another WF-net for the processing of complaints.

(P,T,F). PN is the Petri net obtained by adding an extra transition ¢ * which con-
nects o and i. The extended Petri net PN = (P, T, F) is defined as follows: P = P,
T =Tu{t},and F = F U {{o,t*),(t*,4)}. In the remainder, we will call such
an extended net the short-circuited net of PN. The short-circuited net alows for the

formulation of the following theorem.
Theorem 1. AWF-net PN issound if and only if (PN, i) islive and safe.
Proof. See (Aast, 2000). a

This theorem shows that standard Petri-net-based analysis techniques can be used to
verify soundness. The short-circuited version of the WF-net shown in Figure 2 is live
and safe. The short-circuited version of the WF-net shown Figure 3 is not live and not
safe.

3 Dynamic Change: The Problem

Today’ sworkflow management systemstypically support two types of change. The sys-
tems aiming at predefined and well-structured workflow processes, often referred to as
production wor kflow, support a versioning mechanism (cf. Section 1). Most of the avail-
able systems fit into this category (e.g., Staffware, MQ Series workflow, and COSA).
Only afew systems support a different form of change by binding private process def-
initions to cases. The latter class of workflow systems support ad-hoc workflow and
examples of such systems are InConcert (InConcert/TIBCO) and Ensemble (Filenet).



The versioning mechanism supported by most of the systems binds each case to a
specific version of the workflow. A version itself will never change: Only new versions
can be added. Therefore, each case will follow the procedure defined in the correspond-
ing version and will not be influenced by changes during its lifetime. Only new cases
benefit from change and typically follow the most recent version of the workflow at the
moment of creation.

Systems supporting ad-hoc workflow associate a workflow process definition with
each case, i.e., each workflow instance carries its own description. These systems typ-
icaly allow for limited change, e.g., in InConcert it is possible to remove and/or add
tasks in parts of the process which still need to be executed. Clearly, these systems do
not support evolutionary changes as described in the introduction.

Both types of change (versioning mechanism and ad-hoc workflow) are quite easy
to implement and are not confronted with problems such as the one illustrated by Fig-
ure 1. The dynamic change problem, which was first mentioned by Ellis, Keddara, and
Rozenberg (Ellis et al., 1995) in 1995, is not addressed at al by these systems. Never-
theless, thereis a clear need for mechanismswhich allow for the migration of instances
(cases) from one process definition to another. There are many examples of workflow
processes with a considerable number of instances which have a long flow time. Con-
sider for example mortgage loans which have alife-cycle of decades. In such situations
the version mechanism is not acceptable: Too many versions would be active thus re-
sulting in an unmanageable workflow. There may also be legal and economical reasons
for the migration of instances (cases) from one process definition to another. If the law
changes, some processes may be affected and the organization may be forced to mi-
grate cases, i.e., to handle existing cases the new way. The solution provided by ad-hoc
workflow systems is often not acceptable, because every instance needs to be modified
by hand and there is no control over the uniformity of the workflow process. More-
over, the solutions provided by systems like InConcert restrict the modeling language
to avoid problems such as the one illustrated by Figure 1 (e.g., no iteration). Therefore,
we tackle the dynamic change problem using the concepts introduced in the previous
section. The notion of soundnesswill be used as a staring point for the formulating the
problem.

In the remainder, we assume that two workflow process definitions are given: (1) the
old workflow, i.e., the workflow process definition before the change, and (2) the new
workflow, i.e., the workflow after the change. Both workflows are specified in terms of
WF-nets. We denote the old WF-net and the new WF-net as PN © = (P9, 79, F©) and
PNN = (PN, TN FN) respectively. We assume that (P€ U PN) N (T uTN) = 0,
i.e., no name clashes.

The goal of the approach presented in this paper is to calculate when it is possible
to migrate instances (i.e., cases) from the old workflow to the new workflow. For this
purpose we need a notion of correctness. In this paper we choose a very pragmatic
notion of correctness, a transfer is valid if the state of the case after migration could
have been reached from the initial state.



Definition 3 (Valid transfer).Let PN© = (PO T9 FO)and PN = (PN, TN FN)
be two sound WF-netsand M areachablemarkingof PN ©i.e.,ipyo — M in PN©.
Atransfer (PN©, M) = (PN, M) isvalid iff

(i) forallp € PO : M(p) > limpliesp € PV,
(i) ipyy > Min PN,

The first requirement in Definition 3 states that all marked places should exist in the
new workflow, i.e., it is not valid to migrate a case with tokens in places which are
removed from the new WF-net. The second requirement states that marking M, i.e.,
the state of the case to be migrated, is reachable in the new process. The latter property
showsthat it is not valid to end up in a state not reachable by newly created cases, i.e.,
cases starting in marking .

PN©

sl
sl

Fig.4. Anold and anew WF-net: SC = {s2, s3,b,c} and DC = {s2, 53, b, c}.

Consider PN© and PN™ shown in Figure 4. (Ignore PN°N, SC, and DC.) A
casemarkingplace s2in PN © canbemigratedto PNV, i.e,, thetransfer (PN, s2) =
(PN s2) isvalid. A case marking place s1, s4, or s5 in PN © can aso be migrated
to PN while satisfying the requirements stated in Definition 3. However, there is no
valid transfer for acase marking s3. Figure 5 showstwo other WF-nets. The old WF-net
PN uses conditional routing. The new WF-net uses parallel routing. A case marking
place s2in PN© canbemigratedto PNV, i.e, thetransfer (PN, s2) = (PN"V, 52)
isvalid. However, thereis no valid transfer for a case marking any of the places s3, s4,
s5, and s6. Consider for example a case with a token in s3. If this case is migrated to
the new WF-net PNV, then there is a deadlock. In PNV the marking s3 enables c,
but after firing ¢ the case gets stuck in the state just marking s4. Note that the state just
marking s3 is not reachablein the new process.

The notion of validity introduced in Definition 3, guarantees that the essence of
soundness is preserved during the migration. After avalid transfer, the case can termi-



PNO s8
PNN
s8
Fig.5. An old and a new WF-net: SC = {s2,s5,56,s7,b,d,e,g} and DC =

{52, 3, 54, 55, 6, s7,b,c,d,e, f, g}

nate in a state just marking the sink place and the moment a case terminates all other
places are unmarked.

The goal of this paper is to determine when a transfer is valid. In principle it is
possible to calculate whether a transfer is valid using standard techniques such as the
reachability graph (cf. (Reisig and Rozenberg, 1998)). However, we are looking for
more pragmatic criteria. In practice, a process can have millions of reachable states. To
classify these states into valid and invalid requires a complete enumeration of the state
space of the old and the new process. Therefore, there are definitely computational prob-
lems. Moreover, such a brute-force partitioning of the state spaceis also very indirect:
The partitioning only relates to the graphical workflow model in an indirect manner.
Therefore, we pursue a more down-to-earth approach based on change regions. The
change region is the part of the model which is effected by the change. These change
regionsaredefined in terms of nodes(i.e., tasks, conditions, etc.) in the workflow model
instead of states. This allows for more intuitive criteria and facilitates a more realistic
implementation.

First we define the static change region. The static changeregion is the set of nodes
of both the old and the new process model which are syntactically involved in the
change.

Definition 4 (Static changeregion). Let PN© = (P°,T°, F°) and PNV = (PV,
TN, FN) be two sound WF-nets. The static change region in the context of a change
from PN© to PNV istheset SC = |, ,)ex {7y} where X = (FO\ FN) U (FN\
FO).

The static changeregion is calculated by comparing the flow relations of both nets, i.e.,
al arcs which are removed or added are recorded. The set of all nodes (i.e., places and
transitions) linked to an arc which is added or removed constitutes the static change
region. Note that the change region consists of nodesin both the old and the new work-



flow. Definition 4 compares arcs rather than nodes. However, as the following property
shows, all nodes added or deleted appear in the static change region.

Property 1. Let PN, PN, and SC be definedin Definition 4. (P°uT?)\ (PN U
TN)Y U (PN UTN)\ (PPUT?)) C SC.

Proof. Letz € (POUTO)\ (PN uUTY). PN© isconnected. Therefore, thereisay €
POUTO suchthat (z,y) € FO or (y,z) € FO.Clearly, (z,y) ¢ FN and (y,z) ¢ FN
becausez ¢ PN UTN. Hence, (z,y) € FO \ FN or (y,z) € FO\ FN. Therefore,
x € SC. Similarly, it canbeshownthat z € SC if z € (PN UTN)\ (PPUT?). O

Consider PN© and PN~ shownin Figure4. For thesetwo WF-nets SC' = {52, 53, b, c}.
Nodes s3 and b have been removed and are part of the change region. Nodes s2 and

¢ are aso in the static change region because s2e and ec have changed. Projections
of the set SC onto P© and P" are shown in Figure 4 using dashed ovals. Figure 4
also shows the set SC' in the combined WF-net. Let PN© and PN Y be an old and
anew WF-net respectively. The combined WF-net is a WF-net denoted as PN ©N =
(PON TON FONY and defined as follows: PNON = PN© u PN™. The union of
two Petri netsis defined in Appendix A. It is easy to see that PN ©V isa WF-net.

Property 2. Let PN© and PN betwo WF-netssuchthati pyo = ipy~ andopyo =
opy~. PNON = PNO U PN isa WF-net.

Proof. ipyon = ipyo = ippyn~ IS asource place since it cannot have ingoing arcs.
Thereareno other placeswithout any input transitions. Hencei p o~ iSauniquesource
place. Similarly, opyon = opyo = opn~ iSaunique sink place. Moreover, every
node is on a path from i pyo~ t0 0pyo~ because this is the case in either PN or
PNN . Hence PNV isaWF-net. O

The combined WF-net contains the union of all nodes and arcs which appear in any of
the two WF-nets.

It isimportant to note that the calculation of the static change region is symmetric,
i.e, if theroles of the old and the new WF-net are reversed, the change region does not
change. Consider for example Figure 5: SC' = {s2, s5, 56, s7,b,d, e, g}. If the roles
of the two nets are reversed, i.e., the parallel routing is changed into a conditional one,
then the static changeregionis still SC = {s2, s5, s6,s7,b,d, e, g}.

One might think that as long as the static change region is unmarked, a migration
of the old WF-net to the new one is valid. Consider for example Figure 6 where tasks
c and f are replaced by j and k, and, subsequently, SC' = {s3, s4, s5,s6,¢, f,j, k}.
Any case marking only places outside SC, can be migrated without any problems.
In fact, even for cases marking s3, s4, s5, and s6 there is a valid transfer. However,
there are situations were the transfer of a case not marking any of the places in the
change region is invalid. Consider for example Figure 5 and a case marking place s3
in PN©. This state is reachable from the initial state s1 of PN© and s3 is not part
of SC = {s2, 55, s6,s7,b,d, e, g}. Although the case is not marking any of the places
in the change region, the transfer is not valid. Transferring the token in s3 from PN ©
to PN results in a marking not reachable from the initial state s1 of PNV, This
exampl e shows that the static change region is not a good characterization of the part



PNN

Fig.6. An old and a new WF-net: SC = {s3,s4,s5,s6,¢,f,j,k} and DC =
{s3, 54, 55,56, ¢, f,j,k}.

of the WF-net which should be unmarked to allow for avalid transfer. This problemis
addressed in the next section.

4 Dynamic Change: The Solution

The static change region introduced in the previous section is a very elegant and tan-
gible notion. For readers familiar with the UNIX operating system; the static change
region is comparable to the diff program which calculates the differences between two
UNIX files. It is quite straightforward to build a small application program which cal-
culates the static change region of two workflow process definition specified using a
given workflow management system. However, as wasiillustrated using Figure 5, there
are situations where an unmarked static change region does not guarantee avalid trans-
fer. In this section we present an algorithm which calculates a change region which
guarantees that any transfer is valid as long as the change region is unmarked. We will
use the term dynamic change region for this region. We will prove that the dynamic
change region provides a sufficient condition for validity, i.e., any case not marking the
dynamic change region can be transferred without jeopardizing the correctness crite-
ria mentioned. The dynamic change region does not provide a necessary condition for
validity: thisis an inherit consequence of the fact that we want a syntactical criterion
rather than a criterion based on the explicit enumeration of the state space.

The calculation of the dynamic change region DC' starts from SC' and continues
to extend this set until certain syntactical requirements are met. The algorithm uses the
combined WF-net and forms components(i.e., locally connected change regions) which
correspond to sound “sub-WF-nets’.

Definition 5 (Dynamic change region). Let PN© = (P9, 79, F°) and PNY =
(PN, TN, FN) be two sound WF-nets and let PNON = (PON TON FON) pe the
COfTbinedVVF-net, i.e., PNON - PNO U PNN and Z.pNON - ’L.pNO - ’L.pNN and



opyon = opyo = opyn. SC isthe static change region. The dynamic change region
DC is calculated by the following algorithm.

Algorithm 1 [Dynamic Change Region Generation Algorithm]

begin
01. DC:=10
02. X:=58C
03. whileDC # X do
begin
04. DC =X
05. partition X into X, X5, ... ,X,, such that

(a)XiﬁXj:(Z)foralllgi<j§n

(b)X: U1§i§nXi

(c) PNOVN |, isconnectedforall 1 <i <n

(d)(oX,»)ﬁXj:Q)and(X,»o)ﬁXj:@foraII1§i<j§n
06. for k:=1..ndo

07. for a € (Xy) do
08. for b € ((Xg)\{a}) do
09. for c € (PPN UTON) do
begin
10. for (C1 € paths(a,c)) A (Cy € paths(b,c)) A
(a(C1) Na(Cs)) = {c} do
11. X :XUa(Cl)Ua(C’g)
12. for (C1 € paths(c,a)) A (Cs € paths(c,b)) A
(a(C1) Na(Cs)) = {c} do
13. X :XUOL(Cl)UOL(Cz)
end
14 X=X U User 02 U (Ueex | ze)
end
15.  output DC
end

Thealgorithminitializes X asthe set of nodesin the static changeregion,i.e.,, X = SC.
Then using a number of iterations, this set X is extended. During each iteration the set
X is partitioned into subsets X'; which correspond to connected components. Note that
the projection of anet PN onto a set of nodes X (PN|x) is defined in Appendix A.
For each component and each pair of nodes in a component, the algorithm searches
for elementary paths which start or end in these two nodes and end or start in asingle
common node c. Function paths returns the set of all elementary paths between two
given nodes, i.e., paths(a,b) is the set of elementary paths which start in node a and
end in node b (see Appendix A). The alphabet operator « is a function which returns
the set of nodes on a given path. If two paths are found which start/end in ¢ and b and
end/start in ¢ and only overlap in ¢, then all nodes on both paths are added to the set X
(seelines 11 and 13). If anode z isan element of X and an input (output) node of = is
an element of X, then all input (output) nodes ez (xe) are also added to X (seeline 14
of the algorithm).



The complexity of the straightforward implementation of the algorithm is factorial
(O(n*(n!)?) for a workflow with n nodes). From a practical point of view, its com-
plexity is acceptable because the algorithm only considers the graph structure of the
WF-net. The agorithm does not enumerate all possible states and is executed only once
per change, i.e., there is no need to compute the dynamic change region for individual
cases. Moreover, a typical workflow consists of less than 50 nodes. Despite its facto-
rial complexity, the Dynamic Change Region Generation Algorithmis tractable for the
workflows encountered in practice.

Consider for example Figure 4. The dynamic change region coincides with the static
changeregion, i.e, DC = SC = {s2,s3,b,c}. The dynamic change region and the
static changeregion aso coincidefor the two WF-nets shownin Figure6: DC = SC =
{53, 54,55, s6,¢, f, j, k}. Figure 5 shows an example of a situation where both regions
do not coincide. The static change region SC = {s2, s5, 56, s7,b,d, e, g} does not in-
cludes3, s4, ¢, and f. However, these nodes areinfluenced by the change. In PN © only
one of the tasks ¢ and f is executed (conditional routing) whilein PN V' both tasks are
executed (parallel routing). As was indicated before, it is not possible to migrate cases
marking s3 or s5 without resulting in an invalid transfer. Therefore, the dynamic change
regionincludess3, s4, ¢, and f, i.e., DC = {s2, 53, s4, s5, s6,s7,b,¢,d,e, f,g}.

Fig. 7. Anold and anew WF-net: SC = {s2, 54, 56, ¢, f} and DC = {s2, s3, s4, 6, b, ¢, e, f }.

Figures 7, 8, and 9 show three additional examples. For each example both the dy-
namic and the static changeregion areindicated. Figure 7 showsthe addition of an alter-
native branch containingtaskse and f. Thestatic changeregion SC' = {s2, s4, s6,e, f}
only addresses the places s2 and s4 in PN ©. The dynamic change region also includes
b, s3,andc, i.e, DC = {s2, 53, 54, s6, b, c, e, f }. Figure 8 shows the addition of a par-
allel branch containing tasks e and f. Place s3 isnot included in the static changeregion
SC = {s6,57,58,b,c,e, f}.However, it is clear that s3 also needsto beincluded. The
transfer of acasein state s3 from PN © to PN resultsin adeadlock. Therefore, place
s3 isincluded in the dynamic changeregion,i.e., DC = {s3, s6, s7, s8,b,¢c, e, f}.Fig-
ure 9 shows the addition of a feedback loop. This example shows the effect of line 14
of the algorithm: If a node x is an element of X and an input (output) node of x is



Fig.8. An od and a new WF-net: SC = {s6,s7,s8,b,c,e,f} and DC =
{33, $6,57,8,b,c,e, f}.

' Py :
PNO g1 | /52 s3 I i s5
|

PNN sl

Fig.9. Anold and anew WF-net: SC = {s2, s4,e} and DC = {s2, s3,s4,a,b,c,d, e}.

an element of X, then all input (output) nodes ex: (xe) are also added to X. Because
of this line the tasks a and d are added to the dynamic change region. Note that the
dynamic change region DC' = {s2, s3, s4,a,b, c,d, e} is considerably larger than the
static changeregion SC' = {52, s4, e}.

The following theorem shows that the dynamic change region calculated by the
algorithm can be used to guarantee the validity of transfers, i.e., if only cases outside
the dynamic change region are transferred, then any transfer is valid.

Theorem 2 (A sufficient condition for valid transfers). Let PN~ and PN© be
sound WF-nets, PNYN = PN© U PNV, and let DC' be the dynamic change re-
gion. For any reachable marking M of PN © not marking the dynamic change re-
gion, i.e, ipyo — M in PNC and M(p) = 0 for any p € DC N P9, a transfer
(PN, M) = (PN, M) isvalid.

Proof. See Appendix B O



Consider for example Figure 6. Theorem 2 guarantees that a case marking place s2 can
be transferred from PN © to PNN and vice versa. Note that, just like the static change
region, the dynamic change region is symmetric. The result of the algorithm does not
depend ontheroleof PN © and PN : Thetwo roles can be reversed without changing
the outcome of the algorithm. Also consider the other examplesshownin figures4, 5, 7,
8, and 9. If the dynamic change region indicated in either PN © or PN is unmarked,
avalid transfer is possible.

The examplesgiven also indicate that Theorem 2 providesa sufficient but not neces-
sary condition. Consider for example Figure 6. The dynamic changeregionincludes s3,
s4, s5, and s6. However, atransfer from any of these placesis valid. The markingswith
insingle tokenin s3, s4, s5, or s6 are reachable from s1 inboth PN © and PN ™. The
following theorem gives a weaker condition for valid transfers. This theorem is based
on the observation that only the internal places inside the dynamic change region may
endanger the validity of the transfer. Places on the border of the dynamic changeregion,
i.e., places connected to transitions outside DC', can be marked without compromising
the validity of the transfer.

Theorem 3 (A weaker condition for valid transfers). Let PNV and PN © be sound
WF-nets, PNON = PNY U PN, andlet DC be the dynamic change region. For any
reachable marking M of PN © not marking the internal places of the dynamic change
region,i.e., ipyo — M in PN© and M(p) = 0for anyp € {x € DC N P° | (ex) U
(ze) C DCY, atransfer (PNY, M) = (PN, M) isvalid.

Proof. See Appendix B. a

This theorem shows that we can strengthen the result stated in Theorem 2 quite easily.
The set of places considered in Theorem 3 is called the minimal change region. The
minimal changeregion M C' is defined as follows: MC = {p € DC | (ez) U (ze) C
DC'}. Theminimal change region includes all nodes of the dynamic change region ex-
cept the so-called border places. Note that the minimal change region may be smaller
that the static change region. Consider for example Figure 4: SC' = {s2,s3,b,c} and
MC = {s3,b}. Theminimal change regions of the examples shown in figures 5, 6, 7,
8,and 9are MC = {s3,s4,55,s6,b,c,d,e, f,g} (Figure 5: s2 and s7 are removed),
MC = {ec, f,j,k} (Figure 6: al places are removed), MC = {s3,56,b,c,e, f} (Fig-
ure 7: s2 and s4 are removed), MC = {s3,56,s7,s8,¢e, f} (Figure 8 b and ¢ are
removed), and M C = {s2, 53, s4,b, ¢, e} (Figure 8: a and d are removed) respectively.

In Section 1, Figure 1 was used to illustrate the dynamic change problem. We did
not refer to this example in this section because the place identifiers used in both WF-
nets are different. The places in both nets have been named different to avoid confusion
while explaining the dynamic change problem. However, it isclear that s1 and p1 arein
essence the same place because their interconnection structures are the same. The same
holdsfor s5 and p6, s2 and p2, s4 and p5. For the remaining places the correspondence
isless clear. Let usrename pl to s1, p2 to s2, p5 to s4, and p6 to s5 and calculate SC,
DC, MC. The static change region SC' consists of the following nodes: p3, p4, s3,
prepare_shipment, send_goods, send_bill, and record shipment. The dynamic change
region DC consists of p3, p4, 2, s3, 4, prepare_shipment, send_goods, send hill,



and record_shipment. The minimal change region M C consists of p3, p4, s2, s3, ¢4,
send_goods and send_bill.

email_questionnaire

time_out

Change 2: Add
alternative task

Change 1: Remove
task no_processing

Change 3: Remove
the tasks related to the
check

processing_NOK

Fig. 10. Three potential changes.

Finally weillustrate the results using the complaint processing example introduced
in Section 2.1. Figure 10 showsthree potential changes. Thefirst change correspondsto
the removal of task no_processing. Assuming this change, the static change region SC
consists of the following nodes: ¢4, ¢6, and no processing. The dynamic change region
DC coincides with the static change region. The minimal change region M C' consists
of only no_processing. Hence any transfer from the WF-net with task no processing to
the net without no_processing and vice versaisvalid. The second change correspondsto
the addition of an alternativetask email _questionnaire. Assuming this change, the static
change region SC' consists of the following nodes: c1, ¢3, and email questionnaire.
The dynamic change region DC coincides with SC. The minimal change region M C
consists of only the newly added task. Again any transfer is valid. The third changeis
less harmless. If process_complaint is connected directly to ¢6 and the nodes c8, c9,
check_processing, processing_OK, and processing NOK are removed, then the result-
ing net is a sound WF-net. Assuming this change, the static changeregion SC' consists
of the following nodes: ¢6, ¢7, ¢8, ¢9, process_complaint, check processing, process-
ing_OK, and processing_NOK. The dynamic change region DC' encompasses all nodes
except i and 0. The minimal changeregion M C' consists of all nodes in-between regis-
ter and archive. Hence only transfers from state i or 0 are guaranteed to be valid based
on the minimal/dynamic change region.



5 Related work on dynamic change

There are many similarities between dynamic change in the workflow domain and
schema evolution in the database domain. As the requirements of database applications
change over time, the definition of the schema, i.e., the structure of the data elements
stored in the database, is changed. Schema evolution has been an active field of re-
search in the last decade (mainly in the field of object-oriented databases, cf. (Bertino
and Martino, 1993)) and has resulted in techniques and tools that partially support the
transformation of datafrom one database schemato another. Although dynamic change
and schema evolution are similar, there are some additional complications in case of
dynamic change. First, as was shown in the example of Figure 1, it is not always pos-
sible to transfer a case. Second, it is not acceptable to shut down the system, transfer
al cases, and restart using the new procedure. Cases should be migrated while the sys-
tem is running. Finally, dynamic change may introduce deadlocks and livelocks. The
solutions provided by today’s object-oriented databases do not deal with these compli-
cations. Therefore, we need new concepts and techniques.

Several researchers haveworked on problemsrel ated to dynamic change. Ellis, Ked-
dara, and Rozenberg (Ellis et al., 1995) propose a technique based on so-called “ change
regions.” A change region contains all parts of a workflow process definition that po-
tentially cause problems with respect to the transfer of cases. A change region has two
versions; the old situation and the new situation. In this solution, there is one version
of the complete process which covers the old and the new situation and changes af-
fect cases as soon as possible. Parts of the workflow (i.e., change regions) become
inactive after a while, because al old cases have been handled. This approach has
the drawback that the process definition can become very complex (unless some au-
tomatic garbage collection is added). Another drawback is the fact that the authors do
not provide a method for identifying the change region, i.e., change regions need to be
identified manually. The authors do provide a notion of change correctness and give
specific circumstances for which this is guaranteed. In (Ellis and Keddara, 2000a), the
authors improve their approach by introducing jumpers. A jumper moves a case from
the old workflow to the new workflow. The jump is postponed if for a state no jumper
is available. Again, the authors do not give a concrete technique for the transfer of
cases, i.e., jumpers are added manualy. In (Ellis and Keddara, 2000b; Keddara, 1999),
Keddara and Ellis present a language to support dynamic evolution within workflow
systems (ML-DEWS). Based on the different modalities of change, the authors give
a specia purpose meta-language geared to model the workflow of change. Agostini
and De Michelis (Agostini and Michelis, 2000) propose a technique for the automatic
transfer of cases from an old process definition to a new process definition and also
give criteriafor determining whether a transfer is possible. The approach is interesting
since it automatically computes the states for which it is not possible to migrate. Con-
sider for example Figure 1. The approach presented in (Agostini and Michelis, 2000)
indicates the necessity to postpone the transfer of running casesin state [p 1, p4]. Unfor-
tunately, the approach only worksfor arestricted class of workflows (e.g., the modeling
language does not allow for iteration, although at runtime iteration can be achieved by
backward jumps). A summary of this approach is given in (Michelis and Ellis, 1998).
Weske (Vossen and Weske, 1999; Weske, 2000) considers dynamic workflow change



using amodel similar to the model used by IBM’s MQSeries. In this model thereis no
iteration and also alternatives are synchronized. As aresult the control flow issimilar to
asubclass of Petri nets: the so-called acyclic marked graphs. By exploiting these restric-
tions, relatively simple criteria can be obtained to guarantee the proper migration of an
instance from one schemato another (Weske, 2000). Joeris and Herzog use linked State
Chartsto address the problem of posteriori flexibility (Joerisand Herzog, 1998). Casati,
Ceri, and Pernici (Casati et a., 1998) tackle the problem of dynamic change viaaset of
transformation rules and partition the state space into a part that is aborted, a part that
istransferred, a part that is handled the old way, and parts which are handled by hybrid
process definitions (similar to the approach using change regions). Reichert and Dadam
(Reichert and Dadam, 1998) use a similar approach. However, semantical issues such
as errorsintroduced by swapping tasks, skipping tasks, or multiple executions of atask
are not considered. Voorhoeve and Van der Aalst (Voorhoeve and Aalst, 1996; Voorho-
eveand Aalst, 1997) also propose afixed set of transformation rulesto support dynamic
change. However, therules are not given explicitly at the net level and semantical issues
are not considered. Van der Aalst and Basten (Aalst and Basten, 2001) propose an ap-
proach based on inheritance. This approach uses a set of generic inheritance-preserving
transformation and transfer rules. Semantical errors such as the swapping of tasks, the
skipping of tasks, and the multiple execution of tasks can be avoided by choosing the
appropriate inheritance notion, e.g., projection inheritance guarantees that tasks cannot
be skipped by transferring a case from the superclass to the subclass. Unfortunately, the
approach is not useful if the new workflow is not a super or subclass of the old work-
flow. The reader interested in workflow change and Petri netsis also referred to (Aalst
et al., 2000b) which contains several papers of the authors mentioned above. We also
refer to the PhD thesis of Keddara (Keddara, 1999) for a more complete overview of
related work on dynamic change.

The strength of the approach presented in this paper is that it can be applied in the
context of arbitrary changes. Note that we did not assume the absence of certain routing
constructs (i.e., sequential, conditional, parallel, and iterative are included) or restrict
change to specific types of changes. Another feature of the approach is that the change
regionsare determined based on the structure of the workflow model (i.e., syntax) rather
than the dynamics (i.e., a state space exploration). This facilitates implementation and
yields change regions which are tangible to end-users.

6 Conclusion

This paper provides a pragmatic approach to tackle the dynamic change bug. Based on
the syntactic changes in the graphical workflow model, three types of change regions
are calculated. The static change region incorporates the parts of the workflow model
directly effected by the change. The dynamic change region extends the static change
region to incorporate the parts of the workflow model indirectly effected by the change.
The minimal change region reduces the dynamic change region by eliminating border
nodes. The minimal change region is a subset of the dynamic change region. The main
result of this paper is that cases (i.e., workflow instances) which leave the minimal
change region unmarked can be transferred from the old workflow to the new workflow



without creating problems such as deadlocks and livelocks: Successful termination is
guaranteed.

In the future, we plan to implement the approach presented in this paper using a
commercia workflow management system. First, we plan to extend the workflow man-
agement system COSA (Thiel/Ley/COSA Solutions) with a feature to calculate the
minimal change region and to enact valid transfers. This extension of COSA is quite
straightforward since COSA is based on Petri nets and provides an API to remove and
create cases in any state in any workflow. Second, we plan to realize the same func-
tionality using other workflow management systems. Staffware (Staffware plc) is an
example of another system we use in our laboratory. Implementation of this feature in
Staffware is less straightforward because Staffware is not based on Petri nets and it is
not known whether the required API is provided. Other candidates for realizing our ap-
proach are Verve (Verve Inc.) and i-Flow (Fujitsu Software Corporation). Both systems
offer extensive API’s.
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A Petri nets

The classical Petri net (Desel and Esparza, 1995; Murata, 1989; Reisig and Rozenberg,
1998) is a directed bipartite graph with two node types called places and transitions.
The nodes are connected via directed arcs. Connections between two nodes of the same
type are not allowed. Places are represented by circles and transitions by rectangles.

Definition 6 (Petri net). A Petri netisatriple (P, T, F):

- P isafinite set of places,
- T isafinite set of transitions (P N T = (),
- FC(PxT)U(T x P)isasetof arcs (flow relation)

A place p is caled an input place of a transition ¢ iff there exists a directed arc from
p to t. Place p is called an output place of transition ¢ iff there exists a directed arc
from ¢ to p. We use ot to denote the set of input places for atransition ¢. The notations
te, op and pe have similar meanings, e.g., pe is the set of transitions sharing p as an



input place. Note that we do not consider multiple arcs from one node to another. In
the context of workflow procedures it makes no sense to have other weights, because
places correspond to conditions.

To illustrate there concepts we consider the two Petri nets shown in Figure 1. The
Petri net on the left has four transitions and five places. The Petri net on the right has
four transitions and six places. Transition prepare_shipment in the left model has one
input place and two output places. Note that pl and sl are source places, i.e., places
without any input transition. Places s5 and p6 are sink places.

At any time a place contains zero or more tokens, drawn as black dots. The state,
often referred to as marking, isthe distribution of tokensover places,i.e, M € P — IN.
We will represent astate asfollows: 1p; + 2p, + 1p3 + Op4 iSthe state with onetokenin
place p1, two tokens in ps, one token in p3 and no tokensin p4. We can aso represent
this state asfollows: p; + 2p» + p3. To compare states we define a partial ordering. For
any two states My and Mo, My < M, iff foral p € P: M (p) < Ms(p)

The number of tokens may change during the execution of the net. Transitions are
the active components in a Petri net: they change the state of the net according to the
following firing rule:

(1) A transition ¢ is said to be enabled iff each input place p of ¢ contains at least one
token.

(2) Anenabled transition may fire. If transition ¢ fires, then ¢ consumes one token from
each input place p of ¢ and produces one token for each output place p of ¢.

Given aPetri net (P, T, F') and a state M, we have the following notations:

- M,y L M, transition t isenabled in state M andfiring ¢ in M resultsin state M,
- M; — Ms,: thereis atransition ¢ such that M, 5 M,
- My % M, thefiring sequence o = titsts...t,_, leads from state M, to state
M,, via a (possibly empty) set of intermediate states Mo, ...M,,_1, i.€e.,, M, 2N
tz th—1
My = .. = M,

A state M, is called reachable from M, (notation M; — M,,) iff there is a firing
sequence o such that A7, % M,,. Note that the empty firing sequence is also allowed,
i.e, M; = M;.

We use (PN, M) to denote a Petri net PN with an initial state M. A state M’ isa
reachable state of (PN, M) iff M = M.

Consider the sequential Petri net shown in Figure 1 (i.e., the model on the right).
If initialy only place sl contains atoken, only transition prepare shipment is enabled.
Firing thistransition results in a state with just atoken in s2, etc. Starting from the state
with atoken in sl five states are reachable. The parallel Petri net shown in Figure 1
has six reachable states when starting in the state with a token in pl. First transition
prepare_shipment fires resulting in the state with a token in both p2 and p3. From this
state both send_goods and send _hill are enabled.

Let us define some standard properties for Petri nets. First, we define properties
related to the dynamics of a Petri net, then we give some structural properties.



Definition 7 (Live). A Petri net (PN, M) isliveiff, for every reachable state A/’ and
every transition ¢ thereis a state M’ reachable from A/’ which enablestt.

A Petri netisstructurally liveif thereexistsaninitial state such that thenetislive. None
of the nets shown in Figure 1 is structurally live.

Definition 8 (Bounded, safe). A Petri net (PN, M) is bounded iff for each place p
thereis a natural number n such that for every reachable state the number of tokensin
p islessthan n. The net is safe iff for each place the maximum number of tokens does
not exceed 1.

A Petri net is structurally bounded if the net is bounded for any initially state. Both nets
shown in Figure 1 are structurally bounded.

Definition 9 (Well-formed). A Petri net PN iswell-formed iff there is a state M such
that (PN, M) islive and bounded.

Paths connect nodes by a sequence of arcs.

Definition 10 (Path, Elementary, Conflict-free). Let PN be a Petri net. A path C
from a node n, to a node n;, is a sequence (ny, na,...,ng) suchthat (n;,n;41) € F
for 1 <i <k —1.C iselementary iff, for any two nodesn; andn; onC, i # j =
n; # nj. C is conflict-free iff, for any place n; on C' and any transition n; on C,
j#Fi—1 = n; € en,.

For convenience, weintroducethe al phabet operator « onpaths. If C = (n 1, na, ..., 1),
then a(C) = {n1,na,...,ni}. Moreover, we define paths to be the function which
returns the set of all elementary paths between two given nodes, i.e., paths(a, b) isthe
set of elementary paths which start in node a and end in node b.

Definition 11 (Strongly connected). A Petri net is strongly connected iff, for every
pair of nodes (i.e., places and transitions) « and y, there is a path leading from x to y.

Definition 12 (Free-choice). A Petri net is a free-choice Petri net iff, for every two
transitions¢; and ¢, ot; N ety # () implies ot; = ot5.

Definition 13 (State machine). A Petri net is state machine iff each transition has ex-
actly one input and one output place.

Definition 14 (S-component). Asubnet PN ; = (Ps, T, F) iscalled an S-component
of aPetrinet PN = (P, T,F)ifP; C P,Ts CT,Fs C F, PN isstrongly connected,
PN isastate machine, and for every g € P andt € T: (q,t) € F = (gq,t) € Fs and
(t,q) € F = (t,q) € Fs.

Definition 15 (S-coverable). A Petri net is S-coverable iff for any node there exist an
S-component which contains this node.

See (Desel and Esparza, 1995; Reisig and Rozenberg, 1998) for a more elaborate intro-
duction to these standard notions. In addition to these standard notions we also define
the some operators on nets, i.e., the union of two nets, the subnet notion, and the pro-
jection of anet onto a set of places and transitions.



Definition 16 (Union, subnet). Let PN, = (P, Ty, Fy) and PNy = (P>, T, F») be
two Petri nets. The union of PN, and PN, isaPetri net PNpn,upn, = PN1UPN-,
where Ppy,upn, = P1 U P, Tpn,upn, = 11 UTs, and Fpy,upn, = F1 UF>. PNy
isasubnet of PN5, denotedas PN, C PN, iff P, C Py, Ty C Ty, and F; C F5.

Definition 17 (Projection). Let PN = (P,T,F) aPetrinetand X C PUT. The
projectionof PN onto X isPN|x = (PNX,TNX,FN(X x X)).

The projection of a Petri net onto a set of nodesincludes all connections between these
nodes, i.e., if two nodes are connected in PN and are both included in X, then these
nodes are also connected in PN | x. Note that, by definition, PN | x isasubnet of PN.

B Proof of theorems2 and 3

In this appendix we will show that the dynamic change region indeed provides a crite-
rion which is sufficient to guarantee the validity of transfers. The essence of the proof
uses the fact that each component X ; identified by the algorithm is similar to a sound
WF-net, i.e., a connected set of nodes with one unique source node and one unique
sink node whose composite behavior is comparable to a single transition. To prove the
central theorem of this paper we need to introduce components and source and sink
nodes.

Definition 18 (Source and sink nodes). Let PN = (P, T, F') be a Petri netand X C
P UT. source(PN, X) is the set of source nodes of X and is defined as follows:
source(PN,X) ={z € X | exNX = 0}. sink(PN, X) isthe set of sink nodes of
X and is defined as follows: sink(PN,X)={z € X |z eNX = 0}.

A source node is either a node without any input nodes or a node with only externa
input nodes. Consider for example Figure 4. Place s2 is the only source node of SC'
in PN©. A sink node is either a node without any output nodes or a node with only
external output nodes. Consider for example Figure 9. Place s2 isthe only sink node of
SC in PN . Both s2 and s4 are source and sink nodesof SC in PN ©.

Based on the notions of source and sink nodes we define components.

Definition 19 (Component). Let PN = (P,T,F) beaPetrinetand X C PUT. X
isa component of PV if and only if:

(i) source(PN,X)isasingleton,i.e,thereisana suchthat {a} = source(PN, X),
(ii) sink(PN,X)isasingleton,i.e, thereisab suchthat {b} = sink(PN, X),
(iii) for eachx € X: x ison a directed path froma to b,
(iv) for each elementary path C froma tob (i.e., C € paths(a,b)): a(C) C X.

Componentsare similar to WF-nets embedded in alarger Petri net. However, in contrast
to WF-nets, the source/sink node can be atransition instead of a place.

Inline5 of the algorithm the set X is partitioned into subsets X ;. The goal of theal-
gorithmisto extend X such that these subsets correspond to components. Thefollowing
lemmalists eight properties of the X; components constructed by the algorithm. These
propertieswill be used in the proof of Theorem 2.



Lemmal. Let PN and PN© be sound WF-nets, PNON = PN U PNV, and let
DC be the dynamic change region. Let DC' be partitioned into X'y, X5, ... ,X,, such
that:

(a) XiﬂXj:(Z]foralllgi<j§n

(b) DCZU1giani

(©) PNON |, isconnectedfor all 1 <i <n

(d) (.Xl)ﬂX]:@and(XZO)ﬁXj:(Z)fora”1§2<j§n

Such partitioning always exists and is unique. The partitioning has the following prop-
erties:

(e) Forall 1 <i<n:X;isacomponentof PNON,

(f) Forall1 <i <n: X;N(P°UT?)isacomponent of PNC.

(9) Forall1<i<n:X;n(PYNuTN)isacomponentof PNV,

(h) For all 1 < i < n: source(PNON X;) = source(PN°,X; N (P°UTO?)) =
source(PNN, X; N (PN uTM))andsink(PNON, X;) = sink(PN°, X;n (P°
uT?)) = sink(PNN, X; n (PN uTM)).

Proof. First we provethat DC' can be partitioned ininto X {, X5, ... ,.X,, and that this
partitioning isunique. Partition DC into singletons X 1, Xo, ... ,.X,. Such apartitioning
satisfies properties (a), (b), and (c). If the partitioning does not satisfy property (d), then
thereisan+ and j such that thereis an arc fromanodein X; to anodein X ;. If thisis
the case, then join X; and X ;. Clearly the nodes X; U X; are connected. Then repeat
the procedure until (d) holds. Note that the existence of such a partitionis used in line
5 of the agorithm.

It remainsto be proven that properties (e), (f), (g), and (h) hold. We will provethese
properties for agiven set of nodes X; (1 < ¢ < n) identified in the partitioning.

The algorithm stops if no new nodes are added in lines 6 through 14. Thisimplies
that at the end:

(i) Fordla € X;,b € X;\{a},c € PONUTON,C; € paths(a,c),Cy € paths(b,c)
suchthat a(C1) N a(Cs) = {c}: a(C1) U a(Cs) C X;.

(i) Forala € X;,b € X;\{a},c € PONUTON,C, € paths(c,a),Cy € paths(c,b)
suchthat a(C1) N a(Cs) = {c}: a(C1) Ua(Cs) C X;.

(iii) Foral z € X; suchthat ex N X; # 0: ez C X;,i.e, ez € X; impliesz €
source(PNON | X;).

(iv) Foral z € X; suchthat ze N X; # 0: ze¢ C X;,i.e, 20 ¢ X; impliesz €
sink(PNON_ X,).

The first two observations follow directly from the algorithm. The latter two are the
result of line 14 in the algorithm and property (d). These observations are used to prove
the remaining properties.

Property (€). First we prove that source(PN°N | X;) is asingleton. There is at |east
one source node. If X; containsipyon, thenipyon isasource node. If X; does not
contain i pyon, then there is a directed path from i p o~ to anode in X;. Consider



thefirst node of X; on this path. Clearly this node is a source node of X'; (use Property
(iii)). There cannot be two source nodes. Suppose that both a and b are source nodes of
X; and a # b. Thereis adirected elementary path from i po~n 10 @ and from i pyon
to b. Let ¢ be the last common node of these two paths, i.e., walk backwards on the
directed elementary path from i po~ t0 a until one encounters a node al so appearing
in the other path. Based on these two paths and the last common node, we define two
subpaths: an elementary directed path C'; from ¢ to a, and an elementary directed path
C> from ¢ to b. Clearly, (a(C1) N a(Cs)) = {c}. Hence, (a(C1) U a(Cs)) C X;
(use Observation (i) and {¢} C X;). However, since both a and b are source nodes of
X, there cannot be any input nodes from within X ;. Hence, both paths cannot contain
multiple nodes, i.e., ¢ = a and ¢ = b. This contradicts the assumption that a # b and
shows that there can only be one source node.

Similarly, it can be shown that sink(PN N X;) isasingleton.

Let {a} = source(PNON X;), {b} = sink(PNOVN, X;), andz € X;. We need
to provethat z is on adirected path froma to b. Let C'y be adirected path fromi pyon
to 2 and C, be a directed path from z t0 0 p o~ . Such paths exist since PNOY isa
WF-net. Let y be the first element of X; on C,. Clearly y = a (use Observation (iii)).
Hence, there is a directed path from a to 2. Similarly, it can be shown that there is a
directed path from z to b.

Let C' be an elementary path from a to b. Observation (i) impliesthat a(C) C X;
b=0.

Property (f). Let a be the unique source node of X; in PNOV ie, {a} = source
(PNON | X;). a is aso anode of PN©: either a = ipyo~ Which also appears in
PNO or thereis anode z not in DC such that 2 € ea. In the latter case z is not in
the static change region (SC' C D(') and therefore the set of nodes connected to « did
not change. Hence a is a node of PN ©. Since PN© isasubnet of PNV a isaso
asource node of X; in PN©. Note that only by adding new connections source nodes
can become non-source nodes. Similarly, we can show that the unique sink node b of
X;in PNV ie, {b} = sink(PNON X;),isasoasink nodeof PN©.

a is asource node of X; in PN© and b is asink node of X; in PN©. Before we
show that these two nodes are unique, we focus on the other two properties a component
needs to satisfy.

Every node z in X; is on apath froma to b in PN ©N (see proof of Property (€)).
If z € X; isanodeof PN©, then z ison apath froma tobin PN?. Let C; bea
directed path fromi p o to 2 and O, beadirected path from z to 0 p o in PN©. Such
paths exist since PN © isa WF-net and both paths are aso paths of PN V. Isis easy
to show that @ must appear on path C'; (consider the first node of X;; this must be a)
and b must appear on Cs.

Let C be adirected path froma tobin PN, C isaso apathin PNV, Clearly,
a(C) C X; (see proof of Property (€)). Since C' be a directed pathin PN ©, a(C) C
X;N(PPuUTO).

It remainsto be proventhat ¢ and b are unique. Supposethereis an additional source
nodez, i.e., z € source(PNC, X; N (P° UT?)) andz # a. Since z is on adirected



path from a to b contained in X; N (P° U T9), = cannot be source node, i.e., a isthe
only source node. Similarly, it can be shown that b is unique.

Based on these observations we concludethat X; N (P° U T?) is a component of
PNO.

Property (g). The proof of this property isidentical to the proof of Property (f).
Property (h). This property follows directly from the proof of properties(f) and (g). O

Based on the eight properties listed in Lemma 1, we prove Theorem 2. This theorem
states that the dynamic change region provides a sufficient condition for valid transfers.

Theorem (A sufficient condition for valid transfers). Let PN and PN be sound
WF-nets, PNON = PNP U PN, andlet DC be the dynamic change region. For any
reachable marking M of PN © not marking the dynamic change region, i.e., i pyo —
M in PN© and M(p) = 0 for any p € DC n PY, a transfer (PN©9, M) =
(PNN, M) isvalid.

Proof. Let M besuchthatipyo — M in PN© and M(p) = 0forany p € DC'NPO.

First, we prove that for all p € P° : M(p) > 1 impliesp € PN. If p € P©
and M(p) > 1,thenp ¢ DC.Hence, p ¢ SC (SC C DC). Property 1 shows that
(PO uUTO)\ (PN UTN) C SC. Therefore, p € PV,

Finally, we provethat i py~ — M in PN . LemmaZl showsthat DC' can be parti-
tionedinto X, X, ...,X,, suchthat X; isacomponentof PNON, X, N (P UTO?)is
acomponent of PN ?, and X; N (PN uT™N) isacomponent of PN~ . Consider an ar-
bitrary component X; with {a} = source(PNOY X;) and {b} = sink(PN°N X;).
If both a and b are places, then PN OV |y,, PN€|x,, and PNV |y, are WF-nets. This
follows directly from Definition 19. Since PN V| x., PN©|x,, and PNV |x, are sub-
nets of sound WF-nets, these subnets are also sound. (See Theorem 3 in (Aalst, 2000).)
Notethat the soundness of each subnet heavily depends on the safeness of the enclosing
WF-net. Since the subnets are sound their behavior corresponds to a single transition
t¥ connecting & and b. Now consider firing sequence o which leadsto M in PN ©,i.e.,
ipyo — M. Consider the transitions of X; which occur in o. These transition form
compl ete subsequences of the embedded WF-net PN ©|x,, i.€., since no tokens are left
in X; every subseguence corresponds one firing of the virtual transition ¢ v. Each firing
of thisvirtual transition can be mimicked by afiring sequence of the embedded WF-net
PNN|x, in PNY. This way occurrences of transitionsin X; N T can be replaced
by transitions in X; N 7. This assumes that both a and b are places. However, the
same reasoning can be applied to components where a and/or b are transitions. Such a
transition-bordered WF-net can be transformed into a sound WF-net by adding a source
and/or sink place. This can be repeated for each of the components. Therefore, o can

be transformed into a firing sequence o’ which leadsto M in PN, i.e., i pno 2 M.
Hence, i py~n — M in PNV, i

Finally we prove Theorem 3.



Theorem (A weaker condition for valid transfers). Let PN~ and PN be sound
WF-nets, PNN = PNCUPNN, andlet DC bethe dynamic change region. For any
reachable marking M of PN © not marking the internal places of the dynamic change
region, i.e.,ipyo — M in PN© and M (p) = 0foranyp € {x € DC' N P° | (ex) U
(ze) C DCY, atransfer (PN©, M) = (PN™, M) isvalid.

Proof. Compared to Theorem 2 so-called border places p can be marked while a case
is being transferred. Consider a place p € DC N P© such that not (ep) U (pe) C
DC,i.e,ep € DC orpe ¢ DC. If ep ¢ DC, then {p} = source(PNON, X;) =
source(PN9, X;) = source(PN™N, X;) of some component X ;. Since p appearsin
PN© and PN, the sets of input transitions of p are identical in PN© and PNV,
and PN© x, and PNV |x. have a behavior similar to asingle transition, a transfer of
atoken in p does not jeopardize the validity of the transfer. Similarly, atoken in aplace
p with pe ¢ DC' cannot jeopardize the validity. Hence, if only places outside DC' and
border places are marked, then (PN, M) = (PN~ M) isvalid. 0
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