
Visualizing Trace Variants From Partially
Ordered Event Data

Daniel Schuster1,2[0000−0002−6512−9580], Lukas Schade2, Sebastiaan J. van
Zelst1,2[0000−0003−0415−1036], and Wil M. P. van der Aalst1,2[0000−0002−0955−6940]

1 Fraunhofer Institute for Applied Information Technology FIT, Germany
{daniel.schuster,sebastiaan.van.zelst}@fit.fraunhofer.de

2 RWTH Aachen University, Aachen, Germany
wvdaalst@pads.rwth-aachen.de

Abstract. Executing operational processes generates event data, which
contain information on the executed process activities. Process mining
techniques allow to systematically analyze event data to gain insights
that are then used to optimize processes. Visual analytics for event data
are essential for the application of process mining. Visualizing unique pro-
cess executions—also called trace variants, i.e., unique sequences of ex-
ecuted process activities—is a common technique implemented in many
scientific and industrial process mining applications. Most existing visu-
alizations assume a total order on the executed process activities, i.e.,
these techniques assume that process activities are atomic and were ex-
ecuted at a specific point in time. In reality, however, the executions of
activities are not atomic. Multiple timestamps are recorded for an exe-
cuted process activity, e.g., a start-timestamp and a complete-timestamp.
Therefore, the execution of process activities may overlap and, thus, can-
not be represented as a total order if more than one timestamp is to be
considered. In this paper, we present a visualization approach for trace
variants that incorporates start- and complete-timestamps of activities.

Keywords: Process Mining · Visual analytics · Interval order.

1 Introduction

The execution of operational processes, e.g., business and production processes,
is often supported by information systems that record process executions in de-
tail. We refer to such recorded information as event data. The analysis of event
data is of great importance for organizations to improve their processes. Pro-
cess mining [1] offers various techniques for systematically analyzing event data,
e.g., to learn a process model, to check compliance, and to obtain performance
measures. These insights into the processes can then be used to optimize them.

As in other data analysis applications, visual analytics for event data are im-
portant in the application of process mining. A state-of-the-art process mining
methodology [6] lists process analytics including visual analytics as a key compo-
nent next to the classic fields of process mining: process discovery, conformance
checking, and process enhancement.



2 D. Schuster et al.

activity A activity B activity C activity D activity E activity F activity A activity G

activity A activity B activity C activity E activity D activity A activity F activity G

activity A activity B activity C activity E activity D activity G

(a) Three different trace variants showing the execution order of atomic activities
activity A

(start)
activity B

(start)
activity C

(start)
activity A
(complete)

activity B
(complete)

activity D
(start)

activity E
(start)

. . .

activity A
(start)

activity B
(start)

activity C
(start)

activity A
(complete)

activity B
(complete)

activity E
(start)

activity D
(start)

. . .

(b) Two different trace variants showing the execution order of non-atomic activities,
i.e, each activity is split into start and complete

Fig. 1: Classic trace variant visualizations for (non)-atomic process activities

A visualization approach that is used across various process mining tools,
ranging from industry to scientific tools, is called the variant explorer. Con-
sider Figure 1a for an example. In classic trace variant visualizations, a variant
describes a unique sequence of executed process activities. Thus, a strict total
order on the contained activities is required to visualize such sequence. Recorded
timestamps of the executed activities are usually used for ordering them.

This classic trace variant visualization has two main limitations. (1) Assume
atomic process activities, i.e., a single timestamp is recorded for each process
activity. A strict total order cannot be derived if multiple activities have the
same timestamp. In such cases, the sequential visualization, indicating temporal
execution, of process activities is problematic because a second-order criteria
is needed to obtain a strict total order. (2) In many real-life scenarios, process
activities are performed over time, i.e., they are non-atomic. Thus, the execution
of activities may intersect with each other. Consider Figure 2a for an example.
Considering both start- and complete-timestamps, a strict total order cannot be
obtained if the executions of activities overlap. The classic trace variant explorer
usually splits the activities in start and complete as shown in Figure 1b to
obtain atomic activities. However, the parallel behavior of activities is not easily
discernible from the visualization. In addition, the first limitation remains.

In this paper, we propose a novel visualization of trace variants to overcome
the two aforementioned limitations. We define a variant as an interval order,
which can be represented as a graph. For instance, Figure 2b shows the interval
order of the two process executions shown in Figure 2a. The graph representation
of an interval order (cf. Figure 2b) is, however, not easy to read compared to the
classic trace variant explorer (cf. Figure 1). Therefore, we propose an approach
to derive a visualization from interval orders representing trace variants.

The remainder of this paper is structured as follows. Section 2 presents related
work. Section 3 introduces concepts and definitions used throughout this paper.
Section 4 introduces the proposed visualization approach. Section 5 presents an
experimental evaluation, and Section 6 concludes this paper.



Visualizing Trace Variants From Partially Ordered Event Data 3

Case/Process Instance 1

08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00

A

B

C

D

E

F

A

G

t

Case/Process Instance 2

08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00

A

B

C

D

E

F

A

G

t

(a) Time plots visualizing activity instances, i.e., each ac-
tivity has a start-timestamp and a complete-timestamp,
executed within two different cases/process instance

A

B

C

D

E

F

A

G

(b) Visualization of the
corresponding interval or-
der. Vertices represent ac-
tivity instances. Arcs indi-
cate an ordering between
activity instances

Fig. 2: Visualizing partially ordered event data. Each interval shown in Figure 2a,
i.e., an activity instance, describes the execution of an activity. A, . . . , G repre-
sent activity labels. Both visualized cases/process instances (Figure 2a) corre-
spond to the same interval order (Figure 2b). Note that we consider two activity
instances to be unrelated if they overlap in time

2 Related Work

For a general overview of process mining, we refer to [1]. Note that the major-
ity of process mining techniques assume totally ordered event data. For exam-
ple, in process discovery few algorithms exist that utilize life cycle information,
i.e., more than one timestamp, of the recorded process activities. For instance,
the Inductive Miner algorithm has been extended in [9] to utilize start- and
complete-timestamps of process activities. Also in conformance checking there
exist algorithms that utilize life cycle information, e.g., [10]. A complete overview
of techniques utilizing life cycle information is outside the scope of this paper.

In [6], the authors present a methodology for conducting process mining
projects and highlight the importance of visual analytics. In [8], open challenges
regarding visual analytics in process mining are presented. The visualization of
time-oriented event data—the topic of this paper—is identified as a challenge.

The classic variant explorer as shown in Figure 1 can be found in many differ-
ent process mining tools, e.g., in ProM3, which is an open-source process mining
software tool. In [3], the authors present a software tool to visualize event data.
Various visualizations of event data are offered; however, a variant explorer, as
considered in this paper, is not available. In [2], the authors present a plugin for
ProM to visualize partially ordered event data. The approach considers events

3 https://www.promtools.org

https://www.promtools.org


4 D. Schuster et al.

Table 1: Example of event data

Event-ID Case-ID Activity Label Start-timestamp Complete-timestamp Resource . . .

1 1 activity A 07/13/2021 08:00 07/13/2021 09:30 staff . . .
2 1 activity B 07/13/2021 08:30 07/13/2021 11:00 staff . . .
3 1 activity C 07/13/2021 09:00 07/13/2021 12:00 staff . . .
4 1 activity D 07/13/2021 11:30 07/13/2021 13:30 staff . . .
5 1 activity E 07/13/2021 11:40 07/13/2021 13:00 supervisor . . .
6 1 activity F 07/13/2021 14:00 07/13/2021 15:00 manager . . .
7 1 activity A 07/13/2021 14:30 07/13/2021 16:00 staff . . .
8 1 activity G 07/13/2021 16:30 07/13/2021 17:00 staff . . .
9 2 activity A 07/13/2021 08:00 07/13/2021 09:30 staff . . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

to be atomic, i.e., an event representing the start and an event representing the
completion of an activity are considered to be separate events. Based on a user-
selected time granularity, events within the same time segment are aggregated,
i.e., they are considered and visualized to be executed in parallel. This offers
the advantage that the user can change the visualization depending on how ac-
curately the timestamps are to be interpreted. Compared to our approach, we
consider non-atomic activity instances, i.e., we map start and complete events
of a process activity to an activity instance. Next, we relate these activity in-
stances to each other instead of atomic events as proposed in [2]. Therefore, both
approaches, the one presented in [2] and the one presented in this paper, can
coexist and each have their advantages and disadvantages.

3 Preliminaries

In this section, we present concepts and definitions used within this paper.

Event data describes the historical execution of processes. Table 1 shows
an example of said event data. Each row corresponds to an event, i.e., in the
given example an activity instance.4 For example, the first event, identified by
event-id 1, recorded that activity A has been executed from 08:00 until 09:30 at
07/13/2021 within the process instance identified by case-id 1.

In general, activity instances describe the execution of a process activity
within a specific case. A case describes a single execution of a process, i.e., a
process instance, and it is formally a set of activity instances that have been
executed for the same case. Activity instances consist of at least the following
attributes: an identifier, a case-id, an activity label, a start-timestamp, and a
complete-timestamp. Since we are only interested in the order of activity in-
stances within a case and not in possible additional attributes of an activity
instance, we define activity instances as a 5-tuple.

4 Note that in some event logs, the start and the completion of an activity are separate
events (i.e., separate rows). Observe that such records are easily transformed to our
notion of event data.



Visualizing Trace Variants From Partially Ordered Event Data 5

Definition 1 (Universes). T is the universe of totally ordered timestamps. L
is the universe of activity labels. C is the universe of case identifiers. I is the
universe of activity instance identifiers.

Definition 2 (Activity Instance). An activity instance (i, c, l, ts, tc)∈I×C×
L×T ×T describes the execution of an activity labeled l within the case c. The
start-timestamp of the activity’s execution is ts, and the complete-timestamp is
tc, where ts≤tc. Each activity instance is uniquely identifiable by i. We denote
the universe of activity instances by A.

Note that any event log with only one timestamp per executed activity can
also be easily expressed in terms of activity instances, i.e., ts=tc. For a given
activity instance a=(i, c, l, ts, tc)∈A, we define projection functions: πi(a)=i,
πc(a)=c, πl(a)=l, πts(a)=ts, and πtc(a)=tc.

Definition 3 (Event Log). An event log E is a set of activity instances, i.e.,
E⊆A such that for a1, a2∈E ∧πi(a1)=πi(a2)⇒ a1=a2. We denote the universe
of event logs by E.

For a given event log E∈E , we refer to the set of activity instances executed
within a given case c∈C as a trace, i.e., Tc={a∈E | ∧πc(a)=c}. As shown in
Figure 2a, we can visualize a trace and its activity instances in a time plot.

Note that each activity instance a=(i, c, l, ts, tc)∈A defines an interval on the
timeline, i.e., [ts, tc]. A collection of intervals—in this paper we focus on traces—
defines an interval order. In general, given two activity instances a1, a2∈A, we
say a1<a2 iff πtc(a1)<πts(a2). Note that interval orders are a proper subclass of
strict partial orders [7]; hence, interval orders satisfy: irreflexivity, transitivity,
and asymmetry. Interval orders additionally satisfy the interval order condition,
i.e., for any x, y, w, z : x<w ∧ y<z ⇒ x<z ∨ y<w [7].

In this paper, we represent an interval order as a directed, labeled graph that
consists of vertices V , representing activity instances, and directed edges V×V ,
representing ordering relations between activity instances. Figure 2b shows the
interval order of the traces shown in Figure 2a. We observe that the first two
activity instances labeled with A and B are incomparable to each other because
there is no arc from either A to B or vice versa. Thus, the first execution of A
and B are executed in parallel, i.e., their intervals overlap. For example, activity
C is related to F , G and the second execution of A. Thus, C is executed before
F , G and the second execution of A. Next, we formally define the construction
of the directed graph representing the interval order of a trace.

Definition 4 (Interval Order of a Trace). Given a trace Tc⊆A, we define
the corresponding interval order as a labeled, directed graph (V,E, λ) consisting
of vertices V , directed edges E=(V×V ), and a labeling function λ : V→L. The
set of vertices is defined by V=Tc with λ(a)=πl(a). Given two activity instances
a1, a2∈T , there is a directed edge

(
πi(a1), πi(a2)

)
∈E iff πtc(a1)<πts(a2). We

denote the universe of interval orders by P.

Next, we define the induced interval order.



6 D. Schuster et al.

A

B

D

E

C

F

A

G

Fig. 3: Proposed visualization for the interval order shown in Figure 2b

Definition 5 (Induced Interval Order). Given (V,E, λ)∈P. For V ′⊆V , we
define the induced interval order, i.e., the induced subgraph, (V ′, E′, λ′)∈P with
E′=E∩(V ′×V ′) and λ′(v)=λ(v) for all v∈V ′.

4 Visualizing Trace Variants

This section introduces the proposed approach to visualize trace variants from
partially ordered event data. Section 4.1 introduces the approach, and Section 4.2
proves that the approach is deterministic. Section 4.3 discusses the potential
limitations of the approach. Finally, Section 4.4 covers the implementation.

4.1 Approach

The proposed visualization approach of trace variants is based on chevrons, a
graphical element known from classical trace variant visualizations (cf. Figure 1).
Figure 3 shows an example of the proposed visualization for the interval order
given in Figure 2b. The interpretation of a chevron as indicating sequential order
is maintained in our approach. Additionally, chevrons can be nested and stacked
on top of each other. Stacked chevrons indicate parallel/overlapping execution of
activities. Nested chevrons relate groups of activities to each other. In the given
example, the first chevron indicates that C is executed in parallel to A, B, D,
and E. The two upper chevrons indicate that A and B are executed in parallel,
but are executed before D and E, both of which are also executed in parallel.

The proposed approach assumes an interval order, representing a trace vari-
ant, as input and recursively partitions the interval order by applying cuts to
compute the layout of the visualization (cf. Figure 3). In general, a cut is a
partition of the nodes of a given interval order. Based on the partition, in-
duced interval orders are derived. Each application of such a cut corresponds
to chevrons and their positioning in the final visualization, e.g., stacked or side-
by-side chevrons. Nested chevrons result from the recursive manner. Next, we
define the computation of the proposed layout, i.e., we define two types of cuts.

An ordering cut partitions the activity instances into sets such that these sets
can be totally ordered, i.e., all activity instances within a set can be related to all
other activity instances from other sets. In terms of the graph representation of
an interval order, this implies that all nodes from one partition have a directed
edge to all nodes from the other partition(s). We depict an example of an ordering



Visualizing Trace Variants From Partially Ordered Event Data 7

v1

v2v0

v3 v4

v5

V1 V2 V3

(a) Interval order and a maximal ordering cut

v1

v2v0

(b) Induced interval order based on V1

Fig. 4: Example of an ordering cut, i.e., a partition of the nodes into V1={v0, v1,
v2}, V2={v3}, V3={v4, v5}, and one corresponding induced interval order for V1

cut in Figure 4. Note that all nodes in V1 are related to all nodes in V2 and V3.
Next, we formally define an ordering cut for an interval order.

Definition 6 (Ordering Cut). Assume an interval order (V,E, λ)∈P. An or-
dering cut describes a partition of the nodes V into n>1 non-empty subsets

V1, . . . , Vn such that: ∀1≤i<j≤n
(
∀v∈Vi, v′∈Vj

(
(v, v′)∈E

))
.

A parallel cut indicates that activity instances from one partition overlap
in time with activity instances in the other partition(s), i.e., activity instances
from different partitions are unrelated to each other. Thus, we are looking for
components in the graph representation of an interval order.

Definition 7 (Parallel Cut). Assume an interval order (V,E, λ)∈P. A paral-
lel cut describes a partition of the nodes V into n≥1 non-empty subsets V1, . . . , Vn
such that V1, . . . , Vn represent connected components of (V,E, λ), i.e., ∀1≤i<j≤n(
∀v∈Vi∀v′∈Vj

(
(v, v′)/∈E ∧ (v′, v)/∈E

))
.

We call a cut maximal if n, i.e., the number of subsets, is maximal.
Figure 5 shows an example of the proposed visualization approach. We use

the interval order from Figure 2b as input. The visualization approach recur-
sively looks for a maximal ordering or parallel cut. In the example, we initially
find an ordering cut of size three (cf. Figure 5a). Given the cut, we create three
induced interval orders (cf. Figure 5b). As stated before, each induced interval
order created by a cut represents a chevron. In general, an ordering cut indicates
the horizontal alignment of chevrons while a parallel cut indicates the vertical
alignment of chevrons. Since we found an ordering cut of size three, the interme-
diate visualization consists of three horizontally-aligned chevrons (cf. Figure 5c).
If an induced interval order only consists of one element (e.g., the third induced
interval order in Figure 5b), we fill the corresponding chevron with a color that is
unique for the given activity label (cf. Figure 5c). As in the classic trace variant
explorer, colors are used to better distinguish different activity labels.

We now recursively apply cuts to the induced interval orders. In the first two
interval orders, we apply a parallel cut (cf. Figure 5d). The third interval order
consists only of one node labeled with G; thus, no further cuts can be applied.



8 D. Schuster et al.

A

B

C

D

E

F

A

G

(a) Maximal ordering cut

A

B

C

D

E

F

A

G

(b) Induced interval orders
after applying the cut

A
B
C
D
E

F
A

G

(c) Intermediate visualiza-
tion (not shown to the user)

A

B

C

D

E

F

A

G

(d) Maximal parallel cuts

A

B

C

D

E

F

A

G

(e) Induced interval orders
after applying the cuts

A
B
D
E

C

F

A

G

(f) Intermediate visualiza-
tion (not shown to the user)

A

B

C

D

E

F

A

G

(g) Maximal ordering cut

A

B

C

D

E

F

A

G

(h) Induced interval orders
after applying the cut

A
B

D
E

C

F

A

G

(i) Intermediate visualiza-
tion (not shown to the user)

A

B

C

D

E

F

A

G

(j) Maximal parallel cuts

A

B

C

D

E

F

A

G

(k) Induced interval orders
after applying the cuts

A

B

D

E

C

F

A

G

(l) Final visualization

Fig. 5: Example of recursively applying ordering and parallel cuts to an interval
order and the corresponding visualization



Visualizing Trace Variants From Partially Ordered Event Data 9

Figure 5e shows the induced interval orders after applying the two parallel cuts.
As stated before, time-overlapping activity instances are indicated by stacked
chevrons. Since both applied parallel cuts have size two, we create two stacked
chevrons each within the first and the second chevron (cf. Figure 5f). After
another ordering cut (cf. Figure 5g-5i) and two more parallel cuts (cf. Figure 5j),
the visualization approach stops because all induced interval orders consist of
only one activity instance. Figure 5l shows the final visualization.

4.2 Formal Guarantees

Next, we show that the proposed approach is deterministic, i.e., the same visu-
alization is always returned for the same interval order. We therefore show that
different cuts cannot coexist, i.e., either a parallel cut, an ordering cut, or no cut
exists in an interval order. Further, we show that maximal cuts are unique.

Lemma 1 (Cuts Cannot Coexist). In an interval order (V,E, λ)∈P a par-
allel and an ordering cut cannot coexist.

Proof. Let (V,E, λ)∈P be an interval order with an ordering cut V1, . . . , Vn for
some n≥2. Assume there exists a parallel cut, too, i.e., V ′1 , . . . , V

′
m for some

m≥2. For 1≤j≤m, assume that for an arbitrary v∈V it holds that v∈V ′j such
that v∈Vi for some i∈{1, . . . , n}. Since an ordering cut exists, we know that
∀w∈Vi+1∪ . . .∪Vn

(
(v, w)∈E

)
and ∀w′∈V1∪ . . .∪Vi−1

(
(w′, v)∈E

)
. Since V ′1 , . . . , V

′
m

is a parallel cut, i.e., each V ′k∈{V ′1 , . . . , V ′m} represents a connected component
(Definition 7), also all w and w′ must be in V ′j . Hence, V ′j ={v}∪V1∪ . . .∪Vi−1∪
Vi+1∪ . . .∪Vn. Further, since ∀w′∈V1∪ . . .∪Vi−1∀w∈Vi+1∪ . . .∪Vn

(
(w′, w)∈E ∧

(w′, v)∈E∧(v, w)∈E
)

it follows by Definition 7 that V ′j =V1∪ . . .∪Vn=V . Hence,
∀V ′k∈{V ′1 , . . . , V ′m}\{V ′j }(V ′k=∅) since V ′1 , . . . , V

′
m is a partition of V . This con-

tradicts our assumption that there exists a parallel cut, too. The other direction
is symmetrical.ut

Since cuts cannot coexist (cf. Lemma 1), one cut is applicable for a given
interval order at most. Next, we show that maximal cuts are unique.

Lemma 2 (Maximal Ordering Cuts Are Unique). If an ordering cut exists
in a given interval order (V,E, λ)∈P, the maximal ordering cut is unique.

Proof. Proof by contradiction. Assume an interval order (V,E, λ)∈P having two
different maximal ordering cuts, i.e., V1, . . . , Vn and V ′1 , . . . , V

′
n.

⇒ ∃i∈{1, . . . , n}∀j∈{1, . . . , n}
(
Vi 6=V ′j

)
⇒ Vi 6=V ′i

⇒ ∃v∈Vi∪V ′i
(
(v∈Vi ∧ v/∈V ′i ) ∨ (v/∈Vi ∧ v∈V ′i )

)
Assume v∈Vi ∧ v/∈V ′i (the other case is symmetric)
⇒ v∈V ′1∪ . . .∪V ′i−1∪V ′i+1∪ . . .∪V ′n=V \V ′i
1) Assume v∈V ′1∪ . . .∪V ′i−1
Definition 6
=========⇒ ∀v′∈Vi

(
(v, v′)∈E

) 2) Assume v∈V ′i+1∪ . . .∪V ′n
Definition 6
=========⇒ ∀v′∈Vi

(
(v′, v)∈E

)
v∈Vi===⇒ (v, v)∈E contradicts the assumption (V,E, λ) represents an interval order

because irreflexivity is not satisfied. ut



10 D. Schuster et al.

Lemma 3 (Maximal Parallel Cuts Are Unique). If a parallel cut exists in
a given interval order (V,E, λ)∈P, the maximal parallel cut is unique.

Proof (Lemma 3). By definition, components of a graph are unique. ut

Lemma 2 and Lemma 3 show that maximal cuts, both ordering and parallel,
are unique. Together with Lemma 1, we derive that the proposed visualization
approach is deterministic, i.e., the approach always returns the same visualiza-
tion for the same input, because for a given interval order only one cut type is
applicable at most and if a cut exists, the maximal cut is unique.

4.3 Limitations

In this section, we discuss the limitations of the proposed visualization approach.
Reconsider the example in Figure 5. Cuts are recursively applied until one

node, i.e., an activity instance, remains in each induced interval order (cf. Fig-
ure 5k). However, there are certain cases in which the proposed approach cannot
apply cuts although more than one node exists in an (induced) interval order.

A

B

C

D

E

F

...
...

...
...

...
...

...
...

· · ·
· · ·

t

(a) Dots indicate that the shown pattern of
chained activity instances can be extended ar-
bitrarily, horizontally as well as vertically

A

B

C E

D F

(b) Corresponding
interval order

A
B
C
D
E
F

(c) Correspond-
ing visualization

Fig. 6: Example trace and interval order in which no cuts are applicable

Consider Figure 6a, showing an example of a trace where no cuts can be
applied. Since each activity instance is overlapping with some other activity
instance, we cannot apply an ordering cut. Also, since there is no activity instance
that overlaps with all other activity instances, we cannot apply a parallel cut.
Note that the visualized pattern of chained activity instances can be arbitrarily
extended by adding more activity instances vertically and horizontally, indicated
by the dots in Figure 6a. Figure 6b shows the corresponding interval order.

For the example trace, the proposed approach visualizes the activitiesA, . . . , F
within a single chevron, indicating that the activities are executed in an unspec-
ified order (cf. Figure 6c). Thus, the visualization highly simplifies the observed
process behavior in such cases. Alternatively, it would be conceivable to show
the interval order within a chevron if an (induced) interval order cannot be cut
anymore. However, we decided to keep the visualization simple and show all
activities within a single chevron. Note that this design decision entails that the
expressiveness of the proposed visualization is lower than the graphical notation
of interval orders, i.e., different interval orders can have the same visualization.



Visualizing Trace Variants From Partially Ordered Event Data 11

Fig. 7: Screenshot of Cortado’s variant explorer showing real-life event data [4]

Table 2: Evaluation results based on real-life event logs

Log statistics
Calculation time (s) of
interval ordered variants

Variants statistics

Event
log

#cases
(avg. #events

per case)

multiple
timestamps
per activity

available

Total
calculation

Pre-
processing

event
data

Creating
interval
orders

Cutting
interval
orders

#classic variants
(only start-time-

stamp considered)

#interval
ordered
variants

#interval
ordered
variants

with limitations

BPI Ch.
2017 [5]

31,509
(≈38)

yes ≈39 ≈21.6 ≈5.7 ≈11.3 15,930 5,854 335 (≈6%)

BPI Ch.
2012 [4]

13,087
(≈20)

yes ≈22.6 ≈5.9 ≈5.4 ≈11.2 4,366 3,830 0 (≈0%)

Sepsis [11]
1,050
(≈14)

no ≈1.9 ≈0.3 ≈0.3 ≈1.2 846 690 0 (≈0%)

4.4 Implementation

The proposed visualization approach for partially ordered event data has been
implemented in Cortado [12]5, which is a standalone tool for interactive process
discovery. Figure 7 shows a screenshot of Cortado visualizing an event log with
partially ordered events. The implemented trace variant explorer works for both,
partially and totally ordered event data. The tool assumes an event log in the
.xes format as input. If the provided event log contains start- and complete-
timestamps, the visualization approach presented in this paper is applied.

5 Evaluation

In this section, we evaluate the proposed visualization approach. We focus thereby
on the performance aspects of the proposed visualization. Further, we focus on
the limitations, i.e., no cuts can be applied anymore, although the (induced)
interval order has more than one element, as discussed in Section 4.3.

We use publicly available, real-life event logs [4,5,11]. Table 2 shows the re-
sults. The first three columns show information about the logs. Two logs [5,4]
contain start- and complete-timestamps per activity instance while one log [11]
contains only a single timestamp per activity instance. Regarding the total cal-
culation time, we note that the duration of the visualization calculation is rea-
sonable from a practical point of view. We observe that the recursive application
of cuts takes up most of the computation time in all logs, as expected. Regarding

5 Available from version 1.2.0, downloadable from: https://cortado.fit.fraunhofer.de/

https://cortado.fit.fraunhofer.de/


12 D. Schuster et al.

the variants, we observe that the number of classic variants is higher compared
to the number of variants derived from the interval order for all event logs. We
observe this even for the third event log [11] because some activities within the
cases share the same timestamp. Regarding the limitations of the approach, as
discussed in Section 4.3, we observe that only in the first log [5] approximately
in 6% of all trace variants patterns occur where it was not possible to apply cuts
anymore. Note that the limitation cannot occur in event logs where only a single
timestamp per activity is available, e.g., [11].

6 Conclusion

This paper introduced a novel visualization approach for partially ordered event
data. Based on chevrons, known from the classic trace variant explorer, our ap-
proach visualizes the ordering relations between process instances in a hierarchi-
cal manner. Our visualization allows to easily identify common patterns in trace
variants from partially ordered event data. The approach has been implemented
in the tool Cortado and has been evaluated on real-life event logs.

References

1. van der Aalst, W.M.P.: Data Science in Action. Springer Berlin Heidelberg (2016)
2. van der Aalst, W.M.P., Santos, L.: May i take your order? on the interplay between

time and order in process mining. arXiv preprint arXiv:2107.03937 (2021)
3. Bodesinsky, P., Alsallakh, B., Gschwandtner, T., Miksch, S.: Exploration and As-

sessment of Event Data. In: EuroVis Workshop on Visual Analytics (EuroVA).
The Eurographics Association (2015)

4. van Dongen, B.: BPI Challenge 2012 (2012), https://data.4tu.nl/articles/dataset/
BPI Challenge 2012/12689204

5. van Dongen, B.: BPI Challenge 2017 (2017), https://data.4tu.nl/articles/dataset/
BPI Challenge 2017/12696884

6. van Eck, M.L., Lu, X., Leemans, S.J.J., van der Aalst, W.M.P.: PM2: A pro-
cess mining project methodology. In: Advanced Information Systems Engineering.
Springer (2015)

7. Fishburn, P.C.: Intransitive indifference with unequal indifference intervals. Journal
of Mathematical Psychology 7(1) (1970)

8. Gschwandtner, T.: Visual analytics meets process mining: Challenges and oppor-
tunities. In: Data-Driven Process Discovery and Analysis. Springer (2017)

9. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Using life cycle information
in process discovery. In: Business Process Management Workshops. Springer (2016)

10. Lu, X., Fahland, D., van der Aalst, W.M.P.: Conformance checking based on par-
tially ordered event data. In: Business Process Management Workshops. Springer
(2015)

11. Mannhardt, F.: Sepsis cases - event log (2016), https://data.4tu.nl/articles/
dataset/Sepsis Cases - Event Log/12707639

12. Schuster, D., van Zelst, S.J., van der Aalst, W.M.P.: Cortado—an interactive tool
for data-driven process discovery and modeling. In: Application and Theory of
Petri Nets and Concurrency. Springer (2021)

https://data.4tu.nl/articles/dataset/BPI_Challenge_2012/12689204
https://data.4tu.nl/articles/dataset/BPI_Challenge_2012/12689204
https://data.4tu.nl/articles/dataset/BPI_Challenge_2017/12696884
https://data.4tu.nl/articles/dataset/BPI_Challenge_2017/12696884
https://data.4tu.nl/articles/dataset/Sepsis_Cases_-_Event_Log/12707639
https://data.4tu.nl/articles/dataset/Sepsis_Cases_-_Event_Log/12707639

	Visualizing Trace Variants From Partially Ordered Event Data

