
Identifying Commonalities and Di�erences in

Object Life Cycles using Behavioral Inheritance

W.M.P. van der Aalst1 and T. Basten2

1 Dept. of Technology Management and Dept. of Computing Science, Eindhoven

University of Technology, The Netherlands, w.m.p.v.d.aalst@tue.nl
2 Dept. of Electrical Engineering, Eindhoven University of Technology, The

Netherlands, a.a.basten@tue.nl

Abstract. The behavioral-inheritance relations of [7, 8] can be used to

compare the life cycles of objects de�ned in terms of Petri nets. They

yield partial orders on object life cycles (OLCs). Based on these orders,

we de�ne concepts such as the greatest common divisor and the least

common multiple of a set of OLCs. These concepts have practical rel-

evance: In component-based design, work
ow management, ERP refer-

ence models, and electronic-trade procedures, there is a constant need for

identifying commonalities and di�erences in OLCs. Our results provide

the theoretical basis for comparing, customizing, and unifying OLCs.

Key words: Petri nets, inheritance, lattices, partial orders, object-oriented methods,

work
ow management.

1 Introduction

For several years, we have been working on notions of inheritance of behavior [7,

8]. Inheritance is a key issue in object-oriented design [10]. It allows for the def-

inition of subclasses that inherit features of some superclass. Inheritance is well

de�ned for static properties of classes such as attributes and methods. However,

there is no general agreement on the meaning of inheritance when considering

the dynamic behavior of objects, captured by their life cycles. In our work, we

use Petri nets [18, 19] for de�ning object life cycles (OLCs); they allow for a

graphical representation with an explicit representation of object states. In [7,

8], four behavioral-inheritance notions have been de�ned, based on the principle

that by blocking and/or hiding methods of a subclass the resulting behavior

should match the behavior of the superclass.

We have applied the behavioral-inheritance concepts in di�erent domains

ranging from work
ow management [4] and electronic commerce [3] to object-

oriented methods [7, 8] and component-based software architectures [5]. In each

of these applications, objects are designed and compared. The objects of interest

can be insurance claims, orders, bank accounts, hardware modules, or software

components. One thing they have in common is that they have a life cycle.

The inheritance notions have been used as a basis for the comparison of these

OLCs. The applications revealed a new and intriguing question: Given a set of

OLCs, what do these OLCs have in common? In this paper, we provide some

fundamental results that can be used to answer this question.

Consider a set of OLCs that are variants of some process (a work
ow or trade

procedure, or the control
ow in a hardware or software component). Each of

the inheritance relations yields a partial order that can be used to reason about

a common super- or subclass of the variants. The Greatest Common Divisor

(GCD) is the common superclass which preserves as much information about

the OLCs as possible, i.e., it is not possible to construct a more detailed OLC

which is also a superclass of all variants. The GCD describes the behavior all

variants agree on. The Least Common Multiple (LCM) is the most compact OLC

which is still a subclass of all variants. For each of the application domains men-

tioned, there is a clear use for such concepts. Consider for example two similar

software components. The GCD can be used to deduce what both components

have in common; the LCM can be used to construct a generic component which

can be used to replace the other two. Another example is the use of ad-hoc

work
ows. Work
ow management systems such as InConcert (TIBCO) allow

for case-speci�c variants of a work
ow process. Both the GCD and the LCM of

these variants can be used to generate meaningful management information [4].

In this paper, we de�ne the concepts of GCDs and LCMs based on the four

inheritance relations mentioned earlier. Since none of them forms a (complete)

lattice, a restrictive de�nition leads to situations where there is no GCD (LCM)

and a more liberal de�nition leads to situations where there are multiple GCDs

(LCMs). Both situations are undesirable. We tackle this problem by giving both

more restrictive and more liberal de�nitions. For the latter, we use the terms

Maximal Common Divisor (MCD) and Minimal Common Multiple (MCM). We

use the Dedekind-MacNeille [17] completion to turn an inheritance partial order

into a complete lattice with virtual nodes. In such a lattice, each set of variants

has a GCD and an LCM. However, they may correspond to a so-called virtual

OLC. Although a virtual OLC cannot be represented by a single Petri net, it

provides meaningful information on commonalities and di�erences.

The paper is organized as follows. Section 2 introduces preliminaries. The

behavioral-inheritance concepts are given in Section 3. The other sections deal

with GCDs, LCMs, MCDs, and MCMs. Section 4 studies these notions in the

context of life-cycle inheritance, the most general form of inheritance. In Sec-

tion 5, the results are extended to the three other notions of inheritance. Section 6

uses the Dedekind-MacNeille completion to guarantee the existence of GCDs and

LCMs. We conclude with some remarks on the application of our results.

2 Preliminaries

This section introduces the techniques used in the remainder. Standard def-

initions for Petri nets are given. Moreover, more advanced concepts such as

branching bisimilarity and OLCs are presented.

2.1 Labeled Place/Transition nets

We de�ne a variant of the classic Petri-net model, namely labeled Place/Transit-

ion nets. For an elaborate introduction to Petri nets, the reader is referred to [12,

18, 19]. Let L be some set of action labels. These labels correspond to methods

when modeling OLCs.

De�nition 2.1. (Labeled P/T-nets)1 An L-labeled Place/Transition net, or

simply labeled P/T-net, is a tuple (P; T; F; `) where:

1. P is a �nite set of places,

2. T is a �nite set of transitions such that P \ T = ;,

3. F � (P �T)[(T �P) is a set of directed arcs, called the
ow relation, and

4. ` : T ! L is a labeling function.

A marked, L-labeled P/T-net is a pair (N; s), where N = (P; T; F; `) is an L-

labeled P/T-net and where s is a bag over P denoting the marking of the net.

The set of all marked, L-labeled P/T-nets is denoted N .

A marking is a bag over the set of places P , i.e., it is a function from P to

the natural numbers. We use square brackets for the enumeration of a bag, e.g.,

[a2; b; c3] denotes the bag with two a-s, one b, and three c-s. The sum of two bags

(X + Y), the di�erence (X � Y), the presence of an element in a bag (a 2 X),

and the notion of subbags (X � Y) are de�ned in a straightforward way and

they can handle a mixture of sets and bags.

Transition labeling is needed for two reasons. First, a P/T-net modeling an

OLC may contain several transitions referring to a single method (identi�ed

by the label) in the OLC. Second, we use transition labels as a mechanism to

abstract from (internal) methods. For simplicity, we assume that transition labels

are identical to transition identi�ers unless explicitly stated otherwise.

Let N = (P; T; F; `) be a labeled P/T-net. Elements of P [T are called nodes.

A node x is an input node of another node y i� there is a directed arc from x

to y (i.e., xFy). Node x is an output node of y i� yFx. For any x 2 P [T ,
N
� x = fy j yFxg and x

N
�= fy j xFyg; the superscript N may be omitted if clear

from the context.

The dynamic behavior of marked, labeled P/T-nets is de�ned by a �ring rule.

De�nition 2.2. (Firing rule) Let (N = (P; T; F; `); s) be a marked, labeled

P/T-net. Transition t 2 T is enabled, denoted (N; s)[ti, i� �t � s. The �ring rule

[i � N�L�N is the smallest relation satisfying for any (N = (P; T; F; `); s) 2

N and any t 2 T , (N; s)[ti) (N; s) [`(t)i (N; s� �t+ t�).

A transition �ring is also referred to as an action.

De�nition 2.3. (Reachable markings) Let (N; s0) be a marked, labeled P/T-

net in N . A marking s is reachable from the initial marking s0 i� there exists

a sequence of enabled transitions whose �ring leads from s0 to s. The set of

reachable markings of (N; s0) is denoted [N; s0i.

De�nition 2.4. (Connectedness) A net N = (P; T; F; `) is weakly connected,

or simply connected, i�, for every two nodes x and y in P [T , x(F [F�1)�y,

where R�1 is the inverse and R� the re
exive and transitive closure of a relation

R. Net N is strongly connected i�, for every two nodes x and y, xF �y.

1 In the literature, the class of Petri nets introduced in De�nition 2.1 is sometimes

referred to as the class of (labeled) ordinary P/T-nets to distinguish it from the class

of Petri nets that allows more than one arc between a place and a transition.

We assume that all nets are weakly connected and have at least two nodes.

De�nition 2.5. (Boundedness, safeness) A marked net (N = (P; T; F; `); s)

is bounded i� the set of reachable markings [N; si is �nite. It is safe i�, for any

s0 2 [N; si and any p 2 P , s0(p) � 1. Note that safeness implies boundedness.

De�nition 2.6. (Dead transitions, liveness) Let (N = (P; T; F; `); s) be

a marked, labeled P/T-net. A transition t 2 T is dead in (N; s) i� there is

no reachable marking s0 2 [N; si such that (N; s0)[ti. (N; s) is live i�, for every

reachable marking s0 2 [N; si and t 2 T , there is a reachable marking s00 2 [N; s0i

such that (N; s00)[ti. Note that liveness implies the absence of dead transitions.

2.2 Branching bisimilarity

To formalize the inheritance concepts in this paper, we need a notion of equiva-

lence. We choose branching bisimilarity [13] as the standard equivalence relation.

The notion of a silent action is pivotal to branching bisimilarity. Silent actions,

denoted with the label � , are actions that cannot be observed. Thus, only the

�rings of transitions of a P/T-net with a label di�erent from � are observable.

We distinguish successful termination from deadlock. A termination predicate

� N de�nes in what states a marked net can terminate successfully. A marked

net that cannot perform any actions or terminate successfully is in a deadlock.

We need two auxiliary de�nitions: (1) a relation expressing that a marked net

can evolve via zero or more � actions into another marked net; (2) a predicate

expressing that a marked net can terminate via zero or more � actions.

De�nition 2.7. The relation =) � N �N is de�ned as the smallest relation

satisfying, for any p; p0; p00 2 N , p =) p and (p =) p0 ^ p0 [�i p00)) p =) p00.

The predicate + � N is de�ned as the smallest set of marked, labeled P/T-nets

satisfying, for any p; p0 2 N , # p) + p and (+ p ^ p0 [�i p)) + p0.

For any two marked, L-labeled P/T-nets p; p0 2 N and action � 2 L, p [(�)i p0

is an abbreviation of (� = � ^ p = p0) _ p [�i p0. Thus, p [(�)i p0 means that zero

� actions are performed, when the �rst disjunct is satis�ed, or that one � action

is performed, when the second disjunct is satis�ed. For any observable action

a 2 L n f�g, the �rst disjunct of the predicate can never be satis�ed. Hence,

p [(a)i p0 simply equals p [ai p0, meaning that a single a action is performed.

De�nition 2.8. (Branching bisimilarity) A binary relation R � N �N is

called a branching bisimulation if and only if, for any p; p0; q; q0 2 N and � 2 L,

1. pRq^p [�i p0) (9 q0; q00 : q0; q00 2 N : q =) q00^ q00 [(�)i q0 ^pRq00 ^p0Rq0);

2. pRq^q [�i q0) (9 p0; p00 : p0; p00 2 N : p =) p00^p00 [(�)ip0^p00Rq^p0Rq0),

3. pRq) (# p) + q ^ # q) + p).

Two marked, labeled P/T-nets are called branching bisimilar, denoted p�b q, if

and only if there exists a branching bisimulation R such that pRq.

Branching bisimilarity is an equivalence relation on N , i.e., �b is re
exive,

symmetric, and transitive (see [7] for a detailed proof).

2.3 Object life cycles

Petri nets allow for the graphical representation of OLCs with an explicit repre-

sentation of states and a clear de�nition of the initial (object creation) and �nal

(object termination) state. OLCs correspond to the diagrams used in object-

oriented methods (e.g., statechart diagrams in UML [10]), process de�nitions

used by work
ow management systems [14, 4], reference models used in ERP

systems (e.g., EPCs used by SAP [15]), and trade procedures as de�ned in [16].

De�nition 2.9. (Object life cycle) Let N = (P; T; F; `) be an L-labeled P/T-

net and �t a fresh identi�er not in P [T . N is an object life cycle (OLC) i�:

1. object creation: P contains an input place i such that �i = ;,

2. object completion: P contains an output place o such that o� = ;,

3. connectedness: �N = (P; T [f�tg; F [f(o; �t); (�t; i)g; ` [f(�t; �)g) is strongly

connected,

4. safeness: (N; [i]) is safe,

5. proper completion: for any marking s 2 [N; [i]i, o 2 s implies s = [o],

6. option to complete: for any marking s 2 [N; [i]i, [o] 2 [N; si, and

7. absence of dead methods: (N; [i]) contains no dead transitions.

The set of all OLCs is denoted O.

An OLC satis�es seven requirements. First, an OLC has one place i without any

input transitions. A token in i corresponds to an object which is created, i.e., at

the beginning of its life cycle. Second, an OLC has one place o without output

transitions. A token in o corresponds to an object that is destroyed. Third, an

OLC should not have \dangling" transitions and/or places. Thus, every node of

an OLC should be located on a path from i to o. This requirement corresponds

to strongly connectedness if o is connected to i via an additional transition �t. The

net �N used to formulate the connectedness constraint is called the short-circuited

net. The label of the new transition is not important and simply set to � . The

fourth requirement says that an OLC is safe. This is a reasonable assumption

since places in an OLC correspond to conditions which are either true (marked

by a token) or false (empty). The �fth requirement states that the moment a

token is put into o all the other places should be empty, which corresponds

to the completion of an OLC without leaving dangling references. The sixth

requirement states that starting from the initial marking [i] it is always possible

to reach the marking with one token in o, which means that it is always feasible

to complete the OLC. The last requirement implies that for each transition there

is a scenario in which the transition is performed.

The notion of an OLC is strongly related to the notion of a sound work
ow net

[2, 4]. A work
ow net also describes the life cycle of one object, often called a case

or a work
ow instance. The applicability of the results in this paper transcends

work
ow management. Therefore, we prefer the term object life cycle (OLC).

Since transition labels in OLCs correspond to methods, we also use the term

\method" implicitly for transitions.

The last four requirements in De�nition 2.9 coincide with liveness and safe-

ness of the short-circuited net [1]. Thus, we can use standard techniques for

checking the life-cycle requirements. Our tool Wo
an [20] has been speci�cally

designed to analyze the requirements stated in De�nition 2.9.

We introduced branching bisimilarity as the standard equivalence. Recall

that branching bisimilarity distinguishes successful termination and deadlock.

An OLC can only terminate successfully in marking [o].

De�nition 2.10. The class of marked, labeled P/T-nets N is equipped with

the following termination predicate: # = f(N; [o]) j N 2 O g.

De�nition 2.11. (Behavioral equivalence of OLCs) For OLCs N0 and N1

in O, N0
�= N1 if and only if (N0; [i])�b (N1; [i]).

The set of visible actions that an OLC can perform is called the alphabet of the

OLC. Since an OLC does not have any dead transitions, its alphabet simply is

the set of its transition labels excluding silent action � .

De�nition 2.12. (Alphabet) For any OLC N = (P; T; F; `) in O, its alphabet

�(N) equals f`(t) j t 2 T ^ `(t) 6= �g.

3 Inheritance

In this section, we de�ne four behavioral -inheritance relations for OLCs. For a

detailed motivation and an overview of related work, we refer to [8]. Consider

two OLCs x and y. When is x a subclass of y? Intuitively, one could say that x

is a subclass of y i� x can do what y can do. Clearly, all methods of y should

also be present in x. Moreover, x will typically add new methods. Therefore, it is

reasonable to demand that x can do what y can do with respect to the methods

present in y. With respect to new methods (i.e., methods present in x but not in

y), there are basically two mechanisms which can be used. The �rst one simply

disallows the execution of any new methods.

If it is not possible to distinguish the behaviors of x and y when only methods

of x that are also present in y are executed, then x is a subclass of y.

This de�nition conforms to blocking methods new in x. The resulting inheritance

concept is called protocol inheritance; x inherits the protocol of y.

Another mechanism would be to allow for the execution of new methods but

to consider only the e�ects of old ones.

If it is not possible to distinguish the behaviors of x and y when arbitrary

methods of x are executed but when only the e�ects of methods that are also

present in y are considered, then x is a subclass of y.

This inheritance notion is called projection inheritance; it conforms to hiding

methods new in x. This can be achieved by renaming these methods to the

silent action � .

Although the distinction between the two inheritance mechanisms may seem

subtle, the corresponding inheritance notions are quite di�erent. To illustrate

i

o

a

c

N0

b

i

o

a

c

N1

b d

i

o

a

c

N2

b

e

i

o

a

c

N3

b f

i

o

a

c

N4

b g

Fig. 1. Five object life cycles.

this, we use the �ve OLCs of Figure 1. N0 corresponds to a sequential OLC

consisting of three methods a, b, and c. Each of the other OLCs extends N0

with one additional method. In N1, method d can be executed instead of b. N1

is a subclass of N0 under protocol inheritance; if d is blocked, N1 is equivalent

to N0. N1 is not a subclass of N0 under projection inheritance, because it is

possible to skip method b by executing the (hidden) method d. In N2, method

e can be executed arbitrarily many times between a and b. N2 is a subclass

of N0 under protocol inheritance; if e is blocked, then N2 equals N0. N2 is

also a subclass of N0 under projection inheritance; if every execution of e is

hidden, then N2 is equivalent (as de�ned in De�nition 2.11) to N0. In OLC N3,

method f is executed in parallel with b.N3 is not a subclass of N0 under protocol

inheritance; if f is blocked, then c cannot be executed. However, N3 is a subclass

of N0 under projection inheritance. If one hides the newly-added method f , one

cannot distinguish N3 and N0. Method g is inserted between a and b in the

remaining OLC N4. N4 is not a subclass of N0 under protocol inheritance; if g is

blocked, the OLC deadlocks after executing a. However, N4 is a subclass of N0

under projection inheritance. If one hides g, one cannot observe any di�erences

between the behaviors of N4 and N0.

The two mechanisms (i.e., blocking and hiding) result in orthogonal inheri-

tance notions. We also consider combinations of the two. An OLC is a subclass

of another OLC under protocol/projection inheritance i� both by hiding the new

methods and by blocking the new methods one cannot detect any di�erences,

i.e., it is a subclass under both protocol and projection inheritance. In Figure 1,

N2 is a subclass of N0 under protocol/projection inheritance. The two mecha-

nisms can also be used to obtain a more general form of inheritance. An OLC

is a subclass of another OLC under life-cycle inheritance i� by blocking some

newly-added methods and by hiding some others one cannot distinguish them.

All OLCs in Figure 1 are subclasses of N0 under life-cycle inheritance.

To formalize the inheritance relations, we de�ne two operators on P/T-nets:

encapsulation for blocking and abstraction for hiding methods. They are inspired

by the encapsulation and abstraction operators from process algebra [6].2

De�nition 3.1. (Encapsulation) Let N = (P; T0; F0; `0) be an L-labeled

P/T-net. For any H � L n f�g, the encapsulation operator @H is a func-

tion that removes from a given P/T-net all transitions with a label in H .

Formally, @H(N) = (P; T1; F1; `1) such that T1 = ft 2 T0 j `0(t) 62 Hg,

F1 = F0 \ ((P � T1) [(T1 � P)), and `1 = `0 \ (T1 � L).

Note that removing transitions from an OLC as de�ned in De�nition 2.9 might

yield a P/T-net that is no longer an OLC.

De�nition 3.2. (Abstraction) Let N = (P; T; F; `0) be an L-labeled P/T-net.

For any I � L n f�g, the abstraction operator �I is a function that renames all

transition labels in I to the silent action � . Formally, �I (N) = (P; T; F; `1) such

that, for any t 2 T , `0(t) 2 I implies `1(t) = � and `0(t) 62 I implies `1(t) = `0(t).

The formal de�nitions of the four inheritance relations are slightly more general

than the informal de�nitions given above: An OLC is a subclass of another OLC

if and only if there exists some set of methods such that encapsulating or hiding

these methods in the �rst OLC yields the other OLC. Not requiring that the

methods being encapsulated or hidden must be exactly the newly-added methods

can sometimes be convenient. In [7, 8], it is shown that the formal and informal

de�nitions are equivalent. Recall De�nition 2.8 (branching bisimilarity, �b).

De�nition 3.3. (Inheritance relations)

1. Protocol inheritance: For any OLCsN0 andN1 in O, OLCN1 is a subclass of

N0 under protocol inheritance, denoted N1�ptN0, i� there is an H � Lnf�g

such that (@H (N1); [i])�b (N0; [i]).

2. Projection inheritance: For any OLCs N0 and N1 in O, OLC N1 is a subclass

of N0 under projection inheritance, denoted N1 �pj N0, i� there is an I �

L n f�g such that (�I(N1); [i])�b (N0; [i]).

3. Protocol/projection inheritance: For any OLCsN0 andN1 in O, OLCN1 is a

subclass of N0 under protocol/projection inheritance, denoted N1�ppN0, i�

there is an H � Lnf�g such that (@H(N1); [i])�b (N0; [i]) and an I � Lnf�g

such that (�I (N1); [i])�b (N0; [i]).

4. Life-cycle inheritance: For any OLCs N0 and N1 in O, N1 is a subclass of N0

under life-cycle inheritance, denoted N1 �lc N0, i� there are an I � L n f�g

and an H � L n f�g such that I \H = ; and (�I Æ @H(N1); [i])�b (N0; [i]).

Note that for life-cycle inheritance the new methods are partitioned into two sets

H and I : methods that are blocked by means of the operator @H and methods

that are hidden by means of �I . It is easy to see that protocol/projection inheri-

tance implies both protocol and projection inheritance. Moreover, both protocol

2 Note that the terms \abstraction" and \encapsulation" in process algebra have a

di�erent meaning than the same terms in object-oriented design. In this paper, they

always refer to the process-algebraic concepts.

and projection inheritance imply life-cycle inheritance. However, life-cycle inher-

itance does not imply protocol or projection inheritance.

The inheritance relations have a number of desirable properties. First, they

are preorders (i.e., they are re
exive and transitive; see Property 6.19 in [8]).

Furthermore, if one OLC is a subclass of another OLC under any of the four

inheritance relations and vice versa, then the two OLCs are equivalent as de�ned

in De�nition 2.11 (i.e., the two OLCs are branching bisimilar; see Property 6.21 in

[8]). In other words, the four inheritance relations are anti-symmetric. A relation

that is re
exive, anti-symmetric, and transitive is a partial order.

Property 3.4. Assuming �=, as de�ned in De�nition 2.11, as the equivalence on

OLCs, �lc, �pt , �pj , and �pp are partial orders.

4 GCDs and LCMs under life-cycle inheritance

Each of the four notions of inheritance provides a partial ordering on OLCs. This

inspired us to investigate whether it is possible to de�ne the notions of a Greatest

Common Divisor (GCD) and a Least Common Multiple (LCM) for sets of OLCs.

In this section, we restrict ourselves to life-cycle inheritance (De�nition 3.3-4).

In Section 5, we consider the other three inheritance notions. We use the term

variant for an OLC in a set of OLCs. The idea is that the GCD should capture

the commonality of the variants, i.e., the part where they agree on. The LCM

should capture all possible behaviors of all the variants. Consider for example

the �ve OLCs of Figure 1. The GCD of these OLCs should be N0. All the OLCs

execute a, b, and c in sequential order. Each of the �ve variants is a subclass of

N0 and it is not possible to �nd a di�erent OLC that is also a superclass of N0

through N4 and at the same time a subclass of N0. Figure 2 shows NGCD = N0

as the GCD of the �ve OLCs of Figure 1. It also shows the OLC NLCM . NLCM

is a subclass of each of the �ve variants considered. Moreover, it is not possible

to �nd a di�erent OLC which is also a subclass of N0 through N4 and at the

same time a superclass of NLCM . Thus, NLCM is a good choice for the LCM of

N0 through N4. Any sequence of transition �rings generated by one of the �ve

OLCs can also be generated by NLCM after the appropriate abstraction.

To formalize the GCD and LCM concepts, we need some partial-order theory.

De�nition 4.1. (Lattices) Let (Q;�) be a partial order; let S � Q and q 2 Q.

1. q is an upper bound of S i� s � q for all s 2 S;

2. S" = fx 2 Q j (8 s : s 2 S : s � x)g is the set of all upper bounds of S;

3. q is a lower bound of S i� q � s for all s 2 S;

4. S# = fx 2 Q j (8 s : s 2 S : x � s)g is the set of all lower bounds of S;

5. q is the least upper bound (lub) of S i� q is an upper bound of S and q � s

for all s 2 S";

6. q is the greatest lower bound (glb) of S i� q is a lower bound of S and s � q

for all s 2 S#;

7. (Q;�) is a lattice i� any pair of elements in Q has a lub and a glb;

i

o

a

c

NGCD

b

e

f

i

o

a

c

NLCM

b gd

Fig. 2. The GCD and the LCM of the �ve OLCs shown in Figure 1.

8. (Q;�) is a complete lattice i� any subset of Q has a lub and a glb.

We are not interested in distinguishing OLCs that are branching bisimilar. That

is, we consider equivalence classes of OLCs under behavioral equivalence (Def-

inition 2.11). The set of all equivalence classes is denoted O=�=. We can lift

life-cycle inheritance (�lc) to O=�= resulting in the partial order (O=�=;�lc). For

convenience, we refer to elements of O=�= as OLCs.

De�nition 4.2. (MCD/GCD, MCM/LCM) Consider the inheritance par-

tial order (O=�=;�lc). Let S � O=�= be a set of OLCs.

1. OLC N is a Maximal Common Divisor (MCD) of S i� (a) it is an upper

bound of S (i.e., N 2 S") and (b) for all N 0 2 S", N 0 �lc N implies that N 0

equals N (i.e., it is minimal in S").

2. OLC N is the Greatest Common Divisor (GCD) of S i� it is the lub of S.

3. OLC N is a Minimal Common Multiple (MCM) of S i� (a) N 2 S# and (b)

for all N 0 2 S#, N �lc N
0 implies that N 0 equals N .

4. OLC N is the Least Common Multiple (LCM) of S i� it is the glb of S.

Note that the notions of an MCD and a GCD (an MCM and an LCM) coincide

if (O=�=;�lc) is a complete lattice. On a �rst reading, De�nition 4.2 might be

counterintuitive: An MCD is required to be a superclass of the OLCs in S,

whereas an MCM is a subclass of the OLCs in S. It may be more intuitive to

consider the size of the OLCs as determined by the numbers of their methods. If

NMCD is an MCD of two OLCs N0 and N1, then NMCD typically contains fewer

methods than N0 and N1, which conforms to the intuitive notion of an MCD.

Similarly, if NMCM is an MCM of N0 and N1, then NMCM typically contains

more methods than N0 and N1. Moreover, although it is straightforward to

show that any MCM is a subclass under life-cycle inheritance of any MCD (�lc

is transitive (Property 3.4)), an MCM is typically larger than an MCD in terms

of their numbers of methods. Consider for example the OLCs of Figure 2. By

De�nition 4.2, NGCD is an MCD of the OLCs of Figure 1 and NLCM is an MCM

of these OLCs. AlthoughNLCM�lcNGCD ,NLCM has more methods thanNGCD .

De�nition 4.2 raises two interesting questions:

1. Has any set of OLCs always at least one MCD and at least one MCM?

2. Has any set of OLCs a GCD and an LCM (i.e., is (O=�=;�lc) a complete

lattice)?

We show that the answer to the �rst question is (almost always) aÆrmative.

Unfortunately, the answer to the second question is negative.

The following two properties are needed. The �rst one is straightforward.

Property 4.3. Let N� be the OLC containing one method labeled � : N� =

(fi; og; f�g; f(i; �); (�; o)g; f(�; �)g). N� is a superclass under life-cycle inheri-

tance of any OLC, i.e., it is an upper bound of O=�= in (O=�=;�lc).

A set of totally ordered (according to �lc) OLCs is called a chain.

Property 4.4. Let N0 and N1 be two OLCs in O=�= such that N0�lcN1. There

is no in�nite chain N0 �lc N
1 �lc : : : of di�erent OLCs N

0; N1; : : : 2 O=�= such

that N0 �lc N
0 �lc N

1 �lc : : :�lc N1.

Proof. Let N and N 0 be two OLCs with N �lc N
0. The following three obser-

vations are important. First, �(N 0) � �(N). Second, if N and N 0 are di�erent,

then �(N 0) � �(N). Third, �(N) n �(N 0) is �nite.

Let N0�lc N
1 �lc : : : be an in�nite chain of di�erent OLCs N0; N1; : : : such

that N0�lcN
0�lcN

1�lc : : :�lcN1. It follows from the �rst two of the above ob-

servations that �(N1) � : : : � �(N1) � �(N0) � �(N0). The third observation

above states that �(N0) n �(N1) is �nite, yielding a contradiction. 2

It follows immediately from the previous two properties that any non-empty

set of OLCs has an MCD. The empty set does not have an MCD because O=�=

is in�nite and does not have minimal elements. Any �nite set of OLCs has an

MCM. First, OLC N� of Property 4.3 is an MCM of the empty set. Second,

consider a non-empty �nite set fN0; N1; : : : ; Nn�1g of n OLCs. Let N@ be the

OLC that is constructed from the variants as follows. The source place i of

N@ has n output transitions, one for each variant. Each of them has a unique

method label that does not occur in the alphabets of any of the variants. The

source place of each variant is given a new identi�er and connected as an output

place to one of the n new transitions. In this way, the new transitions act as

guards for the n original variants. The sink places of the n variants are simply

fused together, yielding the sink place o of N@ . Clearly, N@ is a subclass of each

variant; by blocking all new transitions except one which is hidden, one obtains

an OLC branching bisimilar to one of the variants. Based on Property 4.4, we

may conclude that an MCM of the n variants exists. The above deliberations

lead to the following theorem, answering the �rst question posed above.

Theorem 4.5. (Existence of an MCD and an MCM) Let S � O=�= be a

set of OLCs. If S is non-empty, it has an MCD; if S is �nite, it has an MCM.

i

a

N0

o

i

b

N1

o

i

o

a

d

N2

b

i

o

a

d

N3

c

i

a

c

N4

b

o

d

i

a

b

N5

c

o

d

i

a

c

N6

b

o

d

Fig. 3. Seven object life cycles.

As already mentioned, the answer to the second question posed above is negative.

A set of OLCs may have two or more di�erent MCDs, which means that it has

no GCD. Similarly, a set of OLCs may have two or more di�erent MCMs and,

thus, no LCM. Consider OLCs N4 and N5 of Figure 3. They have at least two

MCDs. It is easy to verify that both OLC N2 and OLC N3 are MCDs of N4

and N5. Each one is a superclass of both N4 and N5 and, in both cases, there

is not a smaller (according to �lc) candidate. Similarly, the two OLCs N2 and

N3 in Figure 3 have more than one MCM. Each of the OLCs N4, N5, and N6 is

an MCM of N2 and N3. Note that hiding method c in any of the OLCs N4, N5,

and N6 yields an OLC equivalent to N2. Hiding method b in any of the OLCs

N4, N5, and N6 yields an OLC equivalent to N3. Clearly, in each case, there is

no larger candidate.

Based on the examples in Figure 3, we conclude that a given set of OLCs can

have several MCDs and MCMs. The reason that there is not a GCD for N4 and

N5 is that they do agree on the presence of the methods b and c, whereas they

do not agree on their ordering. The reason that there is not an LCM for N2 and

N3 is that there are several ways to add methods b and c to a common subclass.

However, in many situations, there is one unique MCD, which is therefore the

GCD, and one unique MCM, the LCM. For example, the �ve variants shown

in Figure 1 have a GCD and an LCM, namely the nets NGCD and NLCM of

Figure 2, respectively. There are situations where it is quite easy to pinpoint

the GCD and/or the LCM of a set of OLCs. If the set forms a chain, i.e., the

OLCs are totally ordered according to the �lc relation, then the least element

is the LCM and the greatest element is the GCD. Second, if one OLC is a

superclass of all the other OLCs, then this variant is the GCD. Note that the

�ve OLCs of Figure 1 satisfy this requirement. Third, if one OLC is a subclass

of all the other variants, then this OLC is the LCM. Fourth, if two variants have

no methods in common, then the GCD equals the empty OLC N� of Property

4.3. Finally, if the OLCs have nothing in common (i.e., with respect to internal

places, transitions, and labels) and always start with a real method (i.e., a non-

� -labeled transition), then the LCM is simply the union of all OLCs (where the

union means the element-wise union of the tuples de�ning the OLCs).

Property 4.6. Let N0; N1; : : : ; Nn�1, with n a positive natural number, be n

OLCs.

1. If N0 �lc N1 �lc : : :�lc Nn�1, then N0 is the LCM and Nn�1 is the GCD of

N0; : : : ; Nn�1.

2. If, for all k with 0 � k < n, Nk�lcN0, then N0 is the GCD of N0; : : : ; Nn�1.

3. If, for all k with 0 � k < n, N0�lcNk, then N0 is the LCM of N0; : : : ; Nn�1.

4. If, for some j and k with 0 � j < k < n, �(Nj) \ �(Nk) = ;, then N� of

Property 4.3 is the GCD of N0; : : : ; Nn�1.

5. If, for all j and k with 0 � j < k < n, �(Nj)\�(Nk) = ; and (Pj[Tj)\(Pk[

Tk) = fi; og and, for all k with 0 � k < n and all transitions t 2 i
Nk
� , t has a

label di�erent from � , then N@ =
S
0�k<nNk is the LCM of N0; : : : ; Nn�1.

(Note the similarity between N@ in this property and N@ as de�ned before

Theorem 4.5.)

Proof. The �rst three properties follow immediately from De�nitions 4.1 and 4.2.

To prove the fourth property, let N 0 be an arbitrary superclass of N0; N1; : : : ;

Nn�1. Consider two variants Nj and Nk, with 0 � j < k < n, such that �(Nj)\

�(Nk) = ;. Since Nj �lc N
0, it follows that �(N 0) � �(Nj); similarly, �(N 0) �

�(Nk). Hence, it follows that �(N
0) � �(Nj) \ �(Nk) = ;, which means that

�(N 0) = ;. Consequently, N 0 equals N� , which means that N� is the GCD of

the set of variants N0 through Nn�1.

To prove the last property, we �rst show that N@ is a subclass of each of the

variants. Consider a variant Nk, for some k with 0 � k < n. Since for all j with

0 � j < n and j 6= k, �(Nj) \ �(Nk) = ;, (Pj [Tj) \ (Pk [Tk) = fi; og, and

all transitions t 2 i
Nj
� have a label di�erent from � , blocking all transitions in

i
N@
� ni

Nk
� in N@ , yields a marked net branching bisimilar to Nk. Hence, N@�lcNk,

which means that it is a subclass of all n variants. Second, we prove that any

OLC N 0 that is a subclass of all the variants is also a subclass of N@ . Assume

that N is a subclass of all variants. Let, for all k with 0 � k < n, Ik and Hk

be sets of method labels such that (�Ik Æ @Hk
(N 0); [i])�b (Nk; [i]) (see De�nition

3.3-4 (Life-cycle inheritance)). Let I =
S
0�k<n Ik and H =

S
0�k<nHk. Clearly,

(�I Æ@H(N
0); [i])�b (N@ ; [i]), because each label in H or I appears in the alphabet

of precisely one of the n variants. Hence,N 0�lcN@ . Combining the results derived

so far yields that N@ is the LCM of the set of variants N0 through Nn�1. 2

5 How about the other three notions of inheritance?

The results presented in Section 4 are restricted to life-cycle inheritance. In this

section, we explore the other three notions of inheritance. First, we de�ne the

concepts MCD, MCM, GCD, and LCM for each of the four notions of inheritance.

De�nition 5.1. (MCD�, MCM�, GCD�, and LCM�) Let S be some set of

OLCs in O=�=. OLC N is an MCD�, MCM�, GCD�, or LCM� of S in (O=�=;��)

with � 2 fpt ; pj ; pp; lcg i� the corresponding requirement stated in De�nition 4.2

holds with respect to the corresponding notion of inheritance.

Note that MCDlc , MCMlc, GCDlc , and LCMlc coincide with the concepts intro-

duced in Section 4. As an example of this de�nition, consider the �ve variants

of Figure 1. It is easy to see that N0 is the GCDpj of fN2; N3; N4g, the GCDpt

of fN1; N2g, and the GCDpp of fN0; N2g.

The questions raised in previous section arise again: Do MCD�, MCM�,

GCD�, and LCM� exist for � 2 fpt ; pj ; pp; lcg?

In Theorem 4.5, it has been shown that any non-empty set of variants always

has an MCDlc . Properties 4.3 and 4.4 carry over to projection inheritance. Thus,

we arrive at the following theorem.

Theorem 5.2. (Existence of MCDpj) Any non-empty set of OLCs S � O=�=

has an MCDpj in (O=�=;�pj).

An MCDpj of the �ve variants of Figure 1 is the sequential OLC containing just

the methods a and c. Note that N0 is not an MCDpj , because in N1 it is possible

to bypass b, i.e., NGCD of Figure 2 is not an MCD under projection inheritance.

Unfortunately, MCDpt , MCDpp , MCMpj , MCMpt , and MCMpp are not guar-

anteed to exist. We use the variants shown in Figure 3 to give counterexamples.

Consider N0 and N1. There is no MCDpt for these two variants. Suppose

that N is an MCDpt of the set fN0; N1g. N should be a superclass of both N0

and N1 under protocol inheritance. This implies that the alphabet of N is a

subset of the intersection of the alphabets of N0 and N1. Since the alphabets of

these two variants are disjoint, the alphabet of N is the empty set. There is just

one OLC (modulo branching bisimilarity) that has the empty alphabet. This is

OLC N� of Property 4.3. However, N0 is not a subclass of N� with respect to

protocol inheritance because encapsulating method a does not yield N� . (In fact,

encapsulating a does not yield an OLC.) Therefore, there cannot be an MCDpt

for OLCs N0 and N1 of Figure 3. It follows immediately from the de�nition of

protocol/projection inheritance (De�nition 3.3-3) that this example also implies

that MCDpp does not always exist.

To prove that there may be sets of OLCs for which there is no MCMpj , we use

the variants N4 and N5 of Figure 3. Suppose that N is a subclass of both N4 and

N5 under projection inheritance. The alphabet of N will include fa; b; c; dg. Let

I be the set of methods in N but not in N4 and N5, i.e., I = �(N) n fa; b; c; dg.

By the de�nition of projection inheritance, we �nd that (�I (N); [i]) �b (N4; [i])

and (�I(N); [i]) �b (N5; [i]). Hence, since �b is an equivalence, N4
�= N5; that

is, the two variants are equivalent modulo branching bisimilarity. Clearly, this

is a contradiction. Therefore, N4 and N5 cannot have a common subclass under

projection inheritance. As a result, they have no MCMpj . It follows immedi-

ately from the de�nition of protocol/projection inheritance that there is also no

MCMpp for N4 and N5.

It remains to be shown that an MCMpt does not necessarily exist. Consider

the set S of OLCs fN3; N4g. Assume that N is a subclass of N3 and N4 un-

der protocol inheritance. Clearly, �(N) is a superset of fa; b; c; dg. Let H be

�(N) n fa; b; c; dg; that is, H contains the methods added to N4 to obtain N ,

whereas H [fbg contains the methods added to N3 to obtain N . It follows

from the de�nition of protocol inheritance that (@H (N); [i])�b (N4; [i]) and that

(@H[fbg(N); [i])�b (N3; [i]). The de�nition of branching bisimilarity implies that

(N3; [i])�b (@H[fbg(N); [i])�b (@fbg(@H(N)); [i]) �b (@fbg(N4); [i]). The latter is

the process that can only execute an a and then deadlocks. This is clearly not

branching bisimilar to N3. Hence, we have again a contradiction, showing that

N3 and N4 cannot have a common subclass under protocol inheritance. This, in

turn, implies that fN3; N4g does not have an MCMpt .

The counterexamples given show that MCDpt , MCDpp , MCMpj , MCMpt ,

and MCMpp are not guaranteed to exist. Consequently, also GCDpt , GCDpp ,

LCMpj , LCMpt , and LCMpp may not exist for a given set of variants. In the

previous section, it has already been shown that GCDlc and LCMlc do not need

to exist. An argument similar to the one used in the previous section shows

that N4 and N5 in Figure 3 do not have a GCDpj . Thus, also GCDpj does not

necessarily exist.

It remains to generalize Property 4.6 to the other notions of inheritance. The

proof is omitted because it is similar to the proof of Property 4.6.

Property 5.3. Let N0; N1; : : : ; Nn�1, with n some positive natural number, be

n OLCs and let � 2 fpt ; pj ; pp; lcg.

1. If N0 �� N1 �� : : : �� Nn�1, then N0 is the LCM� and Nn�1 is the GCD�

of N0; : : : ; Nn�1.

2. If, for all k with 0 � k < n, Nk �� N0, then N0 is the GCD� of N0; : : : ; Nn�1.

3. If, for all k with 0 � k < n,N0 �� Nk, then N0 is the LCM� of N0; : : : ; Nn�1.

4. If, for some j and k with 0 � j < k < n, �(Nj) \ �(Nk) = ;, then N� of

Property 4.3 is the GCDpj and the GCDlc of N0; : : : ; Nn�1.

5. If, for all j and k with 0 � j < k < n, �(Nj) \ �(Nk) = ; and (Pj [Tj) \

(Pk [Tk) = fi; og and, for all k with 0 � k < n and all transitions t 2 i
Nk
� ,

t has a label di�erent from � , then N@ =
S
0�k<nNk is the LCMpt and the

LCMlc of N0; : : : ; Nn�1.

6 Virtual OLCs and the Dedekind-MacNeille completion

As we have seen, each of the four inheritance relations provides a partial order

on OLCs but none of these orders is a (complete) lattice. If the inheritance

relations would have been complete lattices, there would have been a GCD and

an LCM for any set of OLCs under any of the inheritance relations. It does

not make any sense to try to modify the inheritance relations into lattices. The

four relations have been carefully chosen and any attempt to transform them into

lattices would reduce their applicability. If a set of OLCs has no GCD/LCM, one

could settle for an MCD/MCM. However, also the MCD/MCM do not always

exist, particularly for the more restrictive forms of inheritance. Fortunately, the

Dedekind-MacNeille completion [17, 11] can be used to extend the inheritance

partial orders to complete lattices. The Dedekind-MacNeille completion provides

the smallest complete lattice that embeds a given partial order.

We illustrate the concepts of this section using the seven OLCs shown in

Figure 4(a). Transitions without a label correspond to � -labeled transitions (i.e.,

silent steps). Figure 4(b) shows the ordering relations between these OLCs under

life-cycle inheritance. An OLC N is a superclass of OLCN 0 (i.e., N 0�lcN) if and

only if there is a path of downward going lines from N to N 0. The unconnected

line segments illustrate that the seven depicted OLCs form only a part of the

larger partial order (O=�=;�lc). Note that each element in the partial order in

fact corresponds to an equivalence class of OLCs modulo branching bisimilarity.

Consider the set S of OLCs fN0; N1; N2g. The elements of S are all upper

bounds of the OLC sets S0 = fN3; N4g and S1 = fN3; N4; N5; N6g; it is not

diÆcult to see that S0
" = S1

" = S (see De�nition 4.1). S0 and S1 have no lub,

because N1 and N2 are incomparable under life-cycle inheritance. In terms of

De�nition 4.2 (MCD/GCD, MCM/LCM), N1 and N2 are MCDs of S0 and S1,

but N0 is not; moreover, S0 and S1 have no GCD. Similarly, N3; N4; N5; and

N6 are lower bounds and MCMs of the OLCs in S, whereas S has no glb or

LCM. The reason for all this is that N3; N4; N5; and N6 agree on the presence

of methods a and b but not on their ordering.

Essential in the Dedekind-MacNeille completion is the notion of cuts.

De�nition 6.1. (Cut) Let (Q;�) be a partial order and A;B � Q. (A;B) is a

cut of Q if and only if A" = B and A = B#.

Consider Figure 4(b). It is easy to see that (fN3; N4; N5; N6; : : :g; fN0; N1; N2g)

is a cut, where the dots represent the subclasses of N3; N4; N5; and N6 not shown

in the �gure; the pair (fN3; N4; N5; N6; : : :g; fN0; N1g) is not a cut.

We need one more de�nition to formalize the Dedekind-MacNeille completion.

De�nition 6.2. (Order-isomorphy) Partial orders (Q;�) and (Q0;�0) are

order-isomorphic i� there exists a bijective function � : Q ! Q0 such that, for

any x; y 2 Q, x � y i� �(x) �0 �(y).

Theorem 6.3. (Dedekind-MacNeille completion [17, 11]) Let (Q;�) be a

partial order. Let (Qc;�c) be the partial order with Qc the set of all cuts of Q

and �c the ordering such that, for any (A1; B1) and (A2; B2) in Qc, (A1; B1) �
c

(A2; B2) i� A1 � A2. Order (Q
c;�c) is the smallest complete lattice containing

an ordered subset that is order-isomorphic with (Q;�).

An element (A;B) of Qc corresponds to an element q of Q i� A\B = fqg; it

has no corresponding element in Q i� A\B = ;. If Sc = f(A;B) 2 Qc j A\B 6=

;g, then (Sc;�c \ (Sc � Sc)) is order-isomorphic with (Q;�).

N0 N1 N2 N3 N4

i

b

a

o

i

a

b

o

i

a

o

i

b

o

i

o

N0

N1 N2

N3 N4

(a) Seven object life cycles

(b) Before completion

N5

i

ba

o

N6

i

ba

o

N5 N6

N0

N1 N2

N3 N4

(c) After completion

N5 N6

N7

cc

c

c

c cc c

Fig. 4. Seven OLCs and their ordering under life-cycle inheritance before and after

completion.

The construction of lattice (Qc;�c) is known as the Dedekind-MacNeille com-

pletion. (Qc;�c) is order-isomorphic with (Q;�) if (Q;�) is already a complete

lattice. The cuts corresponding to elements of Q are called concrete elements;

other cuts are called virtual elements. The Dedekind-MacNeille completion can

be applied to the four inheritance partial orders.

De�nition 6.4. (Dedekind-MacNeille completion) For � 2 fpt ; pj ; pp; lcg,

(Oc
�;�

c
�) is the Dedekind-MacNeille completion of partial order (O=�=;��).

If we apply the Dedekind-MacNeille completion to the partial order (O=�=;�lc),

we obtain the complete lattice (partially) shown in Figure 4(c). Elements Nc
0

through Nc
7
are cuts: For example, Nc

0
= (fN0; N1; N2; N3; N4; N5; N6; : : :g;

fN0g), N
c
1
= (fN1; N3; N4; N5; N6; : : :g; fN0; N1g), N

c
4
= (fN4; : : :g; fN0; N1;

N2; N4g), and Nc
7
= (fN3; N4; N5; N6; : : :g; fN0; N1; N2g). The black nodes in

the completion of Figure 4(c) are concrete; the corresponding OLCs in Fig-

ure 4(b) can be obtained as explained in Theorem 6.3: for example, for cut Nc
1
,

fN1; N3; N4; N5; N6; : : :g \ fN0; N1g) = fN1g. Node Nc
7
is virtual; it does not

correspond to an OLC: fN3; N4; N5; N6; : : :g \ fN0; N1; N2g = ;.

Theorem 6.5. Consider the Dedekind-MacNeille completion (Oc
�
;�c

�
), with � 2

fpt ; pj ; pp; lcg. Let S � O=�= be some set of OLCs; let Sc � Oc
� be the set of

corresponding elements in Oc
�.

1. Let Nc
GCD

be the lub of Sc in (Oc
�;�

c
�). If N

c
GCD

is virtual, then S has no

GCD� in (O=�=;��); if N
c
GCD

is concrete, then the corresponding element

NGCD in O=�= is the GCD� of S in (O=�=;��).

2. Let Nc
LCM

be the glb of Sc in (Oc
�;�

c
�). If N

c
LCM

is virtual, then S has no

LCM� in (O=�=;��); if N
c
LCM

is concrete, then the corresponding element

NLCM in O=�= is the LCM� of S in (O=�=;��).

Proof. It follows directly from Theorem 6.3 and De�nitions 4.2 and 6.4. 2

Theorem 6.5 illustrates that the Dedekind-MacNeille completion can be used to

construct a virtual GCD� or LCM� for a set of OLCs if and only if it has no

concrete GCD�/LCM�. A virtual GCD�/LCM� cannot be drawn as an ordinary

P/T-net. However, it can be expressed in terms of concrete OLCs. Consider again

the virtual OLC Nc
7
= (fN3; N4; N5; N6; : : :g; fN0; N1; N2g) of Figure 4(c). Let

A and B be the �rst and second element ofNc
7
, respectively. Sets A and B are the

sets of all OLCs corresponding to the concrete lower bounds and concrete upper

bounds of Nc
7
in the completion, respectively. Note that the maximal elements

of A and the minimal elements of B correspond to MCMs of B and MCDs of

A, respectively. Virtual OLC Nc
7
provides a good characterization of the GCD

of N3, N4, N5, and N6, and of the LCM of N0, N1, and N2. Algorithms for

computing the Dedekind-MacNeille completion, see for example [9], can be used

to compute (virtual) GCDs and LCMs.

7 Applications and conclusion

We have focused on the theoretical foundations for GCDs and LCMs of OLCs

based on various notions of inheritance. The results are not only intriguing from a

theoretical point of view. They have many applications. In component-based soft-

ware development, work
owmanagement, ERP reference models, and electronic-

trade procedures, there is a constant need for identifying commonalities and

di�erences. To conclude this paper, we discuss some of these applications.

Object-oriented methods such as UML [10] emphasize reuse and o�er var-

ious inheritance notions. However, there is no agreement on the meaning of

inheritance when considering the dynamic behavior of objects. The inheritance

relations in this paper focus on dynamics [8]. One application of the GCD and

LCM notions in the context of UML is the following. UML allows for the speci�-

cation of sequence and collaboration diagrams. Both types of diagrams are used

to describe use cases and typically describe one of many possible scenarios. A

scenarios is easily translated to an OLC. The GCD of the resulting set of OLCs

provides a succinct OLC capturing the behavior all scenarios agree on. The LCM

of the set captures all possible behaviors generated by any of the scenarios.

Projection inheritance has been applied in the context of component-based

software architectures [5]. One of the central issues when dealing with compo-

nents is the question whether a component \�ts." The framework of [5] focuses

on the external behavior of a component. The question whether a component

\�ts" is easily expressed using inheritance. The application potential of the GCD

and the LCM of a set of components is promising. The GCD can be used to de-

duce commonalities for a given set of similar components. The LCM can be used

to construct the smallest component that can replace any of the components.

From a conceptual viewpoint, a work
ow procedure is very similar to an OLC.

Work
ow management systems are driven by models that describe the life cycle

of a case (e.g., insurance claim, order, or tax declaration) [1, 2, 14]. We applied

the inheritance notions in the context of work
ow change [4]. Using a num-

ber of construction rules, we can construct subclasses of a given work
ow (i.e.,

correctness-by-construction). These rules allow for the automatic migration of

cases from sub- to superclass and vice versa. A problem of work
ow management

systems supporting multiple variants of a work
ow (e.g., InConcert (TIBCO)

and Ensemble (Filenet)) is the lack of aggregated management information. Us-

ing the techniques of this paper, we can calculate the GCD and LCM of a set

of variants. These variants may be the result of ad-hoc or evolutionary work
ow

changes. By migrating the status of every case residing in any of the variants to

the GCD and/or LCM, one obtains aggregated management information, i.e.,

one diagram containing condensed information on the work in progress.

The applicability of the techniques presented in this paper is not limited to

work
ow within one organization. Especially interorganizational work
ows [3]

and electronic-trade procedures [16] can bene�t from notions such as the GCD

and the LCM. In [3], the notion of a view is introduced. A view is the work
ow

as seen by one of the parties involved. The GCD of all views is the contract all

parties should agree upon. The LCM is the actual work
ow being executed. The

interested reader is referred to a technical report for more details [3].

Enterprise Resource Planning (ERP) systems such as SAP, Baan, Peoplesoft,

and JD Edwards use reference models to describe and enact \best practices,"

i.e., proven business process models are used to drive these systems. Whenever

an ERP system is installed, a considerable amount of customization is needed

to adapt either the business processes inside the enterprise to the ERP system

or vice versa. To determine the amount of customization, the reference model

needs to be compared to the desired or actual business process. The GCD can

be used to determine the commonalities between both processes and is a good

predictor for the customization e�orts required.

Another application of GCDs and LCMs is the uni�cation of procedures in

Europe. Consider for example labor mobility in Europe; a harmonization of na-

tional procedures with respect to health insurance, pensions, and so on is needed

so that people can move from one EU country to another without bureaucratic

confusion. Another example is the uni�cation of �nancial processes resulting

from the introduction of the Euro.

The applications brie
y introduced in this �nal section show the relevance

of the questions tackled in this paper. It remains for future work to study these

applications in more detail.

Acknowledgment We thank the anonymous referees for their useful comments.

References

1. W.M.P. van der Aalst. Veri�cation of Work
ow Nets. In P. Az�ema and G. Balbo,

editors, Application and Theory of Petri Nets 1997, Lecture Notes in Computer

Science 1248, pages 407{426. Springer, Berlin, Germany, 1997.

2. W.M.P. van der Aalst. The Application of Petri Nets to Work
ow Management.

The Journal of Circuits, Systems and Computers, 8(1):21{66, 1998.

3. W.M.P. van der Aalst. Inheritance of Interorganizational Work
ows: How to Agree

to Disagree Without Loosing Control? BETA Working Paper Series, WP 46,

Eindhoven University of Technology, The Netherlands, 2000.

4. W.M.P. van der Aalst and T. Basten. Inheritance of Work
ows: An approach to

tackling problems related to change. To appear in Theoretical Computer Science.

5. W.M.P. van der Aalst, K.M. van Hee, and R.A. van der Toorn. Component-Based

Software Architectures: A Framework Based on Inheritance of Behavior. To appear

in Science of Computer Programming.

6. J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in Theoret-

ical Computer Science 18. Cambridge University Press, Cambridge, UK, 1990.

7. T. Basten. In Terms of Nets: System Design with Petri Nets and Process Algebra.

PhD thesis, Eindhoven University of Technology, The Netherlands, 1998.

8. T. Basten and W.M.P. van der Aalst. Inheritance of Behavior. Journal of Logic

and Algebraic Programming, 47(2):47{145, 2001.

9. K. Bertet, M. Morvan, and L. Nourine. Lazy MacNeille Completion of a Partial

Order. In G. Mineau and A. Fall, editors, Proc. of the 2nd Int. Symp. on Knowledge

Retrieval, Use and Storage for EÆciency, KRUSE '97, pages 72{81, 1997

10. G. Booch, J. Rumbaugh, and I. Jacobson. The Uni�ed Modeling Language User

Guide. Addison-Wesley, Reading, MA, 1998.

11. B.A. Davey and H.A. Priestley. Introduction to Lattices and Order. Cambridge

University Press, Cambridge, UK, 1990.

12. J. Desel and J. Esparza. Free Choice Petri Nets. Cambridge Tracts in Theoretical

Computer Science 40. Cambridge University Press, Cambridge, UK, 1995.

13. R.J. van Glabbeek and W.P. Weijland. Branching Time and Abstraction in Bisim-

ulation Semantics. Journal of the ACM, 43(3):555{600, 1996.

14. S. Jablonski and C. Bussler. Work
ow Management: Modeling Concepts, Archi-

tecture, and Implementation. Int. Thomson Computer Press, London, UK, 1996.

15. G. Keller and T. Teufel. SAP R/3 Process Oriented Implementation. Addison-

Wesley, Reading, MA, 1998.

16. R.M. Lee. Distributed Electronic Trade Scenarios: Representation, Design, Proto-

typing. International Journal of Electronic Commerce, 3(2):105{120, 1999.

17. H.M. MacNeille. Partially ordered sets. Transactions of the American Mathemat-

ical Society, 42:416{460, 1937.

18. T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of the

IEEE, 77(4):541{580, 1989.

19. W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models,

Lecture Notes in Computer Science 1491. Springer, Berlin, Germany, 1998.

20. H.M.W. Verbeek and W.M.P. van der Aalst. Wo
an 2.0: A Petri-net-based Work-

ow Diagnosis Tool. In M. Nielsen and D. Simpson, editors, Application and The-

ory of Petri Nets 2000, Lecture Notes in Computer Science 1825, pages 475{484.

Springer, Berlin, Germany, 2000. http://www.tm.tue.nl/it/wo
an.

