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Abstract. Comparing observed behavior (event data generated during
process executions) with modeled behavior (process models), is an essen-
tial step in process mining analyses. Alignments are the de-facto standard
technique for calculating conformance checking statistics. However, the
calculation of alignments is computationally complex since a shortest
path problem must be solved on a state space which grows non-linearly
with the size of the model and the observed behavior, leading to the
well-known state space explosion problem. In this paper, we present a
novel framework to approximate alignments on process trees by exploit-
ing their hierarchical structure. Process trees are an important process
model formalism used by state-of-the-art process mining techniques such
as the inductive mining approaches. Our approach exploits structural
properties of a given process tree and splits the alignment computation
problem into smaller sub-problems. Finally, sub-results are composed to
obtain an alignment. Our experiments show that our approach provides
a good balance between accuracy and computation time.
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1 Introduction

Conformance checking is a key research area within process mining [1]. The
comparison of observed process behavior with reference process models is of cru-
cial importance in process mining use cases. Nowadays, alignments [2] are the
de-facto standard technique to compute conformance checking statistics. How-
ever, the computation of alignments is complex since a shortest path problem
must be solved on a non-linear state space composed of the reference model and
the observed process behavior. This is known as the state space explosion prob-
lem [3]. Hence, various approximation techniques have been introduced. Most
techniques focus on decomposing Petri nets or reducing the number of align-
ments to be calculated when several need to be calculated for the same process
model [4–8].

In this paper, we focus on a specific class of process models, namely pro-
cess trees (also called block-structured process models), which are an important
process model formalism that represent a subclass of sound Workflow nets [9].
For instance, various state-of-the-art process discovery algorithms return process
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trees [9–11]. In this paper, we introduce an alignment approximation approach
for process trees that consists of two main phases. First, our approach splits
the problem of alignments into smaller sub-problems along the tree hierarchy.
Thereby, we exploit the hierarchical structure of process trees and their seman-
tics. Moreover, the definition of sub-problems is based on a gray-box view on the
corresponding subtrees since we use a simplified/abstract view on the subtrees to
recursively define the sub-problems along the tree hierarchy. Such sub-problems
can then be solved individually and in parallel. Secondly, we recursively compose
an alignment from the sub-results for the given process tree and observed pro-
cess behavior. Our experiments show that our approach provides a good balance
between accuracy and computation effort.

The remainder is structured as follows. In Section 2, we present related work.
In Section 3, we present preliminaries. In Section 4, we present the formal frame-
work of our approach. In Section 5, we introduce our alignment approximation
approach. In Section 6, we present an evaluation. Section 7 concludes the paper.

2 Related Work

In this section, we present related work regarding alignment computation and
approximation. For a general overview of conformance checking, we refer to [3].

Alignments have been introduced in [2]. In [12] it was shown that the com-
putation is reducible to a shortest path problem and the solution of the problem
using the A* algorithm is presented. In [13], the authors present an improved
heuristic that is used in the shortest path search. In [14], an alignment approxi-
mation approach based on approximating the shortest path is presented.

A generic approach to decompose Petri nets into multiple sub-nets is in-
troduced in [15]. Further, the application of such decomposition to alignment
computation is presented. In contrast to our approach, the technique does not
return an alignment. Instead, only partial alignments are calculated, which are
used, for example, to approximate an overall fitness value. In [4], an approach
to calculate alignments based on Petri net decomposition [15] is presented that
additionally guarantees optimal fitness values and optionally returns an align-
ment. Comparing both decomposition techniques with our approach, we do not
calculate sub-nets because we simply use the given hierarchical structure of a
process tree. Moreover, our approach always returns a valid alignment.

In [5], an approach is presented that approximates alignments for an event log
by reducing the number of alignments being calculated based on event log sam-
pling. Another technique based on event log sampling is presented in [8] where
the authors explicitly approximate conformance results, e.g., fitness, rather than
alignments. In contrast to our proposed approach, alignments are not returned.
In [6] the authors present an approximation approach that explicitly focuses on
approximating multiple optimal alignments. Finally, in [7], the authors present
a technique to reduce a given process model and an event log s.t. the original
behavior of both is preserved as much as possible. In contrast, the proposed
approach in this paper does not modify the given process model and event log.
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Table 1: Example of an event log from an order process
Event-id Case-id Activity name Timestamp · · ·
· · · · · · · · · · · · · · ·
200 13 create order (c) 2020-01-02 15:29 · · ·
201 27 receive payment (r) 2020-01-02 15:44 · · ·
202 43 dispatch order (d) 2020-01-02 16:29 · · ·
203 13 pack order (p) 2020-01-02 19:12 · · ·
· · · · · · · · · · · · · · ·

3 Preliminaries

We denote the power set of a given set X by P(X). A multi-set over a set X
allows multiple appearances of the same element. We denote the universe of
multi-sets for a set X by B(X) and the set of all sequences over X as X∗, e.g.,
〈a, b, b〉∈{a, b, c}∗. For a given sequence σ, we denote its length by |σ|. We denote
the empty sequence by 〈〉. We denote the set of all possible permutations for given
σ∈X∗ by P(σ)⊆X∗. Given two sequences σ and σ′, we denote the concatenation
of these two sequences by σ·σ′. We extend the · operator to sets of sequences,
i.e., let S1, S2⊆X∗ then S1·S2={σ1·σ2 |σ1∈S1∧σ2∈S2}. For traces σ, σ′, the set
of all interleaved sequences is denoted by σ�σ′, e.g., 〈a, b〉�〈c〉={〈a, b, c〉, 〈a, c, b〉,
〈c, a, b〉}. We extend the � operator to sets of sequences. Let S1, S2⊆X∗, S1�S2

denotes the set of interleaved sequences, i.e., S1�S2=
⋃
σ1∈S1,σ2∈S2

σ1�σ2.
For σ∈X∗ andX ′⊆X, we recursively define the projection function σ↓X′ :X

∗→
(X ′)∗ with: 〈〉↓X′=〈〉,

(
〈x〉·σ

)
↓X′

=〈x〉·σ↓X′ if x∈X ′ and (〈x〉·σ)↓X′=σ↓X′ else.

Let t=(x1, . . . , xn)∈X1× . . .×Xn be an n-tuple over n sets. We define projec-
tion functions that extract a specific element of t, i.e., π1(t)=x1, . . . , πn(t)=xn,
e.g., π2 ((a, b, c)) =b. Analogously, given a sequence of length m with n-tuples
σ=〈(x11, . . . , x1n), . . . , (xm1 , . . . , x

m
n )〉, we define π∗1(σ)=〈x11, . . . , xm1 〉, . . . , π∗n(σ)=

〈x1n, . . . , xmn 〉. For instance, π∗2
(
〈(a, b), (a, c), (b, a)〉

)
=〈b, c, a〉.

3.1 Event Logs

Process executions leave event data in information systems. An event describes
the execution of an activity for a particular case/process instance. Consider
Table 1 for an example of an event log where each event contains the executed
activity, a timestamp, a case-id and potentially further attributes. Since, in this
paper, we are only interested in the sequence of activities executed, we define an
event log as a multi-set of sequences. Such sequence is also referred to as a trace.

Definition 1 (Event log). Let A be the universe of activities. L∈B(A∗) is an
event log.

3.2 Process Trees

Next, we define the syntax and semantics of process trees.
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Fig. 1: Process tree T0=
(
{no, . . . , n4.4},

{
(n0, n1.1), . . . , (n3.2, n4.4)

}
, λ, n0

)
with

λ(n0)=→, . . . , λ(n4.4)=d

Definition 2 (Process Tree Syntax). Let A be the universe of activities
and τ /∈A. Let

⊕
={→,×,∧,	} be the set of process tree operators. We define

a process tree T=(V,E, λ, r) consisting of a totally ordered set of nodes V , a set
of edges E, a labeling function λ:V→A∪{τ}∪

⊕
and a root node r∈V .

–
(
{n}, {}, λ, n

)
with λ(n)∈A∪{τ} is a process tree

– given k>1 process trees T1=(V1, E1, λ1, r1), . . . , Tk=(Vk, Ek, λk, rk), T=(V,
E, λ, r) is a process tree s.t.:
• V=V1∪ . . .∪Vk∪{r} (assume r/∈V1∪ . . .∪Vk)
• E=E1∪ . . .∪Ek∪

{
(r, r1), . . . , (r, rk)

}
• λ(x)=λj(x) ∀j∈{1, . . . , k}∀x∈Vj , λ(r)∈{→,∧,×}

– given two process trees T1=(V1, E1, λ1, r1) and T2=(V2, E2, λ2, r2), T=(V,E,
λ, r) is a process tree s.t.:
• V=V1∪V2∪{r} (assume r/∈V1∪V2)
• E=E1∪E2∪

{
(r, r1), (r, r2)

}
• λ(x)=λ1(x) if x∈V1, λ(x)=λ2(x) if x∈V2, λ(r)= 	

In Figure 1, we depict an example process tree T0 that can alternatively be
represented textually due to the totally ordered node set, i.e., T0=̂→(	(×(→(a, b),
∧(c, d)), τ),∧(e, a)). We denote the universe of process trees by T . The degree
d indicates the number of edges connected to a node. We distinguish between
incoming d+ and outgoing edges d−, e.g., d+(n2.1)=1 and d−(n2.1)=2. For a tree
T=(V,E, λ, r), we denote its leaf nodes by TL={v∈V |d−(v)=0}. The child func-
tion cT :V→V ∗ returns a sequence of child nodes according to the order of V ,
i.e., cT (v)=〈v1, . . . , vj〉 s.t. (v, v1), . . . , (v, vj)∈E. For instance, cT (n1.1)=〈n2.1,
n2.2〉. For T=(V,E, λ, r) and a node v∈V , 4T (v) returns the corresponding tree
T ′ s.t. v is the root node, i.e., T ′=(V ′, E′, λ′, v). Consider T0, 4T0(n1.1)=T1 as
highlighted in Figure 1. For process tree T∈T , we denote its height by h(T )∈N.

Definition 3 (Process Tree Semantics). For given T=(V,E, λ, r)∈T , we
define its language L(T )⊆A∗.
– if λ(r)=a∈A, L(T )={〈a〉}
– if λ(r)=τ , L(T )={〈〉}
– if λ(r)∈{→,×,∧} with cT (r)=〈v1, . . . , vk〉
• with λ(r)=→, L(T )=L(4T (v1))· . . . ·L(4T (vk))
• with λ(r)=∧, L(T )=L(4T (v1))� . . . �L(4T (vk))
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trace part a b � � c f � �

model part
n4.1

λ(n4.1)=a
n4.2

λ(n4.2)=b
n2.2

λ(n2.2)=τ
n4.4

λ(n4.4)=d
n4.3

λ(n4.3)=c
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Fig. 2: Optimal alignment γ=
〈
(a, n4.1), . . . , (�, n2.3)

〉
for 〈a, b, c, f〉 and T0

• with λ(r)=×, L(T )=L(4T (v1))∪ . . .∪L(4T (vk))
– if λ(r)=	 with cT (r)=〈v1, v2〉, L(T )={σ1·σ′1·σ2·σ′2·. . .·σm | m≥1∧ ∀1≤i≤m(

σi∈L(4T (v1))
)
∧ ∀1≤i≤m−1

(
σ′i∈L(4T (v2))

)
}

In this paper, we assume binary process trees as input for our approach, i.e,
every node has two or none child nodes, e.g., T0. Note that every process tree
can be easily converted into a language equivalent binary process tree [9].

3.3 Alignments

Alignments [12] map observed behavior onto modeled behavior specified by pro-
cess models. Figure 2 visualizes an alignment for the trace 〈a, b, c, f〉 and T0
(Figure 1). The first row corresponds to the given trace ignoring the skip sym-
bol �. The second row (ignoring �) corresponds to a sequence of leaf nodes
s.t. the corresponding sequence of labels (ignoring τ) is in the language of the
process tree, i.e., 〈a, b, d, c, a, e〉∈L(T0). Each column represents an alignment
move. The first two are synchronous moves since the activity and the leaf node
label are equal. The third and fourth are model moves because � is in the log
part. Moreover, the third is an invisible model move since the leaf node label is
τ and the fourth is a visible model move since the label represents an activity.
Visible model moves indicate that an activity should have taken place w.r.t. the
model. The sixth is a log move since the trace part contains �. Log moves in-
dicate observed behavior that should not occur w.r.t. the model. Note that we
alternatively write γ=̂

〈
(a, a), . . . , (�, e)

〉
using their labels instead of leaf nodes.

Definition 4 (Alignment). Let A be the universe of activities, σ∈A∗ be a trace
and T=(V,E, λ, r)∈T be a process tree with leaf nodes TL. Note that �, τ /∈A.
A sequence γ∈

(
(A∪{�})×(TL∪{�})

)∗
with length n=|γ| is an alignment iff:

1. σ=π∗1(γ)↓A

2.
〈
λ
(
π2
(
γ (1)

))
, . . . , λ

(
π2
(
γ(n)

))〉
↓A
∈L(T )

3. (�,�)/∈γ and (a, v)/∈γ ∀a∈A ∀v∈TL
(
a 6=λ(v)

)
For a given process tree and a trace, many alignments exist. Thus, costs are

assigned to alignment moves. In this paper, we assume the standard cost function.
Synchronous and invisible model moves are assigned cost 0, other moves are
assigned cost 1. An alignment with minimal costs is called optimal. For a process
tree T and a trace σ, we denote the set of all possible alignments by Γ (σ, T ).
In this paper, we assume a function α that returns for given T∈T and σ∈A∗
an optimal alignment, i.e., α(σ, T )∈Γ (σ, T ). Since process trees can be easily
converted into Petri nets [1] and the computation of alignments for a Petri net
was shown to be reducible to a shortest path problem [12], such function exists.
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4 Formal Framework

In this section, we present a general framework that serves as the basis for
the proposed approach. The core idea is to recursively divide the problem of
alignment calculation into multiple sub-problems along the tree hierarchy. Sub-
sequently, we recursively compose partial sub-results to an alignment.

Given a trace and tree, we recursively split the trace into sub-traces and
assign these to subtrees along the tree hierarchy. During splitting/assigning, we
regard the semantics of the current root node’s operator. We recursively split
until we can no longer split, e.g., we hit a leaf node. Once we stop splitting, we
calculate optimal alignments for the defined sub-traces on the assigned subtrees,
i.e., we obtain sub-alignments. Next, we recursively compose the sub-alignments
to a single alignment for the parent subtree. Thereby, we consider the semantics
of the current root process tree operator. Finally, we obtain a valid, but not
necessarily optimal, alignment for the initial given tree and trace since we regard
the semantics of the process tree during splitting/assigning and composing.

Formally, we can express the splitting/assigning as a function. Given a trace
σ∈A∗ and T=(V,E, λ, r)∈T with subtrees T1 and T2, ψ splits the trace σ into
k sub-traces σ1, . . . , σk and assigns each sub-trace to either T1 or T2.

ψ(σ, T )∈
{〈

(σ1, Ti1), . . . , (σk, Tik)
〉
| i1, . . . , ik∈{1, 2} ∧ σ1· . . . ·σk∈P(σ)

}
(1)

We call a splitting/assignment valid if the following additional conditions are
satisfied depending on the process tree operator:

– if λ(r)=×: k=1
– if λ(r)=→: k=2 ∧ σ1·σ2=σ
– if λ(r)=∧: k=2
– if λ(r)=	: k∈{1, 3, 5, . . . }∧σ1· . . . ·σk=σ ∧ i1=1∧∀j∈{1, . . . , k−1}

(
(ij=1⇒

ij+1=2) ∧ (ij=2⇒ij+1=1)
)

Secondly, the calculated sub-alignments are recursively composed to an align-
ment for the respective parent tree. Assume a tree T∈T with sub-trees T1 and
T2, a trace σ∈A∗, a valid splitting/assignment ψ(σ, T ) , and a sequence of k sub-
alignments 〈γ1, . . . , γk〉 s.t. γj∈Γ (σj , Tij ) with (σj , Tij )=ψ(σ, T )(j)∀j∈{1, . . . , k}.
The function ω composes an alignment for T and σ from the given sub-alignments.

ω(σ, T, 〈γ1, . . . , γk〉)∈{γ | γ∈Γ (σ, T ) ∧ γ1· . . . ·γk∈P(γ)} (2)

By utilizing the definition of process tree semantics, it is easy to show that, given
a valid splitting/assignment, such alignment γ returned by ω always exists.

The overall, recursive approach is sketched in Algorithm 1. For a given tree T
and trace σ, we create a valid splitting/assignment (line 4). Next, we recursively
call the algorithm on the determined sub-traces and subtrees (line 6). If given
thresholds for trace length (TL) or tree height (TH) are reached, we stop split-
ting and return an optimal alignment (line 2). Hence, for the sub-traces created,
we eventually obtain optimal sub-alignments, which we recursively compose to
an alignment for the parent tree (line 7). Finally, we obtain a valid, but not
necessarily optimal, alignment for T and σ.
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Algorithm 1: Approximate alignment
input: T=(V,E, λ, r)∈T , σ∈A∗, TL≥1, TH≥1
begin

1 if |σ|≤TL ∨ h(T )≤TH then
2 return α(σ, T ); // optimal alignment

3 else
4 ψ(σ, T )=〈(σ1, Ti1

), . . . , (σk, Tik
)
〉
; // valid splitting

5 for (σj , Tij
)∈
〈
(σ1, Ti1

), . . . , (σk, Tik
)
〉
do

6 γj ←approx. alignment for σj and Tij
; // recursion

7 γ ← ω(σ, T, 〈γ1, . . . , γk〉); // composing
8 return γ;

→

T1 T2

σ=〈d, c, a, b, c, d | a, e〉

A(T1)={a, b, c, d} 〈〉/∈L(T1)

SA(T1)={a, c, d}
EA(T1)={b, c, d}

A(T2)={e, a} 〈〉/∈L(T1)

SA(T2)={e, a}
EA(T2)={e, a}

σ1=〈d, c, a, b, c, d〉 σ2=〈a, e〉

(a) Trace splitting and assignment

→

T1 T2

γ1=̂
d c a b c d
d c b b c d

γ2=̂
a e
a e

γ=̂
d c a b c d
d c b b c d

· a e
a e

(b) Alignment composition

Fig. 3: Overview of the two main actions of the approximation approach

5 Alignment Approximation Approach

Here, we describe our proposed approach, which is based on the formal frame-
work introduced. First, we present an overview. Subsequently, we present specific
strategies for splitting/assigning and composing for each process tree operator.

5.1 Overview

For splitting a trace and assigning sub-traces to subtrees many options exist.
Moreover, it is inefficient to try out all possible options. Hence, we use a heuristic
that guides the splitting/assigning. For each subtree, we calculate four character-
istics: the activity labels A, if the empty trace is in the subtree’s language, possi-
ble start-activities SA and end-activities EA of traces in the subtree’s language.
Thus, each subtree is a gray-box since only limited information is available.

Consider the trace to be aligned σ=〈d, c, a, b, c, d, a, e〉 and the two sub-
trees of T0 with corresponding characteristics depicted in Figure 3a. Since T0’s
root node is a sequence operator, we need to split σ once to obtain two sub-
traces according to the semantics. Thus, we have 9 potential splittings positions:
〈|1 d |2 c |3 a |4 b |5 c |6 d |7 a |8 e |9〉. If we split at position 1, we assign σ1=〈〉
to the first subtree T1 and the remaining trace σ2=σ to T2. Certainly, this is
not a good decision since we know that 〈〉/∈L(T1), the first activity of σ2 is not
a start activity of T2 and the activities b, c, d occurring in σ2 are not in T2.
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Assume we split at position 7 (Figure 3a). Then we assign σ1=〈d, c, a, b, c, d〉
to T1. All activities in σ1 are contained in T1, σ1 starts with d∈SA(T1) and ends
with d∈EA(T1). Further, we obtain σ2=〈a, e〉 whose activities can be replayed
in T2, and start- and end-activities match, too. Hence, according to the gray-
box-view, splitting at position 7 is a good choice. Next, assume we receive two
alignments γ1 for T1, σ1 and γ2 for T2, σ2 (Figure 3b). Since T1 is executed before
T2, we concatenate the sub-alignments γ=γ1·γ2 and obtain an alignment for T0.

5.2 Calculation of Process Tree Characteristics

In this section, we formally define the computation of the four tree character-
istics for a given process tree T=(V,E, λ, r). We define the activity set A as a
function, i.e., A:T →P(A), with A(T )={λ(n) | n∈TL, λ(n)6=τ}. We recursively
define the possible start- and end-activities as a function, i.e., SA:T →P(A) and
EA:T →P(A). If T is not a leaf node, we refer to its two subtrees as T1 and T2.

SA(T )=



{λ(r)} if λ(r)∈A
∅ if λ(r)=τ

SA(T1) if λ(r)=→∧〈〉/∈L(T1)

SA(T1)∪SA(T2) if λ(r)=→∧〈〉∈L(T1)

SA(T1)∪SA(T2) if λ(r)∈{∧,×}
SA(T1) if λ(r)=	∧〈〉/∈L(T1)

SA(T1)∪SA(T2) if λ(r)=	∧〈〉∈L(T1)

EA(T )=



{λ(n)} if λ(r)∈A
∅ if λ(r)=τ

EA(T2) if λ(r)=→∧〈〉/∈L(T2)

EA(T1)∪EA(T2) if λ(r)=→∧〈〉∈L(T2)

EA(T1)∪EA(T2) if λ(r)∈{∧,×}
EA(T1) if λ(r)=	∧〈〉/∈L(T1)

EA(T1)∪EA(T2) if λ(r)=	∧〈〉∈L(T1)

The calculation whether the empty trace is accepted can also be done recursively.

– λ(r)=τ ⇒ 〈〉∈L(T ) and λ(r)∈A ⇒ 〈〉/∈L(T )
– λ(r)∈{→,∧} ⇒ 〈〉∈L(T1) ∧ 〈〉∈L(T2)⇔ 〈〉∈L(T )
– λ(r)∈× ⇒ 〈〉∈L(T1) ∨ 〈〉∈L(T2)⇔ 〈〉∈L(T )
– λ(r)= 	⇒ 〈〉∈L(T1)⇔ 〈〉∈L(T )

5.3 Interpretation of Process Tree Characteristics

The decision where to split a trace and the assignment of sub-traces to subtrees is
based on the four characteristics per subtree and the process tree operator. Thus,
each subtree is a gray-box for the approximation approach since only limited
information is available. Subsequently, we explain how we interpret the subtree’s
characteristics and how we utilize them in the splitting/assigning decision.

Consider Figure 4 showing how the approximation approach assumes a given
subtree T behaves based on its four characteristics, i.e., A(T ), SA(T ), EA(T ),
〈〉∈L(T ). The most liberal interpretation I(T ) of a subtree T can be considered
as a heuristic that guides the splitting/assigning. The interpretation I(T ) de-
pends on two conditions, i.e., if 〈〉∈L(T ) and whether there is an activity that is
both, a start- and end-activity, i.e., SA(T )∩EA(T )6=∅. Note that L(T )⊆L(I(T ))
holds. Thus, the interpretation is an approximated view on the actual subtree.

In the next sections, we present for each tree operator a splitting/assigning
and composing strategy based on the presented subtree interpretation. All strate-
gies return a splitting per recursive call that minimizes the overall edit distance
between the sub-traces and the closest trace in the language of the interpretation
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→

N×
(
SA(T )

)
	

τ N×
(
A(T )

)
N×
(
EA(T )

)

(a) 〈〉/∈L(T ) and SA(T )∩EA(T )=∅

×

→

N×
(
SA(T )

)
	

τ N×
(
A(T )

)
N×
(
EA(T )

)
N×
(
SA(T )∩EA(T )

)

(b) 〈〉/∈L(T ) and SA(T )∩EA(T ) 6=∅

×
→

N×
(
SA(T )

)
	

τ N×
(
A(T )

)
N×
(
EA(T )

)
τ

(c) 〈〉∈L(T ) and SA(T )∩EA(T )=∅

×

→

N×
(
SA(T )

)
	

τ N×
(
A(T )

)
N×
(
EA(T )

)
N×
(
SA(T )

)
∩EA(T )

)
τ

(d) 〈〉∈L(T ) and SA(T )∩EA(T ) 6=∅

Fig. 4: Most liberal interpretation I(T ) of the four characteristics of a process
tree T∈T . For a set X={x1, . . . , xn}, N×(X) represents the tree ×(x1, . . . , xn)

of the assigned subtrees. For σ1, σ2∈A∗, let l(σ1, σ2)∈N∪{0} be the Levenshtein
distance [16]. For given σ∈A∗ and T∈T , we calculate a valid splitting ψ(σ, T )=〈
(σ1, Ti1), . . . , (σj , Tik)

〉
w.r.t. Eq. (1) s.t. the sum depicted below is minimal.∑
j∈{1,...,k}

(
min

σ′∈I(Tij
)
l(σj , σ′)

)
(3)

In the upcoming sections, we assume a given trace σ=〈a1, . . . , an〉 and a
process tree T=(V,E, λ, r) with subtrees referred to as T1 and T2.

5.4 Approximating on Choice Operator

The choice operator is the most simple one since we just need to assign σ to one
of the subtrees according to the semantics, i.e., assigning σ either to T1 or T2.
We compute the edit distance of σ to the closest trace in I(T1) and in I(T2) and
assign σ to the subtree with smallest edit distance according to Eq. (3).

Composing an alignment for the choice operator is trivial. Assume we even-
tually get an alignment γ for the chosen subtree, we just return γ for T .

5.5 Approximating on Sequence Operator

When splitting on a sequence operator, we must assign a sub-trace to each
subtree according to the semantics. Hence, we calculate two sub-traces: 〈(σ1, T1),
(σ2, T2)〉 s.t. σ1·σ2=σ according to Eq. (3). The optimal splitting/assigning can
be defined as an optimization problem, i.e., Integer Linear Programming (ILP).

In general, for a trace with length n, n+1 possible splitting-positions exist:
〈|1 a1 |2 a2 |3 . . . |n an |n+1〉. Assume we split at position 1, this results in〈
(〈〉, T1), (σ, T2)

〉
, i.e., we assign 〈〉 to T1 and the original trace σ to T2.
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Composing the alignment from sub-alignments is straightforward. In general,
we eventually obtain two alignments, i.e, 〈γ1, γ2〉, for T1 and T2. We compose
the alignment γ for T by concatenating the sub-alignments, i.e., γ=γ1·γ2.

5.6 Approximating on Parallel Operator

According to the semantics, we must define a sub-trace for each subtree, i.e.,
〈(T1, σ1), (T2, σ2)〉. In contrast to the sequence operator, σ1·σ2=σ does not gen-
erally hold. The splitting/assignment w.r.t. Eq. (3) can be defined as an ILP. In
general, each activity can be assigned to one of the subtrees independently.

For example, assume σ=〈c, a, d, c, b〉 and T =̂∧
(
→(a, b),	(c, d)

)
with subtree

T1=̂→(a, b) and T2=̂	(c, d). Below we assign the activities to subtrees.
〈 c, a, d, c, b 〉
T2 T1 T2 T2 T1

Based on the assignment, we create two sub-traces: σ1=〈a, b〉 and σ2=〈c, d, c〉.
Assume that γ1=̂〈(a, a), (b, b)〉 and γ2=̂〈(c, c), (d, d), (c, c)〉 are the two align-
ments eventually obtained. To compose an alignment for T , we have to consider
the assignment. Since the first activity c is assigned to T2, we extract the corre-
sponding alignment steps from γ1 until we have explained c. The next activity
in σ is an a assigned to T1. We extract the alignment moves from γ1 until we ex-
plained the a. We iteratively continue until all activities in σ are covered. Finally,
we obtain an alignment for T and σ, i.e., γ=̂

〈
(c, c), (a, a), (d, d), (c, c), (b, b)

〉
.

5.7 Approximating on Loop Operator

We calculate m∈{1, 3, 5, . . . } sub-traces that are assigned alternately to the two
subtrees: 〈(σ1, T1), (σ2, T2), (σ3, T1), . . . , (σm−1, T2), (σm, T1)〉 s.t. σ=σ1· . . . ·σm.
Thereby, σ1 and σm are always assigned to T1. Next, we visualize all possible
splitting positions for the given trace: 〈|1 a1 |2 |3 a2 |4 . . . |2n−1 an |2n〉. If we split
at each position, we obtain

〈(
〈〉, T1

)
,
(
〈a1〉, T2

)
,
(
〈〉, T1

)
, . . . ,

(
〈an〉, T2

)
,
(
〈〉, T1

)〉
.

The optimal splitting/assignment w.r.t Eq. (3) can be defined as an ILP.
Composing an alignment is similar to the sequence operator. In general, we

obtain m sub-alignments 〈γ1, . . . , γm〉, which we concatenate, i.e., γ=γ1· . . . ·γm.

6 Evaluation

This section presents an experimental evaluation of the proposed approach.
We implemented the proposed approach in PM4Py3, an open-source process

mining library. We conducted experiments on real event logs [17,18]. For each log,
we discovered a process tree with the Inductive Miner infrequent algorithm [10].

In Figures 5 and 6, we present the results. We observe that our approach is
on average always faster than the optimal alignment algorithm for all tested pa-
rameter settings. Moreover, we observe that our approach never underestimates

3 https://pm4py.fit.fraunhofer.de/

https://pm4py.fit.fraunhofer.de/
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Fig. 5: Results for [17], sample: 100 variants, tree height 24, avg. trace length 28
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Fig. 6: Results for [18], sample: 100 variants, tree height 10, avg. trace length 65

the optimal alignment costs, as our approach returns a valid alignment. W.r.t.
optimization problems for optimal splittings/assignments, consider parameter
setting TH:5 and TL:5 in Figure 5. This parameter setting results in the high-
est splitting along the tree hierarchy and the computation time is the lowest
compared to the other settings. Thus, we conclude that solving optimization
problems for finding splittings/assignments is appropriate. In general, we ob-
serve a good balance between accuracy and computation time. We additionally
conducted experiments with a decomposition approach [15] (available in ProM4)
and compared the calculation time with the standard alignment implementation
(LP-based) [12] in ProM. Consider Table 2. We observe that the decomposition
approach does not yield a speed-up for [17] but for [18] we observe that the
decomposition approach is about 5 times faster. In comparison to Figure 6a,
however, our approach yields a much higher speed-up.

7 Conclusion

We introduced a novel approach to approximate alignments for process trees.
First, we recursively split a trace into sub-traces along the tree hierarchy based

4 http://www.promtools.org/

Table 2: Results for decomposition based alignments
Approach [17] (sample: 100 variants) [18] (sample: 100 variants)

decomposition [15] 25.22 s 20.96 s
standard [12] 1.51 s 103.22 s

http://www.promtools.org/
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on a gray-box view on the respective subtrees. After splitting, we compute op-
timal sub-alignments. Finally, we recursively compose a valid alignment from
sub-alignments. Our experiments show that the approach provides a good bal-
ance between accuracy and calculation time. Apart from the specific approach
proposed, the contribution of this paper is the formal framework describing how
alignments can be approximated for process trees. Thus, many other strategies
besides the one presented are conceivable.
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