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Abstract. In process discovery, the goal is to find, for a given event log, the
model describing the underlying process. While process models can be repre-
sented in a variety of ways, Petri nets form a theoretically well-explored descrip-
tion language. In this paper, we present an extension of the process discovery
algorithm eST-Miner. This approach computes the maximal set of non-redundant
places, that are considered to be fitting with respect to a user-definable fraction of
the behavior described by the given event log, by evaluating all possible candidate
places using token-based replay. The number of candidate places is exponential
in the number of activities, and thus evaluating all of them by replay is very time-
consuming. To increase efficiency, the eST-miner organizes these candidates in
a special search structure, that allows to skip large chunks of the search space,
while still returning all the fitting places. While this greatly increases its effi-
ciency compared to the brute force approach evaluating all the candidates, the
miner is still very slow compared to other approaches. In this paper, we explore
two approaches to increase the fraction of skipped candidates and thus the effi-
ciency of the eST-Miner. The impact of the presented concepts is evaluated by
various experiments using both real and artificial event logs.
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1 Introduction and Related Work
Most corporations and organizations support their processes using information systems,
while recording behavior that can be extracted in the form of event logs. Each event in
such a log has a name identifying the executed activity (activity name), an identification
mapping the event to some execution instance (case id), a time stamp showing when the
event was observed, and often extended meta-data of the activity or process instance. In
the field of process discovery, we utilize the event log to identify relations between the
activities (e.g. pre-conditions, choices, concurrency), which are then expressed within
a process model. This is non-trivial for various reasons. We cannot assume that the
given event log is complete, as some possible behavior might be yet unobserved. Also,
real life event logs often contain noise, which we would like to filter out. Correctly
classifying behavior as noise can be hard to impossible. An ideal process model can
reproduce all behavior contained in an event log, while not allowing for unobserved
behavior. It should represent all dependencies between events and at the same time be
simple enough to be understandable by a human interpreter. Computation should be fast
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and robust to noise. Usually, it is impossible to fulfill all these requirements at the same
time. Thus, different algorithms focus on different quality criteria, while neglecting
others. As a result, the models returned for a given event log can differ significantly.

Many existing discovery algorithms abstract from the full information given in a
log and/or generate places heuristically, in order to decrease computation time and
complexity of the returned process models. While this is convenient in many applied
settings, the resulting models often are underfitting and sometimes even unsound. Ex-
amples are the Alpha Miner variants ([1]), the Inductive Mining family ([2]), Split-
Miner ([3]), genetic algorithms or Heuristic Miner. In contrast to these approaches,
which are not able to (reliably) discover complex model structures, algorithms based
on region theory ([4–7]) discover models whose behavior is the minimal behavior rep-
resenting the log. On the downside, these approaches are known to be rather time-
consuming, cannot handle low-frequent behavior, and tend to produce complex, over-
fitting models which can be hard to interpret.

In [8] we introduce the discovery algorithm eST-Miner. This approach aims to com-
bine the capability of finding complex control-flow structures like longterm-dependencies
with an inherent ability to handle low-frequent behavior while exploiting the token-
game to increase efficiency. The basic idea is to evaluate all possible places to discover
a set of fitting ones. Efficiency is significantly increased by skipping uninteresting sec-
tions of the search space. This may decrease computation time immensely compared to
the brute-force approach evaluating every single candidate place, while still providing
guarantees with regard to fitness and precision.

While traditional region-theory uses a global perspective to find a set of feasible
places, the eST-Miner evaluates each place separately, that is from a local perspective.
This allows us to effectively filter infrequent behavior place-wise. Additionally, we are
able to easily enforce all kinds of constraints definable on the place level, e.g., con-
straints on the number or type of arcs, token throughput or similar.

The most severe limitation of the eST-Miner is its high computation time, even on
small event logs. This is due to the extensive search of whole candidate space, as well
as the even more time-consuming removal of the many so-called implicit places during
a post-processing. These implicit places are fitting with respect to the log, but do not
restrict behavior of the Petri net, and thus they unnecessarily clutter the model. To tackle
these performance problems, we present two approaches, one of which does not change
the result, while the other one does. We aim to decrease computation time by further
reducing the searched fraction of the candidate space, and already discarding a large
number of fitting but uninteresting places during the search, thus speeding up both the
search and the post-processing phase.

In Sec. 2 we provide basic notation and definitions. Afterwards, we briefly review
the basics of the standard eST-Miner (Sec. 3). Our new concepts are introduced in Sec-
tions 4 and 5, and their experimental evaluation is presented in Section 6. Finally, Sec-
tion 7 concludes this work by summarizing our work and findings and suggesting pos-
sibilities for future work.

2 Basic Notations, Event Logs, and Process Models
A set, e.g. {a, b, c}, does not contain any element more than once, while a multiset,
e.g. [a, a, b, a] = [a3, b], may contain multiples of the same element. By P(X) we refer
to the power set of the set X , and M(X) is the set of all multisets over this set. In
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contrast to sets and multisets, where the order of elements is irrelevant, in sequences
the elements are given in a certain order, e.g., 〈a, b, a, b〉 6= 〈a, a, b, b〉. We refer to the
i-th element of a sequence σ by σ(i). The size of a set, multiset or sequence X , that is
|X|, is defined to be the number of elements in X . We define activities, traces, and logs
as usual, except that we require each trace to begin with a designated start activity (I)
and end with a designated end activity (�). Note that this is a reasonable assumption in
the context of processes, and that any log can easily be transformed accordingly.

Definition 1 (Activity, Trace, Log). Let A be the universe of all possible activities
(e.g., actions or operations), let I ∈ A be a designated start activity and let � ∈ A
be a designated end activity. A trace is a sequence containing I as the first element, �

as the last element and in-between elements of A \{I,�}. Let T be the set of all such
traces. A log L ⊆M(T ) is a multiset of traces.

In this paper, we use an alternative definition for Petri nets. We only allow for places
connecting activities that are initially empty (without tokens), because we allow only
for traces starting with I and ending with �. These places are uniquely identified by
the set of input activities I and output activities O. Each activity corresponds to exactly
one activity, therefore, this paper refers to transitions as activities.

Definition 2 (Petri nets). A Petri net is a pair N = (A,P), where A ⊆ A is the set of
activities including start and end ({I,�} ⊆ A) and P ⊆ {(I|O) | I ⊆ A ∧ I 6= ∅ ∧
O ⊆ A ∧ O 6= ∅} is the set of places. We call I the set of ingoing activities of a place
and O the set of outgoing activities.

Given an activity a ∈ A, •a = {(I|O) ∈ P | a ∈ O} and a• = {(I|O) ∈ P | a ∈ I}
denote the sets of input and output places. Given a place p = (I|O) ∈ P, •p = I and
p• = O denote the sets of input and output activities.

Definition 3 (Overfed/Underfed/Fitting Places, see [9]). Let N = (A,P) be a Petri
net, let p = (I|O) ∈ P be a place, and let σ be a trace. With respect to the given trace
σ, p is called

– underfed, denoted by5σ(p), if and only if ∃k ∈ {1, 2, ..., |σ|} such that
|{i | i ∈ {1, 2, ...k − 1} ∧ σ(i) ∈ I}| < |{i | i ∈ {1, 2, ...k} ∧ σ(i) ∈ O}|,

– overfed, denoted by4σ(p), if and only if
|{i | i ∈ {1, 2, ...|σ|} ∧ σ(i) ∈ I}| > |{i | i ∈ {1, 2, ...|σ|} ∧ σ(i) ∈ O}|,

– fitting, denoted by �σ(p), if and only if not5σ(p) and not4σ(p).

We extend these notions to the log whole log using the noise parameter: with respect to
a log L and parameter τ ∈ [0, 1], p is called

– underfed, denoted by5τL(p), if and only if |{σ ∈ L | 5σ(p)}|\|L| > 1− τ ,
– overfed, denoted by4τL(p), if and only if |{σ ∈ L | 4σ(p)}|\|L| > 1− τ ,
– fitting, denoted by �τL(p), if and only if |{σ ∈ L | �σ(p)}|\|L| ≥ τ .

Definition 4 (Behavior of a Petri net). We define the behavior of the Petri net (A,P)
to be the set of all fitting traces, that is {σ ∈ T | ∀p ∈ P : �σ(p)}.

Note that we only allow for behaviors of the form 〈I, a1, a2, . . . an,�〉 (due to Def. 1)
such that places are empty at the end of the trace and never have a negative number of
tokens.
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3 Introducing the eST-Miner
We briefly introduce the original eST-Miner first presented in [8]. As input, the algo-
rithm takes a log L and a parameter τ ∈ [0, 1], and returns a Petri net as output. A
place is considered fitting, if a fraction τ of traces in the event log is fitting. Inspired by
language-based regions, the basic strategy of the approach is to begin with a Petri net
whose transitions correspond exactly to the activities used in the given log. From the
finite set of unmarked, intermediate places, the subset of all fitting places is computed
and inserted. To facilitate further computations and human readability, all unneeded,
i.e., implicit places are removed from this intermediate result in a post-processing step.

The algorithm uses token-based replay to discover all fitting places out of the set
of possible candidate places. To avoid replaying the log on the exponential number of
candidates (i.e. all pairs of subsets of activities, (2|A| − 1)2, it organizes the potential
places as a set of trees, such that certain properties hold. When traversing the trees us-
ing a depth-first-strategy, these properties allow to cut off subtrees, and thus candidates,
based on the replay result of their parent. This greatly increases efficiency, while still
guaranteeing that all fitting places are found. An example of such a tree-structured can-
didate space is shown in Fig. 1. Note the incremental structure of the trees, i.e., the
increase in distance from the roots corresponds to the increase of input (red edges) and
output (blue edges) activities. However, the organization of candidates within the same
depth and their connections to other candidates is not fixed, but defined by the order of
ingoing activities (>i) and outgoing activities (>o). Additionally, note that blue edges
are always part of a purely blue subtree, while red edges may connect subtrees that
contain blue edges as well.

Definition 5 (Complete Candidate Tree). Let A be a set of activities and let >i, >o
be two total orderings on this set of activities. A complete candidate tree is a pair
CT = (N,F ) with N = {(I|O) | I ⊆ A\{�} ∧O ⊆ A\{I} ∧ I 6= ∅ ∧O 6= ∅}.
We have that F = Fred ∪ Fblue, with

Fred ={((I1|O1), (I2|O2)) ∈ N ×N | |O2| = 1 ∧O1 = O2

∧ ∃a ∈ I1 :
(
I2 ∪ {a} = I1 ∧ ∀a′ ∈ I2 : a >i a′

)
} (red edges)

Fblue ={((I1|O1), (I2|O2)) ∈ N ×N | I1 = I2

∧ ∃a ∈ O1 :
(
O2 ∪ {a} = O1 ∧ ∀a′ ∈ O2 : a >o a

′)} (blue edges).

If ((I1|O1), (I2|O2)) ∈ F , we call the candidate (I1|O1) the child of its parent (I2|O2).

The runtime of the original eST-Miner strongly depends on the number of candidate
places skipped during the search for fitting places. The approach uses results of eval-
uating a place p to skip subtrees of that place, that are known to be unfitting. For ex-
ample, if 80% of the traces cannot be replayed because p is empty and does not enable
the next activity in the trace, i.e., 50.8

L (p), then at least 80% will not allow for a place
p′ with even more output activities, i.e. we know that 50.8

L (p′). With respect to the
tree-structured candidate traversal, this indicates that all purely blue (outgoing activity
is added) subtrees of p can be cut off. If p was overfed, we could cut off all purely red
(ingoing activity added) subtrees, respectively.

While this results in a significant decrease in computation time compared to the
brute force approach, the algorithm is still slow compared to most other discovery ap-
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(▶|a)  (▶|b)  (▶|■)  (a|a)  (a|b)  (a|■)  (b|a)  (b|b)  (b|■)

(▶|a,b) (▶|a,■) (▶|b,■) (a|a,b) (a|a,■) (a|b,■) (b|a,b) (b|a,■) (b|b,■)     (▶,a|a) (▶,b|a) (a,b|a) (▶,a|b) (▶,b|b) (a,b|b) (▶,a|■) (▶,b|■) (a,b|■)

(▶|a,b,■) (a|a,b,■) (b|a,b,■)    (▶,a|a,b) (▶,a|a,■) (▶,a|b,■)    (▶,b|a,b) (▶,b|a,■) (▶,b|b,■) (a,b|a,b) (a,b|a,■) (a,b|b,■)    (▶,a,b|a) (▶,a,b|b) (▶,a,b|■) 

(▶,a|a,b,■) (▶,b|a,b,■) (a,b|a,b,■) (▶,a,b|a,b) (▶,a,b|a,■) (▶,a,b|b,■)

       (▶,a,b|a,b,■)

Fig. 1: Example of a tree-structured candidate space for the set of activities {I, A,B,�}, with
orderings � >i B >i A >i I and � >o B >o A >o I.

proaches. In this paper, we seek to maximize the number of skipped candidates and thus
decrease runtime. We introduce two different heuristic strategies aiming to improve the
discovery phase of the eST-Miner. The first strategy is based on organizing the can-
didates within the tree structure in such a way that the amount of skipped candidate
places is maximized. By skipping more candidates, we need to evaluate fewer places
and thus terminate faster, without compromising the result, i.e., the discovered set of
fitting places remains the same. The second strategy adds additional cut-off criteria to
the tree traversal. It heuristically determines certain subtrees to be uninteresting and
thus skippable. This way we do not only speed up the search phase, but also signifi-
cantly reduce the number of implicit places discovered, leading to less time needed for
post-processing. However, the returned Petri nets may differ from the original variant.

4 Optimizing the Tree Structure
The positioning of candidate places within the tree-like search structure CT (Def. 5) is
directly defined by the two orderings >i and >o on the set of all activities A. Consider
a place p = (I|O). A red child place of p is a place pred with pred• = p• and •pred =
•p∪{a}, such that a ∈ A and ∀b ∈ •p : a >i b (also, |p•| = 1, but we focus on the order
here). A blue child place of p is a place pblue with •pblue = •p and pblue• = p • ∪{a},
such that a ∈ A and ∀b ∈ p• : a >o b. Note that the number of children of p is
directly defined by the two orderings as well: if a ∈ O (respectively a ∈ I) is the
maximal activity with respect to >o (respectively >i) of the outgoing (respectively
ingoing) activities of p, then the number of blue (respectively red) children of p equals
|{b ∈ A | b >o a}| (respectively |{b ∈ A | b >o a}|).

We can skip all purely blue subtrees of places which are underfed, and thus we
want to maximize the number of blue descendants of such places. Similarly, we want
to maximize the number of skippable red descendants of overfed places. Experimental
results ([8]) have shown that varying the orderings has a significant effect on the number
of places that are cut off and thus the runtime, without changing the final result.

Computing an optimal traversal ordering is unfeasible, and thus we investigate eas-
ily computable approximations. In the following, we present heuristic strategies for
choosing the orderings >i and >o aiming to maximize the number of cut off places.
Consider the event log L =

[
〈I, a, b, b,�〉, 〈I, c, b, b, b, b,�〉3

]
as a motivational ex-

ample. We observe that the activity b occurs comparatively often in each trace. Thus,
places which have b as an outgoing activity are likely to be underfed for each trace. To
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increase the number of places which are cut off, we want to maximize the number of
blue children for such places. Similarly, places with b as incoming activity are likely to
be overfed, and thus we would like to maximize their number of red children.

The intuitive idea illustrated by the example leads to a variety of metrics definable
on the activities of the event log, aiming to quantify this intuition. The Absolute Activity
Frequency counts the number of occurrences of an activity accumulated over all traces
in the log. The Absolute Trace Frequency counts the number of traces in which an
activity occurs. The Average Trace Occurrence is defined by the average number of
occurrences of an activity in a trace of the log. Finally, by the Average First Occurence
Index of an activity, we refer to the first index at which an activity occurs in a trace,
averaged over the whole log.

Definition 6 (Metrics on Log Properties). Let L be an event log and A ⊆ A be the
set of activities, which occur in the log. We assign numerical values to these activities
using the following functions: 1

– Absolute Activity Frequency:
absAF : A → N,absAF(a) =

∑
σ∈L|{i ∈ {1, ..., |σ|} | σ(i) = a}|

– Absolute Trace Frequency: absTF : A → N,absTF(a) = |[σ ∈ L | a ∈ σ]|
– Average Trace Occurrence: avgTO : A → Q,avgTO(a) =

∑
σ∈L|{i∈{1,...,|σ|}|σ(i)=a}|/|σ|

|L|
– Average First Occurence Index:
avgFOI : A → Q, avgFOI(a) =

∑
σ∈L min{i∈{1,2,...,|σ|}|σ(i)=a}

absTF(a)

If absAF(a) is high, we expect many tokens to be produced (consumed) for places
that have a as an ingoing (outgoing) activity during replay of the log, and thus such
places are more likely to be underfed (overfed). The same holds for high absTF(a)
and avgTO(a). If avgFOI(a) is low, we can expect the activity a to generate or con-
sume tokens early on during the replay of a trace. Places which have outgoing activities
with low average first occurrence index are more likely to be underfed, as their output
activities may require tokens early on during replay, where none might be available.

Definition 7 (Orderings Based on Metrics). Let L be an event log and A ⊆ A be the
set of activities, which occur in the log. Based on the metrics given in Def. 6 we propose
the following orderings:

– absAF(a) > absAF(b)⇔ a <absAF
i b⇔ a <absAF

o b (high frequencies first)
– absTF(a) > absTF(b)⇔ a <absTF

i b⇔ a <absTF
o b (high frequencies first)

– avgTO(a) > avgTO(b)⇔ a <avgTO
i b⇔ a <avgTO

o b (high occurrences first)
– avgFOI(a) > avgFOI(b)⇔ a <avgFOI

i b⇔ a >avgFOI
o b

(early activities first for ingoing, last for outgoing activities)

Experimental results investigating and comparing the impact of the presented orderings
are presented in Section 6.

1 Note that
∑
σ∈L f(σ) and [σ ∈ L|f(σ)] operate on multisets, i.e., if the same trace σ appears

multiple times in L, this is taken into account.
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5 Pruning Uninteresting Subtrees
Our second strategy adds an additional, heuristic criterion to identify and skip uninter-
esting candidate subtrees. We notice, that fitting places returned by the eST-Miner often
have no evidence, and sometimes even have counter-evidence, in the event log. For
example, consider the event log L =

[
〈I, a, c, d, e,�〉, 〈I, b, c, d, f,�〉

]
. The place

p1 = (a, b|e, f) is perfectly fitting with respect to this log. However, it describes de-
pendencies of f on a and e on b, which have no evidence in the event log. The places
p2 = (a|e) and p3 = (b|f), which are fitting and thus discovered by eST-Miner as well,
describe the dependencies much better and make the place p1 superfluous. We aim to
skip p1 and its whole subtree, since all contained candidates describe the unsupported
dependencies and could be replaced by better places contained in different subtrees.

In the following, we introduce a heuristic approach assigning an interest score to
each place based on the eventually-follows relations between its ingoing and outgoing
activities. This score is defined in such a way, that it can only decrease with increasing
depth, i.e., every place is at most as interesting as its parent. This property allows us to
skip whole subtrees based on the score assigned to the root of this subtree.

Definition 8 (Eventually-Follows Relation). Let a, b ∈ A be two (possibly equal)
activities. We say that b eventually follows a in a trace σ, if a a occurs in σ and later b
occurs in σ. Formally, a σ b := ∃i, j ∈ {1, ..., |σ|} :

(
i < j ∧ σ(i) = a ∧ σ(j) = b

)
.

The interest score based on the eventually-follows relation is based on the intuition,
that a place is interesting only if all pairs of ingoing and outgoing activities have more
evidence than counter-evidence in the event log. The relation between evidence and
acceptable counter-evidence is defined by the parameter λ.

Definition 9 (Interest Score). Let L be an event log and A ⊆ A the set of activities
which occur in L. For a pair of activities (a, b) ∈ A × A (possibly a = b), we define
the interest score as

 L

(
(a, b)

)
:=

|[σ ∈ L | a σ b]|
max(1, |[σ ∈ L | a ∈ σ ∧ b ∈ σ]|)

.

We define the interest score of a place p = (I|O) as

isL(p) = min
(
{ L

(
(a, b)

)
| a ∈ I ∧ b ∈ O}

)
.

The place p is called λ-interesting, if for a user-definable parameter λ ∈ [0, 1] we have
that isL(p) ≥ λ.
The interest score can be directly integrated into the eST-Miners search phase to skip ad-
ditional subtrees. In particular, whenever we encounter a place p that is not λ-interesting,
we conclude that none of its descendants is λ-interesting, and thus we can skip the
whole subtree rooted in p (Prop. 1). This follows directly from the incremental con-
struction of the tree structure (Def. 5) and the fact that the minimum is taken when
computing is(p) (Def. 9).

Proposition 1 (Interest Score Cannot Increase). Let L be an event log and A ⊆ A
the set of activities, which occur in L. Let CT be the search structure of the eST-Miner.
Let p = (I|O) be a place with I ⊆ A and O ⊆ A. Let λ ∈ [0, 1] be a parameter. If p is
not a λ-interesting place, then none of its descendants in CT is λ-interesting.
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Table 1: Overview of the event logs used in our experiments. SepsisA was obtained from the
original log by removing the 9 least frequent activities. TeleclaimsT contains the 85% most
frequent traces of the original log.

Log Type Log Name Abbreviation Activities Trace Variants Source

Real-Life Sepsis-activity filtered SepsisA 9 642 [10]
Road Traffic Fines Management RTFM 11 231 [11]

Artificial Teleclaims-trace filtered TeleclaimsT 10 12 [12]
repairexample Repair 12 77 [12]

Table 2: Runtimes of the search phase with different heuristics applied, represented as percentage
of the original eST-Miner’s (lexicographical ordering for >i and >o) search phase runtime, with
minimal and maximal times given as absolute values. All values are averaged over values for τ ∈
{1.0, 0.9, 0.8, 0.7, 0.6, 0.5}. We can see that the impact of the different activity orderings (Sec. 4)
on the time performance is much lower than for the λ-interesting pruning strategy (Sec. 5).

Repair RTFM SepsisA
mean min [s] max [s] mean min [s] max [s] mean min [s] max [s]

absAF 57.84% 34 63 74.69% 4075 11196 77.13% 48 140
absTF 76.13% 50 77 72.95% 3994 10983 77.99% 56 139
avgTO 63.05% 35 74 75.15% 3972 11671 74.37% 54 131
avgFOI 57.67% 33 56 64.94% 3272 10384 69.29% 46 120

isL(p) ≥ 1.0 4.94% 1.56 2.69 0.13% 12.91 17.06 0.55% 0.43 0.55

The impact of applying this pruning approach to eST-Miner is evaluated in Section 6.

6 Experimental Evaluation
We implemented the eST-Miner and our proposed extensions within the Python PM4Py
framework for process mining (Python version 3.7.1). Our experiments are all exe-
cuted on an Intel Core i5 (2× 2.6GHz) with 8GB of RAM, running MacOS Mojawave
(10.14.5). We evaluated real and artificial event logs as presented in Tab. 1.

6.1 Evaluation of Optimizing Orderings

We investigate the impact of the different choices for >i and >o as presented in Def. 7
on the time needed for the eST-Miner search phase. We compare the resulting times
to a base case, given by the performance on lexicographic (i.e. random) orderings. An
overview of our results for different logs is given in Tab. 2. The time needed for the
search phase when applying the different orderings is averaged over different values of
τ and presented as fractions of the runtime needed on the lexicographical ordering.

The table shows that when applying our proposed orderings, searching the candidate
space requires at most 78 % of the timed needed with the lexicographical ordering for
all tested event logs. In many cases we achieve a runtime of less than two thirds of
this base case. Based on the presented results, we can derive that the ordering based on
average first occurrence index clearly leads to the shortest runtime for all tested logs.
The other strategies, absolute activity frequency, absolute trace frequency and average
trace occurrence all lead to a significant improvement over the lexicographical ordering,
but none performs consistently better than the other on all logs.
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Fig. 2: Investigating runtimes for search (left) and post-processing phase (right) of the ip-eST
variant on the RTFM log, for different values of τ and λ.

Fig. 3: Comparing runtimes of the original eST-Miner and the ip-eST variant for search (left) and
post-processing phase (right) on the Repair event log, for λ = 1.0 and different values of τ .

We conclude that by choosing the orderings >i and >o in a sophisticated way, we
are able to perform the search phase in about 60% to 80% of the original runtime, while
returning the same set of fitting places.

6.2 Evaluation of Pruning Uninteresting Subtrees

We investigate the potential of the interesting places heuristic as presented in Section 5
to prune uninteresting subtrees and thus speed up the original eST-Miner. This variant
will be referred to as ip-eST in the following. Our experiments evaluate the runtime of
the algorithm as well as the quality of discovered models. First, we explore the impact
of choosing different values for λ using the RTFM log as a representative for various
experiments. The results are summarized in Fig. 2. We conclude that the improved
performance we achieve using a value of λ = 1.0 rapidly deteriorates for lower values
of λ. Since our goal is improved time performance, we focus on high λ values in our
other experiments, showing that even for λ = 1.0 model quality remains acceptable.
Tab. 2 summarizes the drastically increased performance for λ = 1.0, averaged over
different values for τ , for various logs as a percentage of the time needed by the original
eST-Miner’s search phase.

We choose the Repair log to represent our results on time performance. The huge
impact of applying the ip-eST variant rather than the original eST-Miner is clearly vis-
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Table 3: Time needed for the post-processing step when applying the ip-eST variant with
λ = 1.0, represented as the percentage of time needed by the original eST-Miner, averaged over
values for τ ∈ {1.0, 0.9, 0.8, 0.7, 0.6, 0.5}.

Repair SepsisA TeleclaimsT

postprocessing 0.47% 0.17% 0.03%

Fig. 4: Comparing quality results of the original eST-Miner and the ip-eST variant on the
Repair event log, for λ = 1.0 and different values of τ .

ible in Fig. 3. For all τ , the search time of the ip-eST variant is only a very small
fraction of the standard eST-Miner’s search time. The difference becomes larger for
smaller values for τ , since the time needed by the original miner increases while the
ip-eST variant’s search phase runtime remains low. For τ = 0.5, the search phase of
the ip-eST-Miner is more than 100 times faster. Since the ip-eST variant returns signifi-
cantly fewer fitting places than the original eST-Miner, in particular for lower values of
τ , the runtime of the post-processing step is greatly decreased. An overview is given in
Tab. 3. The difference between those variants increases as τ decreases, peaking in the
ip-eST variants post-processing being 4500 times faster than the standard eST-Miner’s
post-processing at τ = 0.5.

Definition 10 (Simplicity). We define the simplicity of a Petri net N = (A,P ) based
on the fraction of nodes being activities: simp(N) = |A|

|P |+|A| .

In Fig. 4, we investigate the fitness (token-based replay fitness [12]), precision ([13]),
and simplicity (Def. 10) of the models returned by the standard eST-Miner and the ip-
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Fig. 5: For the log [〈I, a, c,�〉5, 〈I, b, c,�〉5, 〈I, b, d,�〉5], the eST-Miner generates the places
shown in black, in particular p2. The ip-eST variant prunes p2 due to the uninteresting depen-
dency (a, d). Instead, it generates places like p4 and p5.

eST variant for different values of τ . To represent the results of our experiments on the
various logs, we choose the Repair event log. For other logs, the approach produces
similar results. Note, that for the models discovered by the original eST-Miner and the
ip-eST variant, the performance is very similar for all quality metrics and all values of
τ . The models returned by the standard eST-Miner do have a slightly higher precision
and slightly lower fitness, which is to be expected since non-implicit fitting places may
be skipped during the search phase. It is worth noticing that the ip-eST variant is still
capable of discovering long-term dependencies, one of the main features of the eST-
Miner.

Recall, that a high number of places results in a low simplicity score. Thus, we ex-
pect the ip-eST variant to return models that score at least as high as models discovered
by the standard eST-Miner, since it discovers less fitting places. Our experiments con-
firm this expectation for small values of τ , where the eST-Miner discovers a lot more
fitting places than the ip-eST variant using its high λ-value for aggressive pruning. For
high τ values, we get reversed results. This can be explained by the few fitting places
skipped by the ip-eST variant resulting in significantly less places being removed during
post-processing. This phenomenon is illustrated in Fig. 5.

In summary, our experiments have shown a strong boost to the time performance
compared to the standard eST-Miner, while we observe only small differences in the
quality of discovered models. We conclude that the ip-eST variant seems to restrict
the search space in an effective and adequate way and can reliably discover models of
similar quality as returned by the eST-Miner in a small fraction of the time.

7 Conclusion

In this paper, we introduced two approaches to improve the time performance of the
eST-Miner. The first strategy is based on arranging the candidate places in the tree-
like search structure in such a way, that the amount of skipped unfitting candidates
is approximately maximized. This decreases the time needed for the search phase to
60 − 80% of the time needed with random ordering, while returning exactly the same
set of fitting places. The second strategy is based on heuristically classifying subtrees as
uninteresting and thus skippable based on easily computable log properties. This thus
not only greatly decreases runtime of the search phase, but also of the post-processing
step, since significantly less fitting places are discovered. Our experiments show that
most of the skipped fitting places seem to be implicit, since the quality of the models
remains comparable. The computation time of the search phase is pushed below 5%
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of the time needed by the original algorithm. The post-processing step takes less than
0.5%. Moreover, both approaches can be combined.

Compared with many other discovery algorithms, the eST-Miner returns models
with high scores in fitness and particular precision. On the downside, computation times
are high and the models often complex. The introduced strategies offer a significant de-
crease in computation time and make the eST-Miner a competitive discovery approach
on event logs with a small number of activities.

The presented approaches are clearly very promising with respect to discovering
high-quality models faster. We see potential to further improve time performance as
well as model quality by investigating additional variants of both our heuristics. Also,
discovering reasonable dependencies between the parameters λ and τ would be inter-
esting. A combination of these heuristics with other variants of eST-Miner, e.g. the
uniwired variant ([14]), is clearly possible. In addition to improved computation speed,
we may be able to use our approaches to simplify the returned models without loosing
important structures.

Acknowledgments: We thank the Alexander von Humboldt (AvH) Stiftung for support-
ing our research.
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