
The P2P Approach to Interorganizational Workflows

W.M.P. van der Aalst, M. Weske

Department of Technology Management, Eindhoven University of Technology
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands.

{w.m.p.v.d.aalst,m.weske}@tm.tue.nl

Abstract. This paper describes in an informal way the Public-To-Private (P2P)
approach to interorganizational workflows, which is based on a notion of inheri-
tance. The approach consists of three steps: (1) create a common understanding
of the interorganizational workflow by specifying a shared public workflow, (2)
partition the public workflow over the organizations involved, and (3) for each or-
ganization, create a private workflow which is a subclass of the respective part of
the public workflow. Using an example, we explain that the P2P approach yields
an interorganizational workflow which is guaranteed to realize the behavior spec-
ified in the public workflow.

1 Introduction

In today’s corporations, products and services are typically created by business pro-
cesses, and workflow technology can be used for enhancing the flexibility and efficiency
of these processes [14, 19]. Corporations often operate across organizational bound-
aries, for example in E-commerce and extended enterprises [11, 20, 27]. Consequently,
workflows between organizations — interorganizational workflows — are becoming
increasingly important [21, 12]. Interorganizational workflows are typically subject to
conflicting constraints of the organizations involved. On the one hand, there is a strong
need for coordination to optimize the flow of work in and between organizations. On the
other hand, the organizations involved are essentially autonomous and have the freedom
to create or modify workflows at any point in time. Some of the issues resulting from
these conflicting goals will be tackled in this paper: We introduce the Public-To-Private
(P2P) approach to interorganizational workflows which provides the means to specify
a common public workflow, to partition it according to the organizations involved and
to allow for private refinement of the parts by the organizations, based on a notion of
inheritance. The P2P approach guarantees that the private workflows of the participat-
ing organizations (or, as we prefer to say, the domains) satisfy the public workflow as
agreed upon; it consists of the following steps:

– Step 1: The organizations involved agree on a common public workflow, which
serves as a contract between these organizations.

– Step 2: Each task of the public workflow is mapped onto one of the domains. Each
domain is responsible for a part of the public workflow, referred to as its public
part.



– Step 3: Each domain can now make use of its autonomy to create a private work-
flow. To satisfy the correctness of the overall interorganizational workflow, how-
ever, each domain may only choose a private workflow which is a subclass of its
public part.

This paper introduces the P2P approach in an informal way, guided by an example
of an electronic bookstore. The paper is structured according to the steps mentioned,
and for each step concepts and notations are introduced when required; the complete
definitions and the technical details of the proofs can be found in [4]. Sections 2 through
4 present the phases of the P2P approach, and Section 5 summarizes the main results.
A discussion of related work and concluding remarks complete this paper.

2 Designing the Public Workflow (Step 1)

The example used throughout this paper is inspired by electronic bookstores such as
Amazon [8] and Barnes and Noble [9]. In this section, we design the public workflow
for ordering books. The scope of the workflow process includes the ordering, billing
and shipping of books, involving the customer, the bookstore, the publisher, and the
shipper.

The P2P approach uses workflow nets (WF-nets) [2] for modeling workflows, which
are a specific form of Petri nets. In WF-nets, tasks are modeled by transitions, and
causal dependencies are modeled by places and arcs. In fact, a place corresponds to a
condition which can be used as pre- and/or post-condition for tasks. An AND-split cor-
responds to a transition with two or more output places, and an AND-join corresponds
to a transition with two or more input places. OR-splits/OR-joins correspond to places
with multiple outgoing/ingoing arcs. A WF-net has one source place and one sink place
because any case (i.e., workflow instance) represented by the WF-net is created when it
enters the workflow management system and is deleted once it is completely handled.
An additional requirement is that there should be no dangling tasks or conditions, i.e.,
tasks and conditions which do not contribute to the processing of cases. Therefore, all
the nodes of the workflow should be on some path from source to sink. WF-nets with
these properties are called sound [1, 2].

Figure 1 shows the public workflow N publ of the electronic bookstore. This work-
flow can be regarded as a contract between the domains, i.e., the customer, the book-
store, the publisher, and the shipper. We stress that the public workflow does not nec-
essarily show the way the tasks are actually executed; the real process may be much
more detailed, and it may involve much more tasks. The public workflow only contains
the tasks which are of interest to all parties. The public workflow shown in Figure 1
is defined as a WF-net. While the mapping of the tasks to domains is only done in the
next step, one can think of the tasks in the left column as performed by the customer, for
instance the place c order task. The next columns to the right belong to the bookstore
(containing, e.g., the handle c order task to handle the customer order), the publisher
(e.g., eval b order), and the shipper (e.g., eval s req), respectively.

The workflow process is initiated by a customer placing an order (represented by
the task place c order). This customer order is sent to and is handled by the bookstore
(handle c order). The electronic bookstore is a virtual company which has no books in



i

o

place_c_order handle_c_order
c_order

handle_c_order

place_b_order

b_order
eval_b_order

b_accept
b_reject

b_decline

rec_decl
c_decline

decide

c_accept

alt_publ

b_confirm

c_confirm

s_request

req_shipment

s_decline

s_confirm

s_reject
s_accept

eval_s_req

alt_shipper

inform_publ

prepare_b

send_book

prepare_s

ship

notify

book_to_s

book_to_c

notification

ship_info

send_bill

bill

payment

pay

rec_acc

rec_book
rec_bill

handle_payment

c_reject

Customer Bookstore Publisher Shipper

Fig. 1. The public workflow Npubl .



stock. Therefore, the bookstore transfers the order of the desired book to a publisher
(place b order). The bookstore order is evaluated by the publisher (eval b order) and
either accepted (b accept) or rejected (b reject). In both cases an appropriate signal is
sent to the bookstore. If the bookstore receives a negative answer, it decides (decide)
to either search for an alternative publisher (alt publ) or to reject the customer order
(c reject). If the bookstore searches for an alternative publisher, a new bookstore order
is sent to another publisher, etc. If the customer receives a negative answer (rec decl),
then the workflow terminates. If the bookstore receives a positive answer (c accept), the
customer is informed (rec acc), and the bookstore continues processing the customer
order.

Once the order is confirmed, the bookstore sends a request to a shipper (req ship-
ment), the shipper evaluates the request (eval s req) and either accepts (s accept) or
rejects (b reject) the shipping request. If the bookstore receives a negative answer, it
searches for another shipper. This process is repeated until a shipper accepts. Note that,
unlike the unavailability of the book, the unavailability of a shipper can not lead to a can-
cellation of the order. After a shipper is found, the publisher is informed (inform publ),
the publisher prepares the book for shipment (prepare b), and the book is sent from the
publisher to the shipper (send book). The shipper prepares the shipment to the customer
(prepare s) and actually ships the book to the customer (ship). The customer receives
the book (rec book) and the shipper notifies the bookstore (notify). The bookstore sends
the bill to the customer (send bill). After receiving both the book and the bill (rec bill),
the customer makes a payment (pay). Then the bookstore processes the payment (han-
dle payment) and the interorganizational workflow terminates.

The public workflow shown in Figure 1 is indeed a sound WF-net, since it has
exactly one input place and one output place, at the moment when the workflow reaches
the output place, all tasks have completed, and there are no dead transitions, i.e., all tasks
of the WF-net are in fact reachable during workflow executions.

3 Partitioning the Public Workflow (Step 2)

In the second step of the P2P approach, the public workflow is partitioned according to
the domains, and the public parts are related to each other, making up an interorganiza-
tional workflow. An interorganizational workflows is defined by an interorganizational
workflow net (IOWF-net). An IOWF-net consists of a set of WF-nets, a set of channels,
a set of methods, and a channel flow relation.

In our example, the public workflow is partitioned over four domains: the customer
domain, the bookstore domain, the publisher domain, and the shipper domain, as shown
in Figure 2. Methods of the domains are represented by shaded boxes, and they are
linked to channels by the channel flow relation, which is represented by arrows. In
Figure 2, the public parts of the customer, the bookstore, the publisher and the ship-
per are represented by boxes N part

C
, Npart

B
, Npart

P
, and N

part

S
, respectively. Channels

are represented by icons, and the channel flow relation represented by arrows specifies
the linkage of the domains. For example, the c order channel and the attached arrows
represent the fact that customer order information flows from the customer domain to



the bookstore domain, while the confirmation of the order flows in opposite direction,
making use of channel c confirm.

Based on this description it is clear how the public workflow needs to be partitioned.
The public part of the customer domain is quite simple (cf. Fig. 3): The customer first
places an order, using the method place c order. Then either the order is accepted, the
book and the bill are received and the bill is paid, or the order is declined. Notice that for
each transition in the WF-net, there is a method linked to it by a dotted line, representing
the actual function which is invoked when the task is executed.

The public part of the bookstore workflow is slightly more complex (cf. Fig. 4):
After the order arrives, the bookstore checks for a publisher ready for providing the
ordered book. If no publisher can be found, the order is rejected. Otherwise, shipment
is requested from a shipper, and payment is handled. The public parts of the publisher
and shipper workflow are shown in Figure 5.

The IOWF-net is a high-level representation of the domains and their dependencies;
its semantics are given in terms of a labeled P/T net. A IOWF-net is transformed into a
labeled P/T net by taking the union of all WF-nets, adding a place for each channel, con-
necting transitions to these newly added places, and removing superfluous source and
sink places. We call this the flattening of the interorganizational workflow. As shown in
[4], we can easily make sure that the partitioning is valid, i.e., all public parts are sound
WF-nets and there is no multiple activation. We mention that the flattened IOWF-net
equals the public workflow. Hence, flattening the interorganizational workflow shown
in Figure 2 results in the public workflow shown in Figure 1.

4 Designing the Private Workflows (Step 3)

After partitioning the public workflow, each domain can realize the corresponding pub-
lic part of the interorganizational workflow in any way they want, as long as they make
sure that their private workflow is a subclass of their public part.

The subclass relationship between WF-nets is based on a specific notion of inher-
itance, called projection inheritance. Projection inheritance has been defined in [6, 10]
and uses encapsulation as a mechanism to establish subclass-superclass relationships.
The basic idea of projection inheritance can be characterized as follows:

If it is not possible to distinguish the behaviors of x and y when arbitrary meth-
ods of x are executed, but when only the effects of methods that are also present
in y are considered, then x is a subclass of y.

Projection inheritance is based on branching bisimilarity as the standard equivalence
relation on marked, labeled P/T-nets [15]. For projection inheritance, all new methods
(i.e., methods added in the subclass) are hidden; an abstraction operator � is used to
hide methods.

For any two sound WF-nets N and N ′, N ′ is a subclass of N under projection
inheritance if and only if the externally visible behavior of N ′ is branching bisimilar
to N . Let us consider the five WF-nets shown in Figure 6. N1 is not a subclass of N0

because hiding of the new task d results in a potential execution where a is followed
by c without executing b, i.e., the WF-net where d is hidden is not branching bisimilar.



NC
part

customer

c_order

c_decline

c_confirm

bill

NB
part

bookstore

payment

NP
part

publisher

b_order

b_decline

b_confirm

ship_info

book_to_s

NS
part

shipper

s_request

s_decline

s_confirm

notification

book_to_c

Fig. 2. The interorganizational workflow Qpart .



customer

place_c_order

pay

rec_acc

rec_bill

i

rec_decl

o

rec_book

Fig. 3. The WF-netN part

C
(public part of the customer domain).

N2 is a subclass of N0 because hiding e in N2 results in a behavior equivalent to the
behavior of N0, i.e., the addition of e only postpones the execution of b and does not
allow for a bypass such as the one in N1. N3 is also a subclass of N0: Hiding the parallel
branch containing f yields the original behavior. Finally, N 4 is also a subclass of N0.

Based on the notion of projection inheritance we have defined three inheritance-
preserving transformation rules. These rules correspond to design patterns when ex-
tending a superclass to incorporate new behavior: (1) adding a loop (rule PPS ), (2) in-
serting methods in-between existing methods (rule PJS ), and (3) putting new methods
in parallel with existing methods (rule PJ3S ). The formal definitions of these trans-
formation rules, their preconditions, and the proofs that these rules actually preserve
projection inheritance are given in [6, 10].

In the P2P approach, projection inheritance is used as a formal link between the
public parts of the domains and the private workflows which are actually executed.
Transformation rules are the key mechanism to create specializations of a given WF-
net, making use of the fact that applying these rules to a given WF-net is guaranteed to
create a subclass of that WF-net. Hence, the P2P approach is constructive in the sense
that any modification applied to a WF-net via transformation rules PPS , PJS , and
PJ3S yields a subclass of the WF-net.

Figure 7 shows the private workflow of the bookstore. Five new tasks, i.e., tasks not
present in the public workflow, have been added. After the customer order is handled,
the customer profile (information about the interests of the customer) is updated (up-
date customer profile). This task is executed in parallel with the placement of the book-
store order. After both tasks have been executed, the marketing department is informed
(inform marketing). The tasks monitor order, monitor shipment, and monitor payment
have been added to monitor the behavior of the publisher, shipper, and customer. The



bookstore

handle_c_order

c_reject

c_accept

i

send_bill

handle_payment

place_b_order

decide

inform_publ

req_shipment

alt_shipper

o

alt_publ

Fig. 4. The WF-netN part

B
(public part of the bookstore domain).

publisher

send_book

prepare_b

b_accept

b_reject

eval_b_order

i

o

shipper

eval_s_req

prepare_s

ship

notify

s_reject

s_accept

i

o

Fig. 5. The WF-netN part

P
(public parts of the publisher and shipper domains).



i

o

a

c

N0

b

i

o

a

c

N1

b d

i

o

a

c

N2

b

e

i

o

a

c

N3

b f

i

o

a

c

N4

b g

Fig. 6. N2,N3, and N4 are subclasses of N0 under projection inheritance.

task monitor order can be executed as long as the bookstore is waiting for a response
of the publisher. The task monitor shipment can be executed between the moment the
publisher is informed and the moment the shipper sends a notification. The task moni-
tor payment can be executed after the bill is sent to the customer. Note that each of the
monitor tasks can be executed multiple times. For example, the bookstore checks every
week whether the customer has paid and if needed takes action, e.g., sending a bailiff.

We now show by construction that the private workflow N
priv

B
(Figure 7) is in-

deed a subclass of N part

B
(Figure 4): tasks monitor order, monitor shipment, and mon-

itor payment can be added by applying transformation rule PPS three times; task in-
form marketing can be added using transformation rulePJS . To complete the construc-
tion, the task update customer profile can be added using transformation rule PJ3S .

Similarly, the private workflow of the publisher (Fig. 8) has been created by ap-
plying transformation rule PJS to the public part: The task check warehouse has been
added in-between the receipt of the order and the decision. In fact, the decision is based
on the result of check warehouse. After accepting the order of the bookstore, the cor-
responding inventory item is locked (lock inventory), the stock is replenished (if possi-
ble) (replenish), and the book is moved to the part of the warehouse reserved for books
which are waiting for shipment (move book to release buffer). It is easy to verify that
the private workflow N

priv

P
is a subclass of Npart

P
, using the transformation rule PJS .

Figure 9 shows the private workflow of the shipper. Using the transformation rules,
six new tasks have been added: Task check availability trucks is executed after the re-
quest by the bookstore is received. Based on this task the request is accepted or rejected.



bookstore

handle_c_order

c_reject

c_accept

i

send_bill

handle_payment

place_b_order

decide

inform_publ

req_shipment

alt_shipper

o

alt_publ

update_customer_profile

inform_marketing

monitor_order

monitor_shipment

monitor_payment

Fig. 7. The WF-netN priv

B
(private workflow of the bookstore domain).

publisher

send_book

prepare_b

b_accept

b_reject

eval_b_order

i

o

check_warehouse

lock_inventory

move_book_to_release_buffer

replenish

Fig. 8. The WF-netN priv

P
(private workflow of the publisher domain).



shipper

eval_s_req

prepare_s

ship

notify

s_reject

s_accept

i

o

check_availability_trucks

update_file

quality_control routing

assignment

re-assignment

Fig. 9. The WF-netN priv

S
(private workflow of the shipper domain).

Tasks update file and quality control are executed in parallel with the preparation and
shipment tasks. After preparation, shipments are assigned to trucks (assignment). Based
on the assignment, the routing of the truck is determined (routing). In-between tasks as-
signment and routing the task re-assignment can be executed multiple times. Again it
is easy to verify that the WF-net shown in Figure 9 is indeed a subclass of the one
shown in Figure 5. Task check availability trucks can be added using transformation
rule PJS . Tasks update file and quality control can be added using transformation rule
PJ3S . Tasks assignment, re-assignment, and routing can be added using transformation
rule PJS . Note that it is also possible to first add tasks assignment and routing using
PJS , and then add task re-assignment using transformation rule PPS .

The design of the interorganizational workflow involving a customer, bookstore,
publisher, and shipper presented in this paper is a simplification of the real process. In
the real process customers can order multiple books at the same time, the customer can
return books, the customer can refuse to pay, etc. One can imagine that for realistic
interorganizational workflows where the public part consists of more than fifty tasks
and the overall workflow consists of hundreds of tasks, a structured approach is needed
to avoid all kinds of anomalies. In our opinion, the P2P approach could be used as a
starting point for a more comprehensive approach which also deals with other aspects
such as data and security.

5 Summary and Main Results

To summarize the P2P approach, in the first step the public workflow is specified in
terms of a sound WF-net; it serves as a contract between the business partners involved.
In the second step, the public workflow is partitioned over the set of domains. Note



that each domain corresponds to an organizational entity. As a result of the partitioning,
each fragment of the partitioned workflow corresponds to one of the domains and is
represented by a sound WF-net, called public part. In the final step, the public parts are
replaced by private workflows. Each private workflow corresponds to an actual work-
flow as it is executed in one of the domains. The P2P approach guarantees that each
private workflow is a subclass of the corresponding public part under projection in-
heritance. It is important to note that the P2P approach is constructive: By applying
the three transformation rules introduced above, the design is guaranteed to be correct
without the need to check whether each private workflow is actually a subclass of the
corresponding public part.

Following the general tone of this paper, we explain the main results informally and
introduce concepts if and when required. Please refer to [4] for a detailed theoretical
discussion. The first result concerns the overall workflow, which consists of all private
workflows of the participating domains.

Result 1: The overall workflow is a sound WF-net.

This property is based on the observation that a part of a WF-net (called sub-
flow) can be replaced by a specialization (i.e., a subclass subflow) without endangering
soundness of the overall workflow. This result is proven in [4], based on a theorem
which shows the compositionality of projection inheritance. From an application point
of view, Result 1 makes sure that the P2P approach guarantees that the overall workflow
is free of deadlocks and other anomalies.

Result 2: The overall workflow is a subclass of the public workflow.

This result shows that the dynamic behavior of the interorganizational workflow which
the business partners agreed upon in the public workflow is in fact guaranteed to be
satisfied by the execution of the interorganizational workflow, i.e., the overall workflow.
From an application point of view, this is an important result, since it provides the
business partners with the ability to perform any private modifications to their public
workflow part, as long as the subclass relationship holds. Transformation rules are used
for this purpose. Hence, an organization can be sure that its private workflow indeed
satisfies the requirements specified in the contract, i.e., the public workflow.

The next result is based on the notion of local views of the domains. To introduce
local views, we mention that each domain is aware of its private workflow and of the
public parts of the other domains. The information which each domain has with respect
to the overall workflow is called the local view of that domain. With respect to local
views, the following interesting result can be obtained, which stresses the soundness of
the P2P approach.

Result 3: The overall workflow is a subclass of the local views of all domains,
which in turn are subclasses of the public workflow.

For the final two properties we have to introduce some notation. Since projection inher-
itance is a partial ordering on the set of WF-nets, the Greatest Common Denominator
(GCD) and the Least Common Multiple (LCM) can be defined. GCD and LCM are
general concepts that apply to any ordering, and there are different applications of these



concepts in the context of WF-nets, as described in more detail in [6]. In essence, the
GCD of a set of WF-nets is a WF-net that captures the part these nets have in common,
i.e., the part where they agree on. The LCM captures all possible behaviors. Note that
projection inheritance is a partial order but not a lattice. Therefore, suitable definitions
of GCD and LCM are far from trivial but can be defined as is shown in [6].

i

o

a

c

NGCD

b

e

f

i

o

a

c

NLCM

b g

Fig. 10. The greatest common divisorNGCD and least common multipleNLCM ofN0,N2,N3,
and N4 shown in Figure 6.

For an illustration of these concepts, consider the WF-nets N0, N2, N3, and N4

shown in Figure 6. The GCD of these four nets is N0, i.e., each of the four WF-nets is
a subclass of this net and it is not possible to find a different WF-net which is also a
superclass of N2, N3, and N4 and at the same time a subclass of N0. Figure 10 shows
NGCD = N0 as the GCD of N0, N2, N3, and N4. Figure 10 also shows the WF-net
NLCM . NLCM is a subclass of each of the four nets considered. Moreover, it is not
possible to find a different WF-net which is also a subclass of N0, N2, N3, and N4 and
at the same time a superclass of NLCM . Any execution sequence generated by one of
the four nets can also be generated by NLCM after the appropriate abstraction. Based
on the characterization of GCD and LCM we are now ready to present the following
result:

Result 4: The GCD of all local views is the public workflow.

The application specific interpretation of this result is as follows: The public workflow
is the superclass of the local views of all domains, and it is minimal in the sense that



no different WF-net can be found, which is a superclass of the local views and at the
same time a subclass of the public workflow. This is an interesting, yet not surprising
result. It shows that the local views of the domains have exactly the public workflow in
common.

Analogously to the discussion of Result 4, the final result states a relationship be-
tween the local views of the domains and the overall workflow, as it is executed:

Result 5: The LCM of all local views is the overall workflow.

We interpret Result 5 as follows: The overall workflow is a specialization of all local
views; conversely, the local views are superclasses of the overall workflow. The overall
workflow is minimal in the sense that it is not possible to find a different WF-net which
is also a subclass of all local views and which is a superclass of the overall workflow.

6 Related Work and Conclusions

Petri nets have been proposed for modeling workflow process definitions long before the
term “workflow management” was coined and workflow management systems became
readily available. Consider for example the work on Information Control Nets, a variant
of the classical Petri nets, in the late seventies [13].

Only a few papers in the literature focus on the verification of workflow process
definitions. In [16] some verification issues have been examined and the complexity
of selected correctness issues has been identified, but no concrete verification proce-
dures have been suggested. In [1] and [7] concrete verification procedures based on
Petri nets have been proposed. This paper builds upon the work presented in [1] where
the concept of a sound WF-net was introduced. The technique presented in [7] has been
developed for checking the consistency of transactional workflows including temporal
constraints. However, the technique is restricted to acyclic workflows and only gives
necessary conditions (i.e., not sufficient conditions) for consistency. In [23] a reduc-
tion technique has been proposed. This reduction technique uses a correctness criterion
which corresponds to soundness and the class of workflow processes considered are in
essence acyclic free-choice Petri nets.

This paper differs from the above approaches because the focus is on interorgani-
zational workflows. Only a few papers explicitly focus on the problem of verifying the
correctness of interorganizational workflows [3, 17]. In [3] the interaction between do-
mains is specified in terms of message sequence charts and the actual overall workflow
is checked with respect to these message sequence charts. A similar, but more formal
and complete, approach is presented by Kindler, Martens, and Reisig in [17]. The au-
thors give local criteria, using the concept of scenarios (similar to runs or basic message
sequence charts), to guarantee the absence of certain anomalies at the global level. Both
approaches [3, 17] are not constructive, i.e., they only specify criteria for various no-
tions of correctness but do not provide concrete design rules such as the transformation
rules.

In the last decade several researchers explored notions of behavioral inheritance
(also named subtyping or substitutability), see [10] for an overview. Researchers in the
domain of formal process models (e.g., Petri-nets and process algebras) have tackled



similar questions based on the explicit representation of a process by using various
notions of (bi)simulation . The inheritance notion used in this paper is characterized
by the fact that it is equipped with both inheritance-preserving transformation rules to
construct subclasses [10] and transfer rules to migrate instances from a superclass to a
subclass and vice versa [6]. These features are very relevant for a both constructive and
robust approach towards interorganizational workflows.

We have developed a tool named Woflan (WOrkFLow ANalyzer [2, 28]). Woflan is
an analysis tool which can be used to verify the correctness of a workflow process def-
inition. The analysis tool uses state-of-the-art techniques to find potential errors in the
definition of a workflow process. Woflan is designed as a workflow management system
independent analysis tool. In principle it can interface with many workflow manage-
ment systems. At the moment, Woflan can interface with the workflow management
systems COSA (Software Ley [25]), METEOR (LSDIS [24]), Staffware (Staffware
[26]), and with the business process re-engineering tool Protos (Pallas Athena [22]).
Woflan has not been designed to analyze interorganizational workflows. However, it
can be used to verify the soundness property used throughout this paper, and it can also
check whether a given workflow is a subclass of another workflow.

In the future we hope to extend the P2P approach in several directions. First of
all, we want to address local dynamic changes. The transfer rules presented in [6] can
be used to migrate workflow instances from a superclass to a subclass and vice versa.
Therefore, it is possible to change the workflows in each of the domains on the fly, i.e.,
it is possible to automatically transfer each case to the latest version of the process.
Other aspects of future work include the reconfiguration of interorganizational work-
flows (tasks move from one domain to another), the usage of alternative inheritance
notions and the implementation of the concepts in prototypical workflow management
systems, e.g., by using METEOR [5, 24] or InterProcs [18].

References

1. W.M.P. van der Aalst. Verification of Workflow Nets. In P. Azéma and G. Balbo, editors,
Application and Theory of Petri Nets 1997, volume 1248 of Lecture Notes in Computer
Science, pages 407–426. Springer-Verlag, Berlin, 1997.

2. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management. The Journal
of Circuits, Systems and Computers, 8(1):21–66, 1998.

3. W.M.P. van der Aalst. Interorganizational Workflows: An Approach based on Message Se-
quence Charts and Petri Nets. Systems Analysis - Modelling - Simulation, 34(3):335–367,
1999.

4. W.M.P. van der Aalst. Inheritance of Interorganizational Workflows: How to Agree to Dis-
agree Without Loosing Control? BETA Working Paper Series, WP 46, Eindhoven University
of Technology, Eindhoven, 2000.

5. W.M.P. van der Aalst and K. Anyanwu. Inheritance of Interorganizational Workflows to
Enable Business-to-Business E-commerce. In Proceedings of the Second International
Conference on Telecommunications and Electronic Commerce (ICTEC’99), pages 141–157,
Nashville, Tennessee, October 1999.

6. W.M.P. van der Aalst and T. Basten. Inheritance of Workflows: An approach to tackling
problems related to change. Theoretical Computer Science, 2001 (to appear).



7. N.R. Adam, V. Atluri, and W. Huang. Modeling and Analysis of Workflows using Petri Nets.
Journal of Intelligent Information Systems, 10(2):131–158, 1998.

8. Amazon.com, Inc. Amazon.com. http://www.amazon.com, 1999.
9. Barnes and Noble. bn.com. http://www.bn.com, 1999.

10. T. Basten. In Terms of Nets: System Design with Petri Nets and Process Algebra. PhD thesis,
Eindhoven University of Technology, Eindhoven, The Netherlands, December 1998.

11. R. Benjamin and R. Wigand. Electronic markets and virtual value chains on the information
superhighway. Sloan Management Review, pages 62–72, 1995.

12. R.W.H. Bons, R.M. Lee, and R.W. Wagenaar. Designing trustworthy interorganizational
trade procedures for open electronic commerce. International Journal of Electronic Com-
merce, 2(3):61–83, 1998.

13. C.A. Ellis. Information Control Nets: A Mathematical Model of Office Information Flow.
In Proceedings of the Conference on Simulation, Measurement and Modeling of Computer
Systems, pages 225–240, Boulder, Colorado, 1979. ACM Press.

14. D. Georgakopoulos, M. Hornick, and A. Sheth. An Overview of Workflow Management:
From Process Modeling to Workflow Automation Infrastructure. Distributed and Parallel
Databases, 3:119–153, 1995.

15. R.J. van Glabbeek and W.P. Weijland. Branching Time and Abstraction in Bisimulation
Semantics. Journal of the ACM, 43(3):555–600, 1996.

16. A.H.M. ter Hofstede, M.E. Orlowska, and J. Rajapakse. Verification Problems in Conceptual
Workflow Specifications. Data and Knowledge Engineering, 24(3):239–256, 1998.

17. E. Kindler, A. Martens, and W. Reisig. Inter-Operability of Workflow Applications: Local
Criteria for Global Soundness. In W.M.P. van der Aalst, J. Desel, and A. Oberweis, editors,
Business Process Management: Models, Techniques, and Empirical Studies, volume 1806 of
Lecture Notes in Computer Science, pages 235–253. Springer-Verlag, Berlin, 2000.

18. R.M. Lee. Distributed Electronic Trade Scenarios: Representation, Design, Prototyping.
International Journal of Electronic Commerce, 3(2):105–120, 1999.

19. F. Leymann and D. Roller. Production Workflow: Concepts and Techniques. Prentice-Hall
PTR, Upper Saddle River, New Jersey, USA, 1999.

20. T.W. Malone, R.I. Benjamin, and J. Yates. Electronic Markets and Electronic Hierarchies:
Effects of Information Technology on Market Structure and Corporate Strategies . Commu-
nications of the ACM, 30(6):484–497, 1987.

21. M. Merz, B. Liberman, K. Muller-Jones, and W. Lamersdorf. Interorganisational Workflow
Management with Mobile Agents in COSM. In Proceedings of PAAM96 Conference on the
Practical Application of Agents and Multiagent Systems, 1996.

22. Pallas Athena. Protos User Manual. Pallas Athena BV, Plasmolen, The Netherlands, 1999.
23. W. Sadiq and M.E. Orlowska. Applying Graph Reduction Techniques for Identifying Struc-

tural Conflicts in Process Models. In Proceedings of the 11th International Conference on
Advanced Information Systems Engineering (CAiSE ’99), volume 1626 of Lecture Notes in
Computer Science, pages 195–209. Springer-Verlag, Berlin, 1999.

24. A. Sheth, K. Kochut, and J. Miller. Large Scale Distributed Information Systems (LSDIS)
laboratory, METEOR project page. http://lsdis.cs.uga.edu/proj/meteor/meteor.html.

25. Software-Ley. COSA User Manual. Software-Ley GmbH, Pullheim, Germany, 1998.
26. Staffware. Staffware 2000 / GWD User Manual. Staffware plc, Berkshire, United Kingdom,

1999.
27. The White House. A Framework for Global Electronic Commerce.

http://www.ecommerce.gov/framewrk.htm, 1997.
28. H.M.W. Verbeek, T. Basten, and W.M.P. van der Aalst. Diagnosing Workflow Processes us-

ing Woflan. Computing Science Report 99/02, Eindhoven University of Technology, Eind-
hoven, 1999.


