
An Activity Instance Based Hierarchical Framework
for Event Abstraction

Chiao-Yun Li∗, Sebastiaan J. van Zelst†, and Wil M.P. van der Aalst‡
Fraunhofer FIT, Birlinghoven Castle, Sankt Augustin, Germany

Process and Data Science (PADS) Chair, RWTH-Aachen University, Germany
Email: ∗chiao-yun.li@fit.fraunhofer.de, †sebastiaan.van.zelst@fit.fraunhofer.de, ‡wvdaalst@pads.rwth-aachen.de

Abstract—Process mining allows one to analyze and extract
knowledge from event data, i.e., records of process executions
stored in information systems. Most process mining techniques
are directly applied to the data as recorded in the system.
Applying automated process discovery techniques, i.e., a core
process mining technology, directly on such data yields complex
process models describing millions of different execution paths.
Other techniques applied to such discovered process models and
system-level data, e.g., conformance checking or performance
analysis techniques, often generate complex and over-detailed
results. The results obtained by directly applying process mining
techniques on system-level data are, therefore, hard to interpret
by a human analyst and greatly differ from the business level.
Therefore, in this paper, we propose a generic hierarchical
framework for event abstraction. We formalize the framework,
which uses the notion of activity instances as an input and allows
for hierarchical abstraction of event data. In addition, we propose
an instantiation of the framework, which describes two key
functions of the framework, i.e., abstract concept identification
and abstract entity extraction. The framework, together with the
instantiation, is evaluated both quantitatively and qualitatively.
The experiments show that, without compromising the quality of
results, the abstraction allows users to easier analyze a process.

Index Terms—process mining, event abstraction, earth mover’s
distance

I. INTRODUCTION

Organizations strive to improve their (well-defined) business
processes to achieve competitive advantage. The effective im-
provement of processes requires an accurate understanding of
the actual execution of these processes. To obtain such insights
into the processes executed, process mining [1] allows one to
analyze and exploit the information captured in event data, i.e.,
the records of executions performed in the context of a process.
Process models visualize/explain the behavior of a process
such that human analysts can interpret its described behavior.
As such, many process mining techniques use process models,
e.g., one may automatically discover a process model that
describes the behavior of the process recorded in the event
data by using process discovery algorithms.

According to [2], a human analyst can only process and
interpret a limited number of tasks or execution paths in a
process model. Hence, to facilitate the general interpretability
of a process model, one typically applies abstraction principles
when modeling a process. For example, consider a medical
process. Rather than modeling all activities performed by
the front-desk employee to register a patient, one typically
models the patient registration as a single activity. However,

information systems typically record all activities performed
(and often additional lower-level system calls and functions).
Hence, applying process mining directly on the data captured
yields overly detailed and complex process models describing
hundreds of activities and millions of execution paths.

To increase the interpretability of process mining results,
event abstraction techniques are typically applied [3]. Such
techniques pre-process the event data by grouping the recorded
“low-level events” into a higher-level activity notion, i.e.,
activities at the business level. Process models discovered
based on the abstracted event log are of a higher level of
abstraction and thus allow analysts to gain a better end-to-
end understanding of the process. For example, identifying
the deviations that have a significant impact on the business is
easier with a limited number of concepts in a process model
discovered by applying existing process discovery techniques.

Nevertheless, some existing event abstraction techniques
require explicit domain knowledge to perform abstraction.
Furthermore, most techniques are designed to be applied on se-
quences of events. After applying the techniques once, the re-
sulting event log describes a partial order of activity instances.
Hence, if the abstracted event log is still too fine-grained, the
techniques cannot be further applied on the abstracted log.
Therefore, in this paper, we propose a hierarchical framework
for event abstraction which allows for the integration of several
existing event abstraction techniques. The framework is based
on the notion of activity instances, which differs from the
typical concept of events used in process mining. As such,
this work can be seen as an effort to standardize an end-to-
end framework for event abstraction that allows for various
instantiations. We propose an accompanying instantiation of
our framework, characterizing the two core functions of the
framework, i.e., an abstract concept identification and entity
extraction strategies. We evaluate the instantiation of our
framework both quantitatively and qualitatively. The results
indicate that, without compromising the quality of the models
discovered, the abstracted process is easier to comprehend.

The remainder of this paper is structured as follows. We
present preliminaries in Section II and provide a running
example in Section III. The framework and its instantiation
are introduced in Section IV and V, respectively. We evaluate
our approach in Section VI. Section VII gives an overview of
the related work. Limitations are discussed in Section VIII,
followed by the conclusion in Section IX.



TABLE I: Running Example: An activity instance log L.

cid id activity start time complete time

1 1 apply loan (a) 2021.01.01 09:02 2021.01.01 09:02
1 2 check credit (c) 2021.01.04 09:30 2021.01.06 11:32
1 3 examine application (e) 2021.01.04 09:30 2021.01.07 09:45
1 4 decide (d) 2021.01.09 13:47 2021.01.10 10:20
1 5 decide (d) 2021.01.10 16:00 2021.01.12 08:48
1 6 decide (d) 2021.01.13 15:00 2021.01.15 09:20
1 7 notify applicant (n) 2021.01.16 10:23 2021.01.16 10:23
2 8 apply loan (a) 2021.01.01 10:06 2021.01.01 10:06
2 9 examine application (e) 2021.01.06 08:50 2021.01.10 08:45
2 10 check credit (c) 2021.01.07 11:16 2021.01.09 17:38
2 11 decide (d) 2021.01.12 11:12 2021.01.14 14:00
2 12 examine application (e) 2021.01.14 14:02 2021.01.14 14:00
2 13 decide (d) 2021.01.15 09:24 2021.01.18 10:28
2 14 notify applicant (n) 2021.01.20 16:07 2021.01.20 16:07

II. PRELIMINARIES

Partial Orders: Given an arbitrary set X , we write
P(X)= {X ′|X ′⊆X} to denote its powerset. |X| denotes
the number of elements in X . A relation ≺ over X
(≺⊆X×X) is a strict partial order over X , written
(X,≺), if and only if ∀x∈X(x⊀x) (≺ is irreflexive),
∀x1, x2∈X(x1≺x2 =⇒ x2⊀x1) (≺ is anti-symmetric), and
∀x1, x2, x3∈X(x1≺x2∧x2≺x3 =⇒ x1≺x3) (≺ is transitive).
Given (X,≺) and X ′⊆X , we let (X ′,≺′) be the in-
duced partial order on X ′, where ≺′=≺∩(X ′×X ′). Given
x∈X and (X,≺), we define predX(x,≺)={x′∈X|x′≺x}
and succX(x,≺)={x′∈X|x≺x′} for the predecessors and
successors of x in X . In the remainder, we write pred(x)
and succ(x) if X is clear from the context (or not relevant).
Given succ(x), we write succk(x) for the successors that are
at the largest distance d≤k of x in succ(x). For example,
given the partial order in Figure 1a, succ1(a)={b, d} and
succ2(a)={b, c, d}. Similarly, predk(x) refers to the predeces-
sors of x of depth d≤k. Figure 1a visualizes a partial order
as a graph. For simplicity, we often visualize the transitive
reduction1 of a partial order as in Figure 1b, where the arc
(a, c) is removed yet c is still reachable from a.

Event Data: Most process mining techniques require a log
describing records of executions of processes as an input. In
this paper, we use the notions of activity instance (a record of
a task executed in a process), case (a process instance), and
activity instance log (a collection of process instances). Table I
sketches a synthetic example log. Every row corresponds to an
instance of an activity executed in the context of a case. For

1A transitive reduction of a directed graph is a directed graph with the same
vertices and as few edges as possible maintaining the same reachability.

(a) The partial order. (b) The transitive reduction
of the partial order.

Fig. 1: Representation of a partial order over {a, b, c, d}.

example, the first row indicates that the apply loan activity
(short-hand notation: activity a) was executed at 9:02 AM,
January 1st, 2021 and the second row indicates that check
credit (short-hand notation: activity c) was executed from 9:30
AM, January 4th, 2021 until 11:32 AM, January 6th, 2021.
Each activity instance has a unique id (the second column).
The case identifier (the first column cid) allows us to identify
for which case the activity instance was executed. For example,
the first 7 activity instances are executed for a case identified
by case-identifier 1. We formalize the notions of an activity
instance, a case, and an activity instance log as follows.

Definition 1 (Activity Instance). An activity instance de-
scribes the (historical) execution of an activity, which is
described by a set of attributes. We let A be the universe
of activity instances, Uact the universe of activities, and Uts
the universe of timestamps. The following attributes of a∈A
can be obtained by the projection functions:
• πid : A→N+ s.t. ∀a, a′∈A(πid(a)=πid(a′) =⇒ a=a′),
• πact : A→Uact, where πact(a) denotes the activity of a,
• πst : A→Uts, where πst(a) denotes the start time of a,
• πct : A→Uts, where πct(a) denotes the completion time

of a s.t. πst(a)≤πct(a).

Definition 2 (Case, Activity Instance Log). Let A be the
universe of activity instances. A case c⊆A describes a set
of activity instances executed in the context of a process
instance. A case c explicitly defines a partial order (c,≺),
i.e., ∀a, a′∈c (a≺a′⇔πct(a)<πst(a

′)). Let C⊆P(A) denote
the set of all possible cases. An activity instance log L⊆C
is a set of cases where ∀c, c′∈L(c∩c′=∅). The set of all the
possible logs of a process is denoted as L⊆P(C).

In the remainder, we refer to the activity instance class
of said activity instances, e.g., the activity instance class of
instances with id 4, 5 and 6 in Table I is decide (d). The valid
classes of a log L are denoted as α(L)=

⋃
c∈L{πact(a)|a∈c}.

III. RUNNING EXAMPLE

In this section, we introduce a running example which we
use in this paper to illustrate and explain the framework. Con-
sider a loan application process. After an applicant submits an
application for a loan, the bank checks the applicant’s credit
and examines the application. Depending on the amount
applied for and the information of the applicant, the ap-
plication may be examined again and go through several
underwriters. The bank notifies the applicant of the final
decision, i.e., approval or rejection of the application. Table I
shows an activity instance log L for the process described,
where each row represents an activity instance with the
corresponding attributes. For example, for case 1 (written as
c1), c1={a1, c2, e3, d4, d5, d6, n7}2. Since each case defines a
partial order over its activity instances, the activity instance
log in Table I can be seen as a collection of partial orders. A
graphical representation of L, i.e., represented as a collection

2For simplicity, given an activity instance a where πid(a)=k and
πact(a)=b, we write bk in the rest of the paper.



(a) Case 1 (b) Case 2.

Fig. 2: Graphical representation of L (for simplicity, the
example cases are depicted by the transitive reduction of the
partial order defined on the activity instances.).

of partial orders, is shown in Figure 2, where each node
represents an activity instance labeled with the abbreviation
of its activity name and its id as subscript.

Table II shows an abstracted log after applying the proposed
framework on L. The activity classes c, e, and d are abstracted
to an abstraction class C1 at hierarchy level 1. Activity in-
stances a and n form singleton abstraction classes at hierarchy
level 1. In c1, all the activity instances related to C1 are
grouped together as an instance of C1. In c2, we extract two
instances of C1, {e9, c10, d11} and {e12, e13}. The collection
of the cases in Table II is a log at hierarchy level 1. Finally,
we apply the framework on the log abstracted and compute a
log at hierarchy level 2 as shown in Table III, where all the
classes at level 1 are grouped as a single class at level 2.

IV. FRAMEWORK

In this section, we introduce the proposed framework. We
explain the framework using the running example introduced
in Section III and define the input and output for each
component in the framework.

Figure 3 presents a schematic overview of the framework.
A hierarchy of abstractions is obtained by iteratively applying
the framework. In each iteration i∈N+, first, we discover
the applicable abstraction classes at the next hierarchy level,
i.e., at level i+1 (represented by abstraction oracle function
ϕ). The corresponding instances of each abstraction class are
extracted by the function δ. In the log at level i, the detected
instances of an abstraction class, are replaced by instances
of the abstracted class, i.e., generating the log at level i+1.
For example, in L1 in Table II, the instances c2, e3, d4, d5, d6
of L in Table I are collapsed into a single instance of class
C1 (instance id 2 in Table II). The same holds for instances
e9, c10, d11 and instances e12 and d13, i.e., instances 5 and 6,
respectively in Table II. For each abstraction class, a sublog
(class log) describing all the instances of the class is created.

TABLE II: A log L1 at hierarchy level 1 abstracted from L,
where C1={c, d, e}.

cid id class instances start time complete time

1 1 {a} {a1} 2021.01.01 09:02 2021.01.01 09:02
1 2 C1 {c2, e3, d4, d5, d6} 2021.01.04 09:30 2021.01.15 9:20
1 3 {n} {n7} 2021.01.16 10:23 2021.01.16 10:23
2 4 {a} {a8} 2021.01.01 10:06 2021.01.01 10:06
2 5 C1 {e9, c10, d11} 2021.01.06 08:50 2021.01.14 14:00
2 6 C1 {e12, d13} 2021.01.14 14:02 2021.01.18 10:28
2 7 {n} {n14} 2021.01.20 16:07 2021.01.20 16:07

TABLE III: A log L2 at hierarchy level 2, abstracted from L1,
where C2={{a}, {n}, C1}.

cid id class instances start time complete time

1 1 C2 {{a1}, C12, {n7}} 2021.01.01 09:02 2021.01.16 10:23
2 2 C2 {{a8}, C15, C16, {n14}} 2021.01.01 10:06 2021.01.20 16:07

For example, class C1 describes activity instance classes c,
d, e. Based on L, a class log LC1 is constructed, containing
activity instances 2. . .6 for c1 and instances 9. . .13 for c2.
Similarly, for singleton classes {a}, class logs containing
activity instances 1 and 8 are created. Thus, the underlying
behavior recorded for activity instance 2 in Table II, i.e., the
instance of C1, is described by activity instances 2. . .6 in
Table I, captured in the previously described class log LC1.

The framework’s output, i.e., a log at level i+1, is computed
and can be used as the input for the next iteration. The process
repeats until the level specified by the user. The total collection
of the results obtained at each iteration forms a hierarchical
abstraction of the input data.

First, we discover the applicable classes at each level. If we
consider the activities recorded in the system as abstraction
level 0, a class at level i>0 is simply a collection of classes
at level i−1. The notion of class hierarchy is as follows.

Definition 3 (Hierarchy of Classes). Let Uact be the universe
of process activities. The universe of classes of a process at
level i∈N, i.e., U i

class, is recursively defined as U i
class=Uact if

i=0 and U i
class=P(U i−1

class)\{∅} for i>0.

In the running example, U0
class={a, c, d, e, n}.

We identify classes U1
class={{a}, C1, {n}}, where

C1={c, d, e}, and U2
class={C2}, where C2={{a}, C1, {n}}.

For each class discovered, we extract the corresponding
instances from the log. Within a case, multiple instances of
the same abstraction class may be identified, e.g., instances 5
and 6 in Table II both represent an instance of C1. We define
a hierarchy of instances as follows.

Definition 4 (Hierarchy of Instances). Let U i
class be the

universe of classes at level i∈N and Uts be the universe of
timestamps. An instance at level i describes the presumed
(historical) execution of a class at level i and consists of
the executions at level i−1 if i>0. Let A be the universe
of activity instances. The universe of instances at level i
is defined as Ai=A and ∀i∈Ai(πclass(i)=πact(i)) if i=0,
else Ai=P(Ai−1)\{∅} and ∀i∈Ai(πclass(i)∈U i

class). The
corresponding attributes can be derived from the underlying
instances at the lower-level such that, given i∈Ai, where i∈N,
• πst : Ai→Uts, where πst(i) denotes the start time

of i s.t. πst(i)=πst(i) if i=0 (since i∈A), else
πst(i)=min({πst(i′)|i′∈i}),

• πct : Ai→Uts, where πct(i) denotes the completion
time of i s.t. πct(i)=πct(i) if i=0, else
πct(i)=max({πct(i′)|i′∈i}).

Note that we do not impose the constraint that all the instances
at level i must be in an instance at level i+1.



Fig. 3: Schematic Overview of Proposed Approach.

Instances in a case at level i∈N together form an instance at
level i+1. In the running example, we extract four instances
i4, i5, i6, and i7 at level 1 from c2∈L in Table I. Hence, the
same case at level 1, written as c12, contains these extracted
instances, i.e., c12={i4, i5, i6, i7}. These instances describe the
activity instances {a8}, {e9, c10, d11}, {e12, d13}, and {n14},
respectively, of the underlying log L. Similarly, at level 2 (L2

in Table III), c22 describes one instance of C2 and consists of
all instances of c12∈L1 (Table II).

Definition 5 (Hierarchy of Cases and Logs). Let Ai be the
universe of instances at level i∈N. The universe of cases
at level i, i.e., Ci, is recursively defined as Ci=C if i=0
else Ci⊆P(P(Ai−1)) s.t. ∀ci∈Ci, ci is a derivative case of
ci−1∈Ci−1 where ∀i∈ci(i⊆ci−1) and ∀i, i′∈ci(i∩i′=∅). The
universe of logs at level i∈N is defined as Li=L if i=0 else
Li⊆P(P(Ci−1)) s.t. ∀L∈Li, L is the collection of all the
derivative cases of cases in Li−1.

Note that an activity, an activity instance, a case, and an
activity instance log can be seen as the building blocks of a
hierarchy of classes, instances, cases, and logs, respectively.
To extract the classes and instances at different level of the
hierarchy, we define two key oracle functions, class abstraction
function ϕ and instance extraction function δ as shown in
Figure 3. First, the class abstraction function ϕ groups the
classes at the lower-level and extracts the classes at the next
level as follows.

Definition 6 (Class Abstraction Oracle). Let Li be the
universe of logs at level i∈N. An ith-order class abstrac-
tion oracle ϕi detects the possible applicable classes at
level i+1, i.e., ϕi : Li→P(U i+1

class), where U i+1
class is the uni-

verse of classes at level i+1, such that, given L∈Li,
∀Ci∈α(L)(∃Ci+1∈ϕ(L)(Ci∈Ci+1)).

In the running example L, we identify three classes at level 1
with ϕ0(L)={{a}, C1, {n}}, where C1={c, d, e}. Given the
log L1 extracted from L, we identify the classes at level 2
as ϕ1(L1)={C2}, where C2={{a}, C1, {n}}. Intuitively, an
instance of class Ci, where i∈N+, contains the instances of
the classes at the lower-level in Ci. For example, the instances
in c1 in Table I with activities c, d, and e are collected as one
instance i2 in Table II since C1={c, d, e}. The extraction of
instances is defined as follows.

Definition 7 (Instance Extraction Oracle). Given i∈N, let
Ci be the universe of cases at level i and U i

class and Ai be
the universe of classes and instances at level i, respec-
tively. An instance extraction oracle at level i δi is a
function δi : Ci×P(U i+1

class)→P(Ai+1), s.t., given case c∈Ci
and a valid class definition at level i+1 Ci+1∈U i+1

class,
an instance at level i can only be assigned to at most
one instance at level i+1, i.e., ∀i, i′∈δi(c,Ci+1)(i∩i′=∅),
and ∀i∈δi(c,Ci+1)∀i′′∈i(πclass(i′′)∈Ci+1). We overload
δi(c,Ci+1) and write δi(Li,Ci+1)={δi(c,Ci+1)|c∈Li}.

With the definition, the instances of C1, C2, and
C3 from ϕ0(L0) can be extracted as δ0(L0, ϕ0(L0))=
{i1, i2, i3, i4, i5, i6, i7}, where each row in Table II represents
an instance and the corresponding attributes. For example, i5 is
an instance of C2 (πclass(i5)=C2) extracted from e9, c10, and
d11 (i5={e9, c10, d11}) in c02 such that πst(i5)=2021.01.06
08:50 and πct(i5)=2021.01.14 10:06. In Figure 3, we color
the activity instances of the same class at level 1 with the
same color and group the activity instances if they belong to
the same instance at level 1 with a dashed line.

Finally, for every class identified, we create a class log
containing the instances of the class. In the running exam-
ple, given δ0(L,ϕ0(L)), we extract class logs L{a}={i1, i4},
LC1={i2, i5, i6}, and L{n}={i3, i7} in Table II. Given a class,
the corresponding class log is defined as follows.

Definition 8 (Class Log). Let Li be a log at level i∈N
and Ci+1⊆U i+1

class be the applicable classes at level i+1,
i.e., Ci+1=ϕ(Li). A class log of C∈Ci+1, written as LC ,
is the collection of the instances of the class C where
LC={i|i∈δi(Li,Ci+1)(πclass(i)=C)}.

Given the definitions, the extraction of a hierarchy of logs
and class logs is trivial provided the instances. To summarize,
the framework takes a log at level i∈N and discovers the
applicable classes at level i+1 with abstraction oracle ϕ. The
instances of each class identified are extracted using δ. For
every class, we collect the instances of each class and generate
a log, which contains the data of a subprocess represented with
the class. The final output is a log at level i+1 computed from
the instances extracted. The process repeats until the level that
a user specified and creates a hierarchy of abstractions.



V. AN INSTANTIATION

In this section, we introduce an instantiation of the two
core oracle functions in the proposed framework: (1) the class
abstraction ϕ and (2) the instance extraction oracle δ for every
abstraction level.

A. Abstracting Classes

Given a process, it is intuitive to group the classes that have
similar surrounding behavior as a class at the higher level. We
define classes to be similar if they having similar preceding
and following classes.

First, we extract the classes preceding (preceding patterns)
and following (following patterns) every class within a certain
window size (w). To increase the probability that two classes
group together, we let ˆpred

w

c (i) and ˆsuccwc (i) be a set of
w elements randomly selected from predwc (i) and succwc (i),
respectively. The patterns are extracted as below.

Definition 9 (Preceding and Following Patterns). Given a
log L, let C be all the classes of instances in L. For every
C∈C, the preceding and following patterns of C are

ppred
C =

⋃
c∈L
{{πclass(i′)|i′∈ ˆpred

w

c (i)}|i∈c(πclass(i)=C)},

psucc
C =

⋃
c∈L
{{πclass(i′)|i′∈ ˆsuccwc (i)}|i∈c(πclass(i)=C)}.

We denote all the preceding and following patterns in L as
Ppred=

⋃
C∈C ppred

C and Psucc=
⋃

C∈C psucc
C .

The green (top) and blue (bottom) rows in Figure 4a present
the preceding and following patterns of L with window size
1. The arrows in Figure 4a indicate if a pattern precedes or
follows an activity in L. For example, a is followed by {c} and
{e} and preceded with an empty set (since a is the first activity
in all the cases in L). Based on the preceding and following
patterns, we quantify the difference between any two classes
using earth mover’s distance (EMD) [4].

Definition 10 (Preceding and Following Similarity). Let
Ppred and Psucc be the preceding and following patterns of
the classes C in a log L. The frequency that a pattern p
precedes or follows a class C∈C are

fpred(C,p)=|
⋃
c∈L
{ ˆpred

w

c (i)|i∈c(πclass(i)=C)}|,

fsucc(C,p)=|
⋃
c∈L
{ ˆsuccwc (i)|i∈c(πclass(i)=C)}|.

The probability that a pattern p precedes or follows a class
C is ppred(C,p)=fpred(C,p)/Σp′∈Ppredfpred(C,p′) and
psucc(C,p)=fsucc(C,p)/Σp′∈Psuccfsucc(C,p′), respectively.
Let the distance between any different patterns be 0 and 1
otherwise. According to [5], the EMD between any C,C ′∈C
of the preceding and following patterns are as follows.

EMDpred(C,C ′)=1−Σp∈Ppred(ppred(C,p)−ppred(C ′,p), 0),

EMDsucc(C,C ′)=1−Σp∈Psucc(psucc(C,p)−psucc(C ′,p), 0).

(a) Frequency. (b) Probability. (c) Updated.

Fig. 4: Pattern graphs for the running example L.

The labels of the arrows in Figure 4a and 4b show the
frequency and probability of a pattern precedes and follows a
class. For instance, in Figure 4b, there is a 50% probability
that d goes to {d} and 50% that d goes to {n}. We quantify
the similarity of classes using the probability. If the average
similarity of the classes, defined as 1−EMD for preceding
and following patterns, is greater than a threshold provided
by the user, we consider them similar enough and group them
together. The corresponding arrows and frequency labels are
updated as shown in Figure 4c, where the threshold is set to
0.25. Then, we compute the probability of the edges and repeat
the process until no classes can be grouped. The final output,
i.e., sets of classes grouped, are the classes at the next level.
Note that, for the singletons classes that are not grouped, we
define them as a class at the next level.

B. Extracting Instances

We propose two solutions for extracting the instances. The
first one is straightforward. For each case c, we define an
instance i of a class C at level i∈N+ as the collection of
all the instances in c where their classes are in C, i.e.,
i={i′|i′∈c∧πclass(i′)∈C}.

The second solution proposed “cuts” the instances in a case
according to the start and completion classes identified. A
(sub)process often starts and completes with specific activities,
e.g., receive an application, forward a case to another depart-
ment, reject a purchase request, ..., etc. An instance of a class
at the higher level can be extracted by “cutting” a case using
the potential start and completion classes at the lower level,
i.e., endpoint classes. There are two steps in the extraction.
First, we identify the endpoint classes at the lower level for a
class at higher level. For instance, given the running example
L, suppose C1={c, d, e}. We identify d as the completion
class of C1 (Ccomplete

C1 ) and {c, e} as the start classes (CstartC1 ).
Given the endpoint classes identified, we compute the

“cutting points” of a case, which fall between the instances
with the start and completion classes. For example, in Fig-
ure 2, given CstartC1 ={e} and Ccomplete

C1 ={d}, we extract three
instances of C1, i2={c2, e3, d4, d5, d6}, i5={e9, c10, d11}, and
i6={e12, d13}. In case 2, we “cut” the case between d11 and
e12 based on their classes which indicates the initiation of a
new instance at the higher level. We identify the cutting points
based on the start and completion classes as below.

Definition 11 (Identifying Cutting Points). Given a log Li,
where i∈N, and the applicable classes Ci+1. Let CstartC and



TABLE IV: Parameter setting of abstraction level (L), window
size (W), similarity threshold (S), dependency threshold of
HM, and noise threshold of IMflc (IMflc) and IMf.

L W S IMflc HM-Dependency Threshold IMf-Noise Threshold
Min 0 1 0 0 0 0
Max 3 10 1.0 1.0 1.0 1.0
Step 1 1 0.1 0.1 0.1 0.1

Ccomplete
C be the start and completion classes of C∈Ci+1. For

every c∈Li, we perform the following steps.

1) Select the instances with the start and completion classes
I={i|i∈c(πclass(i)∈CstartC ∪Ccomplete

C )}.
2) Extract a set of timestamps that represent the

cutting points T ={πst(i)|i∈c(πclass(i)∈CstartC ∧
{πclass(i′)|i′∈ ˆsucc1I(i,≺)}⊆Ccomplete

C )}.
3) Sort the timestamps extracted into a list
T̂ =〈1, 2, ..., |T |〉, where ∀1≤i<j≤|T |(T̂ (i)≤T̂ (j)).

4) Collect the instances s.t. every instance at level i+1 is a
set of instances at level i in between the timestamps ex-
tracted

⋃
1≤k<|T̂ |{i|i∈c(πclass(i)∈C)∧πst(i)≥T̂ (k)∧

(k<|T̂ |→πct(i)<T̂ (k+1)∧k=|T̂ |→πct(i)>max(T̂ )))}.
We apply the same process to all the cases in Li and extract
all the instances of C at level i+1.

Finally, with the instances extracted, the abstract log at the
next level and the class logs are computed and applied as an
input for the next iteration until the level that a user specified.

VI. EVALUATION

In this section, we evaluate the proposed framework with
the instantiation. First, we present a quantitative evaluation by
comparing the quality metrics of discovered process models
with and without applying abstraction. Then, we present
the models discovered to showcase the applicability of the
framework.

A. Quantitative Evaluation

In this section, we evaluate the quality of process models
with and without abstraction by applying existing discovery
algorithms on the abstract logs. To fairly compare the results,
we flatten the process models discovered using the logs at
different levels, i.e., an abstract model, by replacing each
transition in the model with a model discovered using the class
log of the corresponding transition (class model). We repeat
the replacement process until all the transitions are labeled
with classes at level 0, i.e., the classes, or activities, in the
processes without applying abstraction. Meanwhile, we adopt
the first solution proposed to extract the instances to compare
with results without abstraction.

We evaluate the process models using two datasets [6], [7].
We apply Inductive Miner - infrequent & life cycle (IMflc) [8]
for discovering abstract models (as it is the only discov-
ery algorithm known that can handle life cycle transitions
reasonably). The class models are discovered using different

Fig. 5: The process model without abstraction, i.e., level 0,
discovered using HM with dependency threshold 0.2 on [7].4

versions of the Inductive Miner, i.e., (IM) [9], (IMf) [10] and
(IMd) [11], and, the Heuristic Miner (HM) [12].

Using the aforementioned logs and algorithms, we con-
ducted various experiments with different parameter settings
of our framework. An overview of the total parameter setup
is presented in Table IV. In Table V we present the average
results obtained in terms of fitness [14], precision [15], and
F1-score of the flattened models using token-based replay
technique.4. The simplicity is evaluated for both flattened and
abstract models, which are intended for human analysts [16].

We observe that the simplicity of the obtained models
increases for higher levels of abstraction. For the abstract
models this is to be expected, i.e., these models contain
less elements. However, we also observe slight increase for
the flattened models, which is more surprising. For [6], we
observe an increase of F1-score for the flattened models when
we increase the abstraction levels. This is mainly caused by
a significant increase in precision for the models based on
higher levels of abstraction. However, generally, the fitness
levels of the corresponding models is lower. For [7], similar
results are obtained, however, the drop in fitness is too large
compared to the gain in precision, i.e., F1-scores for higher
levels of abstraction are worse compared to the raw event data.
Nonetheless, these result confirms the ability of abstraction
techniques to counter the typical underfitting behavior of
process discovery algorithms on raw event data. For the impact
of the parameters, we observe that the similarity threshold and
the discovery algorithm used (along with the corresponding
parameters) have stronger impact to the quality of the process
models comparing to other parameters.

B. Qualitative Evaluation

The complexity and density of a process model are known to
impact the understandability for a human analyst [2], [17]. To
demonstrate the applicability of the framework, we compare
the process models with and without abstraction. Figure 5
presents an impression of a process model without abstraction.
The abstract models at levels 1 to 3 are shown in Figure 6,
with the class models discovered using the same parameter
setting as the one without abstraction. Note that though the
labels are unclear, yet the figures sketch the overall structure
of the process models.

3See [9] for the process tree representation and [13] for Petri nets.
4See https://owncloud.fraunhofer.de/index.php/s/zs2RFvji47g1Ck3 for all

results. Due to space limitations we only show aggregate results.

https://owncloud.fraunhofer.de/index.php/s/zs2RFvji47g1Ck3


TABLE V: Average fitness, precision, and F1-Score of flattened process models per level, where process models at level 0
refer to the models discovered without applying abstraction.

Fitness Precision F1-Score Simplicity-Flatten Simplicity-Abstract
Level 0 0.9697 0.7956 0.8728 0.5829 -

bpi 13 [7] Level 1 0.6858 0.9817 0.7857 0.6385 0.9382
Level 2 0.7172 0.9802 0.8116 0.6402 0.9615
Level 3 0.7245 0.9802 0.8177 0.6401 0.9661
Level 0 0.8043 0.8627 0.6979 0.5437 -

Sepsis [6] Level 1 0.7430 0.9584 0.8264 0.5857 0.9698
Level 2 0.7441 0.9595 0.8280 0.5860 0.9753
Level 3 0.7443 0.9598 0.8283 0.5861 0.9756

Fig. 6: Abstract and class models of [7] at hierarchy levels 1 to 3 with setting of window size 4, similarity threshold 0.9, and
IMflc noise threshold 0.2. The fitness/precision (F1-Score) of the flattened models are 0.3898/1.0(0.5609), 0.7118/1.0(0.8317),
and 0.7987/1.0(0.8881) at level 1 to 3, respectively.3

By using the divide-and-conquer strategy, compared to
Figure 5, a human analyst only needs to interpret a limited
number of behaviors at a time. Additionally, we observe a
change of the behavior in the abstraction. In the abstract model
of level 1, the class C2 is in parallel with two singleton classes.
They are grouped as C3 in level 2 and the two singleton classes
are before C2 at level 2. The quality of the flattened models,
i.e., fitness, precision, and F1-score, increases with the change.

To summarize, we evaluated our framework both quanti-
tatively and qualitatively. The quantitative evaluation shows
that the precision is higher with abstraction and the quality of
the process models depends mainly on the similarity threshold
and the discovery algorithm applied. In qualitative evaluation,
we demonstrate the applicability of the framework with the
visualization of process models. Hence, we conclude that the
framework enhances the overall interpretability of discovered
process models without compromising the results.

VII. RELATED WORK

In this section, we discuss the work that is most relevant
to the proposed framework. For a complete overview of the
abstraction techniques for process mining, we refer to [3].

To reasonably group the concepts or instances (events in
most work) together into high-level concepts or instances,
some techniques require various levels of domain knowledge
provided by the user. For example, [18] assumes that the
information of different levels of abstraction is provided as an
attribute in the data to discover hierarchical models. The same
assumption is applied in [19], which aims to predict the higher-

level concepts of events using log with labeled events and does
not allow for automatically discovering hierarchical models.
The authors in [20] propose to compute an activity tree, which
contains the hierarchical information. Nevertheless, among
three alternatives, i.e., domain knowledge provided, randomly
assigned, and flat activity trees, the best results still rely on
the domain knowledge provided.

Other approaches do not require users to explicitly provide
the abstraction information. De Leoni and Dündar apply clus-
tering algorithms with the feature extracted using frequency
or duration encoding within a fixed time frame determined
by the user [21]. Nguyen et al. imitate how a human analyst
applies a divide-and-conquer strategy to decompose a process
model by searching for the “cutting points” based on graph
modularity [22]. The above techniques require a certain level
of parameter tuning; however, less knowledge is required
compared to the techniques using explicitly abstraction infor-
mation [18]–[20]. In both [23] and [24], a process model for
each higher-level transition are used for abstraction. While the
latter one does not require users to provide such models, both
techniques utilize alignment to extract an abstracted log, which
is computationally expensive.

Similar to [18] and [20], the proposed framework supports
hierarchical event abstraction. However, instead of relying on
domain knowledge, we propose an instantiation to extract the
abstraction information. Moreover, most, or, all, techniques
apply on events. In real-life event logs, there are different
status of an activity, e.g., start, complete, suspend. To the best
of our knowledge, the framework proposed in this paper is



the first to be applied on activity instances instead of events,
which is generally more applicable to different event logs.

VIII. DISCUSSION AND LIMITATIONS

This section discusses the framework and its limitations.
There are two key functions in the proposed framework,
the identification of classes at different levels, i.e., ϕ, and
the extraction of the corresponding instances, i.e., δ. The
instantiation assumes that each class at level i∈N exists in
only one class at level i+1. However, in real life, a class may
exist in different “parts” (higher-level classes) of a process.
Therefore, it would be interesting to apply an instantiation
that allows for duplicated labels and explore its impact.

The instantiation of δ which splits a case based
on start and completion classes at the lower level
highly depends on the selection of such classes. Con-
sider a log containing incomplete cases, for example,
L={{a1, b2, d3, a4, c5}, {a6, b7, d8, c9}, {a10, b11}} for a pro-
cess →(∧(	(a),→(b, d)), c). We select {a} as the start
classes and {b, c} as the completion classes of a class
C={a, b, c, d}. For the first case, we extract two instances
{a1, b2} and {a4, c5}, resulting from the selection of b in
completion classes. As shown with the example, the selection
of classes that does not represent the termination of a class
at the higher level can lead to inaccurate results. In addition,
we do not guarantee that all the instances at level i∈N are
assigned to instances at level i+1. In the example, instance
d3 is excluded in the instances at level i+1.

In the instantiation, three parameters, i.e., window size,
similarity threshold, and the final level of abstraction, need
to be configured by the user. However, as shown in the
experiments, the quality of the flattened models depends
more on the similarity threshold and the discovery algorithms
applied. Therefore, we may further automate the framework
by removing, i.e., setting the parameters to constants, other
parameters while guaranteeing not affecting the results.

IX. CONCLUSION

We proposed a framework for event abstraction based on
activity instances. The framework first identifies classes and
extracts instances for each abstracted class at every hierar-
chical abstraction level. The output, a log based on extracted
classes, is then applied as input for the next iteration. We
apply the earth mover’s distance for comparing the similarity
of classes and group the classes that are similar enough in the
instantiation. We propose two solutions for the extraction of
instances. First, an instance at the higher-level is the collection
of all the relevant instances in a case. The second solution cuts
a case based on the intuition that a (sub)process often starts
and completes with certain activities. The evaluation shows
the applicability of the framework without compromising
the quality of the process models compared to the models
discovered without applying abstraction. In certain settings, the
results with abstraction outperform the ones without applying
abstraction. Meanwhile, we demonstrate that the framework
allows for applying different process mining techniques to

provide better results. As a next step, we aim to remove the
requirement that a class can only be assigned to one class
at the higher-level and allow for multiple higher-level class
containing the same class at the lower-level. Also, we aim
to develop different strategies for the selection of start and
completion classes and evaluate the corresponding impact on
discovered process models.

REFERENCES

[1] W. van der Aalst, “Data science in action,” in Process mining, 2016.
[2] J. Mendling, H. A. Reijers, and J. Cardoso, “What makes process models

understandable?” in BPM, 2007.
[3] S. J. van Zelst, F. Mannhardt, M. de Leoni, and A. Koschmider, “Event

abstraction in process mining: literature review and taxonomy,” Granular
Computing, vol. 6, no. 3, 2021.

[4] Y. Rubner, C. Tomasi, and L. J. Guibas, “A metric for distributions with
applications to image databases,” in Sixth International Conference on
Computer Vision, 1998.

[5] S. Leemans, A. F. Syring, and W. van der Aalst, “Earth movers’
stochastic conformance checking,” in BPM, 2019.

[6] F. Mannhardt, “Sepsis cases - event log.”
[7] W. Steeman. (2013) BPI challenge 2013, closed problems.
[8] S. Leemans, D. Fahland, and W. van der Aalst, “Using life cycle

information in process discovery,” in BPM, 2016.
[9] S. Leemans, D. Fahland, and W. van der Aalst, “Discovering block-

structured process models from event logs-a constructive approach,” in
International conference on applications and theory of Petri nets and
concurrency, 2013.

[10] S. Leemans, D. Fahland, and W. van der Aalst, “Discovering block-
structured process models from event logs containing infrequent be-
haviour,” in BPM, 2013.

[11] S. Leemans, D. Fahland, and W. van der Aalst, “Scalable process
discovery and conformance checking,” Software & Systems Modeling,
vol. 17, no. 2, 2018.

[12] A. Weijters, W. van der Aalst, and A. A. De Medeiros, “Process mining
with the heuristics miner-algorithm,” Technische Universiteit Eindhoven,
Tech. Rep. WP, vol. 166, 2006.

[13] J. Peterson, “Petri nets,” ACM Computing Surveys, vol. 9, no. 3, 1977.
[14] A. Berti and W. van der Aalst, “Reviving token-based replay: Increasing

speed while improving diagnostics.” in ATAED@ Petri Nets/ACSD,
2019.

[15] J. Munoz-Gama and J. Carmona, “A fresh look at precision in process
conformance,” in BPM, 2010.

[16] F. R. Blum, “Metrics in process discovery,” Technical report, TR/DCC.
1–21, Tech. Rep., 2015.

[17] H. A. Reijers and J. Mendling, “A study into the factors that influence
the understandability of business process models,” IEEE Transactions on
Systems, Man, and Cybernetics-Part A: Systems and Humans, vol. 41,
no. 3, 2010.

[18] S. Leemans, K. Goel, and S. J. van Zelst, “Using multi-level information
in hierarchical process mining: Balancing behavioural quality and model
complexity,” in 2nd ICPM, 2020.

[19] N. Tax, N. Sidorova, R. Haakma, and W. van der Aalst, “Event
abstraction for process mining using supervised learning techniques,”
in Proceedings of SAI Intelligent Systems Conference, 2016.

[20] X. Lu, A. Gal, and H. A. Reijers, “Discovering hierarchical processes
using flexible activity trees for event abstraction,” in 2nd ICPM, 2020.

[21] M. de Leoni and S. Dündar, “Event-log abstraction using batch session
identification and clustering,” in Proceedings of the 35th Annual ACM
Symposium on Applied Computing, 2020.

[22] H. Nguyen, M. Dumas, A. H. ter Hofstede, M. La Rosa, and F. M.
Maggi, “Stage-based discovery of business process models from event
logs,” Information Systems, vol. 84, 2019.

[23] F. Mannhardt, M. De Leoni, H. A. Reijers, W. van der Aalst, and
P. J. Toussaint, “From low-level events to activities-a pattern-based
approach,” in BPM, 2016.

[24] F. Mannhardt and N. Tax, “Unsupervised event abstraction using pattern
abstraction and local process models,” arXiv preprint arXiv:1704.03520,
2017.


	Introduction
	Preliminaries
	Running Example
	Framework
	An Instantiation
	Abstracting Classes
	Extracting Instances

	Evaluation
	Quantitative Evaluation
	Qualitative Evaluation

	Related Work
	Discussion and Limitations
	Conclusion
	References

