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Abstract. Adaptability has become one of the major research topics in the area
of workflow management. Today’s workflow management systems have prob-
lems dealing with both ad-hoc changes and evolutionary changes. As a result,
the workflow management system is not used to support dynamically changing
workflow processes or the workflow process is supported in a rigid manner, i.e.,
changes are not allowed or handled outside of the workflow management system.
In this paper, we focus on a notorious problem caused by workflow change: the
“dynamic change bug” (Ellis et al., 1995). The dynamic change bug refers to er-
rors introduced by migrating a case (i.e., a process instance) from the old process
definition to the new one. A transfer from the old process to the new process can
lead to duplication of work, skipping of tasks, deadlocks, and livelocks. This pa-
per describes an approach for calculating a safe change region. If a case is in such
a change region, the transfer is postponed.
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1 Introduction

Workflow management technology aims at the automated support and coordination of
business processes to reduce costs and flow times, and increase quality of service and
productivity. A critical challenge for workflow management systems is their ability to
respond effectively to changes. Changes may range from ad-hoc modifications of the
process for a single customer to a complete restructuring of the workflow process to im-
prove efficiency. Today’s workflow management systems are ill suited to dealing with
change. They typically support a more or less idealized version of the preferred pro-
cess. However, the real run-time process is often much more variable than the process
specified at design-time. The only way to handle changes is to go behind the system’s
back. If users are forced to bypass the workflow management system quite frequently,
the system is more a liability than an asset. Therefore, we take up the challenge to find
techniques to add flexibility without loosing the support provided by today’s systems.

Typically, there are two types of changes: (1) ad-hoc changes and (2) evolutionary
changes. Ad-hoc changes are handled on a case-by-case basis. In order to provide cus-
tomer specific solutions or to handle rare events, the process is adapted for a single case
or a limited group of cases. Evolutionary change is often the result of reengineering



efforts. The process is changed to improve responsiveness to the customer or to im-
prove the efficiency (do more with less). The trend is towards an increasingly dynamic
situation where both ad-hoc and evolutionary changes are needed to improve customer
service and reduce costs. In this paper, we restrict ourselves to evolutionary change. In
fact, ad-hoc change is partially handled by at least two existing workflow management
systems: InConcert (Tibco/InConcert) and Ensemble (FileNet).
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Fig. 1. The dynamic change bug.

The term dynamic change refers to the problem of handling old cases in a new
process, e.g., how to transfer cases to a new version of the process. The dynamic change
problem which was first mentioned by Ellis, Keddara, and Rozenberg (Ellis et al., 1995)
in 1995. To discuss this problem we use the two Petri nets shown in Figure 1. For an
introduction to Petri nets (Reisig and Rozenberg, 1998) we refer to Appendix A. If the
sequential workflow process (left) is changed into the workflow process where tasks
send goods and send bill can be executed in parallel (right) there are no problems, i.e.,
it is always possible to transfer a case from the left to the right. The sequential process
has five possible states and each of these states corresponds to a state in the parallel
process. For example, the state with a token in s3 is mapped onto the state with a token
in p3 and p4. In both cases, tasks prepare shipment and send goods have been executed
and send bill and record shipment still need to be executed. Now consider the situation
where the parallel process is changed into the sequential one, i.e., a case is moved from
the right-hand-side process to the left-hand-side process. For most of the states of the



right-hand-side process this is no problem, e.g., a token in p1 is moved to s1, a token
in p3 and a token in p4 are mapped onto one token in s3, and a token in p4 and a token
in p5 are mapped onto one token in s4. However, the state with a token in both p2
and p5 (prepare shipment and send bill have been executed) causes problems because
there is no corresponding state in the sequential process (it is not possible to execute
send bill before send goods). If the case is moved to place s2 or place s3, task send bill
is executed twice. If the case is moved to place s4 or place s3, task send goods is not
executed at all. The example in Figure 1 shows that it is not straightforward to migrate
old cases to the new process after a change.

The problem illustrated in Figure 1 is a result of reducing the degree of parallelism
by making the process sequential. Similar problems occur when the order of tasks is
changed, e.g., two sequential tasks are swapped. Extending the workflow with new
tasks, removing parts, or aggregating a group of tasks into a single task may result
in similar problems. When changing the workflow on-the-fly, i.e., running cases are
transferred to the new process definition, the dynamic change bug is likely to occur.
Therefore, the problem is very relevant for a workflow management system truly sup-
porting adaptive workflow. Today’s workflow management systems are not able to han-
dle this problem. These systems use a versioning mechanism, i.e., every change leads
to a new version and each case refers to the appropriate version. If a case starts using a
version of the process, it will continue to use this version. The versioning mechanism
may be suitable in some situations. An administrative process with a short flow time
is a good candidate for a versioning mechanism. However, there are many situations
where the mechanism is not appropriate. If a case has a long flow time, then it is often
not acceptable to handle existing cases this way. Consider for example a process for
handling mortgage loans. Mortgages typically have a duration of 20 to 30 years. If the
process changes every month, this would lead to hundreds of different versions running
in parallel. To reduce cost and to keep the processes manageable, the number of ac-
tive versions (i.e., versions still used by cases) should be kept to a minimum. Also for
processes with a shorter flow time, it may be undesirable to have many versions run-
ning in parallel. In fact, there may be legal reasons (e.g., starting from January 2001 a
new step in the process is mandatory), forcing the transfer of cases to the new process.
Unfortunately, problems such as the one illustrated by Figure 1 make a direct trans-
fer hazardous. Without exterminating the dynamic change bug the next generation of
workflow management systems will be unable to truly support adaptive workflow.

To exterminate the dynamic change bug, we propose an approach that automatically
calculates the change region. The change region is determined by comparing the old
and the new process and extending the regions that have changed with regions that
are affected by the change. Due to the possibly complex mixture of different routing
constructs (choice, synchronization, iteration, etc.), it is far from trivial to compute the
regions that are affected. If a case is in the change region, it cannot be transferred. The
transfer is delayed until the change region is empty. We will show that postponing the
migration of a case until the change region is empty, results in the correct execution
of the case. For a short period (depending on the change region), there are multiple
versions but as soon as a transfer is safe the case is handled according to the new process
definition.



The approach differs from existing approaches (Aalst and Basten, 2001; Aalst et al.,
2000b; Aalst et al., 2000a; Casati et al., 1998; Reichert and Dadam, 1998; Ellis et al.,
1995; Ellis and Keddara, 2000a; Ellis and Keddara, 2000b; Michelis and Ellis, 1998;
Keddara, 1999; Joeris and Herzog, 1998; Agostini and Michelis, 2000; Sadiq et al.,
2000; Vossen and Weske, 1999; Weske, 2000) in the sense that no local transforma-
tion rules are assumed and that the calculation of the change region is based on the
structure of the workflow graph. Note that we restrict ourselves to logical errors in the
control-flow resulting from change. Clearly, there are other types of constraint viola-
tions. Moreover, change can also result in resource or data conflicts. These problems
are outside the scope of this paper.

The remainder of this paper is organized as follows. First, we introduce the basic con-
cepts and the techniques we are going to use. The approach presented in this paper is
based on a special subclass of Petri nets (WF-nets) and a notion of correctness named
soundness (Aalst, 1998b; Aalst, 2000). In Section 3, we clearly define to problem (the
dynamic change bug) and give a number of dynamic change examples. Then, we present
the algorithm to calculate the change region. In Section 5, we compare this approach
with other approaches addressing the dynamic change problem. Finally, we summarize
the results presented and conclude with our future plans.

2 Preliminaries

This section introduces the basic concepts, definitions, and techniques used to tackle
the dynamic change bug. For a more elaborate discussion on these topics, we refer to
(Aalst, 1998b; Aalst, 2000; Ellis et al., 1995; Ellis and Nutt, 1993). For an introduction
to Petri nets we refer to (Desel and Esparza, 1995; Murata, 1989; Reisig and Rozenberg,
1998) and the appendix.

2.1 Workflow process definitions

The term workflow management (Koulopoulos, 1995; Lawrence, 1997; Jablonski and
Bussler, 1996) refers to the domain which focuses on the logistics of business processes.
There are also people who use the term office logistics. The ultimate goal of workflow
management is to make sure that the proper activities are executed by the right person
at the right time. Although it is possible to do workflow management without using
a workflow management system, most people associate workflow management with
workflow management systems. The Workflow Management Coalition (WfMC) defines
a workflow management system as follows (WFMC, 1996): A system that completely
defines, manages, and executes workflows through the execution of software whose or-
der of execution is driven by a computer representation of the workflow logic. Other
terms to characterize a workflow management system are: ‘business operating system’,
‘workflow manager’, ‘case manager’ and ‘logistic control system’.

Workflows are case-based, i.e., every piece of work is executed for a specific case.
Examples of cases are a mortgage, an insurance claim, a tax declaration, an order, or a
request for information. Cases are often generated by an external customer. However,



it is also possible that a case is generated by another department within the same or-
ganization (internal customer). The goal of workflow management is to handle cases
as efficiently and effectively as possible. A workflow process is designed to handle
similar cases. Cases are handled by executing tasks in a specific order. The workflow
process definition specifies which tasks need to be executed and in what order. Alterna-
tive terms for workflow process definition are: ‘procedure’, ‘flow diagram’ and ‘routing
definition’. Since tasks are executed in a specific order, it is useful to identify conditions
which correspond to causal dependencies between tasks. A condition holds or does not
hold (true or false). Each task has pre- and postconditions: the preconditions should
hold before the task is executed, and the postconditions should hold after execution of
the task. Many cases can be handled by following the same workflow process definition.
As a result, the same task has to be executed for many cases. A task that needs to be
executed for a specific case is called a work item. An example of a work item is: execute
task ‘send refund form to customer’ for case ‘complaint sent by customer Baker’. Most
work items are executed by a resource. A resource is either a machine (e.g., a printer or
a fax) or a person (participant, worker, employee). To facilitate the allocation of work
items to resources, resources are grouped into classes. A resource class is a group of
resources with similar characteristics. There may be many resources in the same class
and a resource may be a member of multiple resource classes. If a resource class is
based on the capabilities (i.e., functional requirements) of its members, it is called a
role. If the classification is based on the structure of the organization, such a resource
class is called an organizational unit. A work item which is being executed by a specific
resource is called an activity.

Of all workflow perspectives (e.g., control-flow, data, organization, task, operation)
(Jablonski and Bussler, 1996), the control-flow perspective is the most prominent one,
because the core of any workflow system is formed by the processes it supports. In the
control-flow dimension building blocks such as the AND-split, AND-join, OR-split,
and OR-join are used to model sequential, conditional, parallel and iterative routing
(WFMC, 1996). Clearly, a Petri net can be used to specify the routing of cases. See
Appendix A for an introduction to Petri nets. Tasks are modeled by transitions and
causal dependencies are modeled by places and arcs. In fact, a place corresponds to a
condition which can be used as pre- and/or post-condition for tasks. An AND-split cor-
responds to a transition with two or more output places, and an AND-join corresponds
to a transition with two or more input places. OR-splits/OR-joins correspond to places
with multiple outgoing/ingoing arcs. Moreover, in (Aalst, 1998a) it is shown that the
Petri net approach also allows for useful routing constructs absent in many workflow
management systems.

A Petri net which models the control-flow dimension of a workflow, is called a
WorkFlow net (WF-net). It should be noted that a WF-net specifies the dynamic behav-
ior of a single case in isolation.

Definition 1 (WF-net). A Petri net PN = (P; T; F ) is a WF-net (WorkFlow net) if and
only if:

(i) There is one source place i ∈ P such that •i = ∅.
(ii) There is one sink place o ∈ P such that o• = ∅.

(iii) Every node x ∈ P ∪ T is on a path from i to o.



A WF-net has one input place (i) and one output place (o) because any case handled by
the procedure represented by the WF-net is created when it enters the workflow man-
agement system and is deleted once it is completely handled by the workflow manage-
ment system, i.e., the WF-net specifies the life-cycle of a case. The third requirement in
Definition 1 has been added to avoid ‘dangling tasks and/or conditions’, i.e., tasks and
conditions which do not contribute to the processing of cases. If there is no confusion
possible we will use i and o to denote the input place and output place of a WF-net. If
confusion is possible, we add a subscript referring to the proper WF-net, i.e., i PN and
oPN denote the input place and output place of the WF-net PN .

Given the definition of a WF-net it is easy derive the following properties.

Proposition 1 (Properties of WF-nets). Let PN = (P; T; F ) be Petri net.

– If PN is WF-net with source place i, then for any place p ∈ P : •p �= ∅ or p = i,
i.e., i is the only source place.

– If PN is WF-net with sink place o, then for any place p ∈ P : p• �= ∅ or p = o, i.e.,
o is the only sink place.

– If PN is a WF-net and we add a transition t∗ to PN which connects sink place o
with source place i (i.e., •t∗ = {o} and t∗• = {i}), then the resulting Petri net is
strongly connected.

– If PN has a source place i and a sink place o and adding a transition t ∗ which
connects sink place o with source place i yields a strongly connected net, then
every node x ∈ P ∪ T is on a path from i to o in PN and PN is a WF-net.
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Fig. 2. A WF-net for the processing of complaints.



Figure 2 shows a WF-net which models the processing of complaints. First the
complaint is registered (task register), then in parallel a questionnaire is sent to the com-
plainant (task send questionnaire) and the complaint is evaluated (task evaluate). If the
complainant returns the questionnaire within two weeks, the task process questionnaire
is executed. If the questionnaire is not returned within two weeks, the result of the ques-
tionnaire is discarded (task time out). Based on the result of the evaluation, the com-
plaint is processed or not. The actual processing of the complaint (task process compl-
aint) is delayed until condition c5 is satisfied, i.e., the questionnaire is processed or a
time-out has occurred. The processing of the complaint is checked via task check pro-
cessing. Finally, task archive is executed. Note that sequential, conditional, parallel and
iterative routing are present in this example.

The WF-net shown in Figure 2 clearly illustrates that we focus on the control-flow
dimension. We abstract from resources, applications, and technical platforms. More-
over, we also abstract from case variables and triggers. Case variables are used to
resolve choices (OR-split), i.e., the choice between processing required and no pro-
cessing is (partially) based on case variables set during the execution of task evaluate.
The choice between processing OK and processing NOK is resolved by testing case
variables set by check processing. In the WF-net we abstract from case variables by
introducing non-deterministic choices in the Petri-net. If we don’t abstract from this
information, we would have to model the (unknown) behavior of the applications used
in each of the tasks and analysis would become intractable. In Figure 2 we have not in-
dicated that time out and process questionnaire require triggers. Task time out requires
a time trigger (‘two weeks have passed’) and process questionnaire requires a message
trigger (‘the questionnaire has been returned’). A trigger can be seen as an additional
condition which needs to be satisfied. In the remainder of this paper, we abstract from
these trigger conditions. We assume that the environment behaves fairly, i.e., the live-
ness of a transition is not hindered by the continuous absence of a specific trigger. As a
result, every trigger condition will be satisfied eventually.

2.2 Soundness property

In this subsection we summarize some of the basic results for WF-nets presented in
(Aalst, 2000). The remainder of this paper will build on these results.

The three requirements stated in Definition 1 can be verified statically, i.e., they
only relate to the structure of the Petri net. However, there is another requirement which
should be satisfied:

For any case, the procedure will terminate eventually and the moment the pro-
cedure terminates there is a token in place o and all the other places are empty.

Moreover, there should be no dead tasks, i.e., it should be possible to execute an arbi-
trary task by following the appropriate route though the WF-net, and the WF-net should
be safe. These additional requirements for WF-nets correspond to the so-called sound-
ness property.

Definition 2 (Sound). A procedure modeled by a WF-net PN = (P; T; F ) is sound if
and only if:



(i) For every state M reachable from state i, there exists a firing sequence leading
from state M to state o. Formally:1

∀M (i
∗→ M) ⇒ (M

∗→ o)

(ii) State o is the only state reachable from state i with at least one token in place o.
Formally:

∀M (i
∗→ M ∧ M ≥ o) ⇒ (M = o)

(iii) There are no dead transitions in (PN ; i). Formally:

∀t∈T ∃M;M ′ i
∗→ M

t→ M ′

(iv) (PN ; i) is safe.

Note that the soundness property relates to the dynamics of a WF-net. The first require-
ment in Definition 2 states that starting from the initial state (state i), it is always possi-
ble to reach the state with one token in place o (state o). If we assume a strong notion
of fairness, then the first requirement implies that eventually state o is reached. Strong
fairness means that in every infinite firing sequence, each transition fires infinitely of-
ten. The fairness assumption is reasonable in the context of workflow management: All
choices are made (implicitly or explicitly) by applications, humans or external actors.
Clearly, they should not introduce an infinite loop. Note that the traditional notions of
fairness (i.e., weaker forms of fairness with just local conditions, e.g., if a transition
is enabled infinitely often, it will fire eventually) are not sufficient. See (Aalst, 1998b;
Kindler and Aalst, 1999) for more details. The second requirement states that the mo-
ment a token is put in place o, all the other places should be empty. Sometimes the
term proper termination is used to describe the first two requirements (Gostellow et al.,
1972). The third requirement states that there are no dead transitions (tasks) in the ini-
tial state i. The last requirement states that the WF-net should be safe, i.e., for a single
case in isolation, it is not allowed to have multiple tokens in one place.

Figure 2 is an example of a WF-net which is sound. Figure 3 shows a WF-net which
is not sound. This WF-net is an attempt to simplify the one shown in Figure 2: The
token in c5 is now actually removed by process complaint, i.e., process complaint does
not return the token and, therefore, archive no longer needs to remove the remaining
token in c5. Although this may seem to be a good idea, there are several deficiencies.
First of all, tasks may be executed after completion, e.g., after firing register, evaluate,
no processing, and archive there is a token in place o indicating completion, but at
the same time send questionnaire is enabled. Second, there is a potential deadlock: If
processing NOK fires, then the WF-net gets stuck in the state with just a token in c7.
Any attempt to execute task processing complaint multiple times will lead to a deadlock
situation. Clearly, the WF-net is not sound.

Given a WF-net PN = (P; T; F ), we want to decide whether PN is sound. In
(Aalst, 2000) we have shown that soundness corresponds to liveness and boundedness.
To link soundness to liveness and boundedness, we define an extended net PN =

1 Note that there is an overloading of notation: the symbol i is used to denote both the place i
and the state with only one token in place i (see Appendix A).
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Fig. 3. Another WF-net for the processing of complaints.

(P ; T ; F ). PN is the Petri net obtained by adding an extra transition t∗ which con-
nects o and i. The extended Petri net PN = (P ; T ; F ) is defined as follows: P = P ,
T = T ∪ {t∗}, and F = F ∪ {〈o; t∗〉; 〈t∗; i〉}. In the remainder, we will call such
an extended net the short-circuited net of PN . The short-circuited net allows for the
formulation of the following theorem.

Theorem 1. A WF-net PN is sound if and only if (PN ; i) is live and safe.

Proof. See (Aalst, 2000). ��
This theorem shows that standard Petri-net-based analysis techniques can be used to
verify soundness. The short-circuited version of the WF-net shown in Figure 2 is live
and safe. The short-circuited version of the WF-net shown Figure 3 is not live and not
safe.

3 Dynamic Change: The Problem

Today’s workflow management systems typically support two types of change. The sys-
tems aiming at predefined and well-structured workflow processes, often referred to as
production workflow, support a versioning mechanism (cf. Section 1). Most of the avail-
able systems fit into this category (e.g., Staffware, MQ Series workflow, and COSA).
Only a few systems support a different form of change by binding private process def-
initions to cases. The latter class of workflow systems support ad-hoc workflow and
examples of such systems are InConcert (InConcert/TIBCO) and Ensemble (Filenet).



The versioning mechanism supported by most of the systems binds each case to a
specific version of the workflow. A version itself will never change: Only new versions
can be added. Therefore, each case will follow the procedure defined in the correspond-
ing version and will not be influenced by changes during its lifetime. Only new cases
benefit from change and typically follow the most recent version of the workflow at the
moment of creation.

Systems supporting ad-hoc workflow associate a workflow process definition with
each case, i.e., each workflow instance carries its own description. These systems typ-
ically allow for limited change, e.g., in InConcert it is possible to remove and/or add
tasks in parts of the process which still need to be executed. Clearly, these systems do
not support evolutionary changes as described in the introduction.

Both types of change (versioning mechanism and ad-hoc workflow) are quite easy
to implement and are not confronted with problems such as the one illustrated by Fig-
ure 1. The dynamic change problem, which was first mentioned by Ellis, Keddara, and
Rozenberg (Ellis et al., 1995) in 1995, is not addressed at all by these systems. Never-
theless, there is a clear need for mechanisms which allow for the migration of instances
(cases) from one process definition to another. There are many examples of workflow
processes with a considerable number of instances which have a long flow time. Con-
sider for example mortgage loans which have a life-cycle of decades. In such situations
the version mechanism is not acceptable: Too many versions would be active thus re-
sulting in an unmanageable workflow. There may also be legal and economical reasons
for the migration of instances (cases) from one process definition to another. If the law
changes, some processes may be affected and the organization may be forced to mi-
grate cases, i.e., to handle existing cases the new way. The solution provided by ad-hoc
workflow systems is often not acceptable, because every instance needs to be modified
by hand and there is no control over the uniformity of the workflow process. More-
over, the solutions provided by systems like InConcert restrict the modeling language
to avoid problems such as the one illustrated by Figure 1 (e.g., no iteration). Therefore,
we tackle the dynamic change problem using the concepts introduced in the previous
section. The notion of soundness will be used as a staring point for the formulating the
problem.

In the remainder, we assume that two workflow process definitions are given: (1) the
old workflow, i.e., the workflow process definition before the change, and (2) the new
workflow, i.e., the workflow after the change. Both workflows are specified in terms of
WF-nets. We denote the old WF-net and the new WF-net as PN O

= (PO; TO; FO
) and

PNN
= (PN ; TN ; FN

) respectively. We assume that (PO ∪ PN
) ∩ (TO ∪ TN

) = ∅,
i.e., no name clashes.

The goal of the approach presented in this paper is to calculate when it is possible
to migrate instances (i.e., cases) from the old workflow to the new workflow. For this
purpose we need a notion of correctness. In this paper we choose a very pragmatic
notion of correctness, a transfer is valid if the state of the case after migration could
have been reached from the initial state.



Definition 3 (Valid transfer). Let PNO
= (PO; TO; FO

) andPNN
= (PN ; TN ; FN

)

be two sound WF-nets andM a reachable marking of PN O , i.e., iPNO

∗→ M in PNO.
A transfer (PNO;M) ⇒ (PNN ;M) is valid iff

(i) for all p ∈ PO
:M(p) ≥ 1 implies p ∈ PN ,

(ii) iPNN

∗→ M in PNN .

The first requirement in Definition 3 states that all marked places should exist in the
new workflow, i.e., it is not valid to migrate a case with tokens in places which are
removed from the new WF-net. The second requirement states that marking M , i.e.,
the state of the case to be migrated, is reachable in the new process. The latter property
shows that it is not valid to end up in a state not reachable by newly created cases, i.e.,
cases starting in marking i.
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Fig. 4. An old and a new WF-net: SC = {s2; s3; b; c} and DC = {s2; s3; b; c}.

Consider PNO and PNN shown in Figure 4. (Ignore PN ON , SC, and DC.) A
case marking place s2 in PNO can be migrated toPNN , i.e., the transfer (PNO; s2) ⇒
(PNN ; s2) is valid. A case marking place s1, s4, or s5 in PNO can also be migrated
to PNN while satisfying the requirements stated in Definition 3. However, there is no
valid transfer for a case marking s3. Figure 5 shows two other WF-nets. The old WF-net
PNO uses conditional routing. The new WF-net uses parallel routing. A case marking
place s2 in PNO can be migrated to PNN , i.e., the transfer (PNO ; s2) ⇒ (PNN ; s2)

is valid. However, there is no valid transfer for a case marking any of the places s3, s4,
s5, and s6. Consider for example a case with a token in s3. If this case is migrated to
the new WF-net PNN , then there is a deadlock. In PNN the marking s3 enables c,
but after firing c the case gets stuck in the state just marking s4. Note that the state just
marking s3 is not reachable in the new process.

The notion of validity introduced in Definition 3, guarantees that the essence of
soundness is preserved during the migration. After a valid transfer, the case can termi-
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nate in a state just marking the sink place and the moment a case terminates all other
places are unmarked.

The goal of this paper is to determine when a transfer is valid. In principle it is
possible to calculate whether a transfer is valid using standard techniques such as the
reachability graph (cf. (Reisig and Rozenberg, 1998)). However, we are looking for
more pragmatic criteria. In practice, a process can have millions of reachable states. To
classify these states into valid and invalid requires a complete enumeration of the state
space of the old and the new process. Therefore, there are definitely computational prob-
lems. Moreover, such a brute-force partitioning of the state space is also very indirect:
The partitioning only relates to the graphical workflow model in an indirect manner.
Therefore, we pursue a more down-to-earth approach based on change regions. The
change region is the part of the model which is effected by the change. These change
regions are defined in terms of nodes (i.e., tasks, conditions, etc.) in the workflow model
instead of states. This allows for more intuitive criteria and facilitates a more realistic
implementation.

First we define the static change region. The static change region is the set of nodes
of both the old and the new process model which are syntactically involved in the
change.

Definition 4 (Static change region). Let PNO
= (PO; TO; FO

) and PNN
= (PN ;

TN ; FN
) be two sound WF-nets. The static change region in the context of a change

from PNO to PNN is the set SC =
S

(x;y)∈X{x; y} where X = (FO \FN
)∪ (FN \

FO
).

The static change region is calculated by comparing the flow relations of both nets, i.e.,
all arcs which are removed or added are recorded. The set of all nodes (i.e., places and
transitions) linked to an arc which is added or removed constitutes the static change
region. Note that the change region consists of nodes in both the old and the new work-



flow. Definition 4 compares arcs rather than nodes. However, as the following property
shows, all nodes added or deleted appear in the static change region.

Property 1. Let PNO, PNN , and SC be defined in Definition 4. ((P O∪TO
)\(PN ∪

TN
)) ∪ ((PN ∪ TN

) \ (PO ∪ TO
)) ⊆ SC.

Proof. Let x ∈ (PO ∪TO
)\ (PN ∪TN

). PNO is connected. Therefore, there is a y ∈
PO∪TO such that (x; y) ∈ FO or (y; x) ∈ FO. Clearly, (x; y) �∈ FN and (y; x) �∈ FN

because x �∈ PN ∪ TN . Hence, (x; y) ∈ FO \ FN or (y; x) ∈ FO \ FN . Therefore,
x ∈ SC. Similarly, it can be shown that x ∈ SC if x ∈ (P N ∪ TN

) \ (PO ∪ TO
). ��

ConsiderPNO andPNN shown in Figure 4. For these two WF-netsSC = {s2; s3; b; c}.
Nodes s3 and b have been removed and are part of the change region. Nodes s2 and
c are also in the static change region because s2• and •c have changed. Projections
of the set SC onto PO and PN are shown in Figure 4 using dashed ovals. Figure 4
also shows the set SC in the combined WF-net. Let PNO and PNN be an old and
a new WF-net respectively. The combined WF-net is a WF-net denoted as PN ON

=

(PON ; TON ; FON
) and defined as follows: PNON

= PNO ∪ PNN . The union of
two Petri nets is defined in Appendix A. It is easy to see that PN ON is a WF-net.

Property 2. Let PNO andPNN be two WF-nets such that iPNO = iPNN and oPNO =

oPNN . PNON
= PNO ∪ PNN is a WF-net.

Proof. iPNON = iPNO = iPNN is a source place since it cannot have ingoing arcs.
There are no other places without any input transitions. Hence iPNON is a unique source
place. Similarly, oPNON = oPNO = oPNN is a unique sink place. Moreover, every
node is on a path from iPNON to oPNON because this is the case in either PNO or
PNN . Hence PNON is a WF-net. ��
The combined WF-net contains the union of all nodes and arcs which appear in any of
the two WF-nets.

It is important to note that the calculation of the static change region is symmetric,
i.e., if the roles of the old and the new WF-net are reversed, the change region does not
change. Consider for example Figure 5: SC = {s2; s5; s6; s7; b; d; e; g}. If the roles
of the two nets are reversed, i.e., the parallel routing is changed into a conditional one,
then the static change region is still SC = {s2; s5; s6; s7; b; d; e; g}.

One might think that as long as the static change region is unmarked, a migration
of the old WF-net to the new one is valid. Consider for example Figure 6 where tasks
c and f are replaced by j and k, and, subsequently, SC = {s3; s4; s5; s6; c; f; j; k}.
Any case marking only places outside SC, can be migrated without any problems.
In fact, even for cases marking s3, s4, s5, and s6 there is a valid transfer. However,
there are situations were the transfer of a case not marking any of the places in the
change region is invalid. Consider for example Figure 5 and a case marking place s3
in PNO. This state is reachable from the initial state s1 of PNO and s3 is not part
of SC = {s2; s5; s6; s7; b; d; e; g}. Although the case is not marking any of the places
in the change region, the transfer is not valid. Transferring the token in s3 from PN O

to PNN results in a marking not reachable from the initial state s1 of PN N . This
example shows that the static change region is not a good characterization of the part
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Fig. 6. An old and a new WF-net: SC = {s3; s4; s5; s6; c; f; j; k} and DC =

{s3; s4; s5; s6; c; f; j; k}.

of the WF-net which should be unmarked to allow for a valid transfer. This problem is
addressed in the next section.

4 Dynamic Change: The Solution

The static change region introduced in the previous section is a very elegant and tan-
gible notion. For readers familiar with the UNIX operating system; the static change
region is comparable to the diff program which calculates the differences between two
UNIX files. It is quite straightforward to build a small application program which cal-
culates the static change region of two workflow process definition specified using a
given workflow management system. However, as was illustrated using Figure 5, there
are situations where an unmarked static change region does not guarantee a valid trans-
fer. In this section we present an algorithm which calculates a change region which
guarantees that any transfer is valid as long as the change region is unmarked. We will
use the term dynamic change region for this region. We will prove that the dynamic
change region provides a sufficient condition for validity, i.e., any case not marking the
dynamic change region can be transferred without jeopardizing the correctness crite-
ria mentioned. The dynamic change region does not provide a necessary condition for
validity: this is an inherit consequence of the fact that we want a syntactical criterion
rather than a criterion based on the explicit enumeration of the state space.

The calculation of the dynamic change region DC starts from SC and continues
to extend this set until certain syntactical requirements are met. The algorithm uses the
combined WF-net and forms components (i.e., locally connected change regions) which
correspond to sound “sub-WF-nets”.

Definition 5 (Dynamic change region). Let PNO
= (PO ; TO; FO

) and PNN
=

(PN ; TN ; FN
) be two sound WF-nets and let PNON

= (PON ; TON ; FON
) be the

combined WF-net, i.e., PNON
= PNO ∪ PNN and iPNON = iPNO = iPNN and



oPNON = oPNO = oPNN . SC is the static change region. The dynamic change region
DC is calculated by the following algorithm.

Algorithm 1 [Dynamic Change Region Generation Algorithm]
begin
01. DC := ∅
02. X := SC

03. while DC �=X do
begin

04. DC := X

05. partition X into X1, X2, ... ,Xn such that
(a) Xi ∩Xj = ∅ for all 1 ≤ i < j ≤ n

(b) X =
S

1≤i≤nXi

(c) PNON |Xi is connected for all 1 ≤ i ≤ n

(d) (•Xi) ∩Xj = ∅ and (Xi•) ∩Xj = ∅ for all 1 ≤ i < j ≤ n

06. for k := 1::n do
07. for a ∈ (Xk) do
08. for b ∈ ((Xk)\{a}) do
09. for c ∈ (PON ∪ TON

) do
begin

10. for (C1 ∈ paths(a; c)) ∧ (C2 ∈ paths(b; c)) ∧
(�(C1) ∩ �(C2)) = {c} do

11. X = X ∪ �(C1) ∪ �(C2)

12. for (C1 ∈ paths(c; a)) ∧ (C2 ∈ paths(c; b)) ∧
(�(C1) ∩ �(C2)) = {c} do

13. X = X ∪ �(C1) ∪ �(C2)

end
14. X = X ∪ (

S
x∈X
•x∩X �=∅

•x) ∪ (
S
x∈X
x•∩X �=∅

x•)
end

15. output DC

end

The algorithm initializesX as the set of nodes in the static change region, i.e.,X = SC.
Then using a number of iterations, this set X is extended. During each iteration the set
X is partitioned into subsets Xi which correspond to connected components. Note that
the projection of a net PN onto a set of nodes X (PN |X) is defined in Appendix A.
For each component and each pair of nodes in a component, the algorithm searches
for elementary paths which start or end in these two nodes and end or start in a single
common node c. Function paths returns the set of all elementary paths between two
given nodes, i.e., paths(a; b) is the set of elementary paths which start in node a and
end in node b (see Appendix A). The alphabet operator � is a function which returns
the set of nodes on a given path. If two paths are found which start/end in a and b and
end/start in c and only overlap in c, then all nodes on both paths are added to the set X
(see lines 11 and 13). If a node x is an element of X and an input (output) node of x is
an element of X , then all input (output) nodes •x (x•) are also added to X (see line 14
of the algorithm).



The complexity of the straightforward implementation of the algorithm is factorial
(O(n4(n!)2) for a workflow with n nodes). From a practical point of view, its com-
plexity is acceptable because the algorithm only considers the graph structure of the
WF-net. The algorithm does not enumerate all possible states and is executed only once
per change, i.e., there is no need to compute the dynamic change region for individual
cases. Moreover, a typical workflow consists of less than 50 nodes. Despite its facto-
rial complexity, the Dynamic Change Region Generation Algorithm is tractable for the
workflows encountered in practice.

Consider for example Figure 4. The dynamic change region coincides with the static
change region, i.e., DC = SC = {s2; s3; b; c}. The dynamic change region and the
static change region also coincide for the two WF-nets shown in Figure 6:DC = SC =

{s3; s4; s5; s6; c; f; j; k}. Figure 5 shows an example of a situation where both regions
do not coincide. The static change region SC = {s2; s5; s6; s7; b; d; e; g} does not in-
clude s3, s4, c, and f . However, these nodes are influenced by the change. In PN O only
one of the tasks c and f is executed (conditional routing) while in PN N both tasks are
executed (parallel routing). As was indicated before, it is not possible to migrate cases
marking s3 or s5 without resulting in an invalid transfer. Therefore, the dynamic change
region includes s3, s4, c, and f , i.e., DC = {s2; s3; s4; s5; s6; s7; b; c; d; e; f; g}.
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c d

s5s4PN O
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c d

s5

s4
e
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f

Fig. 7. An old and a new WF-net: SC = {s2; s4; s6; e; f} and DC = {s2; s3; s4; s6; b; c; e; f}.

Figures 7, 8, and 9 show three additional examples. For each example both the dy-
namic and the static change region are indicated. Figure 7 shows the addition of an alter-
native branch containing tasks e and f . The static change regionSC = {s2; s4; s6; e; f}
only addresses the places s2 and s4 in PNO. The dynamic change region also includes
b, s3, and c, i.e., DC = {s2; s3; s4; s6; b; c; e; f}. Figure 8 shows the addition of a par-
allel branch containing tasks e and f . Place s3 is not included in the static change region
SC = {s6; s7; s8; b; c; e; f}. However, it is clear that s3 also needs to be included. The
transfer of a case in state s3 from PNO to PNN results in a deadlock. Therefore, place
s3 is included in the dynamic change region, i.e., DC = {s3; s6; s7; s8; b; c; e; f}. Fig-
ure 9 shows the addition of a feedback loop. This example shows the effect of line 14
of the algorithm: If a node x is an element of X and an input (output) node of x is
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Fig. 8. An old and a new WF-net: SC = {s6; s7; s8; b; c; e; f} and DC =

{s3; s6; s7; s8; b; c; e; f}.
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Fig. 9. An old and a new WF-net: SC = {s2; s4; e} and DC = {s2; s3; s4; a; b; c; d; e}.

an element of X , then all input (output) nodes •x (x•) are also added to X . Because
of this line the tasks a and d are added to the dynamic change region. Note that the
dynamic change region DC = {s2; s3; s4; a; b; c; d; e} is considerably larger than the
static change region SC = {s2; s4; e}.

The following theorem shows that the dynamic change region calculated by the
algorithm can be used to guarantee the validity of transfers, i.e., if only cases outside
the dynamic change region are transferred, then any transfer is valid.

Theorem 2 (A sufficient condition for valid transfers). Let PNN and PNO be
sound WF-nets, PNON

= PNO ∪ PNN , and let DC be the dynamic change re-
gion. For any reachable marking M of PN O not marking the dynamic change re-
gion, i.e., iPNO

∗→ M in PNO and M(p) = 0 for any p ∈ DC ∩ PO , a transfer
(PNO;M) ⇒ (PNN ;M) is valid.

Proof. See Appendix B ��



Consider for example Figure 6. Theorem 2 guarantees that a case marking place s2 can
be transferred from PNO to PNN and vice versa. Note that, just like the static change
region, the dynamic change region is symmetric. The result of the algorithm does not
depend on the role of PNO and PNN : The two roles can be reversed without changing
the outcome of the algorithm. Also consider the other examples shown in figures 4, 5, 7,
8, and 9. If the dynamic change region indicated in either PN O or PNN is unmarked,
a valid transfer is possible.

The examples given also indicate that Theorem 2 provides a sufficient but not neces-
sary condition. Consider for example Figure 6. The dynamic change region includes s3,
s4, s5, and s6. However, a transfer from any of these places is valid. The markings with
in single token in s3, s4, s5, or s6 are reachable from s1 in both PN O and PNN . The
following theorem gives a weaker condition for valid transfers. This theorem is based
on the observation that only the internal places inside the dynamic change region may
endanger the validity of the transfer. Places on the border of the dynamic change region,
i.e., places connected to transitions outside DC, can be marked without compromising
the validity of the transfer.

Theorem 3 (A weaker condition for valid transfers). Let PNN and PNO be sound
WF-nets, PNON

= PNO ∪PNN , and let DC be the dynamic change region. For any
reachable marking M of PNO not marking the internal places of the dynamic change
region, i.e., iPNO

∗→ M in PNO and M(p) = 0 for any p ∈ {x ∈ DC ∩ PO | (•x) ∪
(x•) ⊆ DC}, a transfer (PNO ;M) ⇒ (PNN ;M) is valid.

Proof. See Appendix B. ��

This theorem shows that we can strengthen the result stated in Theorem 2 quite easily.
The set of places considered in Theorem 3 is called the minimal change region. The
minimal change region MC is defined as follows: MC = {p ∈ DC | (•x) ∪ (x•) ⊆
DC}. The minimal change region includes all nodes of the dynamic change region ex-
cept the so-called border places. Note that the minimal change region may be smaller
that the static change region. Consider for example Figure 4: SC = {s2; s3; b; c} and
MC = {s3; b}. The minimal change regions of the examples shown in figures 5, 6, 7,
8, and 9 are MC = {s3; s4; s5; s6; b; c; d; e; f; g} (Figure 5: s2 and s7 are removed),
MC = {c; f; j; k} (Figure 6: all places are removed), MC = {s3; s6; b; c; e; f} (Fig-
ure 7: s2 and s4 are removed), MC = {s3; s6; s7; s8; e; f} (Figure 8: b and c are
removed), and MC = {s2; s3; s4; b; c; e} (Figure 8: a and d are removed) respectively.

In Section 1, Figure 1 was used to illustrate the dynamic change problem. We did
not refer to this example in this section because the place identifiers used in both WF-
nets are different. The places in both nets have been named different to avoid confusion
while explaining the dynamic change problem. However, it is clear that s1 and p1 are in
essence the same place because their interconnection structures are the same. The same
holds for s5 and p6, s2 and p2, s4 and p5. For the remaining places the correspondence
is less clear. Let us rename p1 to s1, p2 to s2, p5 to s4, and p6 to s5 and calculate SC,
DC, MC. The static change region SC consists of the following nodes: p3, p4, s3,
prepare shipment, send goods, send bill, and record shipment. The dynamic change
region DC consists of p3, p4, s2, s3, s4, prepare shipment, send goods, send bill,



and record shipment. The minimal change region MC consists of p3, p4, s2, s3, s4,
send goods and send bill.
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Fig. 10. Three potential changes.

Finally we illustrate the results using the complaint processing example introduced
in Section 2.1. Figure 10 shows three potential changes. The first change corresponds to
the removal of task no processing. Assuming this change, the static change region SC
consists of the following nodes: c4, c6, and no processing. The dynamic change region
DC coincides with the static change region. The minimal change region MC consists
of only no processing. Hence any transfer from the WF-net with task no processing to
the net without no processing and vice versa is valid. The second change corresponds to
the addition of an alternative task email questionnaire. Assuming this change, the static
change region SC consists of the following nodes: c1, c3, and email questionnaire.
The dynamic change region DC coincides with SC. The minimal change region MC

consists of only the newly added task. Again any transfer is valid. The third change is
less harmless. If process complaint is connected directly to c6 and the nodes c8, c9,
check processing, processing OK, and processing NOK are removed, then the result-
ing net is a sound WF-net. Assuming this change, the static change region SC consists
of the following nodes: c6, c7, c8, c9, process complaint, check processing, process-
ing OK, and processing NOK. The dynamic change region DC encompasses all nodes
except i and o. The minimal change region MC consists of all nodes in-between regis-
ter and archive. Hence only transfers from state i or o are guaranteed to be valid based
on the minimal/dynamic change region.



5 Related work on dynamic change

There are many similarities between dynamic change in the workflow domain and
schema evolution in the database domain. As the requirements of database applications
change over time, the definition of the schema, i.e., the structure of the data elements
stored in the database, is changed. Schema evolution has been an active field of re-
search in the last decade (mainly in the field of object-oriented databases, cf. (Bertino
and Martino, 1993)) and has resulted in techniques and tools that partially support the
transformation of data from one database schema to another. Although dynamic change
and schema evolution are similar, there are some additional complications in case of
dynamic change. First, as was shown in the example of Figure 1, it is not always pos-
sible to transfer a case. Second, it is not acceptable to shut down the system, transfer
all cases, and restart using the new procedure. Cases should be migrated while the sys-
tem is running. Finally, dynamic change may introduce deadlocks and livelocks. The
solutions provided by today’s object-oriented databases do not deal with these compli-
cations. Therefore, we need new concepts and techniques.

Several researchers have worked on problems related to dynamic change. Ellis, Ked-
dara, and Rozenberg (Ellis et al., 1995) propose a technique based on so-called “change
regions.” A change region contains all parts of a workflow process definition that po-
tentially cause problems with respect to the transfer of cases. A change region has two
versions; the old situation and the new situation. In this solution, there is one version
of the complete process which covers the old and the new situation and changes af-
fect cases as soon as possible. Parts of the workflow (i.e., change regions) become
inactive after a while, because all old cases have been handled. This approach has
the drawback that the process definition can become very complex (unless some au-
tomatic garbage collection is added). Another drawback is the fact that the authors do
not provide a method for identifying the change region, i.e., change regions need to be
identified manually. The authors do provide a notion of change correctness and give
specific circumstances for which this is guaranteed. In (Ellis and Keddara, 2000a), the
authors improve their approach by introducing jumpers. A jumper moves a case from
the old workflow to the new workflow. The jump is postponed if for a state no jumper
is available. Again, the authors do not give a concrete technique for the transfer of
cases, i.e., jumpers are added manually. In (Ellis and Keddara, 2000b; Keddara, 1999),
Keddara and Ellis present a language to support dynamic evolution within workflow
systems (ML-DEWS). Based on the different modalities of change, the authors give
a special purpose meta-language geared to model the workflow of change. Agostini
and De Michelis (Agostini and Michelis, 2000) propose a technique for the automatic
transfer of cases from an old process definition to a new process definition and also
give criteria for determining whether a transfer is possible. The approach is interesting
since it automatically computes the states for which it is not possible to migrate. Con-
sider for example Figure 1. The approach presented in (Agostini and Michelis, 2000)
indicates the necessity to postpone the transfer of running cases in state [p 1; p4]. Unfor-
tunately, the approach only works for a restricted class of workflows (e.g., the modeling
language does not allow for iteration, although at runtime iteration can be achieved by
backward jumps). A summary of this approach is given in (Michelis and Ellis, 1998).
Weske (Vossen and Weske, 1999; Weske, 2000) considers dynamic workflow change



using a model similar to the model used by IBM’s MQSeries. In this model there is no
iteration and also alternatives are synchronized. As a result the control flow is similar to
a subclass of Petri nets: the so-called acyclic marked graphs. By exploiting these restric-
tions, relatively simple criteria can be obtained to guarantee the proper migration of an
instance from one schema to another (Weske, 2000). Joeris and Herzog use linked State
Charts to address the problem of posteriori flexibility (Joeris and Herzog, 1998). Casati,
Ceri, and Pernici (Casati et al., 1998) tackle the problem of dynamic change via a set of
transformation rules and partition the state space into a part that is aborted, a part that
is transferred, a part that is handled the old way, and parts which are handled by hybrid
process definitions (similar to the approach using change regions). Reichert and Dadam
(Reichert and Dadam, 1998) use a similar approach. However, semantical issues such
as errors introduced by swapping tasks, skipping tasks, or multiple executions of a task
are not considered. Voorhoeve and Van der Aalst (Voorhoeve and Aalst, 1996; Voorho-
eve and Aalst, 1997) also propose a fixed set of transformation rules to support dynamic
change. However, the rules are not given explicitly at the net level and semantical issues
are not considered. Van der Aalst and Basten (Aalst and Basten, 2001) propose an ap-
proach based on inheritance. This approach uses a set of generic inheritance-preserving
transformation and transfer rules. Semantical errors such as the swapping of tasks, the
skipping of tasks, and the multiple execution of tasks can be avoided by choosing the
appropriate inheritance notion, e.g., projection inheritance guarantees that tasks cannot
be skipped by transferring a case from the superclass to the subclass. Unfortunately, the
approach is not useful if the new workflow is not a super or subclass of the old work-
flow. The reader interested in workflow change and Petri nets is also referred to (Aalst
et al., 2000b) which contains several papers of the authors mentioned above. We also
refer to the PhD thesis of Keddara (Keddara, 1999) for a more complete overview of
related work on dynamic change.

The strength of the approach presented in this paper is that it can be applied in the
context of arbitrary changes. Note that we did not assume the absence of certain routing
constructs (i.e., sequential, conditional, parallel, and iterative are included) or restrict
change to specific types of changes. Another feature of the approach is that the change
regions are determined based on the structure of the workflow model (i.e., syntax) rather
than the dynamics (i.e., a state space exploration). This facilitates implementation and
yields change regions which are tangible to end-users.

6 Conclusion

This paper provides a pragmatic approach to tackle the dynamic change bug. Based on
the syntactic changes in the graphical workflow model, three types of change regions
are calculated. The static change region incorporates the parts of the workflow model
directly effected by the change. The dynamic change region extends the static change
region to incorporate the parts of the workflow model indirectly effected by the change.
The minimal change region reduces the dynamic change region by eliminating border
nodes. The minimal change region is a subset of the dynamic change region. The main
result of this paper is that cases (i.e., workflow instances) which leave the minimal
change region unmarked can be transferred from the old workflow to the new workflow



without creating problems such as deadlocks and livelocks: Successful termination is
guaranteed.

In the future, we plan to implement the approach presented in this paper using a
commercial workflow management system. First, we plan to extend the workflow man-
agement system COSA (Thiel/Ley/COSA Solutions) with a feature to calculate the
minimal change region and to enact valid transfers. This extension of COSA is quite
straightforward since COSA is based on Petri nets and provides an API to remove and
create cases in any state in any workflow. Second, we plan to realize the same func-
tionality using other workflow management systems. Staffware (Staffware plc) is an
example of another system we use in our laboratory. Implementation of this feature in
Staffware is less straightforward because Staffware is not based on Petri nets and it is
not known whether the required API is provided. Other candidates for realizing our ap-
proach are Verve (Verve Inc.) and i-Flow (Fujitsu Software Corporation). Both systems
offer extensive API’s.
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A Petri nets

The classical Petri net (Desel and Esparza, 1995; Murata, 1989; Reisig and Rozenberg,
1998) is a directed bipartite graph with two node types called places and transitions.
The nodes are connected via directed arcs. Connections between two nodes of the same
type are not allowed. Places are represented by circles and transitions by rectangles.

Definition 6 (Petri net). A Petri net is a triple (P; T; F ):

- P is a finite set of places,
- T is a finite set of transitions (P ∩ T = ∅),
- F ⊆ (P × T ) ∪ (T × P ) is a set of arcs (flow relation)

A place p is called an input place of a transition t iff there exists a directed arc from
p to t. Place p is called an output place of transition t iff there exists a directed arc
from t to p. We use •t to denote the set of input places for a transition t. The notations
t•, •p and p• have similar meanings, e.g., p• is the set of transitions sharing p as an



input place. Note that we do not consider multiple arcs from one node to another. In
the context of workflow procedures it makes no sense to have other weights, because
places correspond to conditions.

To illustrate there concepts we consider the two Petri nets shown in Figure 1. The
Petri net on the left has four transitions and five places. The Petri net on the right has
four transitions and six places. Transition prepare shipment in the left model has one
input place and two output places. Note that p1 and s1 are source places, i.e., places
without any input transition. Places s5 and p6 are sink places.

At any time a place contains zero or more tokens, drawn as black dots. The state,
often referred to as marking, is the distribution of tokens over places, i.e.,M ∈ P → IN.
We will represent a state as follows: 1p1+2p2+1p3+0p4 is the state with one token in
place p1, two tokens in p2, one token in p3 and no tokens in p4. We can also represent
this state as follows: p1 +2p2 + p3. To compare states we define a partial ordering. For
any two states M1 and M2, M1 ≤ M2 iff for all p ∈ P : M1(p) ≤ M2(p)

The number of tokens may change during the execution of the net. Transitions are
the active components in a Petri net: they change the state of the net according to the
following firing rule:

(1) A transition t is said to be enabled iff each input place p of t contains at least one
token.

(2) An enabled transition may fire. If transition t fires, then t consumes one token from
each input place p of t and produces one token for each output place p of t.

Given a Petri net (P; T; F ) and a state M1, we have the following notations:

- M1
t→ M2: transition t is enabled in state M1 and firing t in M1 results in state M2

- M1 → M2: there is a transition t such that M1
t→ M2

- M1
�→ Mn: the firing sequence � = t1t2t3 : : : tn−1 leads from state M1 to state

Mn via a (possibly empty) set of intermediate states M2; :::Mn−1, i.e., M1
t1→

M2
t2→ :::

tn−1→ Mn

A state Mn is called reachable from M1 (notation M1
∗→ Mn) iff there is a firing

sequence � such that M1
�→ Mn. Note that the empty firing sequence is also allowed,

i.e., M1
∗→ M1.

We use (PN ;M) to denote a Petri net PN with an initial state M . A state M ′ is a
reachable state of (PN ;M) iff M

∗→ M ′.
Consider the sequential Petri net shown in Figure 1 (i.e., the model on the right).

If initially only place s1 contains a token, only transition prepare shipment is enabled.
Firing this transition results in a state with just a token in s2, etc. Starting from the state
with a token in s1 five states are reachable. The parallel Petri net shown in Figure 1
has six reachable states when starting in the state with a token in p1. First transition
prepare shipment fires resulting in the state with a token in both p2 and p3. From this
state both send goods and send bill are enabled.

Let us define some standard properties for Petri nets. First, we define properties
related to the dynamics of a Petri net, then we give some structural properties.



Definition 7 (Live). A Petri net (PN ;M) is live iff, for every reachable state M ′ and
every transition t there is a state M ′′ reachable from M ′ which enables t.

A Petri net is structurally live if there exists an initial state such that the net is live. None
of the nets shown in Figure 1 is structurally live.

Definition 8 (Bounded, safe). A Petri net (PN ;M) is bounded iff for each place p

there is a natural number n such that for every reachable state the number of tokens in
p is less than n. The net is safe iff for each place the maximum number of tokens does
not exceed 1.

A Petri net is structurally bounded if the net is bounded for any initially state. Both nets
shown in Figure 1 are structurally bounded.

Definition 9 (Well-formed). A Petri net PN is well-formed iff there is a state M such
that (PN ;M) is live and bounded.

Paths connect nodes by a sequence of arcs.

Definition 10 (Path, Elementary, Conflict-free). Let PN be a Petri net. A path C

from a node n1 to a node nk is a sequence 〈n1; n2; : : : ; nk〉 such that 〈ni; ni+1〉 ∈ F

for 1 ≤ i ≤ k − 1. C is elementary iff, for any two nodes ni and nj on C, i �= j ⇒
ni �= nj . C is conflict-free iff, for any place nj on C and any transition ni on C,
j �= i− 1 ⇒ nj �∈ •ni.
For convenience, we introduce the alphabet operator� on paths. IfC = 〈n 1; n2; : : : ; nk〉,
then �(C) = {n1; n2; : : : ; nk}. Moreover, we define paths to be the function which
returns the set of all elementary paths between two given nodes, i.e., paths(a; b) is the
set of elementary paths which start in node a and end in node b.

Definition 11 (Strongly connected). A Petri net is strongly connected iff, for every
pair of nodes (i.e., places and transitions) x and y, there is a path leading from x to y.

Definition 12 (Free-choice). A Petri net is a free-choice Petri net iff, for every two
transitions t1 and t2, •t1 ∩ •t2 �= ∅ implies •t1 = •t2.

Definition 13 (State machine). A Petri net is state machine iff each transition has ex-
actly one input and one output place.

Definition 14 (S-component). A subnetPN s = (Ps; Ts; Fs) is called an S-component
of a Petri net PN = (P; T; F ) if Ps ⊆ P , Ts ⊆ T , Fs ⊆ F , PN s is strongly connected,
PN s is a state machine, and for every q ∈ Ps and t ∈ T : (q; t) ∈ F ⇒ (q; t) ∈ Fs and
(t; q) ∈ F ⇒ (t; q) ∈ Fs.

Definition 15 (S-coverable). A Petri net is S-coverable iff for any node there exist an
S-component which contains this node.

See (Desel and Esparza, 1995; Reisig and Rozenberg, 1998) for a more elaborate intro-
duction to these standard notions. In addition to these standard notions we also define
the some operators on nets, i.e., the union of two nets, the subnet notion, and the pro-
jection of a net onto a set of places and transitions.



Definition 16 (Union, subnet). Let PN1 = (P1; T1; F1) and PN2 = (P2; T2; F2) be
two Petri nets. The union of PN1 and PN2 is a Petri net PNPN1∪PN2

= PN1∪PN2,
where PPN1∪PN2

= P1 ∪P2, TPN1∪PN2
= T1 ∪T2, and FPN1∪PN2

= F1 ∪F2. PN1

is a subnet of PN2, denoted as PN1 ⊆ PN2, iff P1 ⊆ P2, T1 ⊆ T2, and F1 ⊆ F2.

Definition 17 (Projection). Let PN = (P; T; F ) a Petri net and X ⊆ P ∪ T . The
projection of PN onto X is PN |X = (P ∩X;T ∩X;F ∩ (X ×X)).

The projection of a Petri net onto a set of nodes includes all connections between these
nodes, i.e., if two nodes are connected in PN and are both included in X , then these
nodes are also connected in PN |X . Note that, by definition, PN |X is a subnet of PN .

B Proof of theorems 2 and 3

In this appendix we will show that the dynamic change region indeed provides a crite-
rion which is sufficient to guarantee the validity of transfers. The essence of the proof
uses the fact that each component Xi identified by the algorithm is similar to a sound
WF-net, i.e., a connected set of nodes with one unique source node and one unique
sink node whose composite behavior is comparable to a single transition. To prove the
central theorem of this paper we need to introduce components and source and sink
nodes.

Definition 18 (Source and sink nodes). Let PN = (P; T; F ) be a Petri net and X ⊆
P ∪ T . source(PN;X) is the set of source nodes of X and is defined as follows:
source(PN;X) = {x ∈ X | • x ∩X = ∅}. sink(PN;X) is the set of sink nodes of
X and is defined as follows: sink(PN;X) = {x ∈ X | x • ∩X = ∅}.

A source node is either a node without any input nodes or a node with only external
input nodes. Consider for example Figure 4. Place s2 is the only source node of SC
in PNO. A sink node is either a node without any output nodes or a node with only
external output nodes. Consider for example Figure 9. Place s2 is the only sink node of
SC in PNN . Both s2 and s4 are source and sink nodes of SC in PN O.

Based on the notions of source and sink nodes we define components.

Definition 19 (Component). Let PN = (P; T; F ) be a Petri net and X ⊆ P ∪ T . X
is a component of PN if and only if:

(i) source(PN;X) is a singleton, i.e., there is an a such that {a} = source(PN;X),
(ii) sink(PN;X) is a singleton, i.e., there is a b such that {b} = sink(PN;X),

(iii) for each x ∈ X: x is on a directed path from a to b,
(iv) for each elementary path C from a to b (i.e., C ∈ paths(a; b)): �(C) ⊆ X .

Components are similar to WF-nets embedded in a larger Petri net. However, in contrast
to WF-nets, the source/sink node can be a transition instead of a place.

In line 5 of the algorithm the set X is partitioned into subsets X i. The goal of the al-
gorithm is to extendX such that these subsets correspond to components. The following
lemma lists eight properties of the Xi components constructed by the algorithm. These
properties will be used in the proof of Theorem 2.



Lemma 1. Let PNN and PNO be sound WF-nets, PNON
= PNO ∪ PNN , and let

DC be the dynamic change region. Let DC be partitioned into X 1, X2, ... ,Xn such
that:

(a) Xi ∩Xj = ∅ for all 1 ≤ i < j ≤ n

(b) DC =
S

1≤i≤nXi

(c) PNON |Xi is connected for all 1 ≤ i ≤ n

(d) (•Xi) ∩Xj = ∅ and (Xi•) ∩Xj = ∅ for all 1 ≤ i < j ≤ n

Such partitioning always exists and is unique. The partitioning has the following prop-
erties:

(e) For all 1 ≤ i ≤ n: Xi is a component of PNON .
(f) For all 1 ≤ i ≤ n: Xi ∩ (PO ∪ TO

) is a component of PNO.
(g) For all 1 ≤ i ≤ n: Xi ∩ (PN ∪ TN

) is a component of PNN .
(h) For all 1 ≤ i ≤ n: source(PNON ; Xi) = source(PNO; Xi ∩ (PO ∪ TO

)) =

source(PNN ; Xi ∩ (PN ∪ TN
)) and sink(PNON ; Xi) = sink(PNO; Xi∩ (PO

∪TO
)) = sink(PNN ; Xi ∩ (PN ∪ TN

)).

Proof. First we prove that DC can be partitioned in into X1, X2, ... ,Xn and that this
partitioning is unique. PartitionDC into singletonsX1, X2, ... ,Xm. Such a partitioning
satisfies properties (a), (b), and (c). If the partitioning does not satisfy property (d), then
there is an i and j such that there is an arc from a node in X i to a node in Xj . If this is
the case, then join Xi and Xj . Clearly the nodes Xi ∪Xj are connected. Then repeat
the procedure until (d) holds. Note that the existence of such a partition is used in line
5 of the algorithm.

It remains to be proven that properties (e), (f), (g), and (h) hold. We will prove these
properties for a given set of nodes Xi (1 ≤ i ≤ n) identified in the partitioning.

The algorithm stops if no new nodes are added in lines 6 through 14. This implies
that at the end:

(i) For all a ∈ Xi, b ∈ Xi\{a}, c ∈ PON∪TON ,C1 ∈ paths(a; c),C2 ∈ paths(b; c)

such that �(C1) ∩ �(C2) = {c}: �(C1) ∪ �(C2) ⊆ Xi.
(ii) For all a ∈ Xi, b ∈ Xi\{a}, c ∈ PON∪TON ,C1 ∈ paths(c; a),C2 ∈ paths(c; b)

such that �(C1) ∩ �(C2) = {c}: �(C1) ∪ �(C2) ⊆ Xi.
(iii) For all x ∈ Xi such that •x ∩ Xi �= ∅: •x ⊆ Xi, i.e., •x �⊆ Xi implies x ∈

source(PNON ; Xi).
(iv) For all x ∈ Xi such that x• ∩ Xi �= ∅: x• ⊆ Xi, i.e., x• �⊆ Xi implies x ∈

sink(PNON ; Xi).

The first two observations follow directly from the algorithm. The latter two are the
result of line 14 in the algorithm and property (d). These observations are used to prove
the remaining properties.

Property (e). First we prove that source(PNON ; Xi) is a singleton. There is at least
one source node. If Xi contains iPNON , then iPNON is a source node. If Xi does not
contain iPNON , then there is a directed path from iPNON to a node in Xi. Consider



the first node of Xi on this path. Clearly this node is a source node of X i (use Property
(iii)). There cannot be two source nodes. Suppose that both a and b are source nodes of
Xi and a �= b. There is a directed elementary path from iPNON to a and from iPNON

to b. Let c be the last common node of these two paths, i.e., walk backwards on the
directed elementary path from iPNON to a until one encounters a node also appearing
in the other path. Based on these two paths and the last common node, we define two
subpaths: an elementary directed path C1 from c to a, and an elementary directed path
C2 from c to b. Clearly, (�(C1) ∩ �(C2)) = {c}. Hence, (�(C1) ∪ �(C2)) ⊆ Xi

(use Observation (i) and {c} ⊆ Xi). However, since both a and b are source nodes of
Xi, there cannot be any input nodes from within X i. Hence, both paths cannot contain
multiple nodes, i.e., c = a and c = b. This contradicts the assumption that a �= b and
shows that there can only be one source node.

Similarly, it can be shown that sink(PNON ; Xi) is a singleton.

Let {a} = source(PNON ; Xi), {b} = sink(PNON ; Xi), and x ∈ Xi. We need
to prove that x is on a directed path from a to b. Let C1 be a directed path from iPNON

to x and C2 be a directed path from x to oPNON . Such paths exist since PNON is a
WF-net. Let y be the first element of Xi on C1. Clearly y = a (use Observation (iii)).
Hence, there is a directed path from a to x. Similarly, it can be shown that there is a
directed path from x to b.

Let C be an elementary path from a to b. Observation (i) implies that �(C) ⊆ X i

(b = c).

Property (f). Let a be the unique source node of X i in PNON , i.e., {a} = source

(PNON ; Xi). a is also a node of PNO: either a = iPNON which also appears in
PNO or there is a node x not in DC such that x ∈ •a. In the latter case x is not in
the static change region (SC ⊆ DC) and therefore the set of nodes connected to x did
not change. Hence a is a node of PN O. Since PNO is a subnet of PNON , a is also
a source node of Xi in PNO. Note that only by adding new connections source nodes
can become non-source nodes. Similarly, we can show that the unique sink node b of
Xi in PNON , i.e., {b} = sink(PNON ; Xi), is also a sink node of PNO.

a is a source node of Xi in PNO and b is a sink node of Xi in PNO. Before we
show that these two nodes are unique, we focus on the other two properties a component
needs to satisfy.

Every node x in Xi is on a path from a to b in PNON (see proof of Property (e)).
If x ∈ Xi is a node of PNO, then x is on a path from a to b in PNO. Let C1 be a
directed path from iPNO to x and C2 be a directed path from x to oPNO in PNO. Such
paths exist since PNO is a WF-net and both paths are also paths of PNON . Is is easy
to show that a must appear on path C1 (consider the first node of Xi; this must be a)
and b must appear on C2.

Let C be a directed path from a to b in PN O. C is also a path in PNON . Clearly,
�(C) ⊆ Xi (see proof of Property (e)). Since C be a directed path in PN O, �(C) ⊆
Xi ∩ (PO ∪ TO

).

It remains to be proven that a and b are unique. Suppose there is an additional source
node x, i.e., x ∈ source(PNO; Xi ∩ (PO ∪ TO

)) and x �= a. Since x is on a directed



path from a to b contained in Xi ∩ (PO ∪ TO
), x cannot be source node, i.e., a is the

only source node. Similarly, it can be shown that b is unique.
Based on these observations we conclude that Xi ∩ (PO ∪ TO

) is a component of
PNO.

Property (g). The proof of this property is identical to the proof of Property (f).

Property (h). This property follows directly from the proof of properties (f) and (g). ��

Based on the eight properties listed in Lemma 1, we prove Theorem 2. This theorem
states that the dynamic change region provides a sufficient condition for valid transfers.

Theorem (A sufficient condition for valid transfers). Let PNN and PNO be sound
WF-nets, PNON

= PNO ∪PNN , and let DC be the dynamic change region. For any
reachable marking M of PNO not marking the dynamic change region, i.e., iPNO

∗→
M in PNO and M(p) = 0 for any p ∈ DC ∩ PO, a transfer (PNO;M) ⇒
(PNN ;M) is valid.

Proof. Let M be such that iPNO

∗→ M in PNO and M(p) = 0 for any p ∈ DC ∩P O .
First, we prove that for all p ∈ P O

: M(p) ≥ 1 implies p ∈ PN . If p ∈ PO

and M(p) ≥ 1, then p �∈ DC. Hence, p �∈ SC (SC ⊆ DC). Property 1 shows that
(PO ∪ TO

) \ (PN ∪ TN
) ⊆ SC. Therefore, p ∈ PN .

Finally, we prove that iPNN

∗→ M in PNN . Lemma 1 shows that DC can be parti-
tioned into X1, X2, ... ,Xn such that Xi is a component of PNON , Xi ∩ (PO ∪TO

) is
a component of PNO, and Xi ∩ (PN ∪ TN

) is a component of PNN . Consider an ar-
bitrary component Xi with {a} = source(PNON ; Xi) and {b} = sink(PNON ; Xi).
If both a and b are places, then PNON |Xi , PNO|Xi , and PNN |Xi are WF-nets. This
follows directly from Definition 19. Since PN ON |Xi , PNO|Xi , and PNN |Xi are sub-
nets of sound WF-nets, these subnets are also sound. (See Theorem 3 in (Aalst, 2000).)
Note that the soundness of each subnet heavily depends on the safeness of the enclosing
WF-net. Since the subnets are sound their behavior corresponds to a single transition
tv connecting a and b. Now consider firing sequence � which leads to M in PN O, i.e.,
iPNO

�→ M . Consider the transitions of Xi which occur in �. These transition form
complete subsequences of the embedded WF-net PN O|Xi , i.e., since no tokens are left
in Xi every subsequence corresponds one firing of the virtual transition t v . Each firing
of this virtual transition can be mimicked by a firing sequence of the embedded WF-net
PNN |Xi in PNN . This way occurrences of transitions in Xi ∩ TO can be replaced
by transitions in Xi ∩ TN . This assumes that both a and b are places. However, the
same reasoning can be applied to components where a and/or b are transitions. Such a
transition-bordered WF-net can be transformed into a sound WF-net by adding a source
and/or sink place. This can be repeated for each of the components. Therefore, � can

be transformed into a firing sequence � ′ which leads to M in PNN , i.e., iPNO

�′→ M .
Hence, iPNN

∗→ M in PNN . ��

Finally we prove Theorem 3.



Theorem (A weaker condition for valid transfers). Let PNN and PNO be sound
WF-nets, PNON

= PNO ∪PNN , and let DC be the dynamic change region. For any
reachable marking M of PNO not marking the internal places of the dynamic change
region, i.e., iPNO

∗→ M in PNO and M(p) = 0 for any p ∈ {x ∈ DC ∩ PO | (•x) ∪
(x•) ⊆ DC}, a transfer (PNO ;M) ⇒ (PNN ;M) is valid.

Proof. Compared to Theorem 2 so-called border places p can be marked while a case
is being transferred. Consider a place p ∈ DC ∩ P O such that not (•p) ∪ (p•) ⊆
DC, i.e., •p �⊆ DC or p• �⊆ DC. If •p �⊆ DC, then {p} = source(PNON ; Xi) =

source(PNO; Xi) = source(PNN ; Xi) of some component Xi. Since p appears in
PNO and PNN , the sets of input transitions of p are identical in PN O and PNN ,
and PNO|Xi and PNN |Xi have a behavior similar to a single transition, a transfer of
a token in p does not jeopardize the validity of the transfer. Similarly, a token in a place
p with p• �⊆ DC cannot jeopardize the validity. Hence, if only places outside DC and
border places are marked, then (PN O ;M) ⇒ (PNN ;M) is valid. ��
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