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Abstract
With Process discovery algorithms, we discover process models based on event data, 
captured during the execution of business processes. The process discovery algorithms 
tend to use the whole event data. When dealing with large event data, it is no longer 
feasible to use standard hardware in a limited time. A straightforward approach to 
overcome this problem is to down-size the data utilizing a random sampling method. 
However, little research has been conducted on selecting the right sample, given the 
available time and characteristics of event data. This paper systematically evaluates 
various biased sampling methods and evaluates their performance on different datasets 
using four different discovery techniques. Our experiments show that it is possible to 
considerably speed up discovery techniques using biased sampling without losing the 
resulting process model quality. Furthermore, due to the implicit filtering (removing 
outliers) obtained by applying the sampling technique, the model quality may even be 
improved.
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1 Introduction

Process mining is a research discipline that provides both data-oriented and business
process oriented analysis at the same time. Process discovery, one of themain branches
of process mining, aims to discover a process model that accurately describes the
underlying process captured within the event data [1]. In conformance checking, the
goal is to assess to what degree a given process model and event data conform to one
another. Finally, process enhancement aims at improving or enhancing process mining
results, e.g., by reflecting bottleneck information directly onto a (given) processmodel.

The result of process discovery algorithms can be used by other process mining
branches like process simulation [2] and prediction [3]. Currently, the main research
focus in process discovery is on quality issues of discovered process models. However,
the ever-increasing size of the data handled by the process mining algorithms leads
to performance issues when applying the existing process discovery algorithms [4].
Most process discovery algorithms first build an internal data structure, based on the
whole event log, then an optional filter step is applied.

However, such an approach may be infeasible in big data settings, where the event
data are too large to process. Moreover, some process mining tools impose constraints
on the size of event data, e.g., the number of events. Also, in many cases, we do
not require the whole event log, and an approximation of the process can already be
discovered by only using a small fraction of the event data.

In real life, process discovery is often of an exploratory nature, that means some-
times we need to apply different process discovery algorithms with several parameters
to generate different process models and select the most suitable process model. When
the discovery algorithms are used repeatedly, such an exploratory approach makes
sense only if performance is reasonable. Thus, even a small performance improve-
ment may accumulate to a significant performance increase when applied several
times. Furthermore, many process discovery algorithms are designed to generalize the
behavior observed in the event data. In other words, these algorithms are able to repro-
duce process behavior extends beyond the example behavior used as input. Therefore,
it may still be possible to discover the underlying process using a subset of event data.

This research studies the effectiveness of applying biased sampling on event data
in advance of invoking process discovery algorithms, instead of using all the avail-
able event data. In this regard, we present and investigate different biased sampling
strategies and analyze their ability to improve process discovery algorithm scalability.
Furthermore, the techniques presented allow us to select a user-specified fraction of
inclusion of the total available event data. Utilizing the ProM-based [5] extension
of RapidMiner [6], i.e., RapidProM, we study the usefulness of these sampling
approaches, using real event logs. The experimental results show that applying biased
sampling techniques reduces the required discovery time for all the evaluated discovery
algorithms.

This paper extends the work in [7]. Here, we formally define the proposed method
and explain it with more details. The proposed method is also applied on many real
event logs with state-of-the-art process discovery algorithms, i.e., Inductive Miner,
Split Miner and ILP Miner. We return sampled event logs based on variants or traces.
Finally, it is shown that using variant-based sampling, we are able to improve the per-
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formance of process discovery procedure using different process discovery algorithms
and at the same time having high-quality process models.

The remainder of this paper is structured as follows. In Sect. 2, we discuss related
work. Section 3 defines preliminary notation. We present different biased sampling
strategies in Sect. 4. The evaluation and corresponding results are given in Sect. 5.
Finally, Sect. 6 concludes the paper and presents some directions for future work.

2 Related work

Most processmodel discovery algorithms, e.g.,AlphaMiner [8] and the basic Inductive
Miner [9] were designed to depict as much as possible behaviors seen in the event log
into the process model. Existence of high behavior variability in real event logs leads
this approach to result in complex and imprecise process models [10]. Other process
discovery algorithms, e.g., Split Miner [11], the extended versions of Inductive Miner
[12], and ILP Miner [13] were designed to capable of filtering infrequent behavior
within their internal data structure, in advance of discovering a process model. The
performance of all these methods depends on different parameters, e.g., the number
of (unique) process instances, the number of unique activities, and the average length
of process instances in the given event log.

Two main categories of methods are proposed in the literature to address this prob-
lem. In the first category, outlier behaviors [10], uncertainty about the execution and
the order of activities [14], and missing data [15] are considered as the main reasons
of the behavioral variability in the process event log. Therefore, they aim to detect
such behaviors and remove them from the event log and give the preprocessed event
logs to process discovery algorithms. However, in the second direction, the goal is to
consider the mainstream behavior in the event log in a fast way to be able to discover
a process model similar to the one that is discovered using the original event log. In
the following, we provide some works in each category.

There are different methods to detect and deal with outlier behavior in event logs. In
[10,16,17] the authors propose to remove outlier behavior that is detected in the event
log. However, in [18,19] the authors propose to apply automated orderingmodification
algorithms. Moreover, [20] provides an interactive approach to repair noisy activity
labels. In addition, the authors in [21,22] propose to consider activities that could be
executed in different parts of the process that lead to less structure in the discovered
process model. In [23] an interactive filtering toolkit is provided that let user choose
different filtering methods in combination with several process discovery algorithms.
Filtering techniques effectively reduce the size of given process instances (i.e., traces)
used by process discovery algorithms. In this regard, these filtering techniques have
non-linear time complexity that does not scale in the context of big data. However,
sometimes the required time for applying these filtering algorithms is longer than the
required time of discovering a process model from the original event log. Also, these
filtering techniques have no accurate control over the size of the reduced event log.

Sampling methods reduce the number of process instances and increase the per-
formance of different process mining algorithms [24]. Moreover, they can improve
the confidentiality aspects of event logs [25]. In [26], the authors proposed a sam-
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pling approach based on Parikh vector of traces to detect the behavior in the event
log. However, we can not use this sampling technique for process discovery purpose;
because the Parikh vector does not store the sequences of activities that are critical
for discovering process models. In [27], the authors recommend a random trace-based
sampling method to decrease the discovery time and memory footprint. This method
assumes that process instances have different behavior if they have different sets of
directly follows relations. However, using a unique set of directly follows relations
may show different types of process behavior. Furthermore, [28] recommends a trace-
based sampling method specifically for the Heuristic miner [29]. Both [27] and [28]
have no control on the size of the final sampled event data. Also, they depend on the
defined behavioral abstraction that may lead to the selection of almost all the process
instances.

Moreover, as these methods are unbiased, we have non-deterministic results after
each sampling. In this paper, we will offer and analyze random and biased sampling
methods in which the size of the sampled event data is adjustable. Therefore, we can
control the size and variability of process models at the same time.

3 Preliminaries

In this section, we briefly introduce basic process mining terminologies and notations
that ease the readability of the paper.

Given a set X , amultisetB over X is a functionB : X→N≥0, i.e, it allows certain ele-
ments of X to appearmultiple times.We showamultiset asB=[ek11 , ek22 , ..., eknn ], where
for 1≤i≤nwehaveB(ei )=ki with ki∈N>0. If ki=1,we donot show its superscript, and
if for some e∈X we have B(e)=0, we omit it from the multiset notation. Furthermore,
the emptymultiset, i.e.B(e)=0,∀e∈X is written as [ ]. Moreover,B={e∈X | B(e)>0}
is the set of all elements that are presented in the multiset. The set of all possible mul-
tisets over a set X is written as B(X).

Let X∗ denote the set of all possible sequences over a set X . A finite sequence
σ of length n over X is a function σ : {1, 2, ..., n}→X , alternatively written as
σ = 〈x1, x2, ..., xn〉 where xi=σ(i) for 1≤i≤n. The empty sequence is writ-
ten as ε. The concatenation of sequences σ and σ ′ is written as σ ·σ ′. Function
hd : X∗×N≥0�X∗, returns the “head” of a sequence, i.e., given a sequence
σ∈X∗ and k≤|σ |, hd(σ, k) = 〈x1, x2, .., xk〉, i.e., the sequence of the first k
elements of σ . In case k=0, we have hd(σ, 0)=ε, i.e., an empty sequence. Sym-
metrically, tl : X∗×N≥0�X∗ returns the “tail” of a sequence and is defined as
tl(σ, k)=〈xn−k+1, xn−k+2, ..., xn〉, i.e., the sequence of the last k elements of σ ,
with, again, tl(σ, 0)=ε. Sequence σ ′ is a subsequence of sequence σ , which we
denote as σ ′∈σ , if and only if σ1, σ2 ∈ X∗ such that σ=σ1·σ ′·σ2. Let σ, σ ′∈X∗.
We define the frequency of occurrence of σ ′ in σ by f req : X∗×X∗→N≥0
where f req(σ ′, σ )=|{1≤i≤|σ ||σ ′

1=σi , ..., σ
′
|σ ′|=σi+|σ ′|}|. For example, f req (〈b〉,

〈a, b, b, c, d, e, f , h〉)=2 and f req(〈b, d〉, 〈a, b, d, c, e, g〉)=1, etc.
Event logs describe sequences of executed business process activities, typically in

the context of some cases (or process instances), e.g., a customer or an order-id. The
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execution of an activity in the context of a case is referred to as an event. A sequence of
events for a specific case is also referred to as a trace. Thus, it is possible that multiple
traces describe the same sequence of activities, yet, since events are unique, each trace
itself contains different events.

Note that for many process mining purposes, e.g., process discovery and confor-
mance checking, the case and event attributes are not mandatory, and it is sufficient
to have a sequence of events for each case. We usually call this basic information
control-flow information. In this regard, we show the trace that represents case 1 as
〈a, b, c, d, e, f , h〉 (using short-hand activity names), and for case 2 the trace is shown
as 〈a, b, g〉. In the context of this paper, we formally define event logs as a multiset
of sequences of activities. This assumption leads to ignoring the execution order of
different process instances, as it is not important for the process discovery purpose.

Definition 1 (Event Log) Let A be the universe of activities, and let A⊆A be a non-
empty set of activities. An event log is a multiset of sequences over A, i.e. L∈B(A∗).

Observe that each σ∈L describes a trace-variant whereas L(σ ) describes how
many traces of the form σ are presented within the event log.

By sampling an event log, we choose some of the process instances of it. Sampling
couldbedonewith/without replacement. If anobject is selectedonce, it is not selectable
anymore in the samplingmethodswithout replacement.Here,we use samplingwithout
replacement. In other words, it is not possible to put an object more than once in the
sampled event log. In the following, we formally define sampled event logs.

Definition 2 (Sampled event log) Let L ⊆ B(A∗) be an event log. We define SL as a
trace-based sampled event log of L , if∀σ∈SL (0<SL(σ )≤L(σ )). SL is a variant-based
sampled event log of L if for ∀σ∈SL (1=SL(σ )≤L(σ )).

In other words, a variant-based sampled event log is a subset of trace-variants in L .
Note that it is not possible to have a variant in a sampled event log that does not exist
in the original event log.

We could define different types of behavior in an event log. One behavior in an event
log is the directly follows relation between activities that can be defined as follows.

Definition 3 (Directly follows relation) Let a, b∈A be two activities and σ =
〈σ1, .., σn〉∈A∗ is a trace in the event log. A directly follows relation from a to b
exists in trace σ , if there is i∈{1, .., n−1} such that σi=a and σi+1=b and we denote
it by a >σ b.

For example, in sequence 〈a, b, c〉, we have a directly follows relation from b to c.
An alternative behavior which has negative affects on the results of process dis-

covery algorithms is the occurrence of a low probable sub-pattern, i.e., a sequence
of activities, between pairs of frequent surrounding behavior, which we refer to it as
behavioral contexts [30].

Definition 4 (Behavioral context) Let L∈B(A∗) be an event log. A behavioral context
c is a pair of non-empty sequences of activities, i.e., c∈A∗×A∗. Furthermore, we
define the set of behavioral contexts present in L , i.e., βL∈P(A∗×A∗), as:

βL=
{
(σl , σr ) ∈ A∗ × A∗ : ∃σ∈L,σ ′∈A∗\ε

(
σl · σ ′ · σr ∈ σ

)} (1)
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For example, in trace σ=〈a, b, c, d, e, f , h〉, 〈a, b〉 and 〈e〉 are two subsequences that
surround 〈c, d〉; hence, the pair (〈a, b〉, 〈e〉) is a behavioral context. Note that the
surrounded behavior could not be an empty sequence or ε. As we are more interested
in the contexts that frequently occur throughout the event log.

We inspect the probability of contextual sub-patterns, i.e., the behavior that is sur-
rounded by the frequent behavioral contexts. Thus, we simply compute the empirical
conditional probability of a behavioral sequence, being surrounded by a certain con-
text.

Definition 5 (Conditional contextual probability) Let σs, σl , σr∈A∗ be three sequen-
ces of activities and let L∈B(A∗) be an event log.We define the conditional contextual
probability of σs , w.r.t., σl and σr in L , i.e., representing the sample based estimate
of the conditional probability of σs being surrounded by σl and σr in L . Function
γL : A∗×A∗×A∗→[0, 1], is based on:

γL(σs, σl , σr )=
∑

σ∈L
(|σσl ·σs ·σr |

)
∑

σ∈L
( ∑

σ ′∈A∗\ε |σ ′
σl ·σ ′·σr |

) (2)

We alternatively write PL(σs |σl , σr ) to represent γL(σs, σl , σr ).

Based on these probabilities, we are able to detect unstructured behavior in a trace.

4 Sampling event data

In this section, we present different sampling strategies to increase the discovery
procedure’s performance. We propose to sample different behavioral elements of an
event log, e.g., events, directly follow relations, traces, and variants. By sampling
events, we can choose events from different parts of a process instance that may not
show the correct behavior of that process and leads to the inapplicability of it for
the process discovery purpose. Sampling directly follows relations is useful for some
process discovery algorithms like Alpha Miner and a version of inductive Miner. But,
we need to modify these algorithms to accept a set of directly follows relations instead
of an event log as an input. Also, such data structures do not apply to all process
discovery algorithms. Thus, here we only consider trace and variant-based sampling.
Consequently, these samplingmethods take an event log as input and return a subset of
traces or variants. The schematic of the sampling methods is illustrated in Fig. 1. Note
that in some standard of storing event logs, e.g., XES [5], we do not have event logs in a
multiset view. Therefore, we need to traverse the event log to find out variants and their
frequency. Afterward, in variant-based sampling, we choose one process-instance for
each of the selected variants, and consequently, the frequency of each sample is 1. In
trace-based sampling, the frequency of each unique sample is 1≤ni≤mi .

For many process discovery algorithms such as ILP Miner, the family of Alpha
miners and Inductive Miner, it is enough to have unique variants to discover a cor-
responding process model. In other words, the frequency of variants is mostly just
used for post-processing algorithms like filtering. Therefore, here we mainly focus on
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Fig. 1 Schematic overview of the sampling methods. We first detect variants and afterward sample variants
or traces based on different criteria

variant-based sampling, but, all these methods easily can be extended to trace-based
sampling methods. Moreover, we also just used control-flow related information that
is available in all event logs, and this is consistent with the way.

We are able to consider three dimensions for sampling event logs. The first one is
the number of process instances that are placed in the sampled event log, i.e., |SL |.
In the worst case, it is the same as the original event log, i.e., we do not have any
reduction in size. We can set the size of the sampled event logs (i.e., the sample ratio)
as follows.

c =
{ |SL |

|L| Variant-based sampling
|SL |
|L| Trace-based sampling

(3)

Note that, in the above equation, 0 < c ≤ 1. The second dimension is the com-
pleteness of the sampled event log. If a sample event log contains few relations of the
original event log, process discovery algorithms are not able to discover an appropriate
process model from the sampled event log. However, including all the behavior in the
original event log in the sampled event log is also leads to complex and imprecise pro-
cess models. Note that there is a difference between the size of event data and behavior
that it contains. Therefore, we should put the most important behavior in the event
log. The last dimension is the required sampling time as a preprocessing phase. Some
preprocessing techniques require too much time to return the preprocessed event log
especially when we deal with large event logs. Consequently, sampling an event log
in a shorter time is an advantage point of it.

We are able to sample behavioral elements in an event log randomly or by some
sampling biases. In the following, we will explain both of these methods.

4.1 Random sampling

The first method is to randomly sample c×|L| traces in the event log without replace-
ment and return these traces (i.e., trace-based sampling) or just unique trace-variants
among them (i.e., variant-based sampling). This method is fast because we do not need
to traverse the original event log. However, it is possible that many of the sampled
traces have similar behavior, and we just return a few unique variants. Moreover, we
may return variants that do not generalize the whole process.
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Another approach first finds all the unique variants in an event log, after that,
randomly select c × |L| variants from them. This approach is a bit slower, but it is
able to return more behaviors compared to the previous approach.

4.2 Biased sampling strategies

In general, traversing event logs have a linear complexity considering the number of
process instances in the event log. It gives us a motivation that instead of randomly
sampling the variants, we are able to use more advanced strategies (biases) to sample
variants in the event log.

In biased sampling methods, we first traverse the event log to find unique trace-
variants in it; then, we rank the variants based on different strategies. The top N×|L|
variants with the highest rank will be selected to be placed in the sampled event log.
Different ranking strategies can be used for this purpose that is discussed in follows.

4.2.1 Frequency-based sampling

The first ranking strategy is sampling variants based on their frequencies. This sam-
pling method gives more priority to a variant that has a higher occurrence frequency
in the event log. Hence, we sort the variants based on their frequencies or L(σ ) and
return the top c×|L| of variants as a sampled event log.

This strategy was proposed beforehand to simplify the discovered process models
in some process mining tools. The advantage of this strategy is that we could grantee
a minimum replay fitness of the future process model that will be discovered based
on the sampled event log. Note that, in the random sampling strategy, the probability
of choosing a more frequent variant is also higher. However, in some event logs, the
majority of process instances have a unique trace-variant or variants with very low
frequencies. So, to differentiate between them will be challenging, and using this
strategy is not efficient anymore. Therefore, a drawback of this strategy is that the
sampled event log may not contain many behaviors from the original event log.

4.2.2 Length-based sampling

We can rank variants based on their length. In other words, we give a higher score to
a shorter variant or to a longer one. If we want to keep more behaviors in our sampled
event log, we need to choose traces with longer variants first. However, if we are
interested in retaining the main-stream behaviors of the event log, usually it is better
to choose traces with shorter variants. Thus, in this strategy, we sort variants based on
their length, i.e., |σ |, and choose the longest or the shortest ones first.

Using the longer strategy, we are able to leave out incomplete traces, that improves
the quality of resulted process models. However, if there are self-loops and other
longer loops in the event log, there is a high probability to consider many infrequent
variants with the same behavior for process discovery algorithms. For example, if we
use directly follows information, it does not matter if trace σ has a >σ a one time or
more.
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On the other hand, we may keep variants with more simple behavior if we use the
shorter strategy; however, some incomplete process instances may be selected. Note
that incomplete traces leads to having imprecise process models.

4.2.3 Similarity-based sampling

If we aim to sample variants that contain general behavior of the whole event log, we
need to use the similarity-based sampling methods. Using this approach, we first find
the general behaviors of the event log. We are able to use different behavior; however,
the simplest and the most critical behavior for process discovery is the directly follows
relation. Therefore, we compute the occurrence probability of each directly follows
relation Bi=(a1, a2) (that a1, a2∈A) according to the following formula.

Prob(Bi )=num|σ ∈ L|a1 >σ a2|
|L| (4)

Hence, we compute the probability of observing each directly follows relation Bi in
a variant. If Prob(Bi ) is high (i.e., be higher than a defined threshold TP ), we expect
that the sampled variants should contain it. Thus, any variant contains such a high
probable behavior (that here is a directly follows relations), will its ranking (by +1).
Otherwise, if a variant does not contain a probable behavior, we decrease its ranking
by giving a negative value (i.e.,−1). Contrariwise, if a variant contains a low probable
behavior (i.e., ProbBi ≤1−TP ), we decrease its ranking by 1. Thus, we are searching
for variants that have very high probable behaviors and have less low probable behav-
iors. Note that, it is possible that some behaviors be neither high probable nor low
probable that we do nothing for such behaviors. Note that we normalize the rankings
based on the length of variants. Afterward, we sort the variants based on their rankings
and return the c×|L| ones with the highest ranking.

The main advantage of this method is that it helps process discovery algorithms
to depict the main-stream behavior of the original event log in the process model.
However, it needs more time to compute a similarity score of all variants. Especially,
if we use more advanced behavioral structures such as eventually follow relations, this
computation will be a limitation for this ranking strategy.

4.2.4 Structured-based sampling

It is shown in [18] that unstructured behavior in event logs leads to imprecise and
complex process models. In this sampling strategy, we consider the presence of
unstructured behavior (i.e., based on Definition 5) in each variant. In this regard,
we first compute the occurrence probability of each sub-patten among its specific con-
textual context (i.e., PL(σs, σl , σr )). If this probability is below a given threshold, i.e.,
TS , we call it an odd structure or unstructured behavior. Thus, for each unstructured
behavior in a variant, we define a penalty to it and decrease its ranking by −1. Con-
sequently, a variant with higher odd structures receives more penalties, and it is not
appealing to be placed in the sampled event log. Note that in this strategy, we do not
normalize the negative values based on the length of the variant.
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Table 1 Details of real event logs that are used in the experiment

Event log Activities# Traces# Variants# DF relations#

BPIC−2012 [31] 23 13,087 4336 138

BPIC−2013 [32] 4 7554 1511 11

BPIC−2017−All [33] 26 31,509 1593 178

BPIC−2017−Offer [33] 8 42,995 169 14

BPIC−2018−Control [34] 7 43,808 59 12

BPIC−2018−Inspection [34] 15 5485 3190 67

BPIC−2018−Reference [34] 6 43,802 515 15

Hospital [35] 18 100,000 1020 143

Road [36] 11 150,370 231 70

Sepsis [37] 16 1050 846 115

4.2.5 Hybrid sampling

In hybrid strategies, we combine two or three of other sampling strategies. In this
way,we expect to have the benefits of differentmethods. Todo so,wenormalize various
ranking strategies to values between 0 and 1. Then, we use aweighting averagemethod
to aggregate normalized values. Here, we combine the frequency and similarity-based
methods; however, other combinations are also possible.

In the next section, we show the influence of the sampling strategies on the perfor-
mance of process discovery procedure and quality of their results.

5 Evaluation

We conduct some experiments to answer the following research questions:

– (Q1) Does sampling event logs improve the performance of different process
discovery algorithms?

– (Q2) Does variant-based sampling outperform trace-based sampling?
– (Q3) Is the quality of process models that are discovered using sampled event logs
similar to process models that are discovered from the original event logs?

– (Q4) Which sampling strategies are faster and result in high-quality process mod-
els?

– (Q5) How does the sampling threshold affect the sampling and discovery time?

5.1 Implementation

To apply the proposed sampling strategies, we implemented the Sample Variant plug-
in in the ProM framework1 [5]. In this implementation, we used static thresholds

1 Sample Variant plug-in in the LogFiltering package: https://svn.win.tue.nl/repos/prom/Packages/
LogFiltering.
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for similarity and structured based sampling strategies. The user is able to specify
the desired percentage of the sampling traces/variants and the ranking strategy. The
plug-in takes an event log as an input and produces an event log contains top c × 100
percentage of traces/variants as an output. In addition, to apply our proposed method
on various event logs with different parameters, we ported the Sample Variant plug-in
to RapidProM [6] that is an extension of RapidMiner that combines scientific
work-flows with a range of (ProM-based) process mining algorithms.

5.2 Experimental setup

Information about ten real event logs that are used in the evaluation is given in Table 1.
These event logs are accessible at https://data.4tu.nl/search?q=process%20mining&
contentTypes=collection. For process discovery, we used a family of Alpha Miner [8]
(i.e., the basic Alpha Miner, Alpha++ and Alpha#), Inductive Miner [12], ILP Miner
[38], and Split Miner [11]. In cases whereas the event logs were sampled, we applied
process discovery algorithms just without their built-in filtering mechanisms.

We sampled event logs with different variant and trace-based sampling strate-
gies, and c in [0.05, 0.10, 0.15, 0.20]. Each experiment was repeated five times and
the average values are shown in these figures. The y-axis represents the average
performance-improvements using a logarithmic scale.

5.3 Experimental result

Here, we show how experimental results address the mentioned research questions.

5.3.1 (Q1 and Q2)

To measure the performance improvement, we consider both the discovery time and
sampling time of event logs using the following formulas. Higher values for these
measures shows the number of times we are faster using the sampling methods.

DiscoveryT imeImprovement = DiscoveryT imeWholeLog

DiscoveryT imeSampledLog
(5)

TotalT imeImprovement = DiscoveryT imeWholeLog

DiscoveryT imeSampledLog + SamplingT ime
(6)

Figures 2 and 3 show the discovery time and total improvement when we sample
event logs with/without considering sampling time corresponding to Eqs. 5 and 6. In
these figures, a higher value shows a higher improvement in the performance of process
discovery procedure. It is evident that by reducing the size of the event log, the process
discovery time is reduced. Therefore, the DiscoveryT imeImprovement for variant-
based sampling is significantly higher than trace-based sampling. Since the |SL | for
variant-based sampling is usually remarkably lower than trace-based one. For some
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Fig. 2 Process discovery performance improvement for different process discovery algorithms using variant
and trace-based sampling methods

Fig. 3 Total time improvement for discovering process using sampling methods

Fig. 4 Reduction in the number of directly follows relations by sampling event logs

event logs, process discovery is more than 10,000 times faster on the sampled event
log using variant-based sampling compared to using the whole event log. However,
for event logs such as Sepsis, where most of the traces have unique control-follow
related behavior in the original event log, trace-based sampling methods are faster.

Furthermore, by considering the sampling phase as a preprocessing step, we
are able to reduce the required time to discover a process model for most of the
event logs. Variant-based methods need more time to perform the sampling because
they need to discover variants among traces. However, they usually have a higher
improvement the total required time for discovering process (i.e., SamplingT ime +
DiscoveryT imeSampledLog).
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Fig. 5 The number of remained traces in the sampled event logs when we used variant and trace-based
sampling with c equals to 5 and 20. For event logs that have frequent variants the trace reduction is more

Fig. 6 Comparing the average of total discovery time of using variant sampling methods and event log
filtering methods

Sampling methods improve the performance of process discovery by first reducing
the number of traces and also decreasing the behaviors in the event log. The required
time for process discovery algorithms depends on different factors. In ILP Miner,
this time is mainly related to the number of activities and the number of unique
variants in the event log that sampling can reduce both of them. However, in the
family of Alpha Miner and Split Miner, we firstly discover possible directly follow
relations and then create a process model from these relations. For these algorithms,
we increase the performance of process discovery by reducing the number of possible
directly follow relations. In Inductive Miner, we iteratively divide the process to block
structured sub-processes. Hence, in each step, we aim to divide the event log and find
the corresponding directly follow relation of the sub-event log. Sampling reduces the
number of possible directly follow relations and the number of process instances in
the event log which leads to the performance improvement of process discovery using
Inductive Miner.

Figure 4 shows how many behaviors (here the directly follows) are reduced in the
sampled event logs. Figure 5 indicates the average number of traces in the sampled
event log using trace/event sampling. For most of the event logs, if we use variant-
based sampling, the size of the event logs (i.e., |L|) is reduced significantly. Also,
the number of remaining variants in sampled event logs is reduced to 5–20% of the
number of variants in the original event log (i.e., |L|).

In Fig. 6, we compared variant-based sampling methods and event log filtering
methods on their ability to improve process discovery performance. In this experi-
ment, two automated event log filtering methods are considered to be Anomaly-Free
Automaton (AFA) [16] and Matrix Filter (MF) [10]. For some even logs, because of
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Fig. 7 Analyzing the F-measure similarity of discovered processmodels with/without sampling using Eq. 8.
for the cases with values higher than 1, the F-measure of discovered process models are higher when we
used the sampled event logs

Fig. 8 The average sampling time for different sampling strategies. The random method is the fastest and
the structure method is the slowest sampling method

some technical problems, we could not filter the event log using the AFA method.
Results show that variant-based sampling reduces the total discovery time.

5.3.2 (Q3)

Here, we aim to analyze the quality of discovered process models from sampled event
logs. For this purpose, we use fitness and precision. Fitness measures what percentage
of event log’s behaviors are also replayable by the process model. Thus, a fitness
value equals to 1, indicates all the behaviors in the event log, are described by the
process model. Precision measures to what extend behaviors that are described by
the process model are also presented in the event log. A low precision value means
that the process model allows for more behaviors compared to the event log. There
is a trade-off between these measures [39], sometimes, putting aside a small amount
of behavior causes a slight decrease in the fitness value, whereas the precision value
increases dramatically. Thus, we use the F-Measures metric that combines both of
them.

F-Measure = 2 × Precision × Fitness

Precision + Fitness
(7)
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In Fig. 7, we compared the quality of best process models that are discovered
with/without sampling according to the following formula.

F-MeasureSimilari t y = F-MeasureSampledLog

F-MeasureWholeLog
(8)

Weused sampled event logs just for discovery purpose, and the original event logswere
used for computing the F-Measure. For process models that are discovered without
sampling methods, we iterate the experiment with 100 different embedded filtering
parameter(s) and considering their best F-Measure (just for Inductive Miner and Split
Miner). We do not consider Alpha miner algorithms, because they usually result in
unsound process models that we are not able to find their corresponding F-Measure.

Note that, for some event logs (e.g., BPI-2017-All), we could not compute the
F-Measure of process models. An F-MeasureSimilari t y > 1 means that sampling
methods increase the quality of the corresponding discovered process model (even
compared to the cases that we used process discovery algorithms with their filtering
mechanism). Note that, we did not use filtering mechanisms of the process discovery
algorithm for sampled event logs. For some event logs, samplingmethods can increase
the quality of discovered process models, specifically, if we use Inductive Miner.
It shows the weakness of process discovery algorithms in dealing with infrequent
behaviors [10].

By applying variant-based samplingmethods,wewill lose the frequencyof variants.
As a result, some embedded filtering mechanisms in process discovery algorithms
become unusable. However, the results of this experiment show that we can discover
process models with high quality from sampled event logs, even without these filtering
methods. If for any reason we need to use frequency of variants, it is recommended to
apply trace-based sampling methods.

5.3.3 (Q4)

Here, we want to compare different variant biased sampling strategies. In Fig. 8
the average of the sampling time (in milliseconds) for different variant-based sam-
pling strategies is shown. The random sampling is the fastest strategy as it does not
need to rank variants, and the structure-based sampling is the slowest one. After the
structure-based sampling, the similarity-based sampling and the hybrid sampling that
use directly follows relations are slower than other strategies. Table 2 compares the
quality of the process models that are discovered using these sampling methods. For
some combinations, we could not compute the F-Measure in the specific time, and
their corresponding cell in the table is empty. Results show that no unique sampling
method results in process models with the highest possible F-Measure for all process
discovery algorithms.

5.3.4 (Q5)

Finally, we analyzed the impact of the sampling threshold (i.e., c) on the sampling and
process discovery time. Thus, we sampled Road event log with c in [0.05, 0.1, 0.15,
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Fig. 9 Themedian of the sampling and discovery time for samplingRoad event log using different sampling
thresholds

0.2, 0.3, 0.5, 0.8] and using the basic inductive miner for process discovery. This
experiment was repeated 10 times, and the median values are shown in Fig. 9. We
have not considered the hybrid method as its results are similar to frequency based for
this event log. In variant-based sampling, except for the random sampling, the sam-
pling time is independent of the sampling threshold. Because in biased variant-based
sampling methods, most of the sampling time goes for ranking the variants. It is also a
similar case for trace-based samplings. Structured-based sampling bias is the slowest
among the other biases. In variant-based sampling, the discovery time is dramatically
faster than traced-based sampling. Among trace-based sampling methods, structured
and frequency-based strategies are faster than others.

The experimental results show that using biased sampling methods, we are able
to improve the performance of process discovery procedure and it is possible to have
this improvement when different process discovery algorithms are applied. As in most
of the cases, there will be fewer traces in the sampled event logs using variant-based
sampling methods, the improvement in the performance of process discovery is higher
using the variant-based approaches. Moreover, results show that the process models
that are discovered using sampled event logs have similar quality compared to the
case that the original event logs are used (considering F-Measure metric). There are
some cases that the sampling approach improves the quality of discovered models. In
addition, considering different sampling strategies, we could not find a strategy that
always results in the highest process model quality. However, the hybrid approach
results in process models with high quality on the used event logs. According to the
sampling time, the random strategy outperforms other ones and the structure strategy
has the lowest performance. Finally, results indicate that the sampling thresholdmainly
affects the discovery timewhen the trace-based approaches are used.Also, results show
that sampling time is independent of the sampling threshold.
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6 Conclusion

In this paper, we proposed several variant and trace-based sampling strategies to
increase the performance of the process discovery procedure. We recommend apply-
ing process discovery algorithms on the sampled event logs, especially when dealing
with large or complex event logs. We implemented different sampling strategies in
ProM and RapidProM. Then, we applied them on many real event logs using different
process discovery algorithms. Experimental results showed that sampling an event
log decreases the required time used by state-of-the-art process discovery algorithms.
We found out that variant-based sampling approach results in considerably higher
process discovery performance improvement compared to the trace-based approach.
Results showed that by applying samplingmethods, we are able to discover acceptable
approximations of final process models in a short time. Moreover, results indicated
that, for some event logs, samplingmethods can also improve the quality of discovered
process models according to the F-Measure metric.

As future work, we aim to define more computationally affordable ranking
strategies. Furthermore, we are interested in finding out the best sampling strategy
considering the process discovery quality and performance when dealing with differ-
ent event logs and process discovery algorithms.
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