
Freezing Sub-Models During Incremental
Process Discovery: Extended Version?

Daniel Schuster1,2[0000−0002−6512−9580], Sebastiaan J. van
Zelst1,2[0000−0003−0415−1036], and Wil M. P. van der Aalst1,2[0000−0002−0955−6940]

1 Fraunhofer Institute for Applied Information Technology FIT, Germany
{daniel.schuster,sebastiaan.van.zelst,wil.van.der.aalst}@fit.fraunhofer.de

2 RWTH Aachen University, Aachen, Germany

Abstract. Process discovery aims to learn a process model from ob-
served process behavior. From a user’s perspective, most discovery al-
gorithms work like a black box. Besides parameter tuning, there is no
interaction between the user and the algorithm. Interactive process dis-
covery allows the user to exploit domain knowledge and to guide the dis-
covery process. Previously, an incremental discovery approach has been
introduced where a model, considered to be “under construction”, gets
incrementally extended by user-selected process behavior. This paper
introduces a novel approach that additionally allows the user to freeze
model parts within the model under construction. Frozen sub-models are
not altered by the incremental approach when new behavior is added to
the model. The user can thus steer the discovery algorithm. Our experi-
ments show that freezing sub-models can lead to higher quality models.

Keywords: Process mining · Process discovery · Hybrid intelligence.

1 Introduction

Executing business processes generates valuable data in the information systems
of organizations. Process mining comprises techniques to analyze these event
data and aims to extract insights into the executed processes to improve them [1].
This paper focuses on process discovery, a key discipline within process mining.

Conventional process discovery algorithms use observed process behavior,
i.e., event data, as input and return a process model that describes the process,
as recorded by the event data. Since event data often have quality issues—for
instance, incomplete behavior, noise, or wrongly recorded process behavior—
process discovery is a challenging task. Apart from modifying the input (event
data) or the subsequent alteration of the output (discovered model), the user has
no options to interact with the algorithm. Thus, conventional process discovery
works like a black box from a user’s perspective.

? This paper is an extended version of the paper Freezing Sub-Models During Incre-
mental Process Discovery presented at the 40th International Conference on Con-
ceptual Modeling 2021

ar
X

iv
:2

10
8.

00
21

5v
1 

 [
cs

.L
G

] 
 3

1 
Ju

l 2
02

1



2 D. Schuster et al.

Process Model 
“Under Construction”

“Frozen” 
Sub-Model

“Frozen” 
Sub-Model

incrementally marks process 
model parts as “frozen”

Event Data

Freezing-Enabled
Incremental 

Process 
Discovery

Modified Process Model 
describing the selected process 
behavior and previously added 

behavior

“Frozen” 
Sub-Model

“Frozen” 
Sub-Model

User/
Modeler

incrementally selects process 
behavior(a trace) not yet 

described by the process model

Fig. 1: Overview of the proposed freezing option extending incremental process
discovery. A user incrementally selects traces from the event log and optionally
freezes sub-models that should not get altered in the model “under construction”

To overcome this limitation, the field of interactive process discovery has
emerged. The central idea is to exploit the domain knowledge of process partic-
ipants within process discovery in addition to the standard input of event data.
Several techniques have been proposed. However, most approaches to date only
attempt to use additional inputs besides the event data. Thus, a user still has
only limited options to influence the algorithm during the actual discovery phase,
and the discovery algorithm remains a black box from a user’s perspective.

Recently, we have introduced an incremental process discovery framework
allowing a user to incrementally add process behavior to a process model under
construction [13]. This framework enables the user to control the algorithm any
time by interactively deciding on the process behavior to be added next.

In the context of incremental process discovery, we propose in this paper
a novel way to interact with a process discovery algorithm as a user. During
the discovery phase, we allow a user to freeze sub-models of the process model
under construction. By marking sub-models as frozen, the incremental process
discovery approach does not alter these frozen model parts during the ongoing in-
cremental discovery. Figure 1 summarizes the approach. Our proposed approach
can be applied with any incremental process discovery algorithm.

Many use cases exist where freezing sub-models is beneficial in the context
of incremental process discovery. For instance, it enables a user to combine de
jure and de facto process models [1]. A de jure model describes how a process
should be executed (normative), and a de facto model describes how a process
was executed (descriptive). A user might freeze a process model part because,
from the user’s perspective, the sub-model to be frozen is already normative, i.e.,
it already describes a certain process part as it should be executed. Therefore, a
user wants to protect this sub-model from being further altered while incremen-
tally adding new behavior to the process model under construction. Similarly, a
user could start with predefined sub-models that are frozen, i.e., de jure mod-
els, and incrementally discover missing parts around the predefined ones. Thus,



Title Suppressed Due to Excessive Length 3

the proposed freezing option allows combining process discovery with process
modeling. Our conducted experiments show that freezing sub-models can lead
to higher quality models. This demonstrates that the freezing option is a novel
and useful form of user-interaction in the area of interactive process discovery.

The remainder of this paper is structured as follows. Section 2 presents related
work while Section 3 presents preliminaries. Section 4 presents the proposed
approach of freezing sub-models during incremental process discovery. Section 5
present an experimental evaluation, and Section 6 concludes this paper.

2 Related Work

This section mainly focuses on interactive process discovery. For an overview of
process mining and conventional process discovery, we refer to [1].

In [7], the authors propose to incorporate precedence constraints over the
activities within process discovery. In [4], an approach is presented where an
already existing process model is post-processed s.t. user-defined constraints are
fulfilled. In [11], an approach is presented where domain knowledge in form
of a process model is given. From the initially given model, which reflects the
domain knowledge, and the event data, a new model is discovered. Compared to
our extended incremental process discovery, all approaches remain a black-box
from a user’s perspective since they work in a fully automated fashion. In [5], an
interactive modeling approach is proposed. A user constructs the model guided
by the algorithm, i.e., the user makes the design decisions in the process model,
as opposed to our approach, where the discovery algorithm is guided by the user.

Related work can also be found in the area of process repair [6]. However,
the setting of process model repair, where the repaired model is tried to be as
similar as possible to the original one, differs from incremental process discovery.
In [2] an interactive and incremental repair approach is proposed. Deviations are
visualized to a user for a process model and a given event log and the user has
to manually repair the deviations under the guidance of the approach.

3 Preliminaries

We denote the power set of a given set X by P(X). We denote the universe of
multi-sets over a set X by B(X) and the set of all sequences over X as X∗, e.g.,
〈a, b, b〉∈{a, b, c}∗. Given two sequences σ and σ′, we denote their concatenation
by σ·σ′, e.g., 〈a〉·〈b, c〉=〈a, b, c〉. We extend the · operator to sets of sequences, i.e.,
let S1, S2⊆X∗ then S1·S2={σ1·σ2 |σ1∈S1∧σ2∈S2}. For sequences σ, σ′, the set
of all interleaved sequences is denoted by σ�σ′, e.g., 〈a, b〉�〈c〉={〈a, b, c〉, 〈a, c, b〉,
〈c, a, b〉}. We extend the � operator to sets of sequences. Let S1, S2⊆X∗, S1�S2

denotes the set of interleaved sequences, i.e., S1�S2=
⋃
σ1∈S1,σ2∈S2

σ1�σ2.
For σ∈X∗ and X ′⊆X, we define the projection function σ↓X′ :X

∗→(X ′)∗

with: 〈〉↓X′=〈〉,
(
〈x〉·σ

)
↓X′

=〈x〉·σ↓X′ if x∈X ′ and (〈x〉·σ)↓X′=σ↓X′ otherwise.

Let t=(x1, . . . , xn)∈X1× . . .×Xn be an n-tuple over n sets. We define projec-
tion functions that extract a specific element of t, i.e., π1(t)=x1, . . . , πn(t)=xn,



4 D. Schuster et al.

Table 1: Example of an event log from an e-commerce process
Case-ID Activity Timestamp · · ·

151 place order (p) 10/03/21 12:00 · · ·
153 cancel order (c) 10/03/21 12:24 · · ·
152 place order (p) 11/03/21 09:11 · · ·
151 payment received (r) 11/03/21 10:00 · · ·
· · · · · · · · · · · ·

e.g., π2 ((a, b, c)) =b. Analogously, given a sequence of length m with n-tuples
σ=〈(x11, . . . , x1n), . . . , (xm1 , . . . , x

m
n )〉, we define π∗1(σ)=〈x11, . . . , xm1 〉, . . . , π∗n(σ)=

〈x1n, . . . , xmn 〉. For instance, π∗2
(
〈(a, b), (a, c), (b, a)〉

)
=〈b, c, a〉.

3.1 Event Data and Process Models

The data that are generated during the execution of (business) processes and
stored in information systems are called event data [1]. Table 1 shows an example
of an event log. Each row represents an event. Events with the same case-id
belong to the same process execution often referred to as a case. The sequence
of executed activities for a case is referred to as a trace, e.g., the partial trace
for case 151 is: 〈p, r, . . . 〉. Next, we formally define an event log as a multi-set of
traces. Note that the same trace can occur multiple times in an event log.

Definition 1 (Event Log). Let A be the universe of activities. L∈B(A∗) is an
event log.

Process models allow us to specify the control flow of a process. In this paper,
we use process trees [1], e.g., see Figure 2. Leaves represent activities and τ rep-
resents an unobservable activity, needed for certain control flow patterns. Inner
nodes represent operators that specify the control flow among their subtrees.
Four operators exist: sequence (→), excl. choice (×), parallel (∧), and loop (	).

Definition 2 (Process Tree Syntax). Let A be the universe of activities with
τ /∈A. Let

⊕
={→,×,∧,	} be the set of process tree operators. We define a

process tree T=(V,E, λ, r) consisting of a totally ordered set of nodes V , a set
of edges E⊆V×V , a labeling function λ:V→A∪{τ}∪

⊕
, and a root node r∈V .

–
(
{n}, {}, λ, n

)
with λ(n)∈A∪{τ} is a process tree

– given k>1 trees T1=(V1, E1, λ1, r1), . . . , Tk=(Vk, Ek, λk, rk) with r/∈V1∪ . . .∪Vk
and ∀i, j∈{1, . . . , k}(i 6=j ⇒ Vi∩Vj=∅) then T=(V,E, λ, r) is a tree s.t.:
• V=V1∪ . . .∪Vk∪{r}
• E=E1∪ . . .∪Ek∪

{
(r, r1), . . . , (r, rk)

}
• λ(x)=λj(x) for all j∈{1, . . . , k}, x∈Vj
• λ(r)∈

⊕
and λ(r)=	⇒ k=2

We denote the universe of process trees by T .

Note that every operator (inner node) has at least two children except for the
loop operator which always has exactly two children (Definition 2). Next to the



Title Suppressed Due to Excessive Length 5

→
n0

	

n1.1

×
n2.1

→
n3.1

a

n4.1

b

n4.2 ∧
n3.2

c

n4.3

d

n4.4

τ

n2.2 ∧
n1.2

e

n2.3

a

n2.4

T1=4T0 (n1.1) T2=4T0 (n1.2)

Fig. 2: Process tree T0=
(
{no, . . . , n4.4},

{
(n0, n1.1), . . . , (n3.2, n4.4)

}
, λ, n0

)
with

λ(n0)=→, . . . , λ(n4.4)=d

graphical representation, any process tree can be textually represented because
of its totally ordered node set, e.g., T0=̂→

(
	
(
×
(
→(a, b),∧(c, d)

)
, τ
)
,∧(e, a)

)
.

Given two process trees T1=(V1, E1, λ1, r1), T2=(V2, E2, λ2, r2)∈T , we call
T1 a subtree of T2, written as T1vT2, iff V1⊆V2, E1⊆E2, r1∈V2, and ∀n∈V1 :
λ1(n)=λ2(n). For instance, T1vT0 and T1 6vT2 in Figure 2.

The degree indicates the number of edges connected to a node. We distinguish
between incoming d+ and outgoing edges d−, e.g., d+(n2.1)=1 and d−(n2.1)=2.
For a tree T=(V,E, λ, r), we denote its leaf nodes by TL={v∈V |d−(v)=0}.
The child function cT :V→V ∗ returns a sequence of child nodes according to
the order of V , i.e., cT (v)=〈v1, . . . , vj〉 s.t. (v, v1), . . . , (v, vj)∈E. For instance,
cT0 (n1.1)=〈n2.1, n2.2〉. For T=(V,E, λ, r) and a node v∈V , 4T (v) returns the
corresponding subtree T ′ s.t. v is the root node. Consider T0, 4T0(n1.1)=T1.
pT :V→V ∪{⊥} returns the unique parent of a given node or ⊥ for the root node.

For T=(V,E, λ, r) and nodes n1, n2∈V , we define the lowest common ancestor
(LCA) as LCA(n1, n2)=n∈V such that for 4T (n)=(Vn, En, λn, rn) n1, n2∈Vn
and the distance (number of edges) between n and r is maximal. For example,
LCA(n4.4, n2.2)=n1.1 and LCA(n4.4, n2.3)=n0 (Figure 2).

Next, we define running sequences and the language of process trees.

Definition 3 (Process Tree Running Sequences). For the universe of ac-
tivities A (with τ, open, close/∈A), T=(V,E, λ, r)∈T , we recursively define its
running sequences RS(T )⊆

(
V×(A∪{τ}∪{open, close})

)∗
.

– if λ(r)∈A∪{τ} (T is a leaf node): RS(T )=
{〈

(r, λ(r))〉
}

– if λ(r)=→ with child nodes cT (r)=〈v1, . . . , vk〉 for k≥1:
RS(T )=

{〈
(r, open)

〉}
·RS(4T (v1))· . . . ·RS(4T (vk))·

{〈
(r, close)

〉}
– if λ(r)=× with child nodes cT (r)=〈v1, . . . , vk〉 for k≥1:
RS(T )=

{〈
(r, open)

〉}
·
{
RS(4T (v1))∪ . . .∪RS(4T (vk))

}
·
{〈

(r, close)
〉}

– if λ(r)=∧ with child nodes cT (r)=〈v1, . . . , vk〉 for k≥1:
RS(T )=

{〈
(r, open)

〉}
·
{
RS(4T (v1))� . . . �RS(4T (vk))

}
·
{〈

(r, close)
〉}

– if λ(r)=	 with child nodes cT (r)=〈v1, v2〉:
RS(T )=

{〈
(r, open)

〉
·σ1·σ′1·σ2·σ′2·. . .·σm·

〈
(r, close)

〉
| m≥1 ∧ ∀1≤i≤m

(
σi∈

RS(4T (v1))
)
∧ ∀1≤i≤m−1

(
σ′i∈RS(4T (v2))

)}
Definition 4 (Process Tree Language). For given T∈T , we define its lan-
guage by L(T ):=

{(
π∗2(σ)

)
↓A
| σ∈RS(T )

}
⊆A∗.



6 D. Schuster et al.

� � � a b � � � � � c � f � � �
(n1.1,
open)

(n2.1,
open)

(n3.1,
open)

(n4.1,
a)

(n4.2,
b)

(n3.1,
close)

(n2.1,
close)

(n2.2,
τ)

(n2.1,
open)

(n3.2,
open)

(n4.3,
c)

(n4.4,
d)

� (n3.2,
close)

(n2.1,
close)

(n1.1,
close)

Fig. 3: Optimal alignment γ=
〈(
�, (n1.1, open)

)
, . . . ,

(
�, (n1.1, close)

)〉
for the

trace 〈a, b, c, f〉 and the process tree T1 (Figure 2)

For example, consider the running sequences of T2 (Figure 2), i.e., RS(T2)=
{〈

(n1.2, open), (n2.3, e), (n2.4, a)), (n1.2, close)
〉
,
〈
(n1.2, open), (n2.4, a), (n2.3, e), (n1.2,

close)
〉}

. Hence, this subtree describes the language L(T2)=
{
〈e, a〉, 〈a, e〉

}
.

3.2 Alignments

Alignments quantify deviations between observed process behavior (event data)
and modeled behavior (process models) [3]. Figure 3 shows an alignment for the
trace 〈a, b, c, f〉 and T1 (Figure 2). Ignoring the skip-symbol �, the first row of
an alignment always corresponds to the trace and the second row to a running
sequence of the tree. In general, we distinguish four alignment move types.

1. synchronous moves (shown light-gray in Figure 3) indicate no deviation

2. log moves (shown black in Figure 3) indicate a deviation, i.e., the observed
activity in the trace is not executable in the model (at this point)

3. visible model moves (shown dark-gray in Figure 3) indicate a deviation,
i.e., an activity not observed in the trace must be executed w.r.t. the model

4. invisible (τ, open, close) model moves (shown white in Figure 3) indicate
no deviation, i.e., opening or closing of a subtree or an executed τ leaf node

Definition 5 (Alignment). Let A be the universe of activities, let �, τ /∈A,
σ∈A∗ be a trace and T=(V,E, λ, r)∈T be a tree. A sequence

γ∈
((
A∪{�}

)
×
(
(V×(A∪{τ}∪{open, close})) ∪ {�}

))∗
is an alignment iff:

1. σ=π∗1(γ)↓A
2. π∗2(γ)↓(V×(A∪{τ}∪{open,close}))∈RS(T )

3. (�,�)/∈γ and ∀a∈A∀s∈RS(T )
(
(a, s)∈γ ⇒ a=λ(π2(s))

)
Since multiple alignments exist for a given tree and trace, we are interested in an
optimal alignment. An alignment is optimal if it minimizes the deviations, i.e.,
the number of log moves and visible model moves. Below, we show an example.

4 Freezing Approach

First, we introduce a formal definition of freezing-enabled incremental process
discovery algorithms in Section 4.1. Section 4.2 introduces a baseline approach,
and Section 4.3 introduces the main proposed approach.



Title Suppressed Due to Excessive Length 7

Previously Added 
Traces

{𝝈𝟏, … , 𝝈𝒎}

Incremental
Process 

Discovery 
Approach
(IPDA)

Resulting Process 
Tree 𝑇′

𝝈 ∈ 𝑳(𝑻′) and
𝝈𝟏, … , 𝝈𝒎 ∈ 𝑳(𝑻′)

Settings

(Initial) Process 
Tree 𝑇

𝝈 ∉ 𝑳(𝑻) and
𝝈𝟏, … , 𝝈𝒎 ∈ 𝑳(𝑻)

“Next” Trace to 
Be Added

𝝈

Previously Added 
Traces

{𝝈𝟏, … , 𝝈𝒎, 𝝈}

Fig. 4: Schematic overview of incremental process discovery algorithms

4.1 Problem Definition

Reconsider Figure 1 showing the overall framework of our proposal. A user incre-
mentally selects subtrees from a process tree “under construction” and a trace
σ from an event log. Both, the tree with frozen subtree(s) and the trace, are the
input for an freezing-enabled incremental process discovery algorithm, which re-
turns a modified tree that contains the frozen subtree(s) and accepts the selected
trace. Next, we define a Incremental Process Discovery Algorithm (IPDA).

Definition 6 (Incremental Process Discovery Algorithm).
α : T ×A∗×P(A∗)9T is an IPDA if for any tree T∈T , trace σ∈A∗, and previ-
ously added traces P∈P(A∗) with P⊆L(T ) it holds that {σ}∪P⊆L

(
α(T, σ,P)

)
.

If P*L(T ), α is undefined.

Figure 4 shows an overview of IPDAs and their incremental application.
Starting from an (initial) tree T , a user incrementally selects a trace σ not yet
described by T . The algorithm alters the process tree T into T ′ that accepts
σ and the previously selected/added traces. T ′ is then used as input for the
next incremental execution. For a specific example of an IPDA, we refer to our
previous work [13]. Next, we formally define a freezing-enabled IPDA.

Definition 7 (Freezing-Enabled Incremental Process Discovery Algo-
rithm). αf : T ×A∗×P(A∗)×P(T )9T is a freezing-enabled IPDA if for any
tree T∈T , trace σ∈A∗, previously added traces P∈P(A∗) with P⊆L(T ), and
n≥0 frozen subtrees T={T1, . . . , Tn}∈P(T ) s.t. ∀i, j∈{1, . . . , n}(TivT ∧ i 6=j ⇒
Ti 6vTj) it holds that {σ}∪P⊆L

(
αf (T, σ,P,T)

)
and ∀T ′∈T

(
T ′vαf (T, σ,P,T)

)
.

If P*L(T ) or ∃i, j∈{1, . . . , n}(Ti 6vT ∨ i6=j ⇒ TivTj), αf is undefined.

In Section 4.2 and Section 4.3, we present two freezing-enabled IPDAs, i.e.,
instantiations of αf according to Definition 7.

4.2 Baseline Approach

This section presents a baseline approach, i.e., a freezing-enabled IPDA. Consider
Algorithm 1. The central idea is to apply an IPDA ignoring the frozen subtrees



8 D. Schuster et al.

Algorithm 1: Baseline Approach Freezing Subtrees
input: T=(V,E, λ, r)∈T , T1, . . . , TnvT (n≥0), σ∈A∗, σ1, . . . , σm∈A∗
begin

1 T ′ ← α(T, σ, {T1, . . . , Tn}); // apply a non-freezing-enabled IPDA

2 T1 ←
{
Ti | Ti∈{T1, . . . , Tn} ∧ TivT ′

}
;

3 T2 ←
{
Ti | Ti∈{T1, . . . , Tn} ∧ Ti 6vT ′

}
;

4 if T2=∅ then // all frozen subtrees T1, . . . , Tn are contained in T ′

5 return T ′;

6 else
7 return ∧

(
T ′,×(Ti1 , τ), . . . ,×(Tij , τ)

)
for Ti1 , . . . , Tij∈T2;

(line 1). Next, we check if the returned process tree contains the frozen subtree(s).
If this is the case, we return the process tree T ′ (line 5). Otherwise, we put the
altered tree T ′ in parallel with all frozen subtrees which are not contained in T ′

and make these frozen subtrees optional (line 7).

For example, assume the process tree T0 with frozen subtree T2 (Figure 2).
The next trace to be added is σ=〈c, d, a, e, a, a, e〉 and the set of previously added
traces is {σ1=〈d, c, a, b, a, e〉, σ2=〈a, b, e, a〉}. Applying Algorithm 1 could return
the tree T ′=̂→

(
∧
(
×
(
→(a, b),∧(c, d)

)
, τ
)
,∧(e,	(a, τ))

)
(at line 1) depending on

the specific choice of α. T ′ allows for multiple executions of a in the end compared
to T ; thus, {σ, σ1, σ2}⊆L(T ′). However, T ′ does not contain the frozen subtree
T2 anymore. Hence, we put T ′ in parallel with the frozen subtree T2. Finally, we
return ∧

(
→
(
∧
(
×
(
→(a, b),∧(c, d)

)
, τ
)
,∧(e,	(a, τ))

)
,×(τ,∧(e, a))

)
(line 7).

4.3 Advanced Approach

This section presents the main proposed approach that is based on an arbi-
trary non-freezing-enabled IPDA. The proposed advanced freezing approach is
an extension that essentially modifies the input and output artifacts of an IPDA
(compare to Figure 4). Figure 5 provides an overview of this extension.

“Next” Trace to 
Be Added 𝝈

Incremental
Process 

Discovery 
Approach
(IPDA)

Settings

Previously 
Added Traces 
{𝝈𝟏, … , 𝝈𝒎, 𝝈}

Resulting Process 
Tree 𝑻′′′

𝝈 ∈ 𝑳(𝑻′′′) and 
𝝈𝟏, … , 𝝈𝒎 ∈ 𝑳(𝑻′′′)

Process Tree 𝑻′
with replaced

frozen subtree(s)

Process Tree 𝑻′′
with replaced

frozen subtree(s)

(Initial) Process 
Tree 𝑻

𝝈 ∉ 𝑳(𝑻) and
𝝈𝟏, … , 𝝈𝒎 ∈ 𝑳(𝑻)

Previously 
Added Traces
{𝝈𝟏, … , 𝝈𝒎}

Projected Trace 
to Be Added 

“Next” 𝝈′

Projected Previous-
ly Added Traces
{𝝈′𝟏, … , 𝝈′𝒎}

replace 
frozen 

subtree(s)

insert 
frozen 

subtree(s)

Frozen subtree(s) 
of tree 𝑻

𝑻𝟏…𝑻𝒏 ⊑ 𝑻

Fig. 5: Overview of the proposed freezing-enabled IPDA



Title Suppressed Due to Excessive Length 9

→
	

×
→

a b

∧
c d

τ

∧
e a

frozen subtree T2

(a) Initial tree T (same as shown in Fig-
ure 2) with frozen subtree T2

→
	

×
→

a b

∧
c d

τ

→

openT2 closeT2

replaced frozen subtree

(b) Tree T ′ with replaced frozen subtree

→
	

×
→

a b

∧
c d

τ

→

openT2 	

τ a

closeT2

(c) Tree T ′′ after applying an IPDA

→
	

×
→

a b

∧
c d

τ

∧

∧
e a

	

τ a

inserted
frozen

subtree T2

(d) Tree T ′′′ containing frozen subtree T2

Fig. 6: Running example of the advanced freezing approach

The central idea is to replace each frozen subtree in the process tree T by
a new label, resulting in a modified tree T ′ (Figure 5). Next, the previously
added traces are projected, i.e., we detect full executions of the frozen subtree(s)
within the traces and replace the respective activities with the corresponding
new label, which is also used to replace the frozen subtree in T . After applying
an IPDA (visualized by the dark box in the middle of Figure 5), we insert the
frozen subtrees that got replaced back into the modified tree. The remainder of
this section is structured along with the input/output modifications (Figure 5).

Replacing Frozen Subtrees As shown in Figure 5, we use an (initial) tree T
and frozen subtrees T1, . . . , TnvT to be replaced and return a modified tree T ′.
For example, consider Figure 6a. We assume the tree T (same as in Figure 2)
with the frozen subtree T2=̂∧(e, a). To replace the frozen subtree, we choose two
unique, arbitrary labels which are not contained in the current event log nor in
the tree, e.g., openT2 and closeT2 . In the remainder, we denote the universe of
replacement labels by R, e.g., openT2

∈R. Now, we replace the frozen subtree
∧(e, a) by →(openT2 , closeT2) and get the resulting tree T ′, see Figure 6b. Se-
mantically, openT2 represents the opening of the frozen subtree and closeT2 the
closing. In general, we iteratively replace each frozen subtree.

Projecting Previously Added Traces The set of previously added traces
{σ1, . . . , σm} (Figure 5), which fits the tree T , does not fit T ′ because of the
replaced frozen subtree(s). Thus, we have to modify the traces accordingly.

We replay each previously added trace {σ1, . . . , σm} (Figure 5) on T and mark
when a frozen subtree is opened and closed. Next, we insert at all opening and



10 D. Schuster et al.

closing positions the corresponding replacement label and remove all activities in
between that are replayed in the corresponding frozen subtree. Activities which
are not replayed in a frozen subtree remain unchanged.

For example, reconsider T (Figure 6a) and its frozen subtree T2 that was
replaced by →(openT2 , closeT2) (Figure 6b). Assume the traces {σ1=〈d, c, a, b,
a, e〉, σ2=〈a, b, e, a〉}. Below, we depict the running sequence of σ1 on T and the
projected trace σ′1. Note that n2.4 and n2.3 are nodes of frozen T2 (Figure 2).

extract of the running sequence for σ1 on T=T0 (see Figure 2):
〈. . . (n4.4, d), (n4.3, c) . . . (n4.1, a), (n4.2, b) . . . (n1.2, open), (n2.4, a), (n2.3, e), (n1.2, close) . . . 〉
projected trace σ′1 based on above running sequence:

〈d, c, a, b, openT2 , closeT2 〉

We transform σ1=〈d, c, a, b, a, e〉 into σ′1=〈d, c, a, b, openT2 , closeT2〉 (and σ2 into
σ′2=〈a, b, openT2 , closeT2〉). Note that σ′1, σ

′
2∈L(T ′) since σ1, σ2∈L(T ).

Projecting Trace to Be Added Next The central idea is to detect complete
executions of the frozen subtree(s) within the trace. These complete executions
are then replaced by the corresponding replacement label of the frozen subtree,
i.e., the activities belonging to the frozen subtree are removed and instead the
open and close replacement label is inserted. Activities that are not part of a
full execution of a frozen subtree remain unchanged.

Reconsider the running example (Figure 6) and assume that the trace to be
added next σ=〈c, d, a, e, a, a, e〉. To detect full executions of the frozen subtree
T2=̂∧(e, a) independent from the entire tree T , we align the trace σ with the
abstraction tree A=̂	(τ,∧(e, a)), visualized in Figure 7a. Figure 7b shows an
optimal alignment for A and σ. We see in the alignment that the frozen subtree
T2 is twice fully executed, i.e, between 4th to 7th and 9th to 13th move. Given
the alignment, we project σ onto σ′=〈c, d, openT2 , closeT2 , openT2 , a, closeT2〉.

	

n0

τ

n1.1

∧
n1.2

e

n2.1

a

n2.2

corresponds to
frozen subtree T2

(a) Abstraction tree A used to detect full executions of frozen tree T2 (Figure 2)
move index 1 2 3 4 5 6 7 8 9 10 11 12 13 14

trace c d � � a e � � � a a e � �

model � � (n0,
open)

(n1.2,
open)

(n2.2,
a)

(n2.1,
e)

(n1.2,
close)

(n1.1,
τ)

(n1.2,
open)

(n2.2,
a)

� (n2.1,
e)

(n1.2,
close)

(n0,
close)

(b) Optimal alignment of σ=〈c, d, a, e, a, a, e〉 and abstraction tree A

Fig. 7: Detecting full executions of the frozen subtree T2 (Figure 2) in the trace
to be added next σ=〈c, d, a, e, a, a, e〉



Title Suppressed Due to Excessive Length 11

•

•rc

parent of rc

Tc

(a) Initial
situation

•

∧

Ti

•rc

old parent of rc

T ′c

(b) Case {1}

•

∧

×

τ Ti

•rc

old parent of rc

T ′c

(c) Case {0, 1}

•

∧

	

Ti τ

•rc

old parent of rc

T ′c

(d) Case {1,∞}

•

∧

	

τ Ti

•rc

old parent of rc

T ′c

(e) Case {0,∞}

Fig. 8: Four cases showing how to insert a frozen subtree Ti back

Reinserting Frozen Subtrees This section describes how the frozen sub-
tree(s) are reinserted into the tree T ′′, returned by the IPDA (Figure 5). Note
that T ′′ can contain the same replacement label for open and close multiple times
because the IPDA may add multiple leaf nodes having the same label. Thus, we
have to find appropriate position(s) in T ′′ to insert the frozen subtree(s) back.

For example, reconsider Figure 6. We receive T ′′=̂→
(
∧
(
×
(
→(a, b),∧(c, d)

)
, τ
)
,

→(openT2 ,	(τ, a), closeT2)
)

(Figure 6c) after applying the IPDA (Figure 5). We
observe that between opening (openT2) and closing (closeT2) of the frozen sub-
tree, the IPDA inserted a loop on a, i.e., 	(τ, a). First, we calculate the lowest
common ancestor (LCA) of openT2 and closeT2 , i.e., the sequence operator with
underlying subtree →(openT2 ,	(τ, a), closeT2). Next, we do a semantical analy-
sis of this subtree to check how often openT2 and closeT2 can be replayed. This
analysis is needed since the IPDA changes the tree and openT2 or closeT2 could be
now skipped or executed multiple times. In Figure 6c, openT2 and closeT2 must
be executed exactly once and it is neither possible to skip them nor to execute
them more than once, i.e., the cardinality of openT2 and closeT2 is {1}. Hence,
we apply the case {1} visualized in Figure 8b where Ti represents the frozen
subtree and T ′c the determined LCA subtree after removing all nodes with label
openT2 and closeT2 . We obtain T ′′′ (Figure 6d) that contains the frozen subtree
T2 and accepts the previously added traces {σ1=〈d, c, a, b, a, e〉, σ2=〈a, b, e, a〉}
and σ=〈c, d, a, e, a, a〉. Compared to the resulting tree from the baseline approach
(Section 4.2), T ′′′ is more precise because the baseline approach simply adds the
frozen subtree in parallel to the resulting tree returned by the IPDA.

Subsequently, we describe the iterative reinserting of the frozen subtree(s) in
general (Algorithm 2). Since we iteratively replace full executions of the frozen
subtree(s) in the previously added traces {σ1, . . . , σm} (Figure 5) and in the
trace to be added next σ (Figure 5), we have all the intermediate projected traces
available (line 2-3). First, for given replacement labels, i.e., openTi and closeTi ,
we calculate the LCA node vc of all leaf nodes with label openTi or closeTi

(line 4). Next, we calculate the corresponding subtree Tc with root node rc=vc
(line 5). The tree Tc represents the first insert candidate. Next, we semantically
analyze Tc to determine how often the nodes labeled with openTi and closeTi

have to be executed within Tc (line 7), i.e., Semantical Tree Analysis (STA).



12 D. Schuster et al.

Algorithm 2: Insert frozen subtree(s) back

input: T ′′=(V ′′, E′′, λ′′, r′′)∈T , T1=(V1, E1, λ1, r1), . . . , Tn=(Vn, En, λn, rn)vT (n≥0),
openT1 , closeT1 , . . . , openTn , closeTn∈R, σ∈A∗, σ1, . . . , σm∈A∗

begin
1 for Ti∈{T1, . . . , Tn} do

2 let σT1,...,Ti be the partly projected trace σ after replacing full executions of

frozen subtrees T1 to Ti; // σT1,...,Tn=σ′ (Figure 5)

3 let {σT1,...,Ti1 , . . . , σ
T1,...,Ti
m } be the partly projected, previously added traces

σ1, . . . , σm after replacing full executions of frozen subtrees T1 to Ti;
4 vc ← LCA(v1, LCA(v2, . . . )) for

v1, v2, . . .∈{v∈V ′′|λ(v)=openTi∨λ(v)=closeTi};
5 Tc=(Vc, Ec, λc, rc)← 4T

′′
(vc); // LCA subtree is first insert candidate

6 while {σT1,...,Ti , σT1,...,Ti1 , . . . , σ
T1,...,Ti
m }*L(T ′′) do

7 S ← STA(Tc, open
Ti )∩STA(Tc, close

Ti ); // Syntactical Tree Analysis

8 T ′c ← relabel all nodes from Tc labeled with openTi or closeTi by τ ;

9 T ′′ ← apply case S for frozen Ti and T ′c; // consider Figure 8

10 if {σT1,...,Ti , σT1,...,Ti1 , . . . , σ
T1,...,Ti
m }*L(T ′′) then

11 undo changes made to T ′′ (line 8 and line 9);

12 Tc ← 4T
′′(
pT
′′
(rc)

)
; // try next higher subtree as insert candidate

13 apply post-processing to T ′′; // remove non-required nodes/simplify tree

14 return T ′′; // corresponds to T ′′′ in Figure 5

Potential outcomes of the STA are: {1} (once), {0, 1} (at most once), {0,∞}
(zero to many), {1,∞} (one to many). Next, we relabel all nodes in T ′′ that are
labeled with openTi or closeTi by τ (line 8). Thereby, we remove all replacement
labels that correspond to the frozen subtree Ti in T ′′.

Given the information S from the STAs (Algorithm 2, line 9), we know how
often the frozen subtree Ti must resp. may be executed in Tc. This allows us to
define four different cases that define how the frozen subtree is inserted back, see
Figure 8. Figure 8a shows the initial situation, i.e., we determined an insertion
candidate Tc. For example, Figure 8b describes the case that the frozen subtree
has to be executed exactly once. After applying one of the four cases, we check
if inserting the frozen subtree next to the determined subtree candidate Tc is
feasible (line 10). If not, we undo the changes made to T ′′ (line 11) and try the
next bigger subtree as insert candidate (line 12). In the worst case, we insert the
frozen subtree next to the root node that is always a feasible insert candidate.

5 Evaluation

This section presents an experimental evaluation of the proposed freezing ap-
proach. We compare four different discovery approaches: the Inductive Miner (a
conventional process discovery algorithm) [8], an IPDA [13], the baseline freezing
approach (Section 4.2) using the IPDA [13], and the advanced freezing approach
(Section 4.3) using the IPDA [13]. All four approaches have in common that
they support full replay fitness, i.e., all traces given to the algorithm are ac-
cepted by the resulting tree. We use a publicly available event log that captures



Title Suppressed Due to Excessive Length 13

0.5

0.6

0.7

0.8

0.9

1

1 51 101 151 201

F
-M

E
A

S
U

R
E

PROCESSED VARIANTS

IM IPDA

IPDA + Freezing (Baseline) IPDA + Freezing (Advanced)

(a) F-measure for experiment rtfm 7 3

0.5

0.6

0.7

0.8

0.9

1

1 51 101 151 201

F
-M

E
A

S
U

R
E

PROCESSED VARIANTS

IM IPDA

IPDA + Freezing (Baseline) IPDA + Freezing (Advanced)

(b) F-measure for experiment rtfm 4 3

Fig. 9: F-measure for a real-life event log [9] using two different initial process
models, each with a different frozen subtree. Highlighted segments indicate that
the advanced freezing approach outperforms the other evaluated algorithms

a real-life process, i.e., the commonly studied Road Traffic Fine Management
(RTFM) event log [9]. We sort the event log based on trace-variants frequency,
i.e., most occurring trace-variant first. For each run, i.e., Figure 9a and Fig-
ure 9b, we use the same initial model for all IPDA approaches and we use the
same frozen subtree for both freezing approaches. Further, we do not change
the frozen subtree during incremental discovery, i.e., we freeze the same subtree
in all incremental executions. Note that in general, a user can freeze different
subtree(s) after each incremental execution. The frozen subtrees used cover a
part of the reference process model presented in [10], see Figure 7, of the RTFM
process. Visualizations of the initial process trees and their frozen subtrees can
be found online3.

Figure 9 shows the F-measure, the harmonic mean of precision and fitness,
of the process trees based on the entire event log. We observe that the advanced
freezing approach clearly dominates the baseline freezing approach in both runs.
Further, we observe that the advanced freezing approach outperforms the other
approaches between 3 − 7, 15 − 55 and 99 − 195 processed trace-variants (Fig-
ure 9a). Note that in reality, incorporating all observed process behavior is often
not desired because the event data contains noise, incomplete behavior and other
types of quality issues. For instance, after integrating the first 17 most frequent
trace-variants of the RTFM log, the process model covers already 99% of the ob-
served process behavior, i.e., 99% of all traces are accepted by the process tree.
Comparing IPDA with the proposed advanced freezing approach (Figure 9), we
observe that the advanced freezing approach clearly dominates IPDA in most
segments. Visualizations of all discovered process trees after each incremental
execution, visualizations of the initial tree including the frozen tree, detailed
statistics, and further experiments are available online3. In general, the results
indicate that freezing subtrees during incremental process discovery can lead
to higher quality models since we observe that the advanced freezing approach
dominates the other algorithms in many segments.

3 https://github.com/fit-daniel-schuster/Freezing-Sub-Models-During-Incr-PD

https://github.com/fit-daniel-schuster/Freezing-Sub-Models-During-Incr-PD


14 D. Schuster et al.

6 Conclusion

This paper introduced a novel option to interact with a process discovery al-
gorithm. By allowing a user to freeze process model parts during incremental
process discovery, the user gains control over the algorithm and is able to steer
the algorithm. Moreover, the proposed option to freeze parts of a process model
combines conventional process discovery with data-driven process modeling and,
therefore, opens a new perspective on process discovery. In future work, we plan
to conduct research on strategies that automatically recommend process model
parts which are suitable freezing candidates. Further, we plan to integrate the
freezing approach into our incremental process discovery tool Cortado [12].

References

1. van der Aalst, W.M.P.: Process Mining - Data Science in Action. Springer (2016)
2. Armas Cervantes, A., van Beest, N.R.T.P., La Rosa, M., Dumas, M., Garćıa-

Bañuelos, L.: Interactive and incremental business process model repair. In: On
the Move to Meaningful Internet Systems. pp. 53–74. Springer (2017)

3. Carmona, J., van Dongen, B.F., Solti, A., Weidlich, M.: Conformance Checking -
Relating Processes and Models. Springer (2018)

4. Dixit, P.M., Buijs, J.C.A.M., van der Aalst, W.M.P., Hompes, B.F.A., Buurman,
J.: Using domain knowledge to enhance process mining results. In: SIMPDA: In-
ternational Symposium on Data-Driven Process Discovery and Analysis. Lecture
Notes in Business Information Processing, vol. 244, pp. 76–104. Springer (2015)

5. Dixit, P.M., Verbeek, H.M.W., Buijs, J.C.A.M., van der Aalst, W.M.P.: Interac-
tive data-driven process model construction. In: Conceptual Modeling - 37th In-
ternational Conference, ER 2018, Xi’an, China, October 22-25, 2018, Proceedings.
Lecture Notes in Computer Science, vol. 11157, pp. 251–265. Springer (2018)

6. Fahland, D., van der Aalst, W.M.P.: Repairing process models to reflect reality.
In: Business Process Management. pp. 229–245. Springer (2012)

7. Greco, G., Guzzo, A., Lupia, F., Pontieri, L.: Process discovery under precedence
constraints. ACM Trans. Knowl. Discov. Data 9(4) (2015)

8. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs - A constructive approach. In: Application and The-
ory of Petri Nets and Concurrency. Lecture Notes in Computer Science, vol. 7927,
pp. 311–329. Springer (2013)

9. de Leoni, M., Mannhardt, F.: Road traffic fine management process (2015), https:
//doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5

10. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Balanced multi-
perspective checking of process conformance. Computing 98(4), 407–437 (2016)

11. Rembert, A.J., Omokpo, A., Mazzoleni, P., Goodwin, R.T.: Process discovery us-
ing prior knowledge. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) Service-
Oriented Computing. pp. 328–342. Springer (2013)

12. Schuster, D., van Zelst, S., van der Aalst, W.M.P.: Cortado – an interactive tool for
data-driven process discovery and modeling. In: Application and Theory of Petri
Nets and Concurrency. Springer (2021), (to be published)

13. Schuster, D., van Zelst, S.J., van der Aalst, W.M.P.: Incremental discovery of
hierarchical process models. In: Research Challenges in Information Science. pp.
417–433. Springer (2020)

https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5

	Freezing Sub-Models During Incremental Process Discovery: Extended Version

