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Abstract Process mining techniques use event logs as input. When analyzing complex
databases, these event logs can be built in many ways. Events need to be grouped into traces
corresponding to a case. Different groupings provide different views on the data. Building
event logs is usually a time-consuming, manual task. This paper provides a precise view on
the case notion on databases, which enables the automatic computation of event logs. Also,
it provides a way to assess event log quality, used to rank event logs with respect to their in-
terestingness. The computational cost of building an event log can be avoided by predicting
the interestingness of a case notion, before the corresponding event log is computed. This
makes it possible to give recommendations to users, so they can focus on the analysis of
the most promising process views. Finally, the accuracy of the predictions and the quality
of the rankings generated by our unsupervised technique are evaluated in comparison to ex-
isting regression techniques as well as to state of the art learning to rank algorithms from
the information retrieval field. The results show that our prediction technique succeeds at
discovering interesting event logs and provides valuable recommendations to users about
the perspectives on which to focus the efforts during the analysis.
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Fig. 1 Example of database schema types: (a) star, (b) snowflake, and (c) arbitrary.
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1 Introduction

Process mining [2] is a field of data science devoted to the analysis of process behavior.
This data-driven analysis makes it possible to discover models, analyze performance, detect
deviations, identify bottlenecks and inefficiencies, make improvements, monitor the behav-
ior, and make predictions, all related to business processes in a large variety of domains.
To perform these kinds of analyses, process mining techniques require event logs as input.
An event log is a set of process instances or traces, each of which contains a set of events.
Events represent occurrences of process tasks or activities at a certain point in time.

Obtaining event logs is not a trivial matter. Data extraction and preparation are, very
often, the most time-consuming tasks (around 80% of the time) and one of the most costly
(around 50% of the cost) in data analysis projects [30]. This is due to the fact that data comes
in many forms, while a lot of manual work and domain knowledge is needed to obtain
meaningful event logs from it. Additionally, not all systems worth analyzing are process-
aware information systems (PAIS), i.e., event data is not explicitly recorded as a first-class
citizen within the system. If that is the case, additional work needs to be performed to obtain
the events required to build logs for analysis. Another reason for the high cost in time and
effort of the event log building phase is that, in many cases, domain knowledge about the
system at hand is simply not available. Analysts need to interview the business owners and
database managers to understand what parts of the event data can be interesting to look into.
This interaction often requires several iterations and a large time investment from all parties.

The principal idea behind log building is to correlate events in such a way that they
can be grouped into traces to form event logs. Classical approaches would use a common
attribute to correlate events. This is a valid method in scenarios where the data schema has
a star shape [16] (Figure 1.a): there is a central table and the rest are directly related to it,
with at least one column in common, which can be used as a case notion. However, we
consider the scenario in which some pairs of events may not have any attribute in common.
This is the case for a snowflake schema [16] (Figure 1.b), which resembles the shape of a
star schema, with the difference that, at the points, we find tables that only hold a transitive
relation with the central table. In practice, we often find databases which schema presents
a higher complexity than a star or snowflake structure (Figure 1.c). In that case, there are
many combinations in which events can be grouped. These combinations cannot be arbitrary,
but must obey some criteria with a business meaning, e.g., group the invoice and delivery
events by means of the invoice_id field present in the former ones. Also, more complex
combinations can be defined when transitive relations are considered for the grouping, e.g.,
group the invoice, delivery, and bill events according to the field invoice_id in delivery events
and the field delivery_id in the bill events. Each of these examples capture what we will refer
to as a case notion, i.e., a way to look at event data from a specific perspective.

When dealing with vast datasets from complex databases, the existence of many po-
tential case notions is evident. Enterprise Resource Planning (SAP, Oracle EBS, Dolibarr),
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Hospital Information Systems (ChipSoft, GE Centricity, AGFA Integrated Care), and Cus-
tomer Relationship Management (Salesforce, MS Dynamics, SugarCRM) are examples of
systems powered by large databases where multi-perspective analysis can be performed.
According to different case notions, many different event logs can be built. The research
problem we tackle in this paper is how to choose the right perspective on the data, which
is a crucial step in order to obtain relevant insights. It is common practice to perform this
selection by hand-written queries, usually by an analyst with the right domain knowledge
about the system and process under study. However, when facing complex data schemas,
writing such queries can become a very complicated task, especially when many tables are
involved.

A naive way to tackle the exploration of complex databases is to automatically gen-
erate all the possible case notions as combinations of tables. This can lead to many event
log candidates, even for a small database. The combinatorial problem is aggravated in more
complex scenarios, i.e. with hundreds of tables involved. Given a weakly connected! data
schema of 90 tables, there exist 4 005 combinations of pairs of tables?. If we consider com-
binations of 3 tables instead, the number increases to 117 480, even before considering the
many different paths that could connect the tables in each combination. In such cases, the
automated building of logs for all possible table combinations may still be possible, but has
proven to be computationally very expensive: In the hypothetical case that building an event
log would take 4 seconds on average, building the event logs for a data schema with 90 ta-
bles and 10 000 possible case notions would take approximately 11 hours. Even if we spend
the time to compute all of them, we still need to inspect 10 000 event logs to find out which
perspective is both meaningful and interesting.

A way to mitigate the combinatorial explosion is to reduce the case notion search space
as much as possible. Identifying the most interesting event logs would help to prioritize the
most promising views on the data for its analysis. The challenge of identifying the most
promising views is related to the log quality problem. The log quality problem is concerned
with identifying the properties that make an event log more suitable to be analyzed, i.e. the
characteristics that increase the probability of obtaining valuable insights from the analysis
of such an event log. The choices made during the log building process have an effect on
the log quality [19]. Also, metrics to assess structural log properties have been proposed by
some authors [17], which may be important to assess log quality.

The main contributions of this work are: (a) formally defining complex case notions
to adopt different perspectives on event data; (b) automatically generating candidate case
notions on a dataset; (c) assessing the quality of the resulting event logs; (d) automatically
predicting an event log’s quality before it is built; (e) sorting the case notions according to
their relative quality from the analysis point of view. This drastically reduces the compu-
tational cost avoiding the generation of uninteresting event logs. In order to achieve these
goals, data must be extracted from the original system and transformed to fit into a certain
structure. This structure should be able to capture both the process and the data sides of
the system under study. The techniques proposed in this paper have been implemented in
a framework and evaluated with respect to related ranking algorithms. The approach yields

! Weakly connected graph: a directed graph such that, after replacing all of its directed edges with undi-
rected ones, it produces a connected graph. A connected graph is one such that, for any pair of nodes (a, b),
there is a path from a to b.

2 For a set of n elements (n tables), the number of k-combinations (combinations of k tables) is (Z) =

!
k!(r?—k)!
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Fig. 2 High level structure of the OpenSLEX meta model.

promising results in terms of performance and accuracy on the computation of event log
rankings.

The paper is structured as follows. Section 2 introduces some preliminary concepts
about how information contained in databases can be extracted and structured. Section 3
introduces a running example. Section 4 defines the concept of case notion and proposes
a formalized way to build event logs. Section 5 provides a way to automatically assess the
quality of event logs. Section 6 proposes a technique to predict the quality of an event log
before it is computed, reducing the computation time several orders of magnitude. Section 7
presents the implementation of all the techniques described in this work. The result of the
evaluation is presented in Section 8. Related work is discussed in Section 9. Lastly, Sec-
tion 10 presents the conclusions of this study.

2 Preliminaries

To enable the application of process mining and the techniques proposed in this work, we
need access to the database of the system under study. This information should be extracted
and transformed to fit into a specific data structure. An appropriate structure has been pre-
viously defined as a meta model [25] and implemented in a queryable file format called
OpenSLEX. Figure 2 shows a high level view of the meta model that describes the Open-
SLEX format. The meta model captures all the necessary aspects to enable the application
of our techniques. This section describes the structure of OpenSLEX and provides the nec-
essary background to understand the techniques proposed in the coming sections.
Standards of reference like XES [1] are focused on the process view (events, traces, and
logs) of systems. OpenSLEX supports all concepts present in XES, but in addition, also
considers the data elements (data model, objects, and versions) as an integral part of its
structure. This makes it more suitable for database environments where only a small part of
the information is process-oriented (i.e. events) with respect to the rest of data objects of dif-
ferent classes that serve as an augmented view of the process information. The OpenSLEX
format is supported by a meta model that considers data models and processes as the entities
at the highest abstraction level. These entities define the structure of more granular elements
like logs, cases, and activity instances with respect to processes, and objects with respect
to classes in the data model. Each of these elements at the intermediate level of abstraction
can be broken apart into more granular pieces. This way, cases are formed by events, and
objects can be related to several object versions. Both events and object versions represent
different states of a higher level abstraction (cases or objects) at different points in time.
Figure 3 depicts the entity-relation diagram of the OpenSLEX format. Some elements of
the meta-model have been omitted from the diagram for the sake of simplicity. A full version
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Fig. 3 ER diagram of the OpenSLEX meta-model. The entities have been grouped into sectors, delimited by
the dashed lines.
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of the ER diagram is available online®. Each of the entities in the diagram, as represented by
a square, corresponds to the basic entities of the meta-model as formalized in Definition 2.
Also, these entities, together with their relations (diamond shapes), have been grouped in ar-
eas that we call sectors (delimited by dashed lines). These sectors are: data models, objects,
versions, events, cases, and process models. These tightly related concepts provide an ab-
breviated representation of the meta-model. As can be observed, the entity-relation diagram
is divided into six sectors. The purpose of each of them is described below:

— Data models: this sector is formed by concepts needed to describe the structure of any
database system. Many data models can be represented together in this sector, whose
main element is the data model entity. For each data model, several classes can exist.
These classes are abstractions of the more specific concept of table, which is commonly
found in RDBMSs. Classes contain attributes, which are equivalent to table columns in
modern databases (e.g., id, name, address, etc.). The references between classes of the
same data model are represented with the relationship entity. This last entity holds links
between a source and a target class.

— Objects: the object entity, part of the objects sector, represents each of the unique data
elements that belong to a class. An example of this can be a hypothetical customer with
customer_id =75. Additional details of this object are omitted, given that they belong to
the next sector.

— Versions: for each of the unique object entities described in the previous sector, one
or many versions can exist. A version is an instantiation of an object during a certain
period of time, e.g., the customer object with id 75, existed in the database, during a cer-
tain period of time, for example from “2015-08-01 14:45:00” to “2016-09-03 12:32:00”.
During that period of time, the object had specific values for the attributes of the cus-
tomer class that it belongs to. Therefore, there is a version of customer 75, valid between
the mentioned dates, with name “John Smith”, address “45, 5th Avenue”, and birth date
“1990-01-03”. If at some point, the value of one of the attributes changed (e.g., a new ad-
dress), the end timestamp of the previous version would be set to the time of the change,
and a new version would be created with the updated value for that attribute, and a
start timestamp equal to the end of the previous version, e.g., version_1 = {object_id
=75, name = “John Smith”, address = “45, 5th Avenue”, birth_date = “1990-01-03",
start_timestamp = “2015-08-01 14:45:00”, end_timestamp = “2016-09-03 12:32:00”},
and version_2 = {object_id = 75, name = “John Smith”, address = “floor 103, Empire
State Building”, birth_date = “1990-01-03”, start_timestamp = “2016-09-03 12:32:007,
end_timestamp = NONE }. Note that the value of end_timestamp for the newly created
object version (version_2) is NONE. That means that it is the current version for the
corresponding object (object_id = 75). Another entity reflected in this sector is the con-
cept of relation. A relation is an instantiation of a relationship, and holds a link between
versions of objects that belong to the source and target classes of the relationship. For
example, a version of a booking object can be related to another version of a customer
object by means of a relation instance, as long as a relationship exists from class booking
to class customer.

— Events: this sector collects a set of events, obtained from any available source (database
tables, redo-logs, change records, system logs, etc.). In this sector, events appear as a
collection, not grouped into traces (such grouping is reflected in the next sector). In
order to keep process information connected to the data side, each event can be linked
to one or many object versions by means of a label (eventToOVLabel). This label allows

3 nttps://github.com/edugonza/OpenSLEX/blob/master/doc/meta-model . png
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Fig. 4 Diagram of an instance of the OpenSLEX meta-model.

specifying what kind of interaction exists between the event and the referred object
version, e.g., insert, update, delete, read, etc. Events hold details such as timestamp,
life-cycle, and resource information, apart from an arbitrary number of additional event
attributes.

— Cases and instances: the entities present in this sector are very important from the pro-
cess mining point of view. The events by themselves do not provide much information
about the control flow of the underlying process, unless they are correlated and grouped
into traces (or cases). First, the activity instance entity should be explained. This entity
is used to group events that refer to the same instance of a certain activity with different
values for its life-cycle, e.g., the execution of an activity generates one event for each
phase of its life-cycle. Both events, referring to the same execution of an activity, are
grouped into the same activity instance. Next, as in any other event log format, activity
instances can be grouped in cases, and these cases, together, form a log.

— Process models: the last sector contains information about processes. Several processes
can be represented in the same meta-model. Each process is related to a set of activities,
and each of these activities can be associated with several activity instances, contained
in the corresponding cases and instances sector.

Figure 4 shows an example of an instance of the OpenSLEX meta-model. For the sake
of clarity the model has been simplified, but the main structure remains. We see that there
is a global data model. All the classes belong to it: “Customer” and “Booking”. Also, there
are three attributes: “Name”, “Address”, and “BookingDate”. The first two attributes be-
long to the class “Customer”. The third one belongs to “Booking”. There is a relationship
connecting bookings to customers named “Booking_to_Customer”. Two objects exist. The
first object has two versions. Each version of the customer object has values for the corre-
sponding attributes. We see that the first customer version corresponds to a customer named
“Edu” while he lived in “Spain”, from 1986 to 2014. The second version corresponds to the
same customer, while he lived in “The Netherlands” from 2014 until the present. There is
another object version that belongs to the second object, a booking object. The “Booking-
Date” value of this version is “2019”. There is a relation (an instance of the relationship
“Booking_to_Customer”), that connects the second object version of customer / to the first
object version of booking /. On the left side of the figure, we see that three events exist.
The first event, related to the first version of customer 1, is linked to the activity “Born”, and
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happened in 1986. The second event, linked to the activity “Move”, happened in 2014 and
is related to the second version of the same customer. Finally, the third event is linked to
the activity “Book™, and is linked to the first version of booking /. Each event belongs to its
own activity instance. All activity instances belong to one case. This case belongs to a log
of the process “Life”.

The OpenSLEX format makes use of a SQL schema to store all the information and a
Java API* is available for its integration in other tools. An evaluation of the use of Open-
SLEX [25] in several environments tackles the data extraction and transformation phase
and demonstrates its flexibility and potential to enable standard querying and advanced data
analyses. To keep this paper self-contained and to provide the necessary background for the
understanding of this work, a simplified version of the meta model is formally presented
below. Every database system contains information structured with respect to a data model.
Definition 1 provides a formalization of a data model in the current context.

Definition 1 (Data Model) A data model is a tuple DM = (CL, AT, classOfAttribute,
RS, sourceClass, targetClass) such that

- CL is a set of class names,

- AT is a set of attribute names,

- classOfAttribute € AT — CL is a function that maps each attribute to a class,

- RS is a set of relationship names,

- sourceClass € RS — CL is a function mapping each relationship to its source class,

- targetClass € RS — CL is a function mapping each relationship to its target class

Data models contain classes (i.e. tables), which contain attribute names (i.e. columns).
Classes are related by means of relationships (i.e. foreign keys). Definition 2 formalizes each
of the entities of the meta model and shows the connection between them.

Definition 2 (Connected Meta Model) Let V' be some universe of values and TS a
universe of timestamps. A connected meta model is defined as a tuple CMM = (DM, OC,
classOfObject, OVC, objectOf Version, EC, eventToOV Label, IC, eventAI, PMC,
activityOfAl, processOfLog) such that

- DM = (CL, AT, classOfAttribute, RS, sourceClass, targetClass) is a data model,

- OC is an object collection,

- classOfObject € OC — CL is a function that maps each object to a class,

- OVC = (OV, attValue, start Timestamp, endTimestamp, REL) is a version collec-
tion where OV is a set of object versions, attValue € (AT x OV) 4 V is a mapping
of pairs of object version and attribute to a value, startTimestamp € OV — TS isa
mapping between object versions and start timestamps, end Timestamp € OV — TS is
a mapping between object versions and end timestamps, and REL C (RS x OV x OV)
is a set of triples relating pairs of object versions through a specific relationship,

- objectOfVersion € OV — OC! is a function that maps each object version to an object,

- EC is an event collection such that EC = (EV,EVAT, eventTimestamp,
eventLifecycle, eventResource, eventAttribute Value) where EV is a set of events,
EVAT a set of event attribute names, eventTimestamp € EV — TS maps events
to timestamps, eventLifecycle € EV — {start, complete,...} maps events to life-
cycle attributes, eventResource € EV — V maps events to resource attributes, and
eventAttribute Value € (EV x EVAT) 4 V maps pairs of event and attribute name
to values,

4 https://github.com/edugonza/openslex
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- eventToOVLabel € (EV x OV) 4 V is a function that maps pairs of an event and
an object version to a label. The existence of a label associated to an event and an object
version, i.e. (ev, ov) € dom(eventToOVLabel), means that both event and object ver-
sion are linked. The label defines the nature of the link, e.g “insert”, “update”, “delete”,
etc,

- IC = (AI, CS, LG, aisOfCase, casesOfLog) is an instance collection where Al is a
set of activity instances, CS is a set of cases, LG is a set of logs, aisOfCase € C'S —
P(AI) is a mapping between cases and sets of activity instances’, and casesOfLog €
LG — P(CS) is a mapping between logs and sets of cases,

- eventAI € EV — Al is a function that maps each event to an activity instance,

- PMC = (PM, AC, actOfProc) is a process model collection where PM is a set of
processes, AC' is a set of activities, and actOfProc € PM — P(AC) is a mapping
between processes and sets of activities,

- activityOfAI € AI — AC is a function that maps each activity instance to an activity,

- processOfLog € LG — PM is a function that maps each log to a process.

A Connected Meta Model provides the functions that make it possible to connect all the
entities in the meta model. However, some constraints must be fulfilled for a meta model
to be considered a valid connected meta model (e.g. versions of the same object do not
overlap in time). The details about such constraints are out of the scope of this paper, but
their description can be found in [25]. From now on, any reference to input or extracted data
will assume to be in the form of a valid connected meta model. As we have seen, according
to our meta model description, events can be linked to object versions, which are related to
each other by means of relations. These relations are instances of data model relationships.
In database environments, this would be the equivalent of using foreign keys to relate table
rows and knowing which events relate to each row. For the purpose of this work, we assume
that pairwise correlations between events, by means of related object versions, are readily
available in the input meta model. This means that, prior to the extraction, we know the
data schema, i.e., primary and foreign keys, and how events are stored in each table, e.g.,
which columns contain the timestamp and activity name of each event. The first precondition
(knowing the data schema) is fair to assume in most real-life environment. Given the lack
of automated approaches in the literature that tackle the challenge of event data discovery,
the second precondition (knowing the events) requires having the right domain knowledge
in order to extract events. The presented meta model formalization sets the ground for the
definition of case notion and log that will be presented in the coming sections.

3 Running Example

Extracting data contained in an information system’s database is a complex task. Very of-
ten, we lack the domain knowledge needed to identify business objects and meaningful case
notions. Also, understanding complex data schemas can be challenging when the number of
tables is beyond what can be plotted and explored intuitively. Consider for example the SAP
ERP system. This widespread ERP system is often a target for process mining analysis, as
it is used in a multitude of organizations, and contains a huge amount of functionalities by
means of configurable modules. SAP can run on different database technologies. And its
instances always maintain a common data model, which is well-known for its complexity.

3 P (X) is the powerset of X,ie.,Y € P(X)ifY C X.
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Fig. 5 General view of the data model of the SAP dataset (the table attributes have been omitted).

SAP represents a prime example because it is a widely used system. Nevertheless, the ap-
proach is highly generic and can be applied in different environments, e.g., alternative ERP
tools such as Oracle EBS, HIS solutions such as ChipSoft, and CRM systems like Sales-
force. Figure 5 depicts the data model of a sample SAP dataset. This dataset, belonging to
SAP IDES (Internet Demonstration and Evaluation System), is an instance of a fictitious
organization. It contains more than 7M data objects of 87 different classes and more than
26k events corresponding to changes for a subset of the objects present in the database. In
the diagram, classes are represented by squares, while edges show the relationships between
classes. Table names in SAP are codified in such a way that it is not easy to identify what
these classes mean without further documentation. Also, most of the relevant classes are
connected to many other. This makes it very difficult to plot the graph in such a way that
clusters of classes can be easily identified.

Figure 6 shows in detail a small portion of the graph, where we observe that the EKKO
(Purchasing Document Header) class is linked, among others, to the EKPO (Purchasing
Document Item) class. Also, the EBAN (Purchase Requisition) class is connected to both.
Additionally, the class EKET (Scheduling Agreement Schedule Lines) is linked to EBAN.
According to the official documentation, both EKKO (header table) and EKPO (item ta-
ble) refer to purchasing documents. The EBAN class contains information about purchase
requisition and the EKET class contains schedule lines related to a scheduling agreement.
This could very well be a valid case notion, if we use the connection between the four ta-
bles to correlate the corresponding events in traces. However, there are many ways in which
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Fig. 6 Detail of the data model of the SAP dataset. EKKO and EKPO tables refer to purchase documents,
while EBAN contains information about purchase requisitions.

this correlation could be constructed. One-to-many relationships can exist between classes,
which leads to the well known problems of data divergence (several events of the same type
are related to a single case) and data convergence (one event is related to multiple cases), as
described in [21]. This means that the combination of a subset of classes can yield several,
different event logs, depending on the choices made to correlate the events. Should all the
purchase items or the same purchase requisition be grouped in the same trace? Should one
trace per purchase item exist? Would that mean that the same purchase requisition events
would be duplicated in different traces? The fact that these choices exist makes the process
of log building a non-trivial task. Section 4 provides a definition of case notion and presents
a framework to build event logs effectively, taking into account the aforementioned choices
in a formal manner.

4 Case Notions and Log Building
As we have discussed earlier, event log building is a job that has been traditionally performed
by analysts. It remains a manual and tedious task, and the time dedicated to it has a large

impact on the cost of process mining projects, especially at the start, when the explorative
analysis is performed.
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Fig. 7 Overview of the approach for case notion discovery and recommendation.

When applying the traditional approach to event extraction and event log building, ana-
lysts need to perform several manual tasks (Figure 7). First, a query will be written to extract
events from the dataset, selecting a set of required attributes (timestamp, activity name, case
identifier), and additional attributes (e.g. resource, life-cycle, etc). These events are then
grouped in traces with respect to the value of the chosen case identifier. This method works
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nﬂﬂ

Fig. 8 Simple data schema with 5 nodes (tables) and 4 edges (relationships).

well in situations when the case notion is clear, and all the events share a common field as
case identifier. This is the case, for example, in databases with a star schema [15], where
a factual table is at the center, being connected to other dimensional tables in a star-like
shape. However, more complex database schemas, like the one exposed in Section 3, may
lack a common case-identifying attribute between all the events. In that case, transitive re-
lationships between data elements need to be pursued in order to correlate events that are
not directly linked (e.g., invoices related to orders that are related to customers). In this sit-
uation, queries to extract and correlate events become increasingly complex with respect to
the number of tables involved.

Additionally, it may be that we lack the right domain knowledge about the process to be
able to identify the correct case notion. When this happens, analysts are forced to approach
the data in an explorative way. This means applying a trial and error approach, selecting
a specific case notion, building the log, inspecting the result and, if it is not satisfying,
repeating the process from a different perspective. The problem of this approach is that,
in complex scenarios, it can be extremely time consuming. Consider the data schema in
Figure 8, where nodes represent tables and edges relationships (foreign keys) between tables.
With only 5 tables and 4 relationships, 17 different combinations, or subgraphs, exist: {a, b,
¢,d, e, ab, abe, abed, abede, abd, abde, be, bed, bede, bd, bde, de}

The approach to event log building presented in this work aims at automating the process
as much as possible. As shown in Figure 7, the goal is to provide input event logs to the user
to be analyzed during the explorative phase of a process mining project, while reducing
the time spent performing manual tasks. First, we rely of previous work [25] to extract the
data from the source database, transforming and storing it in a format suitable for automated
analysis. Then, we collect several statistics on different dimensions. These statistics will help
us assess which perspectives (case notions) on the data look more interesting, and are sorted
in a ranking. Finally, based on the ranking, the user can choose which of the suggested case
notions to use to automatically obtain an event log for analysis. The methodology that we
propose for event log building is explained in detail along the present and coming sections.

The focus of this section is on defining what a case notion is, in order to build logs from
event data. Relying on the meta model structure to correlate events gives us the freedom to
apply our log building technique to data coming from different environments, where SAP is
just an example. As long as the existing data elements can be matched to the class, object and
event abstractions, event correlation will be possible. Therefore our log building technique
will be feasible. The fact that this kind of data and correlations can be obtained in real-life
environments has been previously demonstrated in [25]. Our approach defines case notions
based on the data model of the dataset (classes and relationships) and projects the data onto
it (objects, object versions, and events) to find build traces with correlated events.



Case Notion Discovery and Recommendation 13

4.1 Defining Case Notions

We define a case notion (Definition 3) as an annotated rooted tree in which there is always a
root node (root class of the case notion). There can be a set of additional regular class nodes,
together with some converging class nodes, as children of the root node or other nodes of
the subtrees. The root node is the main class of the case notion and triggers the creation of
a new case identifier for each object that belongs to it (e.g. a case identifier for a purchase
order). Regular nodes will force the creation of a new case identifier when several of its
objects relate to one root or regular object (e.g. several deliveries of the same order will
result in one case identifier for each delivery). Converging nodes are the ones that allow one
case identifier to refer to objects of that same class (e.g., several delivery items linked to the
same delivery will be grouped in under the same case identifier).

Definition 3 (Case Notion) Let us assume a data model DM = (CL, AT,
classOfAttribute, RS, sourceClass, targetClass). We define a case notion as a tuple
CN = (C, root, children, CONV ,IDC, rsEdge) such that:

- C C CL is the set of classes involved in the case notion,

- root € C' is the root class in the case notion tree,

- children € C — P(C) is a function returning the children of a class in the case notion
tree,

- CONV C C is the set of classes of the case notion for which convergence is applied. If
a class c belongs to CONYV, all the members of the subtree of ¢ must belong to this set,
i.e, Ve € CONV : children(c) C CONV,

- IDC = C\ CONYV is the set of identifying classes that will be used to uniquely identify
cases of this case notion,

- rsEdge € (C x C) — RS is a function returning the relationship of the edge between
two classes in the tree such that, Ve € C : V¢ € children(c) : 3rs € RS : {c,c'} =
{sourceClass(rs), targetClass(rs)} A rsEdge(c, c') = rs.

Table 1 Sample object, version and event identifiers for the classes involved in the case notion.

Class ObjectID VersionID EventID RelationID
EKET al avl ael bvl
EKET al av2 ae2 bv2
EKET a2 av3 ae3 bv3
EBAN bl bvl bel -
EBAN bl bv2 be2 -
EBAN b2 bv3 be3 -
EKKO cl cvl cel bv2
EKKO c2 cv2 ce2 bv2
EKKO c3 cv3 ce3 bv3
EKPO dl dvl del cvl
EKPO d2 dv2 de2 cvl
EKPO d3 dv3 de3 cv2
EKPO d4 dv4 ded cv3

Figure 9 shows an example of a case notion combining classes EBAN, EKET, EKKO,
and EKPO. The class EBAN is the root of the case notion. The class EKET is a reg-
ular child of the root node, while the child node EKKO is a converging class. By in-
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Tegend al, bl, cl, 2, d1, d2 ,d3

root class class

converging class

a2, b2, ¢3, d4

4‘1/ ----- »  Relationship direction F . .
ig. 10 Links between objects of classes EKET
EKPO ——>  Tree hierarchy (al, a2), EBAN (b1, b2), EKKO (cl, c2, c3), and
EKPO (dl, d2, d3, d4). The objects have been
Fig. 9 Sample of a case notion, represented as an grouped in two sets, corresponding to the case iden-
annotated rooted tree. tifiers computed for the case notion of Figure 9.

heritance, the node EKPO is a converging class as well, given that it belongs to a sub-
tree of the converging class EKKO. Therefore, Figure 9 is the graphical representation
of the case notion cn for which C = {EBAN,EKET,EKKO,EKPO}, root =
EBAN, CONV = {EKKO,EKPO}, IDC = {EBAN,EKET}, children €
C — P(C) such that children(EBAN) = {EKET,EKKO}, children(EKKO) =

{EKPO}, children(EKPO) = (, and children(EKET) = 0, and rsEdge €
(C x C) — RS such that rsEdge(EKET,EBAN) = fk_cket_to_eban®,
rsEdge(EKKO, EBAN) = fk_ekko_to_eban, and rsEdge(EKPO,EKKO) =

fk_ekpo_to_ekko. According to this case notion, each trace will contain events belonging
only to one EBAN object, only one EKET object, but to any EKKO or EKPO objects that
hold a relation with the EBAN object represented by the trace. This is due to the fact that
EKKO and EKPO are defined as converging classes in our case notion. The log building
process is described in greater detail below.

4.2 Building a Log

The process of building an event log can be seen as the projection of a dataset on a certain
case notion. First, a set of case identifiers will be constructed, which will determine the
objects that will be correlated per trace. Definition 4 describes in more detail how this set of
case identifiers is generated. Figure 10 will be used in this section as an example to illustrate
the method.

Definition 4 (Case Identifiers) Let us assume a valid connected meta model CMM and

a case notion CN = (C,root, children, CONV ,IDC, rsEdge). We define CI as the

maximal set’ of case identifiers such that, each case identifier ci € CI is a set of objects

ci = {o € OC | classOfObject(o) € C} and the following properties apply:
-Yo € ci : classOfObject(o) € IDC = (3o € ci : classOfObject(o’) =
classOfObject(0) = o' = o), i.e., cannot exist two objects per identifying class in
each case identifier,

- Jo € ci : classOfObject(o) = root, i.e., one object of the case identifier belongs to the
root,

- R C (ci x ci) = {(0,0)|3(rs, ov,0v") € REL : ¢ = classOfObject(o) A ¢’ =
classOfObject(0’) A objectOf Version(ov) = o A objectOf Version(ov') = o’ A rs =
rsEdge(c, ') A sourceClass(rs) = c A targetClass(rs) = ¢'}, i.e, R is a relation

6 fk_* stands for “foreign key”, e.g., fk_eket_to_eban represents a foreign key from table EKET to table
EBAN.

7 A'is a maximal set for property P if: (a) A satisfies property P and (b) VB D A satisfying property P:
B=A.
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between two objects of the case identifier such that both objects have at least one link in
the original data for a relationship considered in the case notion. To improve readability,
we can say that oRo' <= (0,0') € R,

- Jei| > 1 = Y(0,0") € (ci x ci) : oRT 0, i.e., as long as the case identifier contains
more than one object, any pair of objects must belong to the transitive closure® of the
relation R, i.e. directly or transitively related through objects of the case identifier.

Let us consider the sample dataset in Table 1. It corresponds to the tables EBAN, EKET,
EKKO, and EKPO. In total there are 11 objects ({al, a2,b1,b2,cl,c2,¢3,d1,d2,d3, d4}),
13 object versions ({avl, av2, av3, bvl, bv2, bv3, cvl, cv2, cv3, dvl, dv2, dv3, dv4d}), and
13 events ({ael, ae2, ae3, bel, be2, be3, cel, ce2, ce3, del, de2, de3, de4}). Additionally,
there are 10 relations between object versions ({avl — bvl,av2 — bv2,av3 —
bv3, cvl — bv2, cv2 — w2, cv3 — bvl, dvl — cvl,dv2 — cvl,dv3d — cv2,dvd —
cv3}).

The first step to build the event log corresponding to the case notion in Figure 9 is to
build the set of case identifiers. First, we have to find the maximal set of case identifiers that
comply with the constrains set by the case notion at hand, i.e. (a) all the objects must belong
to the classes in the case notion, (b) at least one object per case identifier must belong to the
root class of the case notion, (c) two objects of the same case identifier cannot belong to the
same identifying class of the case notion, and (d) all the objects in the same case identifier
must be related, either directly or transitively, by means of the relationships specified in the
case notion.

Going back to our example, we will construct the set of case identifiers by looking at the
Figure 10. In it we see the relations between objects. Knowing that {b1, b2} are the objects
belonging to the EBAN class and that EBAN is the root class of the case notion, we know
that exactly one of these objects must be in each of the resulting traces. That means we
will generate, at least, two traces. Objects {al, a2} belong to the class EKET, which is the
other identifying class of the case notion. Only one of these objects is allowed per trace. In
this case, each one of them is related to a different EBAN object. Because EKET and EBAN
are the only identifying classes of the case notion, we can combine their objects already to
create a (non-maximal) set of case identifiers CI’ = {cil’, ci2'}:

cil’ = {al, b1}
ci2’ = {a2, b2}

The next class to look at in the case notion hierarchy is EKKO. There are three objects
({c1, ¢2, ¢3}) belonging to this class. Two of them ({c1, ¢2}) are related to the EBAN object
bl. Given that it is a converging class, we can put them in the same case identifier, in this case
cil’. The other object (c3) is related to the EBAN object b2. Therefore, it will be inserted in
the case identifier ci2’. We proceed analogously with the EKPO objects {d1, d2, d3, d4},
given that EKPO is a converging class in our case notion as well. Finally, the maximal case
identifiers set CT = {cil, ci2} is:

cil ={al,bl,cl,c2,d1,d2,d3}
ci2 = {a2,b2, c3,d4}

Once the case identifiers have been generated, it is possible to build the log in its final
form. First we introduce some useful notation in Definition 5.

8 R is the transitive closure of a binary relation R on a set X if it is the smallest transitive relation on X
containing R.
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Definition 5 (Shorthands I) Given a valid connected meta model CMM, a case notion
CN = (C,root, children, CONV ,IDC, rsEdge) and a maximal set of case identifiers
CI, we define the following shorthands:

- Acto = {act € AC | (e, 0v) € dom(eventToOVLabel) : objectOf Version(ov) =
o A activityOfAI (eventAl(e)) = act}, i.e., the set of activities of the activity instances
related to an object through its versions and events,

- ActC. = {act € AC | 3(e, ov) € dom(eventToOVLable) : objectOf Version(ov)
= o A activityOfAI (eventAl(e)) = act A classOfObject(o) = c}, i.e., the set of
activities related to a class through its activity instances, events, versions and objects,

- 0. = {0 € OC | classOfObject(0) = c}, i.e., the set of objects of a certain class
ceC,

- EvO, = {e € EV | 3(e, ov) € dom(eventToOVLabel) :
objectOfVersion(ov) = o}, i.e., the set of events of a certain object o € OC,

- EvC. = {e € EV | 3(e, ov) € dom(eventToOVLabel) :
classOfObject(objectOf Version(ov)) = c}, i.e., set of events of a certain class ¢ € C,

- By ={e € EV | aic Al N eventAI(e) = ai}, i.e., set of events of a certain activity
instance ai € Al.

In order to build the final log, we will map a set of activity instances to each object
and group them per case identifier to form traces. According to the definition of the Open-
SLEX meta model, an activity instance is a set of events that belong to the same activity and
case, e.g., correlated events with different life-cycle of the same activity (start and complete
events). In our example, for the sake of clarity, we assume that each activity instance is a
singleton with a single event. In fact, we will represent traces as a set of events. Defini-
tion 6 provides a formal description of a log and how to build it from a maximal set of case
identifiers.

Definition 6 (Log) Given a valid connected meta model CMM, a case notion CN = (C,
root, children, CONV |, IDC, rsEdge) and a maximal set of case identifiers CI, we define
alogl € CI — P(AI) as a deterministic mapping between the set of case identifiers and
the powerset of activity instances, such that each of the activity instances in the mapped set
is linked to at least one object of the case identifier, i.e., for all ci € CI : I(ci) = {ai €
Al'|Je € EV : ai = eventAI(e) AJov € OV : (e, ov) € dom(eventToOVLabel) A
objectOf Version(ov) € ci}.

Assuming that, in our example, each activity instance is represented by a single event,
we can build the final log [ as the following mapping:

CI — P(AI)
l:cil = {ael,ae2,bel,be2, cel, ce2,del, de2, de3}
ci2 = {ae3, be3, ce3, ded}

Of course, different variations of case notions will lead to different event logs, given
that the grouping rules will change. Table 2 shows three different case notions, as well as
the corresponding case identifiers and final traces. The first row (a) is based on the case
notion in Figure 9, representing the same example we have just analyzed. Case notions (b)
and (c) are variations of the case notion (a). In (b), the EKKO class has been promoted to
be an identifying class. This provokes the generation of an additional case identifier, since
objects {c1, 2} cannot coexist in the case case identifier anymore. In (c), also the EKPO
class has been transformed into an identifying class. This triggers the creation of another
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case identifier, since the objects {d1, d2,d3,d4} cannot belong to the same case identifier
either. These examples show the impact of converging and identifying classes in the output
of the log building process.

Table 2 Case Identifiers and final traces built from the sample dataset, according to each of the three case
notions.

ID Case Notion Case Identifiers & Traces

al, bl, cl, ¢2, d1, d2 ,d3

a2, b2, ¢3, d4

Trace 1: {ael, ae2, bel, be2, cel, ce2, del, de2, de3}
Trace 2: {ae3, be3, ce3, ded}

al, bl, cl, d1, d2

al, bl, c2, d3
a2, b2, ¢3, dd
Trace 1: {ael, ae2, bel, be2, cel, del, de2}

Trace 2: {ael, ae2, bel, be2, ce2, de3}
Trace 3: {ae3, be3, ce3, ded}

al, bl, cl, dl
al, bl, cl, d2
al, bl, c2, d3
a2, b2, c3, d4

Trace 1: {ael, ae2, bel, be2, cel, del}
Trace 2: {ael, ae2, bel, be2, cel, de2}
Trace 3: {ael, ae2, bel, be2, ce2, de3}
Trace 4: {ae3, be3, ce3, ded}

These definitions make it possible to create specialized logs that capture behavior from
different perspectives. If all the possible case notions for a data model are generated, au-
tomated analysis techniques could be applied to each of the resulting logs, relieving users
from tedious analysis tasks and enabling process mining on a large scale. However, the com-
binatorial explosion problem makes it practically impossible to explore all the case notions
for large and complex data models. Even if the search space could be reduced to discard
irrelevant case notions, the remaining number would be too high in order for humans to in-
terpret the insights for each of the resulting event logs. This means that we must focus our
efforts on the most interesting perspectives to obtain insights without being overwhelmed by
excessive amounts of information. The following section proposes a set of metrics to assess
the interestingness of a case notion, based on measurable quality features of the resulting
event log.
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5 Log Quality: Is my Log Interesting?

The log quality problem concerns the identification of characteristics that make event logs
interesting to be analyzed. This problem is not new to the field. Some authors have studied
how the choices made during the log building process can affect the log quality [19] and
have developed procedures to minimize the negative impact. Other authors have tried to
define metrics to assess different log properties from the structural point of view [17]. In
this work, we aim at assessing the quality of an event log in an automated way. For that
purpose, we adopt some metrics from [17], that will give us an idea of the structural and
data properties that a log should possess in order to be an interesting candidate. In the scope
of our meta model and the logs we are able to build, we need to adapt these concepts to
be able to compute them based on our input data, an OpenSLEX file. Considering a valid
connected meta model CMM, a case notion CN, a set of case identifiers C'I, and a log [,
we adapt the following three metrics to match the structure of our meta model:

Support (SP) (Equation 1): number of traces present in an event log:

SP(1) = [dom(l)| = | C1T| M
Level of detail (LoD) (Equation 2): average number of unique activities per trace:

) | U activityOfAI(ai)| S U Acto
_ ci€Cl ai€l(ci) _ cieCI o€ci
LoD(l) = 940 = T (@)

Average number of events (AE) (Equation 3): average number of events per trace:

Bl 51,0
o ai€l(ci _ ci€CI o€ci
AE() = 50 - o 3)

When analyzing processes, intuitively, it is preferable to have event logs with as many
cases as possible, i.e., higher support (Equation 1), but not too many activities per case, i.e.,
reasonable level of detail (Equation 2). The reason for this is that the complexity of the re-
sulting model, and therefore its interpretation, is closely related to the amount of activities it
needs to represent. However, too few activities results in very simple models that do not cap-
ture any interesting patterns we want to observe. Also, we try to avoid cases with extremely
long sequences of events, i.e., large average number of events per trace (Equation 3), be-
cause of the difficulty to interpret the models obtained when trying to depict the behavior.
However, too short sequences of events will be meaningless if they represent incomplete
cases.

Therefore, while we would like to maximize the support value (1), i.e., give priority
to logs with a higher number of traces, we cannot say the same for the level of detail (2)
and average number of events per case (3). These last two metrics will find their optimality
within a range of acceptable values, which will depend on the domain of the process and
taste of the user, among other factors. Given the differences between the pursued optimal
values for each of the metrics, the need for a scoring function becomes evident. It is required
to be able to effectively compare log metrics. A candidate is the beta distribution. The reason
for our choice is that the beta distribution has two parameters to control its shape, and this
gives us additional freedom to customize the scoring function. Choosing the right values
for the parameters of the distribution can seem daunting at first. However, it is possible
to estimate their value based on more intuitive parameters that describe the shape of the
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Fig. 11 Sample of beta distribution curves for different values of the v and 5 parameters.

resulting distribution, e.g., mode and inflection points of the curve. In practice, the technique
yields satisfactory results using the default parameters (Table 3), and only the advanced user
might need to modify them. Note that the choice of the scoring function is not restricted by
the approach and could be replaced by any distribution more appropriate to the setting of
application.

The beta distribution is defined on the interval [0, 1] and has two shape parameters,
« and f. The values of these two parameters determine the shape of the curve, its mean,
mode, variance, etc. Also, the skewness of the distribution can be shaped choosing the right
combination of parameters (See Figure 11). This allows one to define a range of values for
which the probability density function (PDF) of the beta distribution (Equation 4) will return
higher scores as they approximate to the mode.

xa—l(l _ Z‘)B_l

, where B(«, () is the Euler beta function. (4)
B(a, B) ( )

Betappr(z; o, B) =

The input values will get a lower score as they get farther from the mode. One advantage
of this distribution is that it is possible to define a mode value different from the mean, i.e.,
to shape an asymmetric distribution. Figure 11 shows examples of beta distributions for
different values of « and .

The parameters o and /3 can be estimated based on the mode and approximate inflection
points of the desired PDF [27]. We show an example considering only the mode. If we are
interested on event logs with a level of detail close to 7, we need to estimate the values of «
and [ to obtain a PDF with mode 7. First we scale the value. If the minimum and maximum
values for LoD are 1 and 20, then the scaled mode is 0.32. Assuming that we are after a
unimodal PDF and «, 8 > 1, we use Equation 5 to compute the mode:

mode = ————  for a,f>1 (@)

Given the desired mode, we can fix the value of one of the shape parameters, and esti-
mate the other one using Equation 5:
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B=2,a= m, if mode < 0.5 = positively skewed
est(mode) = a=2,8= %, if mode > 0.5 = negatively skewed (6)
a, =2, if mode = 0.5 = symmetric

Therefore, for the mode 0.32, the PDF is positively skewed. Using Equation 6 we evalu-
ate est(0.32) to obtain the values f = 2 and = 1/(1 — 0.32) = 1.47. The resulting PDF
can be observed in Figure 11 (dotted curve). This is a basic yet effective method to set the
shape parameters of the beta function using domain knowledge, i.e., the optimal value that
we desire to score higher. Once the parameters « and /3 have been selected, we can compute
the scores of the previous log metrics. To do so, we provide a score function:

score(f,xi, X, o, B) = Betappr(scaled(f, zi, X); «, 5) @)

Here, f is a function to compute the metric to be scored (e.g., SP, LoD or AE), x; is the input
of function f (e.g., a log I), X is the set of elements with respect to which we must scale
the value of f(z;) (e.g., a set of logs L), « and 3 are the parameters of the beta probability
distribution function, and scaled(f, z;, X) is a rescaling function such that:

f() — mindf ()}

scaled(f, i, X) = max{(f(z;)} — min {f(z;)}

®)

With the score function in Equation 7, first we perform feature scaling (Equation 8).
Next, we apply the beta distribution function (Equation 4) with the corresponding « and 3
parameters. With respect to the support of the log, the score will be the result of scaling
the support feature (SP (1)) with respect to the set of possible logs L and applying the beta
probability distribution function. As the purpose, in this case, is to give a higher score to
higher support values, we will set the parameters agp and Ssp such that the probability
distribution function resembles an ascending line (e.g., « = 2 and = 1 in Figure 11):

ssp(l, L) = score(SP, 1, L,asp, Bsp) 9)

To score the level of detail, we let the parameters a1, p and 81, p to be tuned according
to the preference of the user:

S10d(1, L) = score(LoD, 1, L, arop, froD) (10)

The score of the average number of events per case is computed in the same way, using
the appropriate values for the parameters a s and Sag:

Sae(l, L) = score(AE,l, L,aag, BAE) (11)

The interestingness of a log [ with respect to all the logs L can be defined by the combi-
nation of the score values for each of the previous metrics. In order to combine the scores for
each log metric, a global scoring function gsf € L x P(L) = R can be used, which takes
alog [l and a set of logs L, and returns the score of | with respect to L. The approach does
not depend on the choice of this function, and it can be replaced by any custom one. For
the purpose of demonstrating the feasibility of this approach, we define the global scoring
(or “log interestingness”) function as the weighted average of the three previous scores. The
weights (wsp, Wsp, Wsp) and the parameters of the beta distribution (asp, Bsp, ALoD,
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Brop, ®AE, BaE) can be adjusted by the user to balance the features according to their
interest.
gsf (1, L) = wsp - 8sp(1, L) + Wiog - Siod (1, L) + wae + Sae(l, L) (12)

It must be noted that it is not necessary to set custom values for the parameters of our
scoring function every time that we want to tackle a different dataset. In most of the cases,
it will be enough to apply the technique using the default parameters in Table 3.

Table 3 Default parameters used to configure the scoring function for case notions.

Metric Parameter  Value  Description

Support SProde - Mode of the beta pdf used to score the support
(number of cases). Default is null, since we try to
maximize sp.

SPmaz oo Highest value of the desired range used to score the
support value.
SPin 0  Highest value of the desired range used to score the
support value.
Level of Detail LoD,,04e 4 Mode of the beta pdf used to score the lod (level of
detail) value.
LoD oz 10  Highest value of the desired range used to score the
lod value.
LoD pin 2 Lowest value of the desired range used to score the
lod value.
Average number of Events ~ AFE,,,4e 8  Mode of the beta pdf used to score the ae (average
number of events per trace) value.
AFE oz 30  Highest value of the desired range used to score the
ae value.
AFEin 4 Lowest value of the desired range used to score the
ae value.
Global score Wep 0.33  Weight of the support score on the final global
score.
Wiod 0.33  Weight of the lod score on the final global score.
Wae 0.33  Weight of the ae score on the final global score.

The “log interestingness” scoring function (Equation 12) proposed in this section aims
at giving an indication of how likely it is that a log will be of interest, with respect to
the other candidates, given a set of parameters. Table 4 shows the top 8 discovered case
notions of the sample SAP dataset, according to the computed score. We see that the tables
involved in the purchase requisition process represent a relevant case notion candidate for
this specific dataset. The main contribution until now is not the specific scoring function,
but the framework that enables the assessment and its configuration.

The metrics that we chose (support, level of detail, and average number of events per
trace) represent a baseline set of key indicators to compute an interestingness score per event
log. It can be the case that, in certain scenarios, assessing the potential interestingness of an
event log requires the use of different metrics, e.g., the variety of trace types, some structural
property of a discovered process model, or the fitness score with respect to a normative
model. The framework proposed in this work allows the user to define any custom metric
and/or global score to be computed for each candidate event log.

However, this framework still requires a log to be generated in order to be subjected to
evaluation. Taking into account that the final goal is to automatically assess log interesting-
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Table 4 Top 8 discovered case notions, sorted by score with parameters (agp = 2, Bsp = 1, arop =
4.16, ﬁLoD = ]., AAE = 1.28, ﬁAE = 1.53, Wsp = 0.3, Wiod = 0.3, and Wae — 0.3)‘ The o
and S parameters have been estimated based on desired min, max, and mode values for the corresponding
beta distribution (LoDyin = 2, LoDmaz = 10, LoDpode = 4, AEpmin = 4, AEmaz = 30, and
AEFE,0de = 8). The values for SP, LoD, and AE have been scaled.

Root Tables Sp’ LoD’ AE’ Score
1 EBAN EKPO, EINE, EBAN, EKKO, LFA1 0.54 1.00 0.60 1.90
2 EINE EKPO, EINE, EBAN, EKKO, LFA1 0.70 0.95 0.65 1.79
3  EBAN EKPO, EINE, EBAN, MARA 0.28 1 0.69 1.73
4 EKPO EKPO, EINE, EBAN, EKKO, LFAI 0.80 0.87 0.63 1.60
5 EKKO EKPO, EINE, EBAN, EKKO, LFA1 0.55 0.88 0.47 1.53
6 EINE EKPO, EINE, EBAN, EKKO 0.70 0.85 0.56 1.52
7 EBAN EKPO, EINE, EBAN, EKKO 0.54 0.87 0.48 1.51
8 EINE EKPO, EINE, EBAN, MARA 0.45 0.89 0.71 1.44

ness at a large scale, we need better ways to score case notions before the corresponding
logs are built. The following section explores this idea, proposing a method to predict log
interestingness based on our baseline metrics and score function.

6 Predicting Log Interestingness

If an event log is completely created from an extracted dataset, then it is straightforward
to assess the actual interestingness. However, as explained before, for large databases it is
infeasible to compute all candidates. In order to mitigate this problem and save computation
time, we aim at approximating the value of the metrics considered in Section 5 for a certain
case notion, before the log is computed. To do so, it is important to define bounds for the log
metrics, given a certain case notion. The purpose is to restrict the range of uncertainty and
improve the prediction accuracy. In fact, at the end of this section, the bounds will be used
to define a custom predictor for each of the log metrics.

As we mentioned in the previous section, the framework is extensible, allowing the user
to define additional metrics when necessary. Any additional metric used to assess log inter-
estingness will need to be taken into account in the global scoring function (Equation 12).
Also, in order to take advantage of the log interestingness prediction method, an approxima-
tion function must be provided for any additional metric that the user defines. The approx-
imation function for a certain metric must be able to compute an approximated value for a
metric, given a certain case notion and the extracted data, without the need to compute the
corresponding event log. As an example, in this section we present upper and lower bounds
of the baseline metrics used in our global scoring function.

First, we try to set bounds to the support of a log. From Equation 1 we see that the
support of a log is equal to the domain of the mapping, i.e., the amount of case identifiers of
the log. Definition 4 shows that the amount of case identifiers depends on the combinations
of objects belonging to the identifying classes of the case notion (/DC). Given that every
case identifier must contain one object of the root class, that only one object of the root class
is allowed per case identifier, and that the set of case identifiers is a maximal set, we can
conclude that the set of case identifiers will contain at least one case identifier per object in
the root class:

Bound 1 (Lower Bound for the Support of a Case Notion) Given a valid connected
meta model CMM, a case notion CN = (C, root, children, CONV ,IDC, rsEdge), a
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maximal set of case identifiers CI, and the corresponding log l we see thatNci € CI : Jo €
ci : classOfObject(0) = root <= Yo € Oroor : Aci € CI : 0 € ci = |CI| > | Oroot|-
Therefore, we conclude that: SP(1) > [SP(CN)]| = | Oroot|

For a case identifier to be transformed into an actual trace, at least an event must exist
for the root object involved in it. For the sake of simplicity, Bound 1 assumes that at least
one event exists for every object in the root class. This has been taken into account in the
implementation, considering only objects of the root class that contain at least one event.

Each of the case identifiers is a combination of objects. Also, exactly one object of the
root class and no more than one object of each identifying class (classes in /DC) can exist
per case identifier. This leads to the following upper bound for support:

Bound 2 (Upper Bound for the Support of a Case Notion) Given a valid connected

meta model CMM, a case notion CN = (C, root, children, CONV ,IDC, rsEdge), a

maximal set of case identifiers CI, and the corresponding log I, we define a maximal set

CI' for which the following properties hold:

a) Yei € CI' : Yo € ci : classOfObject(o) € IDC = o' € ci : classOfObject(0)
= classOfObject(0’) <= o = o, i.e., only one object per class belongs to the case
identifier,

b) Vei € CI' : Jo € ci : classOfObject(0) = root, i.e., one object of the root class must
always belong to the case identifier.

This implies that CI' contains all the possible combinations of one or zero objects of each

class in IDC, except for the root class, that must always be represented by an object in

the case identifier. That means that |CI'| = | Oroot| - I1 (|Oc| + 1). Given that
ce{C\root}

CI' is less restrictive than CI, we know that CI' O CI = |CI'| > |CI|. Therefore:

SP(1) < [SP(CN)] = [Oroor - TT (10c] + 1)

ce{C\root}

Following the same logic to set a lower bound for support, we know that all the objects
that belong to the root class will be involved in at least one case identifier. However, the
number of traces is still unknown if the log has not been built and we can only consider it
as the maximum possible, i.e. the upper bound of the support. Therefore, a lower bound for
the level of detail will be given by the sum of the unique activities per object of the root
class divided by the maximum number of case identifiers. If we consider that the additional
case identifiers (beyond the number of objects of the root class) will, at least, add a unique
number of activities equal to the minimum number of activities per object of the root class,
we can get a better lower bound as described below:

Bound 3 (Lower Bound for the LoD of a Case Notion) Given a valid connected meta
model CMM, a case notion CN = (C, root, children, CONV | IDC, rsEdge), a max-
imal set of case identifiers CI, and the corresponding log l, we see thatVci € CI : Jo €
ci : classOfObject(0) = root <= Yo € Opoor = Jci € CI 1 0 € ci = Vei € CI :

U Act, 2 U Act,. Additionally, we know that Y | U Act,| >
o€ct 0€(¢iNOypot) ci€Cl 0€(ciNOypot)

(> JAct]) + (|CI| = |Oroot|) - min {|Acto|}. Therefore:

0€0 o0t 0€0 60t

( 2 [Acto]) + ([SP(CN)] = |Oroot) - min {|Acto[}

0€0, 001 root

LoD(l) > |LoD(CN)] = [SP(CN)]
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A lower bound for LoD is given by the lower bound of the sum of the unique activities
per case, divided by the upper bound on the number of cases. We know that, at least, one
case will exist per object belonging to the root class. That is why the sum of the unique
activities per objects of root is added on the top part of the formula. Also, because these
objects could be involved in more than one case, to a maximum of [ SP(CN)] cases, we add
the minimum number of unique activities they could have and multiply it by the maximum
number of additional case identifiers. This will always be a lower bound given that the
number of activities we add at the upper part for the additional case identifiers will always
be equal or lower than the average. Not adding these extra case identifiers would still result
in a lower bound, but an extremely low one since the divisor is usually an overestimation for
the number of possible case identifiers.

With respect to the upper bound for the level of detail, we need to consider the most
extreme situation. This is caused by a case identifier that contains one object per identifying
class and one or more objects per converging class, such that, for each object, the events
related to them represent all the possible activities. For this case identifier, the number of
unique activities will be the sum of the number of unique activities per class involved. How-
ever, there is a way to restrict this bound. If we count the number of unique activities for the
events of each object, and find the maximum per class, the upper bound will be given by the
sum of the maximum number of unique activities per object for all the identifying classes,
plus the total of unique activities per converting class involved in the case notion:

Bound 4 (Upper Bound for the LoD of a Case Notion) Given a valid connected meta
model CMM, a case notion CN = (C, root, children, CONV , IDC, rsEdge), a max-
imal set of case identifiers CI, and the corresponding log I, we know that, ¥c € C :
Yo € Oc : |Act,| < max {|Act,/|}. This implies that, Vci € CI : | |J Acto| <

o€ci
> max{|Acto|}+ Y. |ActC.|. Therefore:
c€IDC °€ 0. ¢ inCONV

|[CII-( > rré%x{\ActoH—l— X |AetCe))
LOD(Z) S [LOD(CNH = celDC ¢ ‘CI‘ c inCONV _

Z gréaOXﬂActo\} + Z |ActCq|

ceIDC ¢ ¢ inCONV

The same reasoning used to obtain a lower bound for the level of detail can be applied
in the case of the average number of events per trace. Only that, in this case, instead of
counting the number of unique activities, we count the number of events per object:

Bound 5 (Lower Bound for the AE of a Case Notion) Given a valid connected meta
model CMM, a case notion CN = (C, root, children, CONV ,IDC, rsEdge), a max-
imal set of case identifiers CI, and the corresponding log l, we see that¥ci € CI : Jo €
ci : classOfObject(0) = root <= Yo € Oroor : Ici € CI : 0 € ¢i = Vci € CI :

U EvO, D U EvO,. Additionally, we know that " | U EvO,| >
o€ct 0€(¢iNOypot) ci€Cl 0€(ciNOypor)

(> |EvO,|)+ (ICI| = |Oroot|) - oe%in {|EvO,|}. Therefore:

0€ Oroot root

( > [EvOo|) + ([SP(CN)] = [Oroot]) - min {|EvO,|}
0€ Oypot 0€ O 00t

AE(l) > |[AE(CN)] = [SP(CN)]
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A lower bound for AE is given by the lower bound of the sum of the events per case,
divided by the upper bound on the number of cases. At least one case will exist per object
of the root class. Therefore, we consider the sum of the number of events per object. These
objects could be involved in more than one case, to a maximum of [ SP(CN)] cases. So, we
add the minimum number of events they could have, multiplied by the maximum number
of additional case identifiers. This is a lower bound given that the number of events added
at the upper part for the additional case identifiers is equal or lower than the average. Not
adding these extra case identifiers would still result in a lower bound, but an extremely low
one since the divisor is usually an overestimation on the number of possible case identifiers.

To define an upper bound for AE, we use an approach similar to the one used to compute
an upper bound for LoD. We need to consider the most extreme case, the case in which the
maximum number of events per object (for the identifying classes) could be included in the
final trace. However, if the case notion has converging classes, the most extreme case is the
one in which all the objects of such classes are contained in the case identifier, therefore all
the events belonging to the converging classes would be inserted in the trace:

Bound 6 (Upper Bound for the AE of a Case Notion) Given a valid connected meta
model CMM, a case notion CN = (C, root, children, CONV | IDC, rsEdge), a max-
imal set of case identifiers CI, and the corresponding log l, we know that, Vc € C :
Yo € O¢ : |EvO,| < Orlneag{ EvO,|}. This implies that, Vci € CI : | |J EvO,| <

o€ci
> max{|EvO, |} + >  |EvC:|. Therefore:
c€IDC ©'€0e c€CONV

|CI-( > max{|EBvOs|}+ > |BvC|)
ceIDC ©' €0, c€eCONV

AE(l) < [AE(CN)] = -

|CI|
> (%aé{\EvOo/|}+ > |BvC|
celIDC ceCONV

These bounds define the limits for our prediction. For each metric (SP (1), LoD (1) and
AE(1)), either the lower or upper bound could be a prediction. However, a better heuristic
can be designed. We defined equations to predict the values as the weighted average of
the corresponding bounds (Equations 13, 14, and 15). Given a valid connected meta model
CMM and a case notion CN, our prediction for each metric is given by the following
heuristics:

SP(CN) = wipsp - | SP(CN) | + wupsp - [SP(CN)] (13)
LoD(CN) = wipioa - | LoD(CN)| + wypioa - [LoD(CN)] (14)
AE(CN) = wipae - |AE(CN)| + Wupae - [AE(CN)] (15)

From these equations we see that, in order to calculate the heuristics for each metric,
we need to collect some features. These features (Table 5) can be easily computed once for
each class ¢ € CL in the dataset and be reused for every case notion CN we want to assess.

Finally, in order to score the predicted values of each metric, the scoring function previ-
ously used (Equation 7) must be individually applied. The input parameters are two: a case
notion C'N, and a set of case notions C'N S to compare to. Equations 16, 17 and 18 provide
the scores for the predicted metrics given a case notion C'N and a set of case notions CN'S.

5o (CN, CNS) = score(SP, CN, CNS, asp, Bsp) (16)

$i21(CN, CNS) = score(LoD, CN, CNS, azop, Brop) (17)
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Table 5 Features used to compute upper and lower bounds for each log metric.

Feature Description
1 MazEvO, = yelao)i {|EvO,|}  Maximum # of events per object of a class ¢
2 MazAct. = ;gzgi {|Acto|} Maximum # of activities per object of a class ¢
3 MinEvO, = Onelionc{\EvOo\} Minimum # of events per object of a class ¢
4 MinAct. = orénonL {|Acto|} Minimum # of activities per object of a class ¢
5 |EvC| # of events per class ¢
6 |ActC,| # of unique activities per class ¢
7  SumEvO.= >, |EvO,| Total # of events per object for a class ¢
8 SumAct. = OZEDOC\ActO\ Total # of unique activities per object for a class ¢
9 O] oeoe # of objects of a class ¢

52:(CN, CNS) = score(AE, CN, CNS, aag, Bar) (18)

Next, a global scoring function is defined to combine the three of them. We will call this
function the predicted global scoring function, pgsf € CNS x P(CNS) — R and itis the
weighted average of the scores of each of the three predicted values:

pgsf (CN, CNS) = wsp - 55p(CN, CNS) + wiod - S10d(CN, CNS) + wee - 506(CN, CNS)
19)
This function represents our custom predictor for log interestingness. The accuracy of
the predictor will be evaluated in Section 8, where it will be compared to alternative tech-
niques.

7 Implementation

All the techniques proposed in this paper are part of the Event Data Discovery Tools pack-
age (eddytoolsg). This tool assists the user at every step from data extraction to event log
building. The eddytools Python package provides six commands that cover the main steps
(some of them out of the scope of this paper) of the data extraction and preparation phase.
These steps and their purpose are described below:

1. Data exploration: to get a feeling of the size and dimension of the data. Also, to look
for any high-level structure that can be extracted from it.

2. Data schema discovery: to discover the data relations (primary, unique and foreign
keys) in order to be able to correlate data objects in future steps.

3. Data extraction: to obtain an off-line copy of the data that we can transform into a
format suitable for analysis. Also, this allows us to complete the data once a schema has
been discovered.

4. Event data discovery: event data might be implicitly stored within or across different
tables in the dataset. We need to discover the events and make them explicit.

5. Case notion discovery: defining a case notion allows us to correlate events into traces.
Many alternative case notions can be defined depending on the perspective we want to
take.

9 https://github.com/edugonza/eddytools
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Table 6 Details about the SAP dataset used during the evaluation.

Tables 87  Case Notions 10622
Objects 7339985  Non empty logs 5180
Versions 7340650  Total log building time 13h 57m
Events 26106  Average log building time 4.7s

Features computation time 2m

6. Event log building: from the discovered events and a case notion we can build an event
log. Many case notions can be defined, and the corresponding event logs can be con-
structed in order to analyze different coexisting processes, or the same process from
different perspectives.

We claim that these steps can be executed in a semi-automatic way, given that they allow
for a certain customization depending on the characteristics of the environment to analyze.
In [24] (Chapter 8), we provide additional details on the use of the tool in a real-life case
study.

8 Evaluation

So far, we proposed a set of metrics to assess the interestingness of an event log once it has
been constructed. Also, we provided predictors for these metrics based on (a) the character-
istics of the case notion being considered and (b) features of the dataset under study. The
aim of this section is twofold. (1) To find out how good our predictors are at estimating the
value of each log characteristic. (2) To evaluate the quality of the rankings of case notions,
based on their potential interestingness according to certain log metrics, using our custom
predictor and compare them to existing learning to rank algorithms.

The evaluation was carried out on a SAP sample dataset (Table 6). It contains the data
model, objects, object versions, and events of 87 SAP tables. The following steps were
executed using the open source software package eddytools. First, a set of candidate case
notions was generated. To do so, each one of the tables in the data model was taken as the
root node of a potential case notion. Next, for each of them, all the possible simple paths
following outgoing arcs were computed, yielding a result of 10,622 case notion candidates.
For each of the candidates, the corresponding event log was generated and the metrics pre-
sented in Section 5 were computed. This set of logs and metrics represent the ground truth.
Given that we want to predict the metrics in the ground truth set, we need to measure the
features that our predictors require. The following section describes these features.

8.1 Features for Log Quality Prediction

Section 6 presented our predictors for each of the log characteristics. These predictors es-
timate the values of the support (SP, Equation 13), level of detail (LoD, Equation 14), and
average number of events per trace (AE, Equation 15) of a log, given the corresponding case
notion and a set of features. This subsection describes the features used during the evalua-
tion which are (a) the lower and upper bounds of each log property as listed in Section 6 and
(b) additional features used to improve the accuracy of the regressors we will compare to.
Given a valid connected meta model CMM (i.e., a dataset stored in the OpenSLEX
format containing events, objects, versions, and a data model) and a specific case notion CN,
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Table 7 Features used to predict log interestingness.

Feature Description

[SP(CN)] Lower bound for the support
[SP(CN)] Upper bound for the support
|[LoD(CN)|  Lower bound for the level of detail
[LoD(CN)]  Upper bound for the level of detail

O 00N W B W=

[AE(CN)] Lower bound for average number of events per trace
[AE(CN)] Upper bound for average number of events per trace

|C| Number of classes in the case notion

|[E(CN)| Total number of events of all the classes in the case notion
IR(CN) Average number of events per object

we can measure the features enumerated in Table 7. The log associated to such case notion
does not need to be built in order to compute these features. Actually, many of the features
are the result of an aggregation function over a class property. Once the class properties
have been computed, the complexity of calculating these case notion metrics is linear with
respect to the number of classes involved.

8.2 Evaluation of Predictors’ Accuracy

In Section 6, upper and lower bounds were given for each log property given a case notion
(CN). These bounds have been used to estimate the value of such log properties by means
of three predictors (one per log property), before the log is actually built. Now it is time
to evaluate the accuracy of these predictors. To do so, we compared the predicted value for
each log property (SP, LoD, and AE) with the actual values in the ground truth dataset. This
was done for the predictors for each log property as defined in Section 6 (Equations 13, 14,
and 15). The combination of the scores of the three individual predictors (Equations 16, 17,
and 18) in a single scoring function of log interestingness (Equation 19) is what we call our
Custom Predictor (CP). Additionally, we compared the accuracy of the individual predictors
to three different regressors: (a) Multiple Linear Regressor (MLP), (b) Quantile Regressor
(QR) [20], and (c) Neural Network Regressor (NN). Each of them where trained and tested
using the features in Table 7. A 5-fold cross validation was performed in order to determine
the accuracy of the predictors (our predictors, MLP, QR, and NN). To avoid underestimation
of the prediction error, empty logs where filtered out of the dataset, using only 5180 case
notions from the original 10622.

Figure 12 shows the mean absolute error (MAE) measured per normalized property
for each predictor. We see that our predictors do not perform really well, presenting an
average error of around 1.0 when predicting LoD or AE and around 1.1 when predicting
SP. In comparison, the regressors perform better, in particular the Quantile regressor with an
average error of around 0.8 for SP and LoD, and around 0.9 for AE. This figure, however,
could be misleading, given that the MAE is computed on all the predictions, regardless of
the existence of outliers. To get a better idea of the influence of extremely bad predictions on
the overall performance, we include Figure 13, which shows box-plots for each log property
per predictor. It is important to notice that a logarithmic scale has been used, in order to plot
extreme outliers and still be able to visualize the details of each box.

We see that our predictors (SP, LoD, and AFE) are the worst performing ones, espe-
cially when it comes to SP. Also, they are the ones presenting the most extreme outliers
for the three log properties. Quantile Regression and Neural Network regressors presents
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Fig. 12 Comparison of Mean Absolute Error for the predictors on the three normalized log properties.
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Fig. 13 Comparison of Absolute Error for the three normalized log properties per predictor. The scale is
logarithmic

the most consistent results, with the least extreme outliers. These results show that there
is considerable room for improvement to predict SP, LoD, and AE accurately. This can be
achieved, for example, by selecting additional features that have a stronger correlation with
the properties we aim to predict. It must be noted that our predictors are unsupervised, i.e.,
do not need a training set. This represents an advantage with respect to the regressors, since
they can generate predictions on the absence of training data. Despite the inaccuracy of our
predictors, their usefulness is yet to be determined. The aim of the prediction is to build a
ranking of case notions based on their interestingness (Equation 19). This means that, as
long as the relative interestingness is preserved, the ranking can be accurate. The following
section will address this issue, using a metric to evaluate the quality of the rankings.
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8.3 Evaluation of Ranking Quality

Until now we have evaluated the accuracy of our predictors and compared them to other
existing regressors. However, the goal of predicting log properties is to assess the interest-
ingness of the log before it is built. If we are able to predict the interestingness of the logs
for a set of case notions, we can rank them from more to less interesting and provide a rec-
ommendation to the user. In this section we evaluate how good the predictors are at ranking
case notions according to their interestingness. To do so, we use the metrics on the resulting
event logs as the ground truth to elaborate an ideal ranking (Equation 12). Then a new rank-
ing is computed using our custom predictor (Equation 19) and it is compared to the ideal
one. This comparison is done by means of the metric normalized discounted cumulative
gain at p (nDCGp), widely used in the information retrieval field.

_ rel_score; P rel;
DCGyp g 10g2 1) = rel_score; + 222 logy(i + 1) (20)
|REL.SCORES| DCG.
rel_score; nDCG, = P (22)
1D = E — (21 P
oc i=1 log, (i + 1) @D IDCGy

The normalized discounted cumulative gain at p (Equation 22) is a metric that assumes
the existence of a relevance score for each result, penalizing the rankings in which a relevant
result is returned in a lower position. This is done by adding the graded relevance value
of each result, that is logarithmically reduced proportional to its position (Equation 20).
Next, the accumulated score is normalized, dividing it by the ideal score in case of a perfect
ranking (Equation 21). This means that the ranking (3, 1, 2) will get a lower score than the
ranking (2, 3, 1) for an ideal ranking (1, 2, 3) and a relevance per document of (3, 3, 1).

When it comes to ranking, there is a large variety of learning to rank (LTR) algorithms
in the information retrieval field [28]. These algorithms are trained on ranked lists of docu-
ments and learn the optimal ordering according to a set of features. A 5-fold cross validation
was performed on the unfiltered set of case notions (10622 candidates) comparing the im-
plementationm of 10 learning to rank algorithms (MART, RankNet, RankBoost, AdaRank,
Coordinate Ascent, LambdaRank, LambdaMART, ListNet, Random Forest, and Linear Re-
gression) with the predictors evaluated in Section 8.2 (Quantile Regression, Multiple Linear
Regression, Neural Network Regressor, and our custom predictor). Two models were trained
for each algorithm: one with the 9 input features in Table 7 and another one with 4 extra fea-
tures (the estimated value for SP, LoD, AE, i.e., Equation 13, 14, and 15). The purpose of
adding these extra features is to find out how the estimations made by our predictors affect
the predictions of the other algorithms.

Figure 14 shows the result of the evaluation. The 13 algorithms (10 LTR + 3 regressors)
were trained on two different sets of features (9 and 13 input features), 3 different combina-
tions of « and f3 values for the log quality function ((a, 8) € {(2,5), (5,2),(2,1)}), and
with equal weight for the three metrics. That makes a total of 78 models ((10 4 3) x 2 x 3).
The NDCG@ 10 metric was measured for each model and the results were grouped per al-
gorithm and feature set. That resulted in 27 categories ((10 LTR algorithms x 2 sets of
features) + (3 regressors X 2 sets of features) + our custom predictor) with 15 NDCG@10
values each (5 folds x the 3 combinations of « and 3 values). The models trained with 13

10 nttps://sourceforge.net/p/lemur/wiki/RankLib/
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Fig. 14 NDCG@ 10 per ranker given different combinations of o and 3 values. The box-plot corresponding
to our custom predictor has been highlighted in red.

features are represented in the figure with the symbol + at the end of their name. Addition-
ally, the NDCG@ 10 was calculated for a set of random rankings, in order to set a baseline.
In the case of our custom predictor, given that it only takes 6 features (the lower and upper
bounds for SP, LoD, and AE) and that it does not need training, only three NDCG@ 10 val-
ues were computed, one for each pair of values for the o and /3 parameters. The horizontal
dashed lines drawn in Figure 14 represent the median of the NDCG@ 10 for our custom
predictor (upper) and the random ordering (lower). Any algorithm whose median is above
the upper line, will perform better than our custom predictor at least 50% of the time. Any
algorithm whose median is above the lower line, will perform better than random at least
50% of the time. Most of the algorithms perform better than random. But only two have
the median above the upper line: MART, and Random Forest. When trained with 9 input
features, both MART and Random Forest show very similar behavior. However, when con-
sidering 13 input features, MART’s median is lower. In the case of Random Forest, using 13
features is better than using 9 in every aspect.

8.4 Discussion

The aim of this evaluation has been twofold. First, to assess the precision of our predictors at
estimating the value of each log characteristic. Second, to evaluate the quality of the rankings
of case notions, based on their potential “interestingness”, using our custom predictor and
compare them to LTR algorithms. The results (Figures 12 and 13) show that our predictors
are not very good at predicting log characteristics with precision. Other regressors, like
Quantile Regression, have shown better results in this aspect. However, when it comes to
ranking quality, the precision in the prediction of the log characteristics is of less importance
than the relative differences between predictions for several case notions (i.e., it is not so
important to predict accurately the log quality of case notions a and b, as long as we can
predict that a will be more interesting than b). In fact, the results obtained from the ranking
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quality evaluation (Figure 14) show that our custom predictor performs better, on average,
than other regressors, even though they showed better prediction accuracy.

We conclude that for the purpose of predicting accurately the value of log characteristics
and when training data are available, the use of regressors such as QR is the best option.
When it comes to ranking candidates, LTR algorithms such as Random Forest and MART
provide better results. However, unlike our custom predictor, all these techniques require the
existence of training data to build the models. Therefore, in the absence of such data, the
proposed custom predictor provides close-to-optimal results when it comes to rankings and
indicative values for the prediction of log characteristics.

9 Related Work

The field of process mining is dominated by techniques for process discovery, conformance,
and enhancement. Yet event correlation and log building are crucial since they provide the
data that other process mining techniques require to find insights. In fact, the choices made
during the log building phase can drastically influence the results obtained in further phases
of a process mining project. Therefore, it is surprising that there are only a few papers on
these topics. Works like the one presented in [19] analyze the choices that users often need
to make when building event logs from databases. Also, it proposes a set of guidelines to
ensure that these choices do not negatively impact the quality of the resulting event log. It
is a good attempt at providing structure and a clear methodology to a phase typically sub-
ject to experience and domain knowledge of the user. However, it does not aim at enabling
automated log building in any form. It has been shown that extracting event logs from ERP
systems like SAP is possible [18]. However, the existing techniques are ad-hoc solutions for
ERP and SAP architectures and do not provide a general approach for event log building
from databases. Another initiative for event log extraction is the onprom project [9-11]. The
focus is on event log extraction by means of ontology-based data access (OBDA). OBDA
requires to define mappings between the source data source and a final event log structure
using ontologies. Then, the onprom tools perform an automatic translation from the manu-
ally defined mappings to the final event log.

Event log labeling deals with the problem of assigning case identifiers to events from an
unlabeled event log. Only a few publications exist that address this challenge. In [12], the au-
thors transform unlabeled event logs into labeled ones using an Expectation-Maximization
technique. In [29], a similar approach is presented, which uses sequence partitioning to
discover the case identifiers. Both approaches aim at correlating events that match certain
workflow patterns. However, they do not handle complex structures such as loops and paral-
lelism. The approach proposed in [4] makes use of a reference process model and heuristic
information about the execution time of the different activities within the process in order
to deduct case ids on unlabeled logs. Another approach called Infer Case Id (ICI) is pro-
posed in [3] and [6]. The ICI approach assumes that the case id is a hidden attribute inside
the event log. The benefit of this approach is that it does not require a reference process
model or heuristics. The approach tries to identify the hidden case id attribute by measuring
control-flow discovery quality dimensions on many possible candidate event logs. Its goal
is to select the ones with a higher score in terms of fitness, precision, generalization, and
simplicity. The mentioned approaches for event log labeling are clearly related to the prob-
lem we try to solve. However, they ignore the database setting, where event correlations are
explicitly defined by means of foreign keys. This means that case identifiers do not need to
be discovered. Therefore, the challenge of identifying interesting event logs remains open.
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Only the ICI approach tackles this issue by measuring control-flow metrics to select the
best event log. This is similar to our idea of measuring log “interestingness”’. However, the
ICI approach requires to build all the candidate event logs in order to measure such prop-
erties. Our approach is able to reduce the computational cost by predicting interestingness
properties before the log is built.

Other authors have already considered the idea of evaluating event log characteristics.
The metrics proposed in [17] aim at discovering the structural properties of event logs with-
out actually mining the behavior. These metrics have proven to be of great value in order
to develop our automated approach. The approach in [23] focuses on event correlation for
business processes in the context of Web services. Additionally, it proposes semi-automatic
techniques to generate process views with a certain level of “interestingness”. Instead of
focusing on what is interesting, it discards uninteresting correlations based on the variabil-
ity of values on the correlating attributes, or on the ratio of process instances per log. The
approach is certainly of value in the area of event correlation. On the other hand, it does
not provide a framework for automatic case notion discovery. Also, the approach chosen by
the authors to deal with the combinatorial explosion problem is search space pruning, which
still requires to compute the event logs, but for a smaller set of candidates.

When it comes to computing rankings, in our case rankings of event logs or case no-
tions, we must consider learning to rank (LTR) algorithms from the information retrieval
field. These algorithms are able to learn an optimal ordering of documents with respect to
certain features. Three main categories can be distinguished among them: pointwise, pair-
wise, and listwise. Pointwise algorithms try to predict the relevance score of each candidate,
one by one. These algorithms are able to give a prediction of the score, but do not consider
the position of a document in the ranking. Examples of pointwise algorithms are Random
Forest [5], Linear regression [26], the predictors evaluated in Section 8.2, and any other
algorithm that applies regression in general. Pairwise algorithms take pairs of candidates
and predict which candidate ranks higher. In this case, the relative position of documents is
taken into account. Examples of pairwise algorithms are MART [14], RankNet [7], Rank-
Boost [13], and LambdaRANK [8]. Listwise algorithms take lists of candidates and learn to
optimize the order. A disadvantage of this type of approach is the difficulty to obtain training
sets of full ranked lists of candidates. Examples of listwise algorithms are AdaRank [32],
Coordinate Ascent [22], LambdaMART [31], and ListNet [14].

As a summary, event correlation, log building, and process view “interestingness” are
known topics in the field. Despite the attempts of authors, none of the approaches succeeded
at reaching a satisfactory level of automation. Also, none of them proposes a way to recom-
mend process views to the user, neither to rank them by interests.

10 Conclusion

Applying process mining in environments with complex database schemas and large
amounts of data becomes a laborious task, specially when we lack the right domain knowl-
edge to drive our decisions. This work attempts to alleviate the problem of event log building
by automatically computing case notions and by recommending the interesting ones to the
user. By means of a new definition of case notion, events are correlated to construct the
traces that form an event log. The properties of these event logs are analyzed to assess their
interestingness. Because of the computational cost of building the event logs for a large
set of case notion candidates, a set of features was defined based on the characteristics of
the case notion and the dataset at hand. Next, a custom predictor estimates the log metrics
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used to assess the interestingness. This allows one to rank case notions even before their
corresponding event logs are built. Finally, an extensive evaluation of the custom predictor
was carried out, comparing it to different regressors and to state of the art learning to rank
algorithms. We believe that evaluating the approach in comparison to techniques from the
information retrieval field has not been considered before in the process mining discipline.

To conclude, this work proposes a framework that covers the log building process from
the case notion discovery phase, to the final event log computation, providing the tools to
assess its interestingness based on objective metrics. This assessment can be done on the
case notion itself before the event log is generated. The result of this assessment is used to
provide recommendations to the user.

Our framework presents several limitations, however. The most important one has to
do with log interestingness. We are aware that the notion of log “interestingness” proposed
in this work is somewhat superficial. Only certain structural properties of the log (level of
detail, support, average number of events per trace) are taken into account when evaluating
event logs. The current notion of log “interestingness” ignores other important aspects such
as the relevance of the log semantics at the business level, how meaningful the activities
are with respect to the process, as well as the homogeneity of behavior captured in the
event log. Our definition of log “interestingness” is a first attempt at providing an objective
score to rank event logs. However, the relation of the proposed “interestingness” metric with
respect to a subjective interestingness score provided by users has not been evaluated. A
study should be carried out involving real business analysts and domain experts to evaluate
the suitability of the metric when applied to different datasets and contexts. Also, this study
would be valuable to identify additional measurable aspects that contribute to the notion of
log “interestingness” and have not been considered by our definition.

Another limitation has to do with our prediction results. We proposed certain predic-
tors for the event log metrics used to assess log “interestingness”. It has been shown that
the resulting ranking based on predicted scores resembles, at an acceptable level of accu-
racy, the ranking based on the actual metrics. However, the individual predictions for each
log metric lack accuracy. Relative assumptions can still be made, e.g., log A has higher
support than log B. However, accurate predictions would make the technique more robust
to outliers, and benefit the overall quality of the log “interestingness” assessment. Finding
stricter upper and lower bounds and designing more accurate predictors for each log metric
would help to improve the quality of event log “interestingness” rankings and provide bet-
ter recommendations to the analyst. This could be combined with sampling techniques that
combine predicted scores on candidate case notions with actual scores on computed event
logs. This would allow to compute event logs only for a limited number of case notions,
while increasing ranking quality introducing some certainty in the scores.

Additionally, processing queries expressed on natural language would be a great addi-
tion to the framework, allowing the user to refine the search and insert domain knowledge in
the recommendation process. Also, interactive approaches based on feedback provided on
example logs would allow to guide the search using domain knowledge.
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