
Contents lists available at ScienceDirect 

Computers in Industry 

journal homepage: www.elsevier.com/locate/compind 

Utilizing domain knowledge in data-driven process discovery:  
A literature review 

Daniel Schustera,b,⁎, Sebastiaan J. van Zelsta,b, Wil M.P. van der Aalsta,b 

a Fraunhofer FIT, Process Mining Research Group, Schloss Birlinghoven, Sankt Augustin 53757, North Rhine-Westphalia, Germany 
b RWTH Aachen University, Chair of Process and Data Science, Ahornstraβe 55, Aachen 52074, North Rhine-Westphalia, Germany    

a r t i c l e  i n f o   

Article history: 
Received 1 September 2021 
Received in revised form 4 December 2021 
Accepted 17 January 2022 
Available online xxxx  

Keywords: 
Process mining 
Process discovery 
Process models 
Human-in-the-loop 
Hybrid intelligence 

a b s t r a c t   

Process mining aims to improve operational processes in a data-driven manner. To this end, process mining 
offers methods and techniques for systematically analyzing event data. These data are generated during the 
execution of processes and stored in organizations' information systems. Process discovery, a key discipline 
in process mining, comprises techniques used to (automatically) learn a process model from event data. 
However, existing algorithms typically provide low-quality models from real-life event data due to data- 
quality issues and incompletely captured process behavior. Automated filtering of event data is valuable in 
obtaining better process models. At the same time, it is often too rigorous, i.e., it also removes valuable and 
correct data. In many cases, prior knowledge about the process under investigation can be additionally used 
for process discovery besides event data. Therefore, a new family of discovery algorithms has been de
veloped that utilizes domain knowledge about the process in addition to event data. To organize this re
search, we present a literature review of process discovery approaches exploiting domain knowledge. We 
define a taxonomy that systematically classifies and compares existing approaches. Finally, we identify 
remaining challenges for future work. 
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1. Introduction 

The execution of processes–ranging from business to production 
processes–is often supported by information systems. These systems 
record the processes’ execution in great detail, e.g., which process 
activities were executed, their order, their duration, and which re
sources were involved. These records are referred to as event data. To 
improve an organization’s processes, the analysis of event data 
provides valuable opportunities. Process mining (van der Aalst, 2016) 
offers techniques, tools, and methods for systematically analyzing 
event data to gain insights into the execution of processes. These 
insights are used to optimize the processes, i.e., the central objective 
of process mining. 

Process discovery (van der Aalst, 2018) is a key discipline in pro
cess mining. Starting from event data, a discovery algorithm learns a 
process model describing the process as captured in the provided 
event data. Fig. 1 illustrates the general architecture of conventional 
discovery algorithms. Automated, data-driven process discovery as
sumes that event data are the most objective representation of a 
process. However, event data often have quality issues (Martin et al., 
2021, Table 4), such as incorrect logged process behavior, incomplete 
process behavior resulting from ongoing process executions while 
the event data was extracted, and missing process behavior that 
actually occurred. Apart from data-quality issues, concurrency in 
many processes often yields incomplete event data because not 
every possible scheduling of the concurrent process activities is 

captured. As such, process discovery from event data can be seen as 
an unsupervised learning task. 

Many process discovery algorithms have been developed. Most of 
them work fully-automated, i.e., they take event data as input, op
tionally allow to set configuration parameters, and return a process 
model, cf. Fig. 1. We refer to such algorithms as conventional process 
discovery algorithms. However, the process models discovered by 
conventional algorithms are often of low quality because of the 
aforementioned data-quality issues (Suriadi et al., 2017). Moreover, 
it is difficult for a user to choose a suitable process discovery algo
rithm for specific event data because each algorithm works differ
ently and, thus, may produce different results. Therefore, in-depth 

Event
Log L

Conventional
Process

Discovery
Algorithm

Configuration
Parameters

Process
Model M

Fig. 1. Schematic visualization of the general architecture of conventional process 
discovery algorithms. From event data that describe the execution of a process, a 
process model is automatically learned using a process discovery algorithm. Limited 
interaction is possible: either filtering the input or adjusting configuration para
meters. 
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knowledge of the discovery algorithms is generally necessary to 
select a suitable algorithm for a given use case. This practical pro
blem, for instance, led to research on recommender systems sup
porting the selection of an appropriate discovery algorithm for given 
event data (Ribeiro et al., 2014; Pérez-Alfonso et al., 2015). 

The circumstances above led to a new family of process discovery 
algorithms: algorithms that utilize domain knowledge in addition to 
event data. In this paper, we refer to domain knowledge as any prior 
knowledge about the process to be discovered besides event data. 
Domain knowledge is often available alongside existing event data, 
such as documents describing the process and the knowledge of 
process participants about the process. The utilization of domain 
knowledge in process discovery has various advantages. For in
stance, it helps: to reduce the negative impact of quality issues in the 
event data on the process model to be discovered, to overcome 
limitations when only incomplete process behavior is available, and 
to discover specific patterns that most conventional discovery al
gorithms cannot learn, e.g., long-term dependencies and process 
models with duplicate activity labels. Moreover, first studies indicate 
that exploiting domain knowledge within process discovery out
performs conventional discovery algorithms (Dixit et al., 2018b;  
Benevento et al., 2019). 

Existing domain-knowledge-utilizing discovery approaches 
range from fully-automated approaches, which additionally use 

domain knowledge along with event data as input, to truly in
teractive/incremental approaches where a user plays a central role 
in the discovery process and actively provides domain knowledge 
to the algorithm during discovery. Fig. 2 visualizes various op
portunities where domain knowledge can be utilized in the con
text of process discovery. For example, domain knowledge can be 
utilized in the event data pre-processing phase, e.g., to label ob
served process behavior, i.e., positive behavior should be in
corporated in a process model, and negative behavior should not 
be incorporated. Thus, process discovery is transformed into a 
supervised learning task. Domain knowledge can also be used as an 
additional input of the discovery algorithm. For example, a hand- 
crafted model describing parts of the model to be discovered 
could be provided to the discovery algorithm as a starting point 
next to event data. Also, during the execution of the discovery 
algorithm, i.e., during the learning of a process model, domain 
knowledge can be utilized, e.g., a user has to actively give feedback 
to the discovery algorithm on intermediate discovered process 
models and next steps. These examples illustrate that domain- 
knowledge-utilizing process discovery algorithms are much more 
heterogeneous compared to conventional process discovery from 
a user’s perspective. 

The field of domain knowledge utilization in process discovery 
has become increasingly attractive in recent years (cf. Fig. 3). This 

Fig. 2. Overview of various opportunities where domain knowledge about the process to be discovered can be utilized in the different phases of process discovery. Note that we 
distinguish two types of domain-knowledge-utilizing discovery algorithms: automated discovery algorithms and interactive/incremental discovery algorithms, allowing the user to 
dynamically provide domain knowledge based on intermediate results during the discovery. 
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paper, therefore, presents a literature review of existing domain- 
knowledge-utilizing discovery approaches to answer the research 
question: 
RQ1. What is the current state of research in process discovery that 
uses domain knowledge in addition to event data?Further, this 
literature review addresses the following research questions about 
domain-knowledge-utilizing process discovery approaches. 

RQ1.1. At which point is domain knowledge utilized/provided? 

RQ1.2. What types of domain knowledge are used, and how is 
domain knowledge specified? 

RQ1.3. Which process model formalisms are used? 

RQ1.4. Do the domain-knowledge-utilizing process discovery 
algorithms exhaust the full possibilities of a process model 
formalism? 

RQ1.5. How are the algorithms realized in software tools? 

In answering these research questions, we aim to achieve three 
main research objectives: (1) providing an overview of existing do
main-knowledge-utilizing discovery approaches, (2) developing a 
taxonomy for said approaches, and (3) identifying open challenges 
and opportunities for future work. This paper presents the first lit
erature review on this process discovery family to the best of our 
knowledge. In total, we identified thirteen discovery approaches. We 
propose a taxonomy for domain-knowledge-utilizing discovery ap
proaches to systematically categorize and compare the identified 
approaches. Finally, we identify ten open challenges, highlighting 
the need for further research. 

The remainder of this paper is organized as follows. Section 2 
presents related work. Section 3 introduces basic concepts of process 
mining. Section 4 introduces a taxonomy for domain-knowledge- 
utilizing process discovery approaches. Section 5 provides an over
view and systematic comparison of existing approaches. Section 6 
discusses the adoption of domain-knowledge-utilizing process dis
covery in industry. Section 7 highlights open challenges for future 
work. Finally, Section 8 concludes this paper. 

2. Related work 

The field of process mining (van der Aalst, 2016) is a largely 
growing discipline, cf. (Reinkemeyer, 2020, Fig. 21.1). Various re
search areas have emerged over the years within process mining, for 
instance, process discovery (van der Aalst, 2010), conformance 
checking (Carmona et al., 2018; Dunzer et al., 2019), prediction (Tax 
et al., 2020), and event abstraction (van Zelst et al., 2021). There are 
reviews of the various research findings for each of the previously 
exemplified areas to summarize the state of knowledge and identify 
remaining challenges. In the remainder of this section, we focus on 
process discovery. 

Many algorithms exist within conventional process discovery (cf.  
Fig. 1). A recent overview is presented in (Augusto et al., 2018), 
which systematically compares 35 conventional process discovery 
algorithms. Further, the authors benchmark a subset of the identified 
approaches using real-life event data. In (van Dongen et al., 2009), a 
review of conventional process discovery algorithms that are based 
on Petri nets is given. In (van der Aalst, 2018), a brief history of 
process discovery is presented, and general, underlying concepts of 
process discovery algorithms are presented. A further overview of 
process discovery algorithms can be found in (van der Aalst, 2016). 

Domain-knowledge-utilizing process discovery techniques have 
recently increased in interest, cf. Fig. 3. The usage of prior knowledge 
about the process under investigation and the user's involvement in 
the discovery process is gaining attention in process mining. For 
example, in (Reinkemeyer, 2020, Chapter 21), the challenge of 
combining process modeling with process discovery is presented. 
The authors propose hybrid models, a mix of hand-crafted and au
tomatically discovered process models, as one of the main chal
lenges in process mining. The idea of hybrid models corresponds to 
the more general idea of hybrid intelligence, i.e., combining human 
and machine intelligence. According to (Kerremans et al., 2021, 
38ff.), hybrid models are a promising approach for the further de
velopment of process mining. In (Benevento et al., 2019; Dixit et al., 
2018b), use case studies in the healthcare domain are presented, 
showing that a specific domain-knowledge-utilizing approach out
performs conventional process discovery. The above references 
show that domain-knowledge-utilizing process discovery is relevant 
with high future potential. However, there is no literature review on 
domain-knowledge-utilizing process discovery to the best of our 
knowledge. 

3. Background 

This section outlines the main concepts within process mining. 
First, we introduce event data and process models. Finally, we pre
sent process discovery and model repair that can also be used for 
interactive process discovery. 

3.1. Event data 

Executing operational processes generates data in the informa
tion systems involved. Such data, capturing the execution of pro
cesses, are referred to as event data. Table 1 shows an example of an 
event log, i.e., a collection of event data, from a travel permit ad
ministration process, adopted from (van Dongen, 2020). Each row 
corresponds to an event capturing the execution of a process activity 
for a specific process instance, i.e., a case. Each column corresponds 
to an event attribute. For example, the first event indicates that the 
activity Permit submitted was executed for the process instance 
identified by the case-id 72861 on January 11, 2017 at 21:55:13 by an 

Fig. 3. Growing interest in domain-knowledge-utilizing process discovery. Published documents by year matching the search term ("process mining" AND ("process 
discovery" OR “model repair") AND ("interactive" OR “incremental" OR “domain knowledge" OR “prior knowledge" OR “hybrid intelligence" OR “human- 
in-the-loop")) using Scopus and ACM on August 18, 2021. 
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Employee who belongs to the group Staff member. Many process 
mining techniques, e.g., discovery algorithms, analyze event data to 
generate insights into the actual process. 

We refer to the sequence of executed activities for a specific case 
as a trace. Note that each event relates to precisely one case. For 
instance, the trace for case 72861 is <  Permit submitted , Permit final 
approved, Start trip, End trip, Declaration submitted, Declaration final 
approved, Request payment, Payment handled > . An event log typically 
consists of multiple cases, i.e., multiple recorded executions of a 
process. Events within a case are typically ordered based on their 
execution timestamp. We refer to unique sequences of executed 
activities as trace variants. 

3.2. Process models 

Process models allow us to specify the execution of processes 
graphically. Many formalisms exist, e.g., Business Process Modeling 
Notation (BPMN) (Chinosi and Trombetta, 2012), Petri nets (van der 
Aalst, 1998), and process trees (Leemans, 2017). In Fig. 4, we present 
three different process model formalisms describing the same pro
cess. Although all models in Fig. 4 describe the same control flow of 
activities, the expressiveness of the three formalisms generally dif
fers. For example, the BPMN model specifies that a reminder is sent 
after 48 h if no declaration is submitted. Further, the model indicates 
which resources are involved in executing the different process ac
tivities. Such information cannot be modeled in the other two 
formalisms. 

Most process model formalisms used in process discovery focus 
on the control flow perspective, i.e., which activities are present in a 
process and how they relate to each other. Next to the control flow 
perspective, some process model formalisms include a data per
spective or an organizational/resource perspective (Dumas et al., 2013). 
For instance, BPMN provides modeling elements to specify the re
sources involved in executing an activity and, further, provides ele
ments to model the flow of data artifacts. However, most process 
discovery algorithms only discover the control flow perspective. 

Next to the process model formalism and its graphical re
presentation, many process discovery algorithms restrict the class of 
discoverable models within a given formalism. Therefore, these al
gorithms constrain the chosen process model formalism, e.g., re
quiring specific structural properties, prohibiting activity duplicates 
and silent/unobservable activities in the discovered process models. 
For example, various important sub-classes of Petri nets play an 
important role in process discovery, e.g., Workflow nets (WF-net), 
sound WF-nets, free-choice WF-nets, and block-structured WF-nets 
(van der Aalst, 1996; Leemans, 2017). A detailed overview of dif
ferent target process model classes is out of this paper’s scope; we 
refer to (van der Aalst, 2016) for an overview. However, it is essential 
to know that the target model class of process discovery algorithms 
is of great importance because specific control flow patterns cannot 

be represented in every process model class. Therefore, we refer to 
limitations imposed by choice of a particular process model form
alism and other possible restrictions made by the discovery algo
rithm on that formalism as representational bias (van der 
Aalst, 2016). 

3.3. Process discovery 

In business process management (BPM), process discovery is 
considered the collection of information about a process and the 
transformation of said information into a process model, which 
describes the process as it is executed in reality (Dumas et al., 2013). 
Thereby, techniques like document analysis, process observations, 
interviews and workshops with process stakeholders are applied to 
discover a process model. However, process discovery in the context 
of process mining, however, follows an entirely data-driven ap
proach. Event data are considered a digital imprint of a process, and 
process discovery algorithms learn a process model from these event 
data, i.e., historical data on the executions of a process. In the re
mainder of this paper, we focus on process discovery as considered 
in process mining. 

Most existing process discovery approaches are fully automated. 
Event data are fed into a discovery algorithm, and a process model is 
returned. Apart from adjusting configuration parameters of the 
discovery algorithm, no other input besides the event data is used. 
The configuration parameters of an algorithm can be used, e.g., to 
adjust the complexity of the resulting process model or to auto
matically filter the event data (e.g., filtering infrequent behavior). 
Apart from setting the configuration parameters, no interaction is 
possible. The actual process discovery phase, i.e., learning a model, is 
fully automated, cf. Fig. 1. We call this described family of process 
discovery approaches conventional process discovery. 

3.4. Conformance checking 

Conformance checking (Carmona et al., 2018) deals with com
paring process models and event data. The purpose of conformance 
checking techniques is to quantify the extent to which observed 
process behavior, i.e., event data, conforms or does not conform to 
modeled process behavior, i.e., process models. In general, con
formance checking is a separate research area within process 
mining. Nevertheless, conformance checking techniques are essen
tial for domain-knowledge-utilizing process discovery. For example, 
in an interactive discovery phase, i.e., a user discovers a process 
model jointly with an algorithm, feedback on the current pre
liminary process model's conformance with the event data is of 
great importance. 

Table 1 
Example of an event log where each row corresponds to a single event. Events are ordered by case-id. The shown event data describes an administrative process of handling travel 
permits, adopted from (van Dongen, 2020). Note that, in general, events usually contain more attributes than shown here.        

Case-ID Activity Timestamp Resource Resource Role …  

⋮ ⋮ ⋮ ⋮ ⋮ … 
72861 Permit submitted 11.01.2017 21:55:13 Employee Staff member … 
72861 Permit final approved 11.01.2017 21:55:18 Supervisor Staff member … 
72861 Start trip 12.01.2017 00:00:00 Employee Staff member … 
72861 End trip 20.01.2017 00:00:00 Employee Staff member … 
72861 Declaration submitted 22.02.2017 18:08:07 Employee Staff member … 
72861 Declaration final approved 22.02.2017 18:14:32 Supervisor Staff member … 
72861 Request payment 03.03.2017 14:51:42 undefined System … 
72861 Payment handled 06.03.2017 17:31:08 undefined System … 
72379 Permit submitted 12.01.2017 09:17:36 Employee Staff member … 
⋮ ⋮ ⋮ ⋮ ⋮ …    
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3.5. Process model repair 

The area of process model repair (Fahland and van der Aalst, 
2015), which is considered a separate research area, can be posi
tioned between process discovery and conformance checking 
(Carmona et al., 2018). Process model repair techniques use con
formance checking techniques to compare a given process model to 

given event data. If the model does not fully reflect the behavior 
recorded in the event data, repair the given model. Consider Fig. 5, in 
which we depict a schematic overview of process model repair. A 
process model M and event data are the input for model repair ap
proaches. If the recorded process behavior as captured in the event 
data conforms to the process model M, there is nothing to repair, and 
M is returned, i.e., =M M . Suppose the recorded process behavior is 

Fig. 4. Three process models describing the same travel permit process, i.e., the same control flow of activities, in different process model formalisms, i.e., BPMN, Petri nets, and 
process trees. The process starts with submitting a permit, which is either rejected or approved. If it is approved, the trip takes place, i.e., Start Trip and End Trip. Next, a reminder is 
optionally sent multiple times. Once a declaration is submitted, it is either rejected, in this case a declaration has to be submitted again, or it is approved. Finally, payment related 
activities are executed. The BPMN model (a) additionally contains resource information and models that a reminder is sent 48 h after a declaration has not been submitted. 
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not fully supported by the process model M. In that case, M is altered 
such that all the recorded process behavior is supported and M is as 
similar as possible compared to the original model M. Especially the 
latter goal, i.e., the repaired model should be as similar as possible to 
the original model, is important because it distinguishes process 
model repair from process discovery (besides the different inputs). 
Assuming this goal would not exist, one could apply process dis
covery on the given event data using an algorithm that guarantees to 
return a process model that describes all given behavior. 

Although model repair techniques are intended to post-process a 
process model, they can also be used incrementally to learn a pro
cess model. Compared to Fig. 2, repair techniques can be considered 
an interactive/incremental process discovery algorithm. Given an 
initial model (a priori domain knowledge), missing process behavior 
can be added to the initial process model gradually (in vivo, user- 
selected behavior) or at once. 

4. Distinguishing features for domain-knowledge-utilizing 
process discovery 

To structure the field of domain-knowledge-utilizing process 
discovery, this section presents distinguishing features that allow us 
to systematically compare and categorize the different approaches. 
The remainder of this section is structured like follows. First, we 
explain how we derived the specific distinguishing features in  
Section 4.1. Subsequently, we present the specific derived features 
and corresponding characteristics. Finally, we present dependencies 
between the different features and characteristics. 

4.1. Identification and construction strategy 

This section highlights the construction of the proposed distin
guishing features and their corresponding characteristics. We fol
lowed the definition of a taxonomy from Nickerson et al. (2010). The 
authors define a taxonomy as a set of dimensions D1, …, Dn. Each 
dimension Di for i ϵ {1, …, n} consists of ki ≥ 2 potential character
istics. Further, when applying this taxonomy to a specific object, for 
each dimension exactly one potential characteristic applies, i.e., 
mutually exclusive and collectively exhaustive (Nickerson et al., 
2010). However, for this literature review, we modified this defini
tion by omitting mutual exclusiveness. Hence, we allow an object, 
i.e., a domain-knowledge-utilizing process discovery approach, to 
have more than one potential characteristic for a given dimension. In 
the following, we refer to the dimensions as features to differentiate 
from (Nickerson et al., 2010). 

The goal of the distinguishing features is to answer the research 
questions posed in Section 1. The proposed distinguishing features 
are the result of various discussions within the author team and with 
other peers. The proposed characteristics for each distinguishing 
feature are derived from the analysis of the identified papers. 

4.2. Distinguishing features 

In this section, we present eight distinguishing features with 
corresponding characteristics. Fig. 6 summarizes the identified fea
tures. Note that we have identified first-level and second-level fea
tures. For instance, if an approach uses explicit domain knowledge 
(feature: domain knowledge type), we are further interested in 
whether the used specification formalism is imperative or declara
tive (Fig. 6). 

4.2.1. Timing of domain knowledge provision 
As shown in Fig. 2, domain knowledge can be provided and uti

lized at various times during process discovery. For instance, domain 
knowledge can be an additional input next to event data, domain 
knowledge can be utilized during an interactive discovery phase, and 
domain knowledge can be used after the discovery of a model to 
post-process it. We are therefore interested in the timing of domain 
knowledge provision. 

We identify three characteristics regarding when domain 
knowledge is assumed to exist and be used: a priori, in vivo, and a 
posteriori. We categorize an approach as a priori if domain knowl
edge is an input next to event data, i.e., domain knowledge is re
quired before the actual discovery phase starts. In vivo describes 
approaches that allow for domain knowledge injection during the 
discovery phase, e.g., by incorporating user feedback. An approach 
utilizes domain knowledge a posteriori if after the actual discovery 
phase domain knowledge is used, e.g., domain knowledge is used to 
post-process a discovered process model. 

4.2.2. Domain knowledge type 
Domain knowledge is a broad concept and can exist in many 

different forms. Therefore, we are interested in the type of domain 
knowledge assumed by the domain-knowledge-utilizing process 
discovery algorithms. 

In this paper, we distinguish between explicit domain knowledge 
and domain knowledge in terms of user feedback to the algorithm. 
We consider explicit domain knowledge as domain knowledge 
which is specified in a formalism and fed into the discovery algo
rithm and, thus, the user explicitly provides it to the algorithm. For 
instance, precedence constraints between process activities and in
itial process models, which serve as a starting point for the discovery 
algorithm, are considered explicit domain knowledge. In contrast, 
user feedback is any decision that a user makes based on options 
provided by a discovery algorithm. An example of user feedback is an 
algorithm providing intermediate process models to the user in an 
ongoing discovery phase. The user must decide which process model 
to continue using. Compared to explicit domain knowledge, dis
covery algorithms actively request user feedback. 

Note that the domain knowledge type and the timing of domain 
knowledge utilization are independent features. For instance, ex
plicit domain knowledge can be incrementally provided by the user 
to the discovery algorithm in vivo, i.e., during the discovery phase. 
Alternatively, user feedback can be requested in vivo. 

We are further interested in the domain knowledge specification 
formalism if an approach utilizes explicit domain knowledge. We 
distinguish imperative and declarative specification formalisms. 
Imperative formalisms follow a closed-world assumption, i.e., only 
behavior explicitly described in the formalism is allowed. In contrast, 
declarative formalisms follow an open-world assumption, i.e., all 
behavior is allowed that satisfies given restrictions specified in the 
formalism. 

4.2.3. Degree of interactivity 
Domain-knowledge-utilizing process discovery algorithms have 

different approaches regarding user involvement during the dis
covery phase. The spectrum ranges from completely automated 

Process Model
Repair Algorithm

Event
Data

Process
Model M

Configuration
Parameters

Process
Model M

Fig. 5. Schematic visualization of process model repair. A process model M and event 
data are assumed as input. If all the recorded process behavior (i.e., event data) 
conforms to M, M does not get modified, i.e., =M M . If there is process behavior 
recorded in the event data that is not included in model M, the process discovery 
approach repairs M such that the repaired model M reflects all process behavior from 
the event data. 
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algorithms, i.e., no user interaction is possible during the discovery 
phase, to algorithms in which the user has a central role in an in
teractive discovery phase and makes essential decisions regarding 
the process model to be discovered. According to Fig. 2, we distin
guish two levels of interactivity: automated and interactive/incre
mental. We categorize approaches that do not support any option to 
inject domain knowledge, e.g., through user feedback, during the 
discovery phase as automated. For instance, approaches that use 

explicit domain knowledge and event data as input but do not offer 
user interaction are categorized as automated (cf. Fig. 2). Note that, 
by definition, automated approaches do not use domain knowledge 
in vivo. 

In contrast, we categorize approaches that allow injecting do
main knowledge during the actual discovery phase, e.g., through 
user feedback, as interactive/incremental. We further distinguish in
teractive/incremental approaches by the existence of an auto- 

Distinguishing
features

Timing of
domain
knowledge
provision
(Section 4.2.1)

a priori

in vivo

a posteriori

Domain know-
ledge type
(Section 4.2.2)

explicit Specification
formalism

imperative

declarative
user feedback

Degree of
interactivity
(Section 4.2.3)

automated

interactive/
incremental

Auto-complete
option

yes

no

Output process
model formalism
(Section 4.2.4)

imperative Process model
formalism

Petri nets

BPMN

Causal nets
(C-nets)

Information
control nets (ICNs)

Directly-follows
graphs (DFGs)

Log-trees

declarative Process model
formalism

DECLARE

First-order logic
Output process
model formalism
restrictions
(Section 4.2.4)

yes

no

Output guaran-
tees
(Section 4.2.5)

yes

no

Application
focus
(Section 4.2.6)

process discovery

model repair

Software
realization
(Section 4.2.7)

available

unknown/not (pub-
licly) available

Fig. 6. Overview of the identified distinguishing features (gray filled boxes) and their characteristics (light gray filled boxes).  
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complete option. An auto-complete option ensures that the algo
rithm is able to autonomously learn a process model if the user 
decides to stop providing feedback to the algorithm. 

4.2.4. Output process model formalism 
The used process model formalism and potential restrictions of 

the formalism made by the discovery algorithm are of great im
portance when comparing different process discovery approaches 
because formalisms differ in their expressiveness. Reconsider the 
term representational bias, introduced in Section 3.3. The choice of a 
discovery algorithm on a particular formalism for the discovered 
process models and potential restrictions of the chosen formalism 
always implies a representative bias since every formalism has re
strictions and limitations on which process behavior can be spe
cified. 

We are therefore interested in the formalisms used. First, we 
distinguish between imperative and declarative process model 
formalisms, similar to Section 4.2.2. Thus, we further distinguish the 
exact formalism used, i.e., Petri nets, BPMN, causal nets (C-nets), in
formation control nets, directly-follows graphs (DFGs), log-trees, DE
CLARE, or first-order logic. We are further interested in whether 
discovery approaches constrain the chosen output formalism, as 
such constraints limit the expressiveness of a process model form
alism. For instance, some process discovery algorithms cannot dis
cover models that have the same activity label twice in different 
places in the model, i.e., duplicate labels. 

4.2.5. Output guarantees 
Guarantees regarding the discovered model are of great im

portance when comparing process discovery approaches in general. 
We are interested in whether the approaches can guarantee specific 
properties of the discovered process model regarding the given 
event data and the given domain knowledge. For example, if full 
replay fitness is ensured, i.e., all selected process behavior from the 
event data is represented in the discovered model. Alternatively, if it 
is always guaranteed that domain knowledge about the process 
being discovered is fully integrated into the resulting model, i.e., the 
domain knowledge is fully reflected by the model. However, guar
antees can also refer to process models and their properties, e.g., 
whether a Petri net represents a sound Workflow net. Soundness 
(van der Aalst et al., 2011) is a favorable property of Workflow nets, 
e.g., ensuring that from any state of the model, there is always the 
possibility to complete the process and that there are no dead 
transitions within the model. We refer to (van der Aalst, 2016, 2011) 
for further information on soundness. In summary, such guarantees 
are important for the application of process discovery approaches 
because they make the discovery approaches reliable with respect to 
the output. 

4.2.6. Application focus 
As mentioned in Section 3.5, model repair techniques can also be 

used to discover a process model incrementally. Therefore, we are 
interested in the intended application focus of an algorithm. The 
application focus describes whether an approach has been intended 
for process discovery or model repair use cases. Starting from an initial 
process model, a user can gradually select process behavior that is 
not yet supported by the process model and apply a model repair 
approach. The resulting process model can then be reused in the 
next iterative execution in which further process behavior is added. 

4.2.7. Software realization 
The software support, especially for domain-knowledge-utilizing 

process discovery approaches, is of great importance. For example, 
interactive process discovery algorithms, i.e., human-in-the-loop 
process discovery, must communicate intermediate results, design 
decisions, or questions to the user, for which the algorithm requests 

feedback. Another example is the elicitation and specification of 
domain knowledge where the user needs support from software. For 
instance, supporting the user in specifying constraints in a particular 
formalism and verifying that the specified domain knowledge is free 
of contradictions. Therefore, we are interested in the software rea
lization of the compared approaches. 

Besides the existence of an implementation of an approach, we 
are interested in whether the software provides a graphical user 
interface (GUI) and how the user interaction is realized therein. For 
instance, how does the tool support the user to specify explicit do
main knowledge, or how is the feedback loop from the user to the 
algorithm designed. Furthermore, we are interested in the technical 
realization of the software. 

4.3. Dependencies among characteristics and features 

As discussed in Section 4.1, we do not generally assume mutual 
exclusiveness for the characteristics per feature. Therefore, we pro
vide in Table 2 an overview for which feature mutual exclusiveness 
applies. For instance, the feature “Timing of domain knowledge 
provision” is not mutually exclusive; thus, a domain-knowledge- 
utilizing approach can be assigned various characteristic values for 
this feature (cf. Fig. 6). 

Further, there exist two dependencies between certain features 
and characteristics. Thus, not all theoretically potential feature/ 
characteristic combinations exist. In the following, we explain these 
two dependencies.  

1. If the “Application focus” of an approach is model repair, the 
approach requires a process model as input, i.e., explicit domain 
knowledge. Hence, the approach’s “Domain knowledge type” is 
explicit. Note that the approach can additionally use user feed
back because the characteristics of the feature “Domain knowl
edge type” are not mutually exclusive.  

2. If the “Degree of interactivity” of an approach is automated, the 
“Timing of domain knowledge provision” feature cannot be 
in vivo. 

5. Literature review 

Based on the identified distinguishing features, this section 
provides a detailed overview of various process discovery algorithms 
which utilize domain knowledge. The remainder of this section is 
structured as follows. In Section 5.1, we present the design of our 
literature review, including the literature search process and the 
criteria we applied to assess if the literature is within the scope of 
this review. Next, Section 5.2 briefly and individually describes the 
identified discovery algorithms and their core idea regarding the 
utilization of domain knowledge. Thereby, we classify each approach 
based on the distinguishing features defined in Section 4. Finally,  
Section 5.3 discusses and compares the approaches and their char
acteristics per distinguishing feature. 

Table 2 
Overview of mutual exclusiveness regarding characteristics for each feature.    

Feature Mutual Exclusive  

Timing of domain knowledge provision  
Domain Knowledge Type  
Specification formalism (per single type) ✓ 
Degree of Interactivity ✓ 
Auto-complete option ✓ 
Output Process Model Formalism ✓ 
Process model formalism ✓ 
Output Guarantees ✓ 
Application Focus ✓ 
Software Realization ✓    
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5.1. Design 

According to the diversity in the design of a literature review, we 
present our concrete approach in this section to ensure transparency 
regarding our design decisions. In this literature review, we pri
marily followed the guidelines given in Brocke et al. (2009) and  
Webster and Watson (2002). According to Brocke et al. (2009), the 
process of literature reviewing can be split up into five phases: 1) 
definition of the review scope, 2) conceptualization of the topic, 3) 
literature search and evaluation, 4) literature analysis and synthesis, 
and 5) research agenda. The outcome of the first phase, the defini
tion of review scope, was presented in Section 1. We will further 
discuss the scope in more detail in this section. The outcomes of the 
second phase, conceptualization of topic, were presented in Section 
3. Further, we presented distinguishing features in Section 4. The 
third phase, literature search, and evaluation of the found literature, 
i.e., filtering literature outside the scope of a literature review, is a 
crucial phase, according to Brocke et al. (2009). Thus, we ex
haustively explain our approach regarding the third phase in this 
section. Phases four and five, the analysis of the identified literature, 
and the development of a research agenda will be presented in  
Sections 5.2, 5.3, and 7. 

To identify relevant literature, we performed a keyword search 
on scientific databases. First, we queried the databases: Scopus,1 

ACM Digital Library,2 and SpringerLink.3 All databases index a ple
thora of journals, book series, conference proceedings, and work
shop proceedings. For instance, Scopus indexes over 39,000 journals 
and conference proceedings in total.4 For each database, we used the 
same logical combination of keywords. For example, we used the 
search term TITLE-ABS-KEY("process mining" AND ("process 
discovery" OR “model repair") AND ("interactive" OR 
“domain knowledge" OR “hybrid intelligence" OR “human- 
in-the-loop")) in Scopus. Note that the exact query syntax may 
differ depending on the database. Table 3 shows in the column Hits, 
i.e., the number of literature found matching the search query for 
each database. Note that we do not further limit the search results, 
e.g., we do not apply a time filter or exclude workshop publications. 

Given the search results, we evaluated the literature based on 
three knockout criteria according to the scope outlined in Section 1. 
First, we focus on approaches whose primary focus is process dis
covery. Second, we exclude work that solely provides conceptual 
ideas without providing a specific algorithm and use case studies 
applying process discovery. For instance, in Kindler et al. (2006), a 
general framework to incrementally discover process models from 
document and version management systems is presented, and in  
Hammori et al. (2004), requirements for an interactive workflow 
mining system are described. 

Third, we focus on approaches that utilize domain knowledge in 
the process discovery phase (cf. Fig. 2). Thus, we exclude approaches 
that utilize domain knowledge solely in the event data pre-proces
sing phase because these approaches address event data pre-pro
cessing in a general manner. Event data pre-processing is required/ 
beneficial for any applied process mining technique, and it is con
sidered a separate research area. For instance, we exclude domain- 
knowledge-utilizing filtering techniques (Sadeghianasl et al., 2020;  
Martin et al., 2019; Sani et al., 2019; Gschwandtner et al., 2014), label 
splitting techniques (Lu et al., 2016), and event abstraction techni
ques (van Zelst et al., 2021). Further, we exclude domain-knowledge- 
utilizing post-processing approaches for process models, i.e., ap
proaches only applied after the actual discovery phase. However, as 

discussed in Section 4.2.6, process model repair techniques can also 
be used to discover a process model incrementally. Thus, we con
sider process model repair techniques in this literature review. It 
should be noted that we do not, though, provide a complete over
view of all existing approaches to process model repair unless the 
techniques differ according to the identified distinguishing char
acteristic regarding use in the context of process discovery. Fur
thermore, from the point of view of process discovery, a detailed 
comparison of model repair techniques makes little sense since the 
mode of operation to discover a model is the same. Analogously, we 
exclude pure post-processing approaches. Moreover, we exclude 
approaches that use only domain knowledge and no event data to 
discover a process model. For example, in (Friedrich et al., 2011), the 
authors describe an approach that learns a model based only on 
natural language descriptions of a process and does not use any 
event data. Apart from the listed restrictions, we include all ap
proaches that are intended to discover a process model and utilize 
domain knowledge in addition to event data. 

Table 3 shows the number of found publications for each data
base and the number of remaining publications after gradually ap
plying the three knockout criteria.5 After removing duplicates, we 
identified 12 relevant approaches from the database queries. In ad
dition to the conducted database queries, we applied backward 
search for all 12 identified publications (Brocke et al., 2009). Thus, 
we evaluated all references from each of the 12 identified publica
tions. After removing duplicates, the 12 identified papers cite in total 
270 publications. From these 270 publications, 10 fulfill all three 
criteria. We found one publication/approach among the ten identi
fied publications we did not identify before with the database 
searches. Thus, we finally identified 13 domain-knowledge-utilizing 
discovery approaches that are included in this literature review. An 
overview of the identified approaches is presented in Table 4. 

5.2. Descriptions of identified approaches 

This section briefly describes each identified domain-knowledge- 
utilizing approach to provide an overview of how the approaches 
work and, in particular, how domain knowledge is utilized. 
Following the order in Table 4, we individually present the ap
proaches. Note that in Section 5.3, we discuss and compare the 
different approaches based on the identified distinguishing features, 
cf. Fig. 6. 

5.2.1. Approach A1 
Goedertier et al. (2009) present an automated approach that 

utilizes a priori domain knowledge. The approach allows providing 
prior knowledge about which process activities are executed in 
parallel and which are sequentially executed. This information is 
utilized to enrich the given event log with missing behavior because 
event logs are often incomplete and do not contain all possible 
scheduling sequences of parallel behavior. For instance, assume 
there are n atomic process activities executed in parallel. In this case, 
there exist n! many sequential executions of these n activities. Any 
missing sequential execution in the event log is automatically added 
based on the provided domain knowledge. Based on the domain 
knowledge, the approach learns a Petri net that may contain, for 
example, loops, duplicate labels, and non-free choice constructs. 

5.2.2. Approach A2 
Maggi et al. (2011) propose an automated approach to learn a 

process model, i.e., a DECLARE model graphically represented as a 
ConDec model (Pesic and van der Aalst, 2006). DECLARE consists of 

1 http://scopus.com 
2 https://dl.acm.org/ 
3 https://link.springer.com/ 
4 https://www.scopus.com/sources.uri (Accessed 11/25/2021). 

5 Detailed information on the search terms used, the literature found, and the 
application of the three criteria can be found in the supplementary material. 
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behavioral templates to represent specific relationships between 
process activities. The user restricts (a priori domain knowledge) the 
algorithm to a desired subset of templates that the algorithm is al
lowed to use, i.e., which templates appear in the resulting process 
model. The approach automatically learns constraints based on the 
selected templates and generates a process model out of this. Fur
thermore, the approach guarantees that the given event data fits the 
discovered constraints. 

5.2.3. Approach A3 
Rembert et al. (2013) propose an automated discovery approach 

that utilizes a priori, explicit domain knowledge in the form of an 
augmented Information Control Net (ICN), i.e., an imperative form
alism. An ICN represents relationships between process activities. In 
an extended ICN, the user assigns belief values (between 0 and 1) to 
the relationships, expressing the user’s belief in the given de
pendency between the corresponding activities. Based on the event 
data and the augmented ICN, a process model is automatically 
learned and presented as an ICN. The authors explicitly highlight 
cases where event data contain uncertainties or where important 
but infrequent process behavior is present in the event data as a 
primary application of their approach. 

5.2.4. Approach A4 
Yahya et al. (2013) present an automated approach that utilizes a 

priori domain knowledge. A user can specify the following re
lationships between activities: causal, unrelated, parallel. Ad
ditionally, start and end activities can be specified. Based on the 
notion of activity proximity, which reflects the relations between 
activities as recorded in the event log, and the specified domain 
knowledge, a process model is learned, i.e., a directed graph, 
showing the directly-follows-relation between activities. 

5.2.5. Approach A5 
Dixit et al. (2015) present an automated approach. The approach 

uses an initial process model, event data, and user-specified con
straints, i.e., DECLARE constraints, as input. Thus, the approach uses 
domain knowledge a priori. Given the initial process model, a brute 
force method is applied to generate different models by randomly 
applying edit operations. Next, the resulting models are evaluated 
based on the event data—standard quality measures are calculated, 
i.e., replay fitness, precision, generalization, and simplicity—based on 
the number of applied edit operations and the number of satisfied 
user-specified constraints. For an introduction to the standard 
quality measures, we refer to (van der Aalst, 2016, Chapter 6.4.3). 
These six measures are used to create a Pareto front of the best 
process models. Compared to Fig. 2, the approach returns multiple 
process models after the discovery phase. Finally, the obtained se
lection of process models is presented to the user, who must select 
the final process model. We categorize this user feedback as a pos
teriori. 

5.2.6. Approach A6 
Greco et al. (2015, 2012) propose an automated process discovery 

approach that utilizes explicit domain knowledge in the form of 
precedence constraints, i.e., a declarative formalism. These pre
cedence constraints specify the dependencies among the process 
activities and are an additional input next to event data, i.e., a priori. 
Process models are represented as extended C-nets. The approach 
guarantees that the resulting C-net describes the behavior in the 
event data and fulfills the given precedence constraints; otherwise, 
no model is returned. The authors explicitly highlight the log com
pleteness problem, i.e., when event data does not include all possible 
executions of the actual process to be discovered, as a suited use case 
of their approach. 

Table 3 
Overview of the literature search process. First, we queried the given databases. We identified 12 publications matching the scope of this literature review. Starting from these 12 
publications, we conducted backward search that resulted in 10 identified publications. The backward search identified a new previously unidentified approach. Thus, we 
identified in total 13 publications/approaches.         

Number of publications satisfying 

Source Hits Criterion 1. Criteria 1. and 2. Criteria 1., 2., and 3.  

Scopus  43  20  13 9 
ACM Digital Library  60  26  11 2 
SpringerLink  408  79  63 10 
Σ    12 (duplicates removed) 
Backward Search (given the 12 identified publications)  270   10 
Σ    13 (duplicates removed)    

Table 4 
Overview of the identified approaches ordered by publication year. Note that when an approach is refined/extended over multiple publications, we list the year of the most recent 
publication.       

Approach ID First author Ref. Year Description  

A1 Goedertier et al. Goedertier et al. (2009) 2009 Section 5.2.1 
A2 Maggi et al. Maggi et al. (2011) 2011 Section 5.2.2 
A3 Rembert et al. Rembert et al. (2013) 2013 Section 5.2.3 
A4 Yahya et al. Yahya et al. (2013) 2013 Section 5.2.4 
A5 Dixit et al. Dixit et al. (2015) 2015 Section 5.2.5 
A6 Greco et al. Greco et al. (2015, 2012) 2015 Section 5.2.6 
A7 Fahland et al. Fahland and van der Aalst (2015, 2012) 2015 Section 5.2.7 
A8 Armas-Cervantes et al. Armas-Cervantes et al. (2017a) 2017 Section 5.2.8 
A9 Canensi et al. Canensi et al. (2017) 2017 Section 5.2.9 
A10 Dixit et al. Dixit et al. (2018b) 2018 Section 5.2.10 
A11 Yürek et al. Yürek et al. (2018) 2018 Section 5.2.11 
A12 Ferilli et al. Ferilli and Esposito (2013), Ferilli (2020) 2020 Section 5.2.12 
A13 Schuster et al. Schuster et al. (2020) 2020 Section 5.2.13    
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5.2.7. Approach A7 
Fahland and van der Aalst (2015, 2012) introduce the field of 

process model repair and present a process model repair approach. 
Given a process model and an event log containing traces that the 
model does not support, the repair approach alters the process 
model such that the model accepts all traces in the event log and is 
as similar—both from a language and a structural point of view—as 
possible to the original model. Therefore, we categorize this repair 
approach as interactive/incremental, i.e., starting from an initial 
process model (explicit, a priori domain knowledge), we repair the 
process model by incrementally adding trace variants to it (explicit, 
in vivo domain knowledge). The repair approach generally works on 
Petri nets, i.e., no restriction on a specific subclass. Moreover, an 
auto-complete option is theoretically given by automatically adding 
all remaining, non-fitting trace variants from a given log. 

5.2.8. Approach A8 
Armas-Cervantes et al. (2017a) propose a model repair approach, 

which we categorize as interactive/incremental like A7. Compared to 
A7, this approach relies on user feedback. The approach uses BPMN as 
process model formalism. By applying conformance checking tech
niques to a given event log and BPMN model, mismatches between 
the model and the data are detected and visualized in a BPMN model 
editor. These visualizations of discrepancies between the model and 
the log are an essential feature of the approach. Next to visualizing 
the discrepancies, the approach also visualizes repair proposals in 
the model. Based on the visual feedback, the user can then manually 
repair the process model or apply the suggested repair. As a possible 
disadvantage, the authors mention the potential effort for the user if 
there are many discrepancies between the log and the model. 

5.2.9. Approach A9 
Canensi et al. (2017) introduce an interactive/incremental process 

discovery approach tailored for medical process mining use cases. 
Initially, the approach automatically discovers a process model, i.e., a 
log-tree, using an existing, non-domain-knowledge-utilizing algo
rithm (Bottrighi et al., 2016). The discovered log-tree describes the 
entire event log, i.e., no automatic filtering is applied. Note that a 
log-tree can contain the same activity label various times because it 
encodes all traces from the event log in a tree structure. Given the 
discovered log-tree, a user can specify a posteriori subgraphs and 
provide these as domain knowledge to the approach. Given the 
subgraphs, the approach identifies all occurrences of these sub
graphs in the log-tree and highlight them to the user. Based on user 
feedback, i.e., a user selects all or a subset of the identified subgraphs 
in the log-tree, the approach merges the selected subgraphs to ob
tain a simplified log-tree. However, note that this merging might 
result in a log-tree that describes additional behavior that is not 
present in the initially discovered log-tree. 

5.2.10. Approach A10 
Dixit et al. (2018b) propose an interactive/incremental process 

discovery approach where the user models the process model in an 
interactive editor with support of the underlying algorithm, which 
recommends modeling options based on the provided event log. 
Starting from an initial model that does not contain any activity from 
the event data, the user gradually extends the model by adding new 
elements. Thus, the approach uses implicit domain knowledge in 
vivo. The process model formalism used is free-choice (Desel and 
Esparza, 2005) workflow nets, a subclass of Petri nets. The approach 
guarantees that the Petri net under construction remains sound, a 
favorable property of Petri nets, by restricting the edit operations to 
the application of synthesis rules (Desel and Esparza, 2005). During 
editing the net, the user gets constant feedback and support from 
the tool regarding positioning new elements and relations between 

process activities. Additionally, the tool offers an auto-complete 
option. 

5.2.11. Approach A11 
Yürek et al. (2018) present an interactive/incremental discovery 

approach that uses explicit domain knowledge in vivo. First, the 
approach automatically discovers a DFG from the provided event 
data. Afterward, a user can explicitly change the model by ag
gregating, deleting, and adding activities to the DFG. However, the 
actual change of the DFG is processed by the algorithm and the user 
only specifies where/how/what should be changed, e.g., between 
process activity a and b process activity x should be executed. Then, 
the algorithm modifies the underlying data model accordingly and 
discovers a new process model. This procedure can be executed 
iteratively, cf. (Yürek et al., 2018, Fig. 3). 

5.2.12. Approach A12 
Ferilli and Esposito (2013) and Ferilli (2020) propose an inter

active/incremental process discovery approach. First-Order Logic 
(FOL) (declarative) is the formalism used to represent process be
havior. Starting from an initial model, i.e., a set of formulae that 
might also be empty, new process behavior can be added in
crementally by the user. The approach uses explicit domain knowl
edge a priori (initial model) and in vivo (incremental adding of 
process behavior). The approach also learns information on the 
process beyond the control flow. For instance, the process model, i.e., 
FOL formulae, also includes information on resources involved in 
executing process activities. As for the other incremental ap
proaches, the approach offers an auto-complete option. 

5.2.13. Approach A13 
Schuster et al. (2020) propose an interactive/incremental process 

discovery approach where a user incrementally selects process be
havior not yet supported by a process model under construction. 
Starting from an initial process model (i.e., explicit and a priori do
main knowledge), a user incrementally selects a trace variant not 
supported by the current process model yet. We categorize these 
incrementally selected trace variants as explicit and in vivo domain 
knowledge. The selected trace variant, potential previously selected 
trace variants, and the current process model are fed into the in
cremental discovery approach. The approach alters the process 
model such that the resulting model supports the previously added 
traces and the selected trace variant. The returned process model is 
then used as input in the next iteration, where the user adds the next 
trace variant to the model under construction. The approach uses 
process trees as a process model formalism and guarantees that the 
incrementally selected trace variants fit the resulting model. Further, 
the approach offers an auto-complete option by simply adding all the 
behavior of an event log to the model. 

5.3. Discussion 

This section compares the different approaches and discusses the 
different characteristics per distinguishing feature. A compact 
overview of this comparison can be found in Table 5, in which we list 
the different characteristics per distinguishing feature for each ap
proach. Table 6 provides an overview of the number of approaches 
that have been categorized according to the different characteristics 
of the distinguishing features. Subsequently, each feature is dis
cussed individually, following the order given in Fig. 6. 

5.3.1. Timing of domain knowledge provision 
Comparing the timing of domain knowledge provision, we ob

serve that ten approaches assume domain knowledge to be provided 
a priori, six approaches utilize domain knowledge in vivo, and two 
approaches utilize domain knowledge a posteriori, i.e., after the 
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actual discovery phase. Note that the feature timing of domain 
knowledge provision is not mutually exclusive (cf. Table 2), e.g., an 
approach can utilize domain knowledge a priori and in vivo. Further 
note that we have excluded approaches that focus solely on post- 
processing process models, cf. Section 5. 

Interestingly, only six approaches support in vivo utilization of 
domain knowledge, i.e., these allow the user to interact with the 
algorithm during the actual discovery. Three out of these six ap
proaches (i.e., A7, A12, and A13) follow an incremental discovery 
approach, i.e., traces are incrementally selected by the user and 
added to a process model under construction by the algorithm. Two 
other approaches (i.e., A8, A10) assume that the user is actively 
providing feedback by either modeling or repairing the process 
model guided by suggestions from the algorithm. Although A11 also 
allows editing an initially discovered process model, the algorithm 
does not provide the user with any modeling suggestions compared 
to the previous two approaches. This observation shows that current 
algorithms are very limited in terms of the variety of in vivo utili
zation of domain knowledge and that many possibilities of in vivo 
utilization of domain knowledge have not yet been explored. 

5.3.2. Domain knowledge type 
Twelve out of thirteen approaches utilize explicit domain 

knowledge, and only four , i.e., A5, A8, A9, and A10, utilize user 
feedback. Only A10 solely utilizes user feedback. Note that the fea
ture domain knowledge type is not mutually exclusive, cf. Table 2. 
Further note that the automated approaches utilize only explicit 
domain knowledge since these approaches do not offer user inter
action, as discussed in Section 4.3. 

The process discovery algorithms incrementally adding traces to 
a process model under construction (i.e., A7, A8, A10, and A12) use 
an initial model a priori, explicit domain knowledge, and user-se
lected traces in vivo. The user-selected traces are explicit domain 
knowledge within the discovery phase. 

The remaining approaches that utilize explicit domain knowl
edge (i.e., A1-A6, A9 and A11) use declarative as well as imperative 
formalisms. We observe the following formalisms to represent ex
plicit domain knowledge: control flow constraints (e.g., precedence 
constraints and DECLARE constraints), initial process models, aug
mented ICNs, and incrementally selected traces. Precedence con
straints and DECLARE constraints are both declarative formalisms. 

Table 5 
Classification and overview of process discovery approaches utilizing domain knowledge and/or user feedback (La Rosa et al., 2011; Armas-Cervantes et al., 2017b; Dixit et al., 
2018a; Schuster et al., 2021a).   
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However, the DECLARE formalism is more expressive than pre
cedence constraints because DECLARE contains precedence con
straints and offers further constraints, e.g., the DECLARE formalism 
enables the user to specify the exact number of times a process 
activity must occur. Augmented ICNs are an imperative formalism 
modeling the control flow of process activities. However, in practical 
use, it might be difficult for the user to assign a value between 0 and 
1 to the different control flow relations, which expresses the cer
tainty of the user for to the relation. 

Comparing the utilized user feedback across the approaches (i.e., 
A5, A8, A9, and A10), we observe the following interaction options: 
selecting a final model out of multiple candidates (i.e., A5), mod
eling/repairing a model based on suggestions from the algorithm in 
an editor (i.e., A10/A8), and selecting identical process model parts 
that are to be merged (i.e., A9). 

5.3.3. Degree of interactivity 
Comparing the degree of interactivity, we observe that five ap

proaches (i.e., A1-A4 and A6) are fully-automated. The remaining 
approaches are classified as interactive/incremental, i.e., they sup
port in vivo provision of domain knowledge or some form of user 
feedback. All interactive/incremental approaches, except for A5 and 
A9, offer an auto-complete option, i.e., these approaches can also be 
used in an automated way without mandatory domain knowledge 
provision. Note that to both approaches, i.e., A5 and A9, an auto- 
complete option could be easily added. In the case of A5, the ap
proach would have to decide at the end which process model to 
return based on some predefined criteria instead of leaving this 
decision to the user. Similarly, A9 could simply merge all detected 
identical process model parts. 

5.3.4. Output process model formalism and restrictions 
Comparing the used process model formalisms, we see that a 

wide range of different formalisms is used. We observe that only two 
approaches use declarative formalisms to represent the discovered 
model, while the other approaches use imperative formalisms. 
However, most of the used process model formalisms are not 
common in industrial applications, for instance, process trees, C- 
nets, and ICNs. 

The most common formalism used by the identified approaches 
is Petri nets. Except for one approach (i.e., A7), approaches using 
Petri nets focus on a subclass, i.e., either process trees or free-choice 
workflow nets. Process trees are widely used in state-of-the-art 
conventional process discovery approaches, e.g., the Inductive Miner 
(Leemans et al., 2013) and the Evolutionary Tree Miner (Buijs et al., 
2014). However, it is important to note that the expressiveness of 
process trees is limited, e.g., long-term dependencies—a choice at 
the beginning of a process influences a choice later in the pro
cess—cannot be modeled. On the other hand, process trees guar
antee favorable behavioral characteristics, e.g., they are deadlock- 
free, i.e., a process tree cannot be in a state where no more activity 
can be executed although the end has not yet been reached. 
Therefore, process trees are an important subclass of Petri nets for 
process mining use cases but have inherent limitations. Similarly, 
according to (van der Aalst, 2016, cf. Chapter 6.4), free-choice 
workflow nets cannot reflect all behavior from real-life processes. A4 
and A11 use a simple graph representation, i.e., a DFG, as process 
model formalism. Although DFGs are widely used in industrial ap
plications of process mining, this formalism has low expressiveness 
compared to the other imperative formalisms observed. For ex
ample, control flow operators such as choices and parallel joins/ 
splits cannot be modeled because DFGs represent only process 

Table 6 
Overview of the number of approaches assigned to the individual characteristics, cf. Fig. 6. We marked features that are not mutually exclusive 
with *, cf. Table 2. For the calculation of the relative numbers of the characteristics of the second level, we have taken the absolute number of the 
characteristics of the corresponding first level as a basis.    
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activities and their potentially directly following process activities.  
van der Aalst (2019) extensively explains the use of DFGs and the 
pitfalls of deriving misleading diagnoses from DFGs. 

5.3.5. Output guarantees 
We observe that eight approaches provide guarantees concerning 

the discovered process model, and five approaches do not. Most 
approaches guarantee that the initially given or incrementally se
lected event data fit the discovered process model, i.e., the recorded 
process behavior in the event data conforms to the discovered pro
cess model. Thereby, it is important to distinguish between ap
proaches guaranteeing that the entire given event data are fitting 
(i.e., A2, A6, A9) and approaches (i.e., A7, A8, A12, and A13), allowing 
the user to interactively select the desired process behavior to be 
included in the process model under construction. If there is no 
option for the user to interactively influence the process model 
during the process discovery phase, e.g., by selecting desired process 
behavior from the event data to be included in the model or by 
editing the process model under construction, data-quality is even 
more critical. All process behavior captured in the given event da
ta—including noise, incomplete behavior, etc.–will be represented in 
the discovered process model if the approach guarantees full fitness. 
Therefore, the quality of the input event data is critical to the suc
cessful application of the techniques above. 

Interestingly, only approach A2 provides guarantees regarding 
the a priori, explicit domain knowledge, and the resulting process 
model. The approach guarantees that the resulting model fits the 
given event data and the precedence constraints between process 
activities given as explicit domain knowledge. This leads to an in
teresting design decision. Suppose domain knowledge and event 
data have conflicting information about the process to be discovered. 
In that case, the approach must decide, i.e., either return nothing 
because no solution satisfies both domain knowledge and event 
data, favor domain knowledge over event data, or vice versa. For 
instance, the user could model the precedence constraint specifying 
process activity a is always executed before b; however, we observe 
the exact opposite in the event data. A6 is designed to not return a 
model unless both event data and domain knowledge can be fully 
represented in a process model. Although we have argued that 
guarantees regarding the discovered process model are of great 
importance, the above example shows that such guarantees can also 
lead to challenges. For example, approach A3 offers no guarantees; 
however, it may still be useful in practice not to always favor domain 
knowledge over event data, or vice versa, but to focus on the sta
tistically significant behavior of event data and domain knowledge 
instead. 

5.3.6. Application focus 
We observe that eleven out of thirteen approaches have been 

mainly designed for process discovery by comparing the application 
focus. Nevertheless, we identified two model repair approaches that 
can also be used to discover a process model incrementally, as de
scribed in Section 3.5. Although this observation is not surprising, 
the two process model repair techniques demonstrate the link from 
model repair to interactive and incremental process discovery. 

5.3.7. Software realization 
Regarding software support, we note that eight approaches have 

been realized in software. Of these, six approaches are available as a 
plugin within the process mining toolkit ProM (Verbeek et al., 
2010).6 ProM is an open-source software tool for process mining that 
provides general process mining functionality and offers the possi
bility to distribute algorithms and approaches via a plugin manager. 

A13 has been implemented in a standalone software tool called 
Cortado (Schuster et al., 2021a),7 which is designed explicitly for 
incremental process discovery. A8 has been integrated into the tool 
called Apromore (La Rosa et al., 2011).8 Apromore is a general process 
mining software tool that includes various process mining func
tionality next to the process model repair functionality. For five 
approaches, no software realization is (publicly) available, or the 
status is unknown to us. All software realizations offer a graphical 
user interface, allowing users to apply the approach easily. 

6. Adoption in industry 

In this section, we briefly focus on the adoption of process 
mining, especially of domain-knowledge-utilizing process discovery 
approaches, in industry. In general, process mining technologies are 
used in a wide range of industrial sectors, for instance, manu
facturing (Rozinat et al., 2009; Park et al., 2015), healthcare (Rojas 
et al., 2016; Yang and Su, 2014), education (Bogarín et al., 2018) and 
auditing (Jans et al., 2013; van der Aalst et al., 2010). We refer to  
Reinkemeyer (2020) for various examples of process mining use 
cases at various organizations, e.g., Siemens, Uber, BMW, and Bosch. 
Further use case studies can be found in (Thiede et al., 2018). 

The overall market for process mining is growing. The market 
size growth of 2021 is estimated to be 70%, and in 2022 the market 
growth rate is estimated to be between 40% and 50% (Kerremans 
et al., 2021). These growth rates indicate the increasing relevance of 
process mining technology in industry. According to Kerremans et al. 
(2021), more than 40 commercial process mining tools are available 
from various vendors, including Apromore, Celonis, IBM, SAP, and 
UiPath. 

A comparison of different process mining tools is outside the 
scope of this literature review. In general, the existing commercial 
tools offer different process mining technologies, but often there is a 
focus on the functionality offered (Kerremans et al., 2021). According 
to Martin et al. (2021, Table 4), existing solutions often do not cover a 
wide range of process mining functionalities. 

Looking at process discovery functionality in commercial tools, 
we observe that many existing tools offer limited process discovery 
functionality. From our perspective, many of the existing conven
tional process discovery algorithms developed in academia (Augusto 
et al., 2018; van Dongen et al., 2009) are not used in commercial 
tools. Often, commercial process mining tools offer only simplified 
process discovery techniques that discover a Directly-Follows Graph 
(DFG) as a process model. However, DFGs lack advanced control flow 
structures, and their expressiveness is significantly limited com
pared to other process model formalisms, like Petri nets and BPMN. 
We refer to van der Aalst (2019) for an extensive discussion on the 
limitations of DFGs. Nevertheless, process discovery is a common 
use case for process mining in industry (Kerremans et al., 2021). 

The development of domain-knowledge-utilizing process dis
covery approaches is still at an early stage. Few approaches exist 
compared to conventional process discovery. From the 13 identified 
approaches in this literature review, eight are realized in software 
tools. Six out of these eight approaches are available as a plugin 
within ProM (Verbeek et al., 2010), an open-source process mining 
tool developed by academia. Although ProM is a great success in 
academia and offers a variety of process mining functionality, it is 
hardly used in industry according to our knowledge due to profes
sional support, scalability, and ease of use. Two out of the eight 
approaches that have been realized in software tools are available in 
standalone tools. Approach A13 (cf. Table 5) is realized in a tool that 
is developed by academia and is in an early stage of development. 

6 https://www.promtools.org/ 

7 https://cortado.fit.fraunhofer.de/ 
8 https://apromore.org/ 
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Thus, this approach is not used in industry at this moment. Approach 
A8 (cf. Table 5) is the only approach identified in this literature re
view realized in a commercial, open-source process mining tool. In 
addition, we are not aware of any other identified domain-knowl
edge-utilizing process discovery approaches that commercial ven
dors have adopted in their software tools. 

In short, domain-knowledge-utilizing process discovery is at an 
early stage from both an academic and an industrial perspective. 
Nevertheless, process discovery is a central use case of process 
mining in industry (Kerremans et al., 2021). Given the challenges, 
opportunities, and future directions of process mining presented in  
Section 2, e.g., hybrid intelligence and hybrid models, domain- 
knowledge-utilizing process discovery techniques have a great po
tential to become a valuable asset within the set of process mining 
techniques for industry. 

7. Challenges for future work 

This section lists the main challenges and directions for future 
work and the design of domain-knowledge-utilizing process dis
covery approaches. The identified challenges are based on the ob
servations made when comparing the presented approaches, cf.  
Section 5, and the status regarding the adoption in industry pre
sented in Section 6. In total, we have identified ten challenges for 
future work, which are listed below. 

7.1. Blending explicit domain knowledge and user feedback 

Ten identified approaches (cf. Table 5) use either solely explicit 
domain knowledge or user feedback during the discovery phase. 
However, both types of domain knowledge are independently 
proven to be valuable in the context of learning a process model 
from event data. Therefore, approaches should not be limited to 
either user feedback or explicit domain knowledge and utilize both 
types. 

7.2. Increased interaction 

An interesting direction for future work is to combine different 
approaches to leverage diverse domain knowledge, rather than fo
cusing only on limited and specific domain knowledge, as most ex
isting approaches do. For example, combining incremental process 
discovery, i.e., a user incrementally selects trace variants, with an 
assisted model editor, where the user is guided by an algorithm 
when editing the model. Moreover, approaches might offer the user 
the option to provide feedback on various levels of detail, i.e., dif
ferent options to integrate domain knowledge in vivo. For example, a 
user could provide feedback on the exact positioning of some pro
cess activities within a model and, at a later stage of the process 
discovery phase, only guide the algorithm in which trace variants 
should be added. In short, the goal should be to create overarching 
approaches that combine different ideas, each of which has in
dividually proven useful in the context of process discovery. 

7.3. Offering different interactivity modes 

Existing approaches can be clearly categorized to one of the two 
introduced degrees of interactivity, i.e., automated and interactive/ 
incremental (cf. Section 4.2.3). Six out of eight interactive/incre
mental approaches offer an auto-complete option. However, ideally, 
an approach offers both modes giving the user maximal flexibility to 
discover a process model. For example, imagine a discovery ap
proach is executed in an automatic mode. During the automated 
discovery phase, the user gets constant feedback and observes an 
undesirable tendency in the model being constructed. Then, the user 
switches to an interactive/incremental mode, makes slight changes 

to the model, and switches back to automatic mode The described 
mode-switching requires that the user is able to interact at specific 
points during the discovery, i.e., break points. These breakpoints 
have to be chosen carefully, on the one hand, to give the user enough 
opportunities to interact, and on the other hand, not to be too fine- 
grained to avoid overburdening the user. 

7.4. Scalable conformance checking 

Many presented approaches use conformance checking techni
ques. Especially alignments (Adriansyah, 2014)– a state-of-the-art 
conformance checking technique that provide detailed diagnostics 
compared to other conformance checking techniques– are used in 
four identified approaches, i.e., A5, A7, A8, and A13. Alignments are 
used to relate a process model with an event log to, e.g., recommend 
edit options and repair a model. In general, many conformance 
checking techniques, especially alignments, are computationally 
complex (Carmona et al., 2018) and provide non-deterministic di
agnostics, i.e., there are usually many optimal alignments 
(Adriansyah, 2014). However, in general, domain-knowledge-uti
lizing discovery approaches need a constant comparison between 
the model and the event log. Therefore, fast conformance checking 
techniques are critical to enabling interaction and fast suggestions 
from an interactive process discovery algorithm. In this context, 
research on the applicability of conformance approximation tech
niques, such as Bauer et al. (2020), Fani Sani et al. (2020), and  
Schuster et al. (2021b), within interactive process discovery is 
needed. 

7.5. Minimizing the representational bias 

As discussed in Section 5.3.4, the approaches A4, A9, and A11 use 
simple process model formalisms, i.e., DFGs and log-trees that both 
have limited expressiveness compared to, e.g., Petri nets and BPMN. 
Also, in Section 6, we highlighted the dominance of DFGs as the 
prominent process model formalism in commercial tools and 
pointed to (van der Aalst, 2019), discussing the limitations of DFGs. 
Also in (van der Aalst et al., 2012b), the authors mention the need for 
process model formalism that supports basic control flow structures. 
Further, four presented algorithms that use advanced process model 
formalism restrict the class of discoverable models. Such restrictions 
are generally made because discovery algorithms can be designed 
more easily if certain restrictions on the output process model 
formalism can be assumed. For example, approaches A5 and A13 
work on process trees (i.e., sound, block-structured Workflow nets) 
or free-choice Workflow nets. Both block-structured and free-choice 
Workflow nets are important subclasses of Petri nets. However, the 
expressive power of these subclasses is limited compared to Petri 
nets. Note that many real-life processes tend to be non-free-choice 
and non-block-structured (van der Aalst, 2016, cf. Section 6.4). Fur
ther, common restrictions are, e.g., the absence of duplicate activity 
labels, i.e., multiple elements in a process model are labeled with the 
same activity, and silent labels, which are needed to model specific 
control flow patterns in various formalisms. Therefore, in future 
discovery approaches, the discoverable models' target class and 
potential restrictions should be carefully considered. We refer to 
(van der Aalst et al., 2012a) for an extensive discussion on the re
presentational bias. 

7.6. Enhanced process model visualizations 

As we can observe in Table 5, many different process model 
formalisms are used to visualize process models, e.g., C-nets, Petri 
nets, process trees, DFGs, and BPMN. It is important to note that 
most of these modeling formalisms are hardly used in industrial 
practice. Of the five modeling formalisms mentioned, one could 
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argue that BPMN (Dumas et al., 2013) and DFGs, as discussed in  
Section 6, are the most widely used in industry. Especially for 
interactive discovery approaches, it is of utmost importance to 
choose an appropriate process model visualization because a user 
has to quickly understand a process model in an interactive pro
cess discovery setting. The relevance of the challenge described 
here is supported by (Martin et al., 2021, Table 4). The authors 
identify non-standard visualizations of process mining outcomes 
as a challenge for the adaption of process mining in industry. Also 
in (van der Aalst et al., 2012b), the authors list the challenge of 
improving usability and understandability for non-experts as a 
key challenge. Note that this does not necessarily imply that also 
the underlying algorithms need to be specified for the chosen 
visualization. For example, a process tree may be visualized as a 
BPMN model to the user, but internally the algorithm operates on 
a process tree data structure. 

7.7. Domain knowledge specification 

Many approaches utilize explicit domain knowledge. However, 
little research has been done on supporting the user in specifying 
the domain knowledge in the context of process discovery. For in
stance, we are not aware of studies within process mining that 
analyze which formalisms are easy to understand by end-users and 
how a user can be assisted/guided in specifying explicit domain 
knowledge. In Martin et al. (2021), the authors present challenges 
regarding the application process mining in organizations. The au
thors identify insufficient analytical and technical skills of people 
applying process mining in industry. Therefore, we conclude that 
user support is of great importance in the specification of domain 
knowledge. 

7.8. Domain knowledge prioritization 

As discussed in Section 5.3.5, domain-knowledge-utilizing algo
rithms have to decide if the given domain knowledge and the given 
event data have conflicting information on the process to be dis
covered. An interesting direction for future work is to involve the 
user whenever such conflicts occur within the process discovery 
phase and let the user interactively decide which information, i.e., 
event data or domain knowledge, is prioritized per conflict. Ad
ditionally, dynamic and automatic strategies, i.e., not to statically 
always favor domain knowledge over event data or vice versa if 
conflicts occur, are an interesting direction for future work. 

7.9. Software support 

Even more than with conventional process discovery, sophisti
cated software implementing the interactive/incremental discovery 
approaches is of great importance for the acceptance and success of 
said techniques. Since conventional process discovery is fully-auto
mated (cf. Fig. 1), the user's interaction with the algorithm is limited; 
hence, sophisticated software support is less critical for conventional 
process mining. However, there is a clear need for sophisticated 
software support for process discovery approaches that utilize user 
feedback, i.e., where user computer interaction is present. As dis
cussed in Section 6, only approach A8 is available in a commercial 
tool (La Rosa et al., 2011), and only eight out of 13 approaches are 
realized in software tools. 

7.10. Alternative perspectives 

Most presented approaches focus solely on learning the control 
flow of a process. However, event data typically contain much more 

information, e.g., resource and time information. These data are 
often not exploited by process discovery algorithms, although pro
cess model formalisms like BPMN offer modeling elements to re
present information beyond the control flow, e.g., organizational 
structures and data flow. For example, consider Fig. 4a. Especially in 
an interactive process discovery setting, information beyond the 
control flow in event data, e.g., resource and timing information, 
combined with the users’ domain knowledge on the process under 
consideration could be advantageous for obtaining more extensive 
process models. The challenge is supported by findings presented in  
Martin et al. (2021). The authors identify the analysis of processes 
with the focus on resources as an opportunity for using process 
mining in industry. 

The presented challenges and directions for future interactive, 
domain-knowledge-utilizing approaches show that many inter
esting open research questions exist, and much can still be achieved 
in this area. We hope that these identified challenges and opportu
nities will provide new impetus and ideas for further developments. 

8. Conclusion 

Process mining provides various methods, techniques, and tools 
to analyze operational processes in a data-driven manner system
atically. Process discovery is a key discipline within process mining. 
Conventional process discovery deals with the automatic learning of 
a process model from event data. The low quality of models dis
covered with conventional process discovery algorithms and the 
presence of prior knowledge, i.e., domain knowledge, about the 
process to be discovered lead to domain-knowledge-utilizing pro
cess discovery algorithms. 

This paper provided a systematic review of process discovery 
techniques that additionally utilize domain knowledge next to event 
data. First, we identified distinguishing features to categorize and 
classify domain-knowledge-utilizing process discovery approaches. 
Then, based on the distinguishing features, we compared and dis
cussed thirteen identified approaches selected by objective criteria. 
Finally, based on the comparison and the discussion, we identified 
ten open challenges for future domain-knowledge-utilizing process 
discovery approaches. These challenges highlight the potential of 
using domain knowledge and user feedback within data-driven 
process discovery and demonstrate the need for further develop
ment in this area. 
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