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Abstract. Process performance mining utilizes the event data gener-
ated and stored during the execution of business processes. For the
successful application of process performance mining, one needs reliable
performance statistics based on an understandable representation of the
process. However, techniques developed for the automated analysis of
event data typically solely focus on one aspect of the aforementioned
requirements, i.e., the techniques either focus on increasing the anal-
ysis interpretability or on computing and visualizing the performance
metrics. As such, obtaining performance statistics at the higher level
of abstraction for analysis remains an open challenge. Hence, using the
notion of process stages, i.e., high-level process steps, we propose an
approach that supports human analysts to analyze the performance at
the process-stage-level. An extensive set of experiments shows that our
approach, without much effort from users, supports such analysis with
reliable results.

Keywords: Process performance analysis · Event abstraction · Process
stage · Performance visualization.

1 Introduction

The goal of all the business is to maximize the return on investment, which
can be realized through improving the efficiency of their business processes [10].
Analyzing process efficiency enables companies to locate and diagnose the causes
of the bottlenecks in order to optimize workload scheduling and the distribution
of resources. Process mining is a technology that empowers companies to analyze
a process by exploiting an event log, i.e., records of events executed during the
execution of a process [20]. Process performance mining is a subfield that focuses
on the process performance, often referred to as the time dimension, to identify
and diagnose the inefficiencies during the operation of a business process [4].

The effectiveness of the analysis of the process performance depends on two
aspects, i.e., interpretability of the results as well as the reliability of the per-
formance metrics provided. To achieve this, most process performance mining
techniques project the performance information on a discovered or predefined
process model [5,9,21]. However, as the behavior in a process becomes more
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Fig. 1: Performance projection at activity level using Disco [5].

complex, the results may be no longer reliable and interpretable for human an-
alysts. For example, as shown in Fig. 1, each of the bottlenecks highlighted only
occurs once and the graph is difficult to read. As such, diagnosis remains difficult.

Problem Statement. Consider the medical domain, where specific activities
are performed prior, during, and after the surgery. In some cases, the exact
scheduling of activities within such a part of the process might be arbitrary,
leading to the complex behavior. Such complexity results from the original level
of granularity of the process, i.e., activities. As shown in Fig. 1, the complexity
leads to the unreliable diagnosis due to the noninterpretable results and the
relatively low frequency of the bottlenecks.

Moreover, an effective diagnosis of the inefficiencies in a process requires
the context of cases. Consider the same example of performing a surgery in
the medical domain. Assume that the average duration of conducting a surgery
(during) is 5 hours and preparation for a surgery (prior) is 15 minutes. Suppose
that the efficiency of conducting a surgery depends on how much the necessary
materials or information are prepaid for the surgery in advance. Without the
performance statistics presented in the context of a case, the bottleneck may be
identified as performing the surgery. However, the cause of the bottleneck, i.e.,
how well the surgery is prepared in advance, may not be diagnosed. The paper
aims to enable analysts to locate and diagnose the inefficiencies in complex
processes by addressing the following questions:

Q1. What is the major part in a complex process that forms the bottleneck
which actually causes the additional costs in the process?

Q2. What causes the bottleneck and how does the bottleneck impact the fol-
lowing parts of the process?

Q3. How reliable is the performance statistics given?

Solution Overview. In this paper, we formally define such parts as the concept
of stages to elevate the analysis of process performance to the stage level. By
only consider the activities that would determine the performance of a stage,
we provide an overview of the stage performance with the throughput time of a
stage and the time that the stage is in active in a process. The details of a stage,
i.e., the executions within the stage, are not of concern considering such details
may result in losing the focus of the big picture as shown in Fig. 1. Then, we
visualize the performance metrics for the diagnosis at the stage level.

By doing so, the process can be easier understood and, thus, diagnosed at
a higher level of abstraction. Moreover, the reliability of the results can be en-
hanced by including a sufficient number of performance measurements (com-
pared with the bottleneck that occurs only once in the process). Meanwhile, to
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support the diagnosis, the visualizations emphasize on the performance statistics
in the context of cases. To summarize, the proposed approach supports an an-
alyst to identify the bottlenecks at the stage level and diagnose the root causes
before drilling down the process at the original granularity level.

Our implementation and the datasets used for evaluation are available for
replicating the experiments. We evaluate our solution by analyzing two event
logs and compare the results with the existing techniques. The contributions are
summarized as follows:

1. We develop an approach to extract the execution of stages defined by a user.
According to our evaluation, the proposed approach reaches the balance
between the usability and the reliability of the results compared with the
existing techniques.

2. Provided the definition of stages, we introduce performance metrics that are
straightforward for a user, allowing one to perform an unbiased analysis.

3. We provide a visualization that shows the evolution of the performance at the
stage level and the interaction between stages. Meanwhile, the performance
distribution of cases are presented together at a glance for diagnosis.

The remainder of the paper is organized as follows. Section 2 introduces re-
lated work in the field of process mining. The proposed approach is presented
in Section 3. In Section 4, we perform analysis of stage performance by experi-
menting with various techniques and summarize the paper in Section 5.

2 Related Work

To the best of our knowledge, this is the first work that focuses on the perfor-
mance analysis at a coarser granularity level by extracting the instances at the
corresponding abstraction level and compute and visualize the duration accord-
ingly. Using the existing techniques, such analysis may be performed by applying
filtering or combining different techniques. Filtering based on per target coarse-
granular instance may result in biased performance results. Alternatively, one
may combine different techniques, which we classified into event abstraction and
performance analysis techniques, to analyze the performance based on the in-
stances extracted at a coarser granularity level.

Event Abstraction. Based on the output of the techniques, the event abstrac-
tion techniques can be further classified into model-based and non model-based.
In [15], the authors decompose a process model into groups of activities, i.e.,
well-defined process steps, by mimicking the intuition of a human analyst iden-
tifying stages according to the modularity of the graph. Mannhardt and Tax
identify the coarse-granular instances based on user-defined patterns which are
represented by process models [14]. However, both approaches do not guarantee
the availability of the results as shown in the experiments.

Other approaches do not require a process model. A supervised learning
technique predicts the stage of an event using a probabilistic model [18,19].
The prediction model is trained with an event log in which all the events are
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labeled with the target instances at the coarser granularity level. Assuming that
there exist patterns of the occurrence of the activities within a user-defined time
interval, de Leoni and Dündar cluster activities and annotate the corresponding
clusters to the events [12]. To analyze the performance of the process at the
abstracted level, one has to apply other performance analysis techniques on top
of the results of using the event abstraction techniques. For example, one may
discover a process model at a higher granularity level from an abstracted event
log and project the performance statistics on the model [11,9,21].

Performance Analysis. Similarly, we categorize the techniques into model-
based and non model-based. Model-based techniques project the performance
statistics on a predefined or discovered process model [5,9,21]. The performance
can be analyzed with the context that is presented with the model. Neverthe-
less, due to the modeling formalism, i.e., certain process models do not allow
for expressing all possible control-flow behaviors, the resulting process behav-
ior highly depends on the discovery technique or the modeling method applied.
The performance metrics may, thus, present biased results. Also, the aggregated
performance metrics on a model limits the depth of the diagnosis. One needs to
look into the cases in order to identify the root causes.

Other performance analysis techniques do not require a process model. The
objectives of such methods vary and, therefore, it is hard to point out a common
technique applied. Generally speaking, they aim to present unbiased results by
showing the raw performance measures. For example, the dotted chart is a sim-
ple, yet powerful, technique that allows batched executions to be observed [17].
However, additional calculation is required to quantify the observed behavior and
the context, i.e., relationship between activities, is lost. Another work focuses
on the process performance over time with a parallel plot showing the duration
of each process step on a absolute timeline [2,3]. The batched executions, which
are often the causes of the delays in a process, can be easily observed and some
behaviors, e.g., the overtake of the activities, may be discovered. The visual-
ization emphasizes on the performance of and the interaction between process
steps. However, without the context of a case, some diagnosis may be limited.
For example, the influence of the performance of a process step to another one
which is not directly following the one may not be observed and compared at
the case level. The work is extended by incorporating a process model such that
the performance of a process step can be analyzed with the context and more
advanced process behavior may be presented with the model [1]. However, using
a model suffers from the modeling formalism mentioned. In [16], the authors
visualize the metrics such as the number of cases that arrive at each phase of
a process per day. The workload and the efficiency in a phase over a specific
time frame can then be observed. However, every event in an event log must be
assigned to a phase and the phases must occur in a specific order, i.e., no phase
could be skipped and no parallel phases is possible.

The existing event abstraction techniques may suffer from the biased results
due to the modeling formalism or the assumptions of a process which the tech-
niques are developed based on. The current performance analysis techniques are
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either insufficient for analyzing the influence of bottlenecks in the context of
cases, one of the objectives of our research, or restricted to the assumed process
behavior. To conclude, simply combining the existing techniques is insufficient
to analyze the process performance at a coarser granularity level.

3 Stage-Based Performance Mining

An overview of the approach is presented in Fig. 2. It is a two-fold approach,
which extracts stage instances, i.e., the execution of stage classes, and visual-
izes the performance metrics. The approach consists of four core components:
Mine for Stage Instances, Compute Stage Performance Metrics Visualize Stage
Performance Evolution and Visualize Stage Performance Summary. Based on
the stage classes specified by a user, Mine for Stage Instances extracts the stage
instances. The performance metrics is computed and visualized with Visualize
Stage Performance Evolution and Visualize Stage Performance Summary. This
section formally defines the terms mentioned and explains the components shown
in Fig. 2 after briefly introducing the basic concept used in our approach.

3.1 Preliminaries

Given an arbitrary set X, we write P(X)= {X ′|X ′⊆X} to denote its pow-
erset. A sequence of length n over X is a function σ:{1, 2, ...n}→X. Let X∗

denote the set of all sequences over X. We write σ=〈x1, x2, ..., xn〉∈X∗, where
σ(1)=x1, σ(2)=x2, ..., σ(n)=xn. Given a sequence σ∈X∗, |σ|denotes the length
of the sequence. The empty sequence is written as 〈〉, i.e., |〈〉|=0. We overload
the set notation and write x∈σ if and only if ∃1≤i≤|σ|

(
σ(i)=x

)
.

In a process, an execution of an activity is recorded as an event with the
timestamp of the execution in the context of a process instance, i.e., a case. The
events of a process are collected in an event log, the input for any process mining
technique. In practice, many additional data attributes can be associated with
an event. For example, event data typically captures the resource executing the
activity, the cost of such an activity, etc. In this paper, we represent an event
by a pair e=(a, t) executed in the context of a case represented by a trace. The
definitions of an event, trace, and event logs are as follows.

Definition 1 (Event, Trace & Event Log). Let A denote the universe of
process activities and T denote the universe of time. An event e=(a, t)∈A×T
represents the execution of activity a at time t. We let E =A×T denote the

Fig. 2: Schematic overview of the proposed approach.
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Fig. 3: A trace of a medical process of a patient in a hospital.

universe of events. Given e=(a, t)∈E , we let πact(e)=a and πts(e)=t. A trace σ
is a sequence of events, i.e., σ∈E ∗, such that ∀1≤i<j≤|σ| (πts(σ(i))≤πts(σ(j))).
An event log L is a collection of traces, i.e., L⊆E ∗.3

3.2 Mine for Stage Instances

A natural way to analyze the performance of a complex process is to firstly
elevate the process to the stage level. The performance of such a stage might
not be impacted (significantly) by the arbitrary scheduling of activities inside a
stage. Therefore, only the activities that a stage might start and end with are
of interest when analyzing the performance at a higher level of abstraction, i.e.,
at the stage level.

Meanwhile, the level of abstraction of a process depends on the organiza-
tion and the analysis objectives. For example, for a process operated by several
companies, a stage can be defined as the part of the process within a specific
company or a department of a company. This depends on the question of in-
terest. To support such an analysis, the proposed approach allows analysts to
specify the stages with the activities that a stage class may start and end with.
The execution of stage classes, i.e., stage instances, are the actual operations in
a case. We formally define a stage class and a stage instance below.

Definition 2 (Stage Class). A stage class S is a pair of non-empty sets of dis-
joint activities, i.e., S=(As, Ac)∈(P(A )\{∅})×(P(A )\{∅})∧As∩Ac=∅ , where
As (start activities) represents the activities that the stage class may start with
and Ac (end activities) represents the activities that the stage class may end
with. We let S=(P(A )\{∅})×(P(A )\{∅}) denote the set of all stage classes.

Definition 3 (Stage Instance). Let σ∈E ∗ be a trace and S=(As, Ac)∈S a stage
class. We define a function γ:E ∗×S→P(E×E ) that returns a set of pairs of
events such that γ(σ, S)⊆{(σ(i), σ(j))|1≤i<j≤|σ|∧πact(σ(i))∈As∧πact(σ(j))∈Ac}.
Each pair of events si=(e, e′)∈γ(σ, S) is a stage instance. For simplicity, we write
γ(σ, S) as γσ(S).

How to extract the stage instances depends on the business context of the
analysis. Consider an example of a medical process. Suppose that we are inter-
ested in the duration of a patient being registered in the hospital until the doctor
consultation and the time for the laboratories to examine the blood sampled from
the patient. We define two stage classes, S1=({registered}, {consult doctor}) and

3We assume that an event can only appear once in a trace and that no two cases have
the same trace in an event log. This can be enforced by adding more event attributes.
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S2=({sample collected}, {examine done by Lab ∗}), where ∗ denotes any string
fitting the pattern. Fig. 3 illustrate the trace of a case, where the dots denote
the events in the trace. The events of interest are labeled and colored in blue
and green for two stage classes. The grey dots are the activities, e.g., consulting
nurses, that are not of concern for the analysis. The stage instances are the pairs
of events connected with the dashed lines. The example shows that there are
many possible ways to extract stage instances, depending on the process and
the objectives of analysis.

The realization of extracting stage instances is by applying a generic tech-
nique that we developed in [13]. We extract the maximal number of stage in-
stances in a trace. Considering the scenario mentioned, we allow one to flexibly
define how the events of the start and the end activities should be mapped. We
assume that the closer two events are, the more likely they form a stage instance.
Such distance between events can be specified based on domain knowledge. With-
out the knowledge of how the events should be paired and the distance specified,
we assume one-to-one mapping of events and use the order of the events in a
trace by assuming that the closer two events are in a trace, the more possible
that they belong to the same stage instance.

3.3 Compute Stage Performance Metrics

Given the stage instances extracted, the duration of a stage instance i, i.e., cycle
time is naturally derived, which indicates the duration that a stage class is in
active. To differentiate the duration that a stage class is actually being executed
and the idle time of a stage class, we define flow time as the first occurrence of any
start activity of the stage class until the last occurrence of any end activity of the
stage class. Moreover, to quantify the behavior among stage classes executed,
we introduce the metrics for inter-stage performance. The metrics is formally
defined as follows.

Definition 4 (Cycle Time). Given an event log L and a stage class S, cycle
time (ct) is the duration of a stage instance si∈γσ(S) where σ∈L, i.e., ctS(si) =
πts(si(2)) − πts(si(1)). For each trace, we aggregate all the ctS(si), ∀si∈γσ(S),
into ctstatS (σ), where stat stands for the target statistics, e.g., ctavgS (σ) refers to
the average duration of ctS(si), ∀si∈γS(σ). For the process, we collect all the
cycle time of S in L, i.e., CTS(L)=[ctS(si)|∀si∈γσ(S), σ∈L], and aggregate into
CT statS (L).

Fig. 4: A trace of a medical process of a patient in a hospital.
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Table 1: Implication of behavior between two stage classes S1 and S2 in a trace
σ based on the inter-stage performance metrics.

Metrics Relation Implication of Stage Behavior in a Trace σ

lf(S1,S2)
(σ) > 0 S2 starts after S1 terminates permanently.

fl(S1,S2)
(σ) > 0 S2 terminates permanently before S1 starts.

lf(S1,S2)
(σ) < 0 ∧ ff(S1,S2)

(σ) > 0 S2 may be executed in parallel with S1.

Definition 5 (Flow Time). Given an event log L of a process and a stage class
S=(As, Ac), flow time (ft) is the duration that a stage class lasts in a case, i.e.,
∀1≤i<j≤|σ| where σ∈L, ftS(σ)=πts(σ(max({j|πact(σ(j))∈Ac})))−πts(σ(min
({i|πact(σ(i))∈As}))) if and only γσ(S) 6=∅. In other words, flow time only exists
when S is executed, i.e., γσ(S) 6=∅. For the process, we aggregate all the flow time
of S in L into FT statS (L), where stat stands for the target statistics.

Consider a process of applying for a mortgage. An application, i.e., a case with
its trace σ, is finally approved after several rejections and re-submissions (S). The
flow time ftS(σ) represents the duration from the first submission until it is fi-
nally approved and the duration that the application is under review is ctsumS (σ).

Definition 6 (Inter-Stage Performance Metrics). Given a trace σ and a
stage class S=(As, Ac) which γσ(S)6=∅, ∀1≤i<j≤|σ|, we obtain two timestamps
tminS (σ)=πts(σ(min({i|πact(σ(i))∈As}))) and tmaxS (σ)=πts(σ(max({j|πact(σ(j))
∈Ac}))). Let S1 and S2 be two stage classes which γ(σ)(S1)6=∅∧γ(σ)(S2)6=∅. We
compute the performance between S1 and S2 with the following metrics:

– ff(S1,S2)(σ) = tminS2
(σ)− tminS1

(σ)

– fl(S1,S2)(σ) = tmaxS2
(σ)− tminS1

(σ)

– lf(S1,S2)(σ) = tminS2
(σ)− tmaxS1

(σ)
– ll(S1,S2)(σ) = tmaxS2

(σ)− tmaxS1
(σ)

Given the similar scenario in a hospital with a trace σ of a case, we define
S1=({registered}, {consult doctor}) and S2=({examine start by Lab ∗, examine
done by Lab ∗}. Fig. 4 visualizes the four metrics, ff (S1,S2)(σ), fl (S1,S2)(σ),
lf (S1,S2)(σ), and ll (S1,S2)(σ). Since lf (S1,S2)(σ) is greater than zero , we know
that, after the consultation, the first examination of the blood sample starts
roughly 5 hours later. Table 1 summarizes the implication of the behavior be-
tween two stage classes based on the inter-stage performance metrics.

3.4 Visualize Stage Performance Metrics

We introduce two visualizations, stage performance evolution and stage perfor-
mance summary. The first one demonstrates the evolution of performance over
stages executed, allowing for further diagnosis. The latter one summarizes the
statistics of the performance of all the stage classes defined. This section intro-
duces the visualizations and demonstrates how the analysis can be performed
with the visualizations using an event log L and four stage classes S={Apply,
Claim, Travel, Declare}.
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Fig. 5: Stage performance evolution. Fig. 6: Stage performance summary.

Stage Performance Evolution. It may occur that some cases execute some
stages while others do not. We consider that the execution of stage classes reflects
the business context. It is not reasonable to compare the performance of the cases
without identifying different scenarios. Thus, we visualize the performance based
on different types of cases according to the stage classes executed.

For each combination of stage classes executed, we visualize the stage per-
formance metrics for the cases executing all the stage classes in the combination
using parallel coordinates as shown in Fig. 5 [7]. The leftmost coordinate is the or-
ganization handling the cases and the rightmost one is the total case throughput
time classified into Very Slow, Slow, Fast, and Very Fast. Between the two co-
ordinates, the performance metrics of each trace σ∈{σ|∀σ∈L∀S∈S, γσ(S)6=∅} is
plotted with a horizontal folded line in the order of ctsumApply(σ), lf(Apply,Claim)(σ),
ctsumClaim(σ), lf(Claim,Travel)(σ), ctsumTravel(σ), lf(Travel,Declare)(σ), ctsumDeclare(σ) in
the figure. The visualization can be applied interactively as below:

– The order of the coordinates can be flexibly arranged and the metrics of
every stage class or between two stage classes can be changed to the flow
time or other metrics, which allows for exploring the behavior of the stage
performance from different angles.

– Depending on the use cases, the leftmost and rightmost coordinates may
be replaced with any case attributes for analyzing the relationships between
the attributes, e.g., the financial costs of handling a case, and the stage
performance evolution.

– The scale of the coordinates for the performance metrics can be set the same
(absolute) for identifying the bottlenecks, or the maximum value for each
metrics (relative) such that the cause of the bottlenecks may be diagnosed.

Fig. 5 shows the visualizations using relative performance with the analysis.
Suppose one assumes that the stages are executed one after another, i.e., no
parallelism of stages. In Fig. 5, the bottleneck and the most severe deviation are
identified based on the stage performance distribution of the cases.

Stage Performance Summary. To have an overview of the performance of
all the stage classes defined, we summarize the performance for all the cases in
L. As shown in Fig. 6, the summary is presented with the statistics of FT statS (L)
and CT statS (L) for every stage class S∈S.
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4 Evaluation

With the aim of supporting analysts to identify the bottlenecks and perform the
diagnosis of a complex process, we conduct a comparative evaluation based on
two criteria: the ease of use of a method and the reliability of the metrics. A
method that requires much preparation, manipulation of an event log, or the
domain knowledge hampers an analyst to perform an effective analysis. The
metrics that contains only a few measurements may cause misleading conclusion
of the bottlnecks. In the evaluation, we conduct experiments by applying various
techniques to perform analysis at a coarser granular level of a process. The
techniques are compared with the following questions:

– How much is the manipulation of an event log required to analyze the process
performance at a coarser granular level?

– How much domain knowledge is required for the abstraction of an event log?
– How reliable is the resulting performance metrics?

To the best of our knowledge, the stage performance evolution proposed is
the only visualization that supports our goal for such analysis. Therefore, we
conduct the experiments by using various event abstraction techniques of which
our visualization is applied on top. Table 2 lists the implementations of the
techniques evaluated with their abbreviations for convenience. Except for the
proposed approach4, other techniques are available in ProM [24]. This section
presents the evaluation from the aspects of the ease of use and the reliability by
analyzing two event logs, PermitLog [23] and BPIC15 1 [22].

Fig. 7: A schematic overview of analyzing performance at a coarser granular level
using different event abstraction techniques.

4The implementation and the datasets used for experiments are in https://github.

com/chiaoyunli/spm.

https://github.com/chiaoyunli/spm
https://github.com/chiaoyunli/spm
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Table 2: Overview: Techniques used for Experiments.
Techniques Abbreviation

- Proposed Approach PA
- Abstract Event Labels using linear chaining [18,19] CRF
- Conditional Random Field (GRMM)
- Log Abstraction - Abstract Log based on Patterns [16] PNP
- Session-based Log Abstraction [12] SESS
- Stage Mining (SM) [15] SM

4.1 Evaluation on Ease of Use

The ease of use of a tool is evaluated from two aspects, the amount of the
domain knowledge required and the necessity of the manipulation of an event
log. The inputs and outputs of the event abstraction techniques vary. Therefore,
for each technique, we manipulate the event logs for performance analysis at the
abstracted level if necessary.

External Effort Required. Fig. 7 presents the overview of the steps to ana-
lyze the performance at the coarser granularity level using the techniques. The
dashed line indicates the data flow and the solid line refers to the control flow.
Each box represents a step and the steps that require human intervention are
emphasized with the green outline of the steps. We further group the steps and
annotate the groups with the corresponding techniques. Since the existing event
abstraction techniques are not specifically designed for performance analysis, we
manipulate the output of the event abstraction techniques to compute the per-
formance metrics (Transform step). If the output does not contain the attribute
to indicate the instance of a concept at a coarser level of a process, we consider
the continuous events with the same targeting instance at a coarser granularity
level as an instance, i.e., the duration between the first and the last event of
such instance corresponds to the cycle time in our approach. For other metrics,
we apply the same definition in our approach, e.g., flow time of an instance of a
higher level concept is the duration from the first to the last event of which the
activities are contained in the high-level concept identified. As shown in Fig. 7,
the proposed approach, i.e., PA, requires the least steps and does not require any
transformation for the performance visualization. Note that other performance
analysis techniques can be applied to analyze other aspects of the performance.
In this case, our approach can, alternatively, generate an event log consisting of
the events in the stage instances and the Transform step should be applied like
the other techniques.

Domain Knowledge Required. The domain knowledge required for each
technique varies. For example, to train a prediction model, CRF requires an
event log with every event being labeled; for PNP, a coarse-granular instance
is extracted with a pattern of the activities. To compare the domain knowledge
quantitatively, we calculate the percentage of the activities required to extract a
coarse-granular instance. Table 3 shows how the domain knowledge is required
for every technique evaluated and the corresponding number of activities in the
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Table 3: Overview: Techniques used for Experiments.

Domain Knowledge Required
#Activities Required (%)
(PermitLog/BPIC15 1 )

CRF All events labeled with the coarse-granular instance for training 1/1
PNP Behavior of the activities of every concept at a coarser granular level 0.71/0.9
PA Start and end activities of a stage class 0.37/0.78
SESS Parameters tuning 0/0
SM Minimum number of activities in a concept at a coarser granular level 0/0

input of the techniques in the experiments. Our approach outperforms the CRF
and PNP. However, it is inferior to SESS and SM since the two techniques are
unsupervised. Nevertheless, SESS requires exhaustively tuning of the parameters
and the results are non deterministic. SM, as presented in the next section,
cannot guarantee the availability of the results.

4.2 Evaluation on Metrics Reliability

We perform analysis using the methods based on the steps illustrated in Fig. 7.
To evaluate the results, generally speaking, the accuracy is an ideal indicator of
the reliability of the results. However, due to the assumptions of different tech-
niques, e.g., some are supervised while others are unsupervised approaches, it is
unfair to compare the accuracy for the reliability. Therefore, the experiments are
conducted on a best effort basis and we consider the number of measurements
included as the indicator for the reliability of the metrics, i.e., the more measure-
ments and cases used to compute a performance metrics, the more reliable the
results are. Note that, except for SM of which the results are unavailable, all the
techniques require a user to determine the number of concepts in a coarser gran-
ular level, i.e., the number of stage classes in terms of the proposed approach.
Therefore, for the concepts at a coarser granular level, we define four concepts for
a travel reimbursement management process for PermitLog [8] and nine phases
which are implied in activity code in a dutch municipality for BPIC15 1 [6]. The
quality of the results are examined from two perspectives, whether the number
of the concepts identified matches with the number of the concepts defined and
the amount of the measurements.

Table 4 presents the performance statistics with the number of the mea-
surements for the cycle time and the cases executing the concepts at a coarser
granular level, i.e., #ft. For both event logs, CRF and SESS cannot extract the
exact number of concepts defined. CRF identifies too many concepts which in-
clude the events that the technique fails to predict (None) using PermitLog and
too less concepts using BPIC15 1. SESS extracts less clusters despite the fact
that the numbers of clusters desired are specified with the parameter. Therefore,
only PNP generates the same number of concepts at a coarser granular level as
specified. However, only the results using PermitLog are available while they
are inferior to the proposed approach in terms of the number of measurements
included. To conclude, the proposed approach provides the most reliable metrics
compared with the other techniques in the experiments.
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Table 4: Number of measurements per high-level concept identified using Per-
mitLog and BPIC15 1. NaN indicates that the results are unavailable.

(a) PermitLog

High-Level Concept Identified (#ct/#ft)

CRF PNP PA SESS SM

- Apply (7911/7062) - Apply (7911/7062) - Apply (7911/7062) - Start trip+ (5406/3965) NaN
- Claim (1715/1336) - Claim (1605/1296) - Claim (2026/1314) - Permit FINAL APPROVED
- Travel (7843/7065) - Travel (6331/633) - Travel (7065/7065) - by SUPERVISOR+ (5715/4095)
- Declare (5980/5718) - Declare (5043/4963) - Declare (7401/5569) - Request Payment+ (10512/5856)
- None (1276/1276)

(b) BPIC15 1

High-Level Concept Identified (#ct/#ft)

CRF PNP PA SESS SM

- Phase 1 (29/29) NaN - Phase 0 (1992/1199) - register submission date NaN
- Phase 2 (29/29) - Phase 1 (3967/1119) - request+complete (901/670)
- Phase 3 (193/178) - Phase 2 (2727/969 ) - enter senddate decision environmental
- Phase 4 (200/178) - Phase 3 (2573/1028) - permit+complete (1498/948)
- Phase 5 (180/176) - Phase 4 (3397/925) - registration date publication+complete (105/102)
- Phase 8 (1027/1027) - Phase 5 (2054/899) - enter senddate procedure

- Phase 6 (1/1) - confirmation+complete (100/97)
- Phase 7 (138/138) - enter senddate acknowledgement+complete (106/102)
- Phase 8 (156/153) - generate publication document decision

- environmental permit+complete (154/147)
- create subcases completeness+complete (18/18)

4.3 Experiments Summary

We perform a comparative evaluation by analyzing stage performance using
various techniques. We compare the ease of the use of the techniques and the
reliability of the resulting performance metrics. In terms of the ease of use, our
approach requires the least effort from a user. However, we still require some
domain knowledge in comparison with the unsupervised techniques. The relia-
bility of the metrics is based on whether the number of the concepts at a coarser
granular level is the same as specified and the number of measurements. The
proposed approach outperforms all the other techniques evaluated. To conclude,
the results show that our approach meets the balance between the ease of use
and the reliability of the metrics.

4.4 Threats to Validity

The existing techniques are not designed for analyzing the performance at a high
level of a process. Therefore, some information that is required to compute the
duration of a coarse-granular instance, i.e., the start and complete time of the
instance, is left for users to determine. Consider two interleaving instances of
two concepts at a coarser granular level. Such behavior may result in multiple
cycle time for each instance in the Transform step. However, in fact, only two
measurements should be extracted. Thus, despite the best effort to apply the
techniques, the results may not be accurate due to the manipulation.
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For the proposed approach, the implementation allows an analyst to define
only the stage classes with the distance and the mapping of events configured as
default. However, there may be some scenarios where the parameters may not
be defined easily and, thus, require further effort to configure the parameters
to obtain reliable results. In addition, the performance of stage instances is
aggregated at the case level. Which metrics makes sense for the analysis depends
on the context. For example, in terms of stage instances of a stage class executed
in parallel, the average cycle time may not be a reasonable choice for some
processes. Nevertheless, consider the scenario in Fig. 3, the average can be used
to compute the costs for hiring the staff in the laboratories. Such decision requires
analysts to be aware of the context.

5 Conclusion

The diagnosis of inefficiencies requires performance metrics provided based on
interpretable results. We elevate the analysis to the stage level and visualize
the performance accordingly. Existing techniques are insufficient for stage per-
formance analysis. The evaluation shows that combining existing techniques re-
quires additional manipulation of an event log and domain knowledge from a
user. Moreover, the results may be unreliable or unavailable. We propose an ap-
proach that supports performance analysis at the stage level by extracting events
that are critical for the metrics. As such, our approach minimizes the effort from
users while providing the most reliable results compared to the existing works.
Meanwhile, the technique can be flexibly combined with other visualization to
analyze other aspects of a process. To facilitate the analysis at the stage level,
further research aims at automatic identification of stage classes.
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