
Contents lists available at ScienceDirect

Computers in Industry

journal homepage: www.elsevier.com/locate/compind

Utilizing domain knowledge in data-driven process discovery:
A literature review

Daniel Schustera,b,⁎, Sebastiaan J. van Zelsta,b, Wil M.P. van der Aalsta,b

a Fraunhofer FIT, Process Mining Research Group, Schloss Birlinghoven, Sankt Augustin 53757, North Rhine-Westphalia, Germany
b RWTH Aachen University, Chair of Process and Data Science, Ahornstraβe 55, Aachen 52074, North Rhine-Westphalia, Germany

a r t i c l e i n f o

Article history:
Received 1 September 2021
Received in revised form 4 December 2021
Accepted 17 January 2022
Available online xxxx

Keywords:
Process mining
Process discovery
Process models
Human-in-the-loop
Hybrid intelligence

a b s t r a c t

Process mining aims to improve operational processes in a data-driven manner. To this end, process mining
offers methods and techniques for systematically analyzing event data. These data are generated during the
execution of processes and stored in organizations' information systems. Process discovery, a key discipline
in process mining, comprises techniques used to (automatically) learn a process model from event data.
However, existing algorithms typically provide low-quality models from real-life event data due to data-
quality issues and incompletely captured process behavior. Automated filtering of event data is valuable in
obtaining better process models. At the same time, it is often too rigorous, i.e., it also removes valuable and
correct data. In many cases, prior knowledge about the process under investigation can be additionally used
for process discovery besides event data. Therefore, a new family of discovery algorithms has been de
veloped that utilizes domain knowledge about the process in addition to event data. To organize this re
search, we present a literature review of process discovery approaches exploiting domain knowledge. We
define a taxonomy that systematically classifies and compares existing approaches. Finally, we identify
remaining challenges for future work.

© 2022 The Author(s). Published by Elsevier B.V.
CC_BY_4.0

Contents

1. Introduction . 2
2. Related work . 4
3. Background . 4

3.1. Event data . 4
3.2. Process models . 5
3.3. Process discovery. 5
3.4. Conformance checking . 5
3.5. Process model repair . 6

4. Distinguishing features for domain-knowledge-utilizing process discovery . 7
4.1. Identification and construction strategy . 7
4.2. Distinguishing features . 7

4.2.1. Timing of domain knowledge provision . 7
4.2.2. Domain knowledge type . 7
4.2.3. Degree of interactivity . 7
4.2.4. Output process model formalism . 9
4.2.5. Output guarantees . 9
4.2.6. Application focus . 9
4.2.7. Software realization. 9

4.3. Dependencies among characteristics and features . 9

https://doi.org/10.1016/j.compind.2022.103612
0166-3615/© 2022 The Author(s). Published by Elsevier B.V.
CC_BY_4.0

]]]]
]]]]]]

⁎ Corresponding author at: Fraunhofer FIT, Process Mining Research Group, Schloss Birlinghoven, Sankt Augustin 53757, North Rhine-Westphalia, Germany.
E-mail address: daniel.schuster@fit.fraunhofer.de (D. Schuster).

Computers in Industry 137 (2022) 103612

http://www.sciencedirect.com/science/journal/01663615
www.elsevier.com/locate/compind
https://doi.org/10.1016/j.compind.2022.103612
https://doi.org/10.1016/j.compind.2022.103612
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compind.2022.103612&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compind.2022.103612&domain=pdf
mailto:daniel.schuster@fit.fraunhofer.de
https://doi.org/10.1016/j.compind.2022.103612

5. Literature review. 9
5.1. Design . 10
5.2. Descriptions of identified approaches . 10

5.2.1. Approach A1. 10
5.2.2. Approach A2. 10
5.2.3. Approach A3. 11
5.2.4. Approach A4. 11
5.2.5. Approach A5. 11
5.2.6. Approach A6. 11
5.2.7. Approach A7. 12
5.2.8. Approach A8. 12
5.2.9. Approach A9. 12

5.2.10. Approach A10. 12
5.2.11. Approach A11 . 12
5.2.12. Approach A12. 12
5.2.13. Approach A13. 12

5.3. Discussion . 12
5.3.1. Timing of domain knowledge provision . 12
5.3.2. Domain knowledge type . 13
5.3.3. Degree of interactivity . 14
5.3.4. Output process model formalism and restrictions. 14
5.3.5. Output guarantees . 15
5.3.6. Application focus . 15
5.3.7. Software realization. 15

6. Adoption in industry. 15
7. Challenges for future work. 16

7.1. Blending explicit domain knowledge and user feedback . 16
7.2. Increased interaction. 16
7.3. Offering different interactivity modes . 16
7.4. Scalable conformance checking . 16
7.5. Minimizing the representational bias. 16
7.6. Enhanced process model visualizations . 16
7.7. Domain knowledge specification . 17
7.8. Domain knowledge prioritization. 17
7.9. Software support . 17

7.10. Alternative perspectives . 17
8. Conclusion. 17

Declaration of Competing Interest . 17
Appendix A Supplementary material . 17
References . 17

1. Introduction

The execution of processes–ranging from business to production
processes–is often supported by information systems. These systems
record the processes’ execution in great detail, e.g., which process
activities were executed, their order, their duration, and which re
sources were involved. These records are referred to as event data. To
improve an organization’s processes, the analysis of event data
provides valuable opportunities. Process mining (van der Aalst, 2016)
offers techniques, tools, and methods for systematically analyzing
event data to gain insights into the execution of processes. These
insights are used to optimize the processes, i.e., the central objective
of process mining.

Process discovery (van der Aalst, 2018) is a key discipline in pro
cess mining. Starting from event data, a discovery algorithm learns a
process model describing the process as captured in the provided
event data. Fig. 1 illustrates the general architecture of conventional
discovery algorithms. Automated, data-driven process discovery as
sumes that event data are the most objective representation of a
process. However, event data often have quality issues (Martin et al.,
2021, Table 4), such as incorrect logged process behavior, incomplete
process behavior resulting from ongoing process executions while
the event data was extracted, and missing process behavior that
actually occurred. Apart from data-quality issues, concurrency in
many processes often yields incomplete event data because not
every possible scheduling of the concurrent process activities is

captured. As such, process discovery from event data can be seen as
an unsupervised learning task.

Many process discovery algorithms have been developed. Most of
them work fully-automated, i.e., they take event data as input, op
tionally allow to set configuration parameters, and return a process
model, cf. Fig. 1. We refer to such algorithms as conventional process
discovery algorithms. However, the process models discovered by
conventional algorithms are often of low quality because of the
aforementioned data-quality issues (Suriadi et al., 2017). Moreover,
it is difficult for a user to choose a suitable process discovery algo
rithm for specific event data because each algorithm works differ
ently and, thus, may produce different results. Therefore, in-depth

Event
Log L

Conventional
Process

Discovery
Algorithm

Configuration
Parameters

Process
Model M

Fig. 1. Schematic visualization of the general architecture of conventional process
discovery algorithms. From event data that describe the execution of a process, a
process model is automatically learned using a process discovery algorithm. Limited
interaction is possible: either filtering the input or adjusting configuration para
meters.

D. Schuster, S.J. van Zelst and W.M.P. van der Aalst Computers in Industry 137 (2022) 103612

2

knowledge of the discovery algorithms is generally necessary to
select a suitable algorithm for a given use case. This practical pro
blem, for instance, led to research on recommender systems sup
porting the selection of an appropriate discovery algorithm for given
event data (Ribeiro et al., 2014; Pérez-Alfonso et al., 2015).

The circumstances above led to a new family of process discovery
algorithms: algorithms that utilize domain knowledge in addition to
event data. In this paper, we refer to domain knowledge as any prior
knowledge about the process to be discovered besides event data.
Domain knowledge is often available alongside existing event data,
such as documents describing the process and the knowledge of
process participants about the process. The utilization of domain
knowledge in process discovery has various advantages. For in
stance, it helps: to reduce the negative impact of quality issues in the
event data on the process model to be discovered, to overcome
limitations when only incomplete process behavior is available, and
to discover specific patterns that most conventional discovery al
gorithms cannot learn, e.g., long-term dependencies and process
models with duplicate activity labels. Moreover, first studies indicate
that exploiting domain knowledge within process discovery out
performs conventional discovery algorithms (Dixit et al., 2018b;
Benevento et al., 2019).

Existing domain-knowledge-utilizing discovery approaches
range from fully-automated approaches, which additionally use

domain knowledge along with event data as input, to truly in
teractive/incremental approaches where a user plays a central role
in the discovery process and actively provides domain knowledge
to the algorithm during discovery. Fig. 2 visualizes various op
portunities where domain knowledge can be utilized in the con
text of process discovery. For example, domain knowledge can be
utilized in the event data pre-processing phase, e.g., to label ob
served process behavior, i.e., positive behavior should be in
corporated in a process model, and negative behavior should not
be incorporated. Thus, process discovery is transformed into a
supervised learning task. Domain knowledge can also be used as an
additional input of the discovery algorithm. For example, a hand-
crafted model describing parts of the model to be discovered
could be provided to the discovery algorithm as a starting point
next to event data. Also, during the execution of the discovery
algorithm, i.e., during the learning of a process model, domain
knowledge can be utilized, e.g., a user has to actively give feedback
to the discovery algorithm on intermediate discovered process
models and next steps. These examples illustrate that domain-
knowledge-utilizing process discovery algorithms are much more
heterogeneous compared to conventional process discovery from
a user’s perspective.

The field of domain knowledge utilization in process discovery
has become increasingly attractive in recent years (cf. Fig. 3). This

Fig. 2. Overview of various opportunities where domain knowledge about the process to be discovered can be utilized in the different phases of process discovery. Note that we
distinguish two types of domain-knowledge-utilizing discovery algorithms: automated discovery algorithms and interactive/incremental discovery algorithms, allowing the user to
dynamically provide domain knowledge based on intermediate results during the discovery.

D. Schuster, S.J. van Zelst and W.M.P. van der Aalst Computers in Industry 137 (2022) 103612

3

paper, therefore, presents a literature review of existing domain-
knowledge-utilizing discovery approaches to answer the research
question:
RQ1. What is the current state of research in process discovery that
uses domain knowledge in addition to event data?Further, this
literature review addresses the following research questions about
domain-knowledge-utilizing process discovery approaches.

RQ1.1. At which point is domain knowledge utilized/provided?

RQ1.2. What types of domain knowledge are used, and how is
domain knowledge specified?

RQ1.3. Which process model formalisms are used?

RQ1.4. Do the domain-knowledge-utilizing process discovery
algorithms exhaust the full possibilities of a process model
formalism?

RQ1.5. How are the algorithms realized in software tools?

In answering these research questions, we aim to achieve three
main research objectives: (1) providing an overview of existing do
main-knowledge-utilizing discovery approaches, (2) developing a
taxonomy for said approaches, and (3) identifying open challenges
and opportunities for future work. This paper presents the first lit
erature review on this process discovery family to the best of our
knowledge. In total, we identified thirteen discovery approaches. We
propose a taxonomy for domain-knowledge-utilizing discovery ap
proaches to systematically categorize and compare the identified
approaches. Finally, we identify ten open challenges, highlighting
the need for further research.

The remainder of this paper is organized as follows. Section 2
presents related work. Section 3 introduces basic concepts of process
mining. Section 4 introduces a taxonomy for domain-knowledge-
utilizing process discovery approaches. Section 5 provides an over
view and systematic comparison of existing approaches. Section 6
discusses the adoption of domain-knowledge-utilizing process dis
covery in industry. Section 7 highlights open challenges for future
work. Finally, Section 8 concludes this paper.

2. Related work

The field of process mining (van der Aalst, 2016) is a largely
growing discipline, cf. (Reinkemeyer, 2020, Fig. 21.1). Various re
search areas have emerged over the years within process mining, for
instance, process discovery (van der Aalst, 2010), conformance
checking (Carmona et al., 2018; Dunzer et al., 2019), prediction (Tax
et al., 2020), and event abstraction (van Zelst et al., 2021). There are
reviews of the various research findings for each of the previously
exemplified areas to summarize the state of knowledge and identify
remaining challenges. In the remainder of this section, we focus on
process discovery.

Many algorithms exist within conventional process discovery (cf.
Fig. 1). A recent overview is presented in (Augusto et al., 2018),
which systematically compares 35 conventional process discovery
algorithms. Further, the authors benchmark a subset of the identified
approaches using real-life event data. In (van Dongen et al., 2009), a
review of conventional process discovery algorithms that are based
on Petri nets is given. In (van der Aalst, 2018), a brief history of
process discovery is presented, and general, underlying concepts of
process discovery algorithms are presented. A further overview of
process discovery algorithms can be found in (van der Aalst, 2016).

Domain-knowledge-utilizing process discovery techniques have
recently increased in interest, cf. Fig. 3. The usage of prior knowledge
about the process under investigation and the user's involvement in
the discovery process is gaining attention in process mining. For
example, in (Reinkemeyer, 2020, Chapter 21), the challenge of
combining process modeling with process discovery is presented.
The authors propose hybrid models, a mix of hand-crafted and au
tomatically discovered process models, as one of the main chal
lenges in process mining. The idea of hybrid models corresponds to
the more general idea of hybrid intelligence, i.e., combining human
and machine intelligence. According to (Kerremans et al., 2021,
38ff.), hybrid models are a promising approach for the further de
velopment of process mining. In (Benevento et al., 2019; Dixit et al.,
2018b), use case studies in the healthcare domain are presented,
showing that a specific domain-knowledge-utilizing approach out
performs conventional process discovery. The above references
show that domain-knowledge-utilizing process discovery is relevant
with high future potential. However, there is no literature review on
domain-knowledge-utilizing process discovery to the best of our
knowledge.

3. Background

This section outlines the main concepts within process mining.
First, we introduce event data and process models. Finally, we pre
sent process discovery and model repair that can also be used for
interactive process discovery.

3.1. Event data

Executing operational processes generates data in the informa
tion systems involved. Such data, capturing the execution of pro
cesses, are referred to as event data. Table 1 shows an example of an
event log, i.e., a collection of event data, from a travel permit ad
ministration process, adopted from (van Dongen, 2020). Each row
corresponds to an event capturing the execution of a process activity
for a specific process instance, i.e., a case. Each column corresponds
to an event attribute. For example, the first event indicates that the
activity Permit submitted was executed for the process instance
identified by the case-id 72861 on January 11, 2017 at 21:55:13 by an

Fig. 3. Growing interest in domain-knowledge-utilizing process discovery. Published documents by year matching the search term ("process mining" AND ("process
discovery" OR “model repair") AND ("interactive" OR “incremental" OR “domain knowledge" OR “prior knowledge" OR “hybrid intelligence" OR “human-
in-the-loop")) using Scopus and ACM on August 18, 2021.

D. Schuster, S.J. van Zelst and W.M.P. van der Aalst Computers in Industry 137 (2022) 103612

4

Employee who belongs to the group Staff member. Many process
mining techniques, e.g., discovery algorithms, analyze event data to
generate insights into the actual process.

We refer to the sequence of executed activities for a specific case
as a trace. Note that each event relates to precisely one case. For
instance, the trace for case 72861 is < Permit submitted , Permit final
approved, Start trip, End trip, Declaration submitted, Declaration final
approved, Request payment, Payment handled > . An event log typically
consists of multiple cases, i.e., multiple recorded executions of a
process. Events within a case are typically ordered based on their
execution timestamp. We refer to unique sequences of executed
activities as trace variants.

3.2. Process models

Process models allow us to specify the execution of processes
graphically. Many formalisms exist, e.g., Business Process Modeling
Notation (BPMN) (Chinosi and Trombetta, 2012), Petri nets (van der
Aalst, 1998), and process trees (Leemans, 2017). In Fig. 4, we present
three different process model formalisms describing the same pro
cess. Although all models in Fig. 4 describe the same control flow of
activities, the expressiveness of the three formalisms generally dif
fers. For example, the BPMN model specifies that a reminder is sent
after 48 h if no declaration is submitted. Further, the model indicates
which resources are involved in executing the different process ac
tivities. Such information cannot be modeled in the other two
formalisms.

Most process model formalisms used in process discovery focus
on the control flow perspective, i.e., which activities are present in a
process and how they relate to each other. Next to the control flow
perspective, some process model formalisms include a data per
spective or an organizational/resource perspective (Dumas et al., 2013).
For instance, BPMN provides modeling elements to specify the re
sources involved in executing an activity and, further, provides ele
ments to model the flow of data artifacts. However, most process
discovery algorithms only discover the control flow perspective.

Next to the process model formalism and its graphical re
presentation, many process discovery algorithms restrict the class of
discoverable models within a given formalism. Therefore, these al
gorithms constrain the chosen process model formalism, e.g., re
quiring specific structural properties, prohibiting activity duplicates
and silent/unobservable activities in the discovered process models.
For example, various important sub-classes of Petri nets play an
important role in process discovery, e.g., Workflow nets (WF-net),
sound WF-nets, free-choice WF-nets, and block-structured WF-nets
(van der Aalst, 1996; Leemans, 2017). A detailed overview of dif
ferent target process model classes is out of this paper’s scope; we
refer to (van der Aalst, 2016) for an overview. However, it is essential
to know that the target model class of process discovery algorithms
is of great importance because specific control flow patterns cannot

be represented in every process model class. Therefore, we refer to
limitations imposed by choice of a particular process model form
alism and other possible restrictions made by the discovery algo
rithm on that formalism as representational bias (van der
Aalst, 2016).

3.3. Process discovery

In business process management (BPM), process discovery is
considered the collection of information about a process and the
transformation of said information into a process model, which
describes the process as it is executed in reality (Dumas et al., 2013).
Thereby, techniques like document analysis, process observations,
interviews and workshops with process stakeholders are applied to
discover a process model. However, process discovery in the context
of process mining, however, follows an entirely data-driven ap
proach. Event data are considered a digital imprint of a process, and
process discovery algorithms learn a process model from these event
data, i.e., historical data on the executions of a process. In the re
mainder of this paper, we focus on process discovery as considered
in process mining.

Most existing process discovery approaches are fully automated.
Event data are fed into a discovery algorithm, and a process model is
returned. Apart from adjusting configuration parameters of the
discovery algorithm, no other input besides the event data is used.
The configuration parameters of an algorithm can be used, e.g., to
adjust the complexity of the resulting process model or to auto
matically filter the event data (e.g., filtering infrequent behavior).
Apart from setting the configuration parameters, no interaction is
possible. The actual process discovery phase, i.e., learning a model, is
fully automated, cf. Fig. 1. We call this described family of process
discovery approaches conventional process discovery.

3.4. Conformance checking

Conformance checking (Carmona et al., 2018) deals with com
paring process models and event data. The purpose of conformance
checking techniques is to quantify the extent to which observed
process behavior, i.e., event data, conforms or does not conform to
modeled process behavior, i.e., process models. In general, con
formance checking is a separate research area within process
mining. Nevertheless, conformance checking techniques are essen
tial for domain-knowledge-utilizing process discovery. For example,
in an interactive discovery phase, i.e., a user discovers a process
model jointly with an algorithm, feedback on the current pre
liminary process model's conformance with the event data is of
great importance.

Table 1
Example of an event log where each row corresponds to a single event. Events are ordered by case-id. The shown event data describes an administrative process of handling travel
permits, adopted from (van Dongen, 2020). Note that, in general, events usually contain more attributes than shown here.

Case-ID Activity Timestamp Resource Resource Role …

⋮ ⋮ ⋮ ⋮ ⋮ …
72861 Permit submitted 11.01.2017 21:55:13 Employee Staff member …
72861 Permit final approved 11.01.2017 21:55:18 Supervisor Staff member …
72861 Start trip 12.01.2017 00:00:00 Employee Staff member …
72861 End trip 20.01.2017 00:00:00 Employee Staff member …
72861 Declaration submitted 22.02.2017 18:08:07 Employee Staff member …
72861 Declaration final approved 22.02.2017 18:14:32 Supervisor Staff member …
72861 Request payment 03.03.2017 14:51:42 undefined System …
72861 Payment handled 06.03.2017 17:31:08 undefined System …
72379 Permit submitted 12.01.2017 09:17:36 Employee Staff member …
⋮ ⋮ ⋮ ⋮ ⋮ …

D. Schuster, S.J. van Zelst and W.M.P. van der Aalst Computers in Industry 137 (2022) 103612

5

3.5. Process model repair

The area of process model repair (Fahland and van der Aalst,
2015), which is considered a separate research area, can be posi
tioned between process discovery and conformance checking
(Carmona et al., 2018). Process model repair techniques use con
formance checking techniques to compare a given process model to

given event data. If the model does not fully reflect the behavior
recorded in the event data, repair the given model. Consider Fig. 5, in
which we depict a schematic overview of process model repair. A
process model M and event data are the input for model repair ap
proaches. If the recorded process behavior as captured in the event
data conforms to the process model M, there is nothing to repair, and
M is returned, i.e., =M M . Suppose the recorded process behavior is

Fig. 4. Three process models describing the same travel permit process, i.e., the same control flow of activities, in different process model formalisms, i.e., BPMN, Petri nets, and
process trees. The process starts with submitting a permit, which is either rejected or approved. If it is approved, the trip takes place, i.e., Start Trip and End Trip. Next, a reminder is
optionally sent multiple times. Once a declaration is submitted, it is either rejected, in this case a declaration has to be submitted again, or it is approved. Finally, payment related
activities are executed. The BPMN model (a) additionally contains resource information and models that a reminder is sent 48 h after a declaration has not been submitted.

D. Schuster, S.J. van Zelst and W.M.P. van der Aalst Computers in Industry 137 (2022) 103612

6

not fully supported by the process model M. In that case, M is altered
such that all the recorded process behavior is supported and M is as
similar as possible compared to the original model M. Especially the
latter goal, i.e., the repaired model should be as similar as possible to
the original model, is important because it distinguishes process
model repair from process discovery (besides the different inputs).
Assuming this goal would not exist, one could apply process dis
covery on the given event data using an algorithm that guarantees to
return a process model that describes all given behavior.

Although model repair techniques are intended to post-process a
process model, they can also be used incrementally to learn a pro
cess model. Compared to Fig. 2, repair techniques can be considered
an interactive/incremental process discovery algorithm. Given an
initial model (a priori domain knowledge), missing process behavior
can be added to the initial process model gradually (in vivo, user-
selected behavior) or at once.

4. Distinguishing features for domain-knowledge-utilizing
process discovery

To structure the field of domain-knowledge-utilizing process
discovery, this section presents distinguishing features that allow us
to systematically compare and categorize the different approaches.
The remainder of this section is structured like follows. First, we
explain how we derived the specific distinguishing features in
Section 4.1. Subsequently, we present the specific derived features
and corresponding characteristics. Finally, we present dependencies
between the different features and characteristics.

4.1. Identification and construction strategy

This section highlights the construction of the proposed distin
guishing features and their corresponding characteristics. We fol
lowed the definition of a taxonomy from Nickerson et al. (2010). The
authors define a taxonomy as a set of dimensions D1, …, Dn. Each
dimension Di for i ϵ {1, …, n} consists of ki ≥ 2 potential character
istics. Further, when applying this taxonomy to a specific object, for
each dimension exactly one potential characteristic applies, i.e.,
mutually exclusive and collectively exhaustive (Nickerson et al.,
2010). However, for this literature review, we modified this defini
tion by omitting mutual exclusiveness. Hence, we allow an object,
i.e., a domain-knowledge-utilizing process discovery approach, to
have more than one potential characteristic for a given dimension. In
the following, we refer to the dimensions as features to differentiate
from (Nickerson et al., 2010).

The goal of the distinguishing features is to answer the research
questions posed in Section 1. The proposed distinguishing features
are the result of various discussions within the author team and with
other peers. The proposed characteristics for each distinguishing
feature are derived from the analysis of the identified papers.

4.2. Distinguishing features

In this section, we present eight distinguishing features with
corresponding characteristics. Fig. 6 summarizes the identified fea
tures. Note that we have identified first-level and second-level fea
tures. For instance, if an approach uses explicit domain knowledge
(feature: domain knowledge type), we are further interested in
whether the used specification formalism is imperative or declara
tive (Fig. 6).

4.2.1. Timing of domain knowledge provision
As shown in Fig. 2, domain knowledge can be provided and uti

lized at various times during process discovery. For instance, domain
knowledge can be an additional input next to event data, domain
knowledge can be utilized during an interactive discovery phase, and
domain knowledge can be used after the discovery of a model to
post-process it. We are therefore interested in the timing of domain
knowledge provision.

We identify three characteristics regarding when domain
knowledge is assumed to exist and be used: a priori, in vivo, and a
posteriori. We categorize an approach as a priori if domain knowl
edge is an input next to event data, i.e., domain knowledge is re
quired before the actual discovery phase starts. In vivo describes
approaches that allow for domain knowledge injection during the
discovery phase, e.g., by incorporating user feedback. An approach
utilizes domain knowledge a posteriori if after the actual discovery
phase domain knowledge is used, e.g., domain knowledge is used to
post-process a discovered process model.

4.2.2. Domain knowledge type
Domain knowledge is a broad concept and can exist in many

different forms. Therefore, we are interested in the type of domain
knowledge assumed by the domain-knowledge-utilizing process
discovery algorithms.

In this paper, we distinguish between explicit domain knowledge
and domain knowledge in terms of user feedback to the algorithm.
We consider explicit domain knowledge as domain knowledge
which is specified in a formalism and fed into the discovery algo
rithm and, thus, the user explicitly provides it to the algorithm. For
instance, precedence constraints between process activities and in
itial process models, which serve as a starting point for the discovery
algorithm, are considered explicit domain knowledge. In contrast,
user feedback is any decision that a user makes based on options
provided by a discovery algorithm. An example of user feedback is an
algorithm providing intermediate process models to the user in an
ongoing discovery phase. The user must decide which process model
to continue using. Compared to explicit domain knowledge, dis
covery algorithms actively request user feedback.

Note that the domain knowledge type and the timing of domain
knowledge utilization are independent features. For instance, ex
plicit domain knowledge can be incrementally provided by the user
to the discovery algorithm in vivo, i.e., during the discovery phase.
Alternatively, user feedback can be requested in vivo.

We are further interested in the domain knowledge specification
formalism if an approach utilizes explicit domain knowledge. We
distinguish imperative and declarative specification formalisms.
Imperative formalisms follow a closed-world assumption, i.e., only
behavior explicitly described in the formalism is allowed. In contrast,
declarative formalisms follow an open-world assumption, i.e., all
behavior is allowed that satisfies given restrictions specified in the
formalism.

4.2.3. Degree of interactivity
Domain-knowledge-utilizing process discovery algorithms have

different approaches regarding user involvement during the dis
covery phase. The spectrum ranges from completely automated

Process Model
Repair Algorithm

Event
Data

Process
Model M

Configuration
Parameters

Process
Model M

Fig. 5. Schematic visualization of process model repair. A process model M and event
data are assumed as input. If all the recorded process behavior (i.e., event data)
conforms to M, M does not get modified, i.e., =M M . If there is process behavior
recorded in the event data that is not included in model M, the process discovery
approach repairs M such that the repaired model M reflects all process behavior from
the event data.

D. Schuster, S.J. van Zelst and W.M.P. van der Aalst Computers in Industry 137 (2022) 103612

7

algorithms, i.e., no user interaction is possible during the discovery
phase, to algorithms in which the user has a central role in an in
teractive discovery phase and makes essential decisions regarding
the process model to be discovered. According to Fig. 2, we distin
guish two levels of interactivity: automated and interactive/incre
mental. We categorize approaches that do not support any option to
inject domain knowledge, e.g., through user feedback, during the
discovery phase as automated. For instance, approaches that use

explicit domain knowledge and event data as input but do not offer
user interaction are categorized as automated (cf. Fig. 2). Note that,
by definition, automated approaches do not use domain knowledge
in vivo.

In contrast, we categorize approaches that allow injecting do
main knowledge during the actual discovery phase, e.g., through
user feedback, as interactive/incremental. We further distinguish in
teractive/incremental approaches by the existence of an auto-

Distinguishing
features

Timing of
domain
knowledge
provision
(Section 4.2.1)

a priori

in vivo

a posteriori

Domain know-
ledge type
(Section 4.2.2)

explicit Specification
formalism

imperative

declarative
user feedback

Degree of
interactivity
(Section 4.2.3)

automated

interactive/
incremental

Auto-complete
option

yes

no

Output process
model formalism
(Section 4.2.4)

imperative Process model
formalism

Petri nets

BPMN

Causal nets
(C-nets)

Information
control nets (ICNs)

Directly-follows
graphs (DFGs)

Log-trees

declarative Process model
formalism

DECLARE

First-order logic
Output process
model formalism
restrictions
(Section 4.2.4)

yes

no

Output guaran-
tees
(Section 4.2.5)

yes

no

Application
focus
(Section 4.2.6)

process discovery

model repair

Software
realization
(Section 4.2.7)

available

unknown/not (pub-
licly) available

Fig. 6. Overview of the identified distinguishing features (gray filled boxes) and their characteristics (light gray filled boxes).

D. Schuster, S.J. van Zelst and W.M.P. van der Aalst Computers in Industry 137 (2022) 103612

8

complete option. An auto-complete option ensures that the algo
rithm is able to autonomously learn a process model if the user
decides to stop providing feedback to the algorithm.

4.2.4. Output process model formalism
The used process model formalism and potential restrictions of

the formalism made by the discovery algorithm are of great im
portance when comparing different process discovery approaches
because formalisms differ in their expressiveness. Reconsider the
term representational bias, introduced in Section 3.3. The choice of a
discovery algorithm on a particular formalism for the discovered
process models and potential restrictions of the chosen formalism
always implies a representative bias since every formalism has re
strictions and limitations on which process behavior can be spe
cified.

We are therefore interested in the formalisms used. First, we
distinguish between imperative and declarative process model
formalisms, similar to Section 4.2.2. Thus, we further distinguish the
exact formalism used, i.e., Petri nets, BPMN, causal nets (C-nets), in
formation control nets, directly-follows graphs (DFGs), log-trees, DE
CLARE, or first-order logic. We are further interested in whether
discovery approaches constrain the chosen output formalism, as
such constraints limit the expressiveness of a process model form
alism. For instance, some process discovery algorithms cannot dis
cover models that have the same activity label twice in different
places in the model, i.e., duplicate labels.

4.2.5. Output guarantees
Guarantees regarding the discovered model are of great im

portance when comparing process discovery approaches in general.
We are interested in whether the approaches can guarantee specific
properties of the discovered process model regarding the given
event data and the given domain knowledge. For example, if full
replay fitness is ensured, i.e., all selected process behavior from the
event data is represented in the discovered model. Alternatively, if it
is always guaranteed that domain knowledge about the process
being discovered is fully integrated into the resulting model, i.e., the
domain knowledge is fully reflected by the model. However, guar
antees can also refer to process models and their properties, e.g.,
whether a Petri net represents a sound Workflow net. Soundness
(van der Aalst et al., 2011) is a favorable property of Workflow nets,
e.g., ensuring that from any state of the model, there is always the
possibility to complete the process and that there are no dead
transitions within the model. We refer to (van der Aalst, 2016, 2011)
for further information on soundness. In summary, such guarantees
are important for the application of process discovery approaches
because they make the discovery approaches reliable with respect to
the output.

4.2.6. Application focus
As mentioned in Section 3.5, model repair techniques can also be

used to discover a process model incrementally. Therefore, we are
interested in the intended application focus of an algorithm. The
application focus describes whether an approach has been intended
for process discovery or model repair use cases. Starting from an initial
process model, a user can gradually select process behavior that is
not yet supported by the process model and apply a model repair
approach. The resulting process model can then be reused in the
next iterative execution in which further process behavior is added.

4.2.7. Software realization
The software support, especially for domain-knowledge-utilizing

process discovery approaches, is of great importance. For example,
interactive process discovery algorithms, i.e., human-in-the-loop
process discovery, must communicate intermediate results, design
decisions, or questions to the user, for which the algorithm requests

feedback. Another example is the elicitation and specification of
domain knowledge where the user needs support from software. For
instance, supporting the user in specifying constraints in a particular
formalism and verifying that the specified domain knowledge is free
of contradictions. Therefore, we are interested in the software rea
lization of the compared approaches.

Besides the existence of an implementation of an approach, we
are interested in whether the software provides a graphical user
interface (GUI) and how the user interaction is realized therein. For
instance, how does the tool support the user to specify explicit do
main knowledge, or how is the feedback loop from the user to the
algorithm designed. Furthermore, we are interested in the technical
realization of the software.

4.3. Dependencies among characteristics and features

As discussed in Section 4.1, we do not generally assume mutual
exclusiveness for the characteristics per feature. Therefore, we pro
vide in Table 2 an overview for which feature mutual exclusiveness
applies. For instance, the feature “Timing of domain knowledge
provision” is not mutually exclusive; thus, a domain-knowledge-
utilizing approach can be assigned various characteristic values for
this feature (cf. Fig. 6).

Further, there exist two dependencies between certain features
and characteristics. Thus, not all theoretically potential feature/
characteristic combinations exist. In the following, we explain these
two dependencies.

1. If the “Application focus” of an approach is model repair, the
approach requires a process model as input, i.e., explicit domain
knowledge. Hence, the approach’s “Domain knowledge type” is
explicit. Note that the approach can additionally use user feed
back because the characteristics of the feature “Domain knowl
edge type” are not mutually exclusive.

2. If the “Degree of interactivity” of an approach is automated, the
“Timing of domain knowledge provision” feature cannot be
in vivo.

5. Literature review

Based on the identified distinguishing features, this section
provides a detailed overview of various process discovery algorithms
which utilize domain knowledge. The remainder of this section is
structured as follows. In Section 5.1, we present the design of our
literature review, including the literature search process and the
criteria we applied to assess if the literature is within the scope of
this review. Next, Section 5.2 briefly and individually describes the
identified discovery algorithms and their core idea regarding the
utilization of domain knowledge. Thereby, we classify each approach
based on the distinguishing features defined in Section 4. Finally,
Section 5.3 discusses and compares the approaches and their char
acteristics per distinguishing feature.

Table 2
Overview of mutual exclusiveness regarding characteristics for each feature.

Feature Mutual Exclusive

Timing of domain knowledge provision
Domain Knowledge Type
Specification formalism (per single type) ✓
Degree of Interactivity ✓
Auto-complete option ✓
Output Process Model Formalism ✓
Process model formalism ✓
Output Guarantees ✓
Application Focus ✓
Software Realization ✓

D. Schuster, S.J. van Zelst and W.M.P. van der Aalst Computers in Industry 137 (2022) 103612

9

5.1. Design

According to the diversity in the design of a literature review, we
present our concrete approach in this section to ensure transparency
regarding our design decisions. In this literature review, we pri
marily followed the guidelines given in Brocke et al. (2009) and
Webster and Watson (2002). According to Brocke et al. (2009), the
process of literature reviewing can be split up into five phases: 1)
definition of the review scope, 2) conceptualization of the topic, 3)
literature search and evaluation, 4) literature analysis and synthesis,
and 5) research agenda. The outcome of the first phase, the defini
tion of review scope, was presented in Section 1. We will further
discuss the scope in more detail in this section. The outcomes of the
second phase, conceptualization of topic, were presented in Section
3. Further, we presented distinguishing features in Section 4. The
third phase, literature search, and evaluation of the found literature,
i.e., filtering literature outside the scope of a literature review, is a
crucial phase, according to Brocke et al. (2009). Thus, we ex
haustively explain our approach regarding the third phase in this
section. Phases four and five, the analysis of the identified literature,
and the development of a research agenda will be presented in
Sections 5.2, 5.3, and 7.

To identify relevant literature, we performed a keyword search
on scientific databases. First, we queried the databases: Scopus,1

ACM Digital Library,2 and SpringerLink.3 All databases index a ple
thora of journals, book series, conference proceedings, and work
shop proceedings. For instance, Scopus indexes over 39,000 journals
and conference proceedings in total.4 For each database, we used the
same logical combination of keywords. For example, we used the
search term TITLE-ABS-KEY("process mining" AND ("process
discovery" OR “model repair") AND ("interactive" OR
“domain knowledge" OR “hybrid intelligence" OR “human-
in-the-loop")) in Scopus. Note that the exact query syntax may
differ depending on the database. Table 3 shows in the column Hits,
i.e., the number of literature found matching the search query for
each database. Note that we do not further limit the search results,
e.g., we do not apply a time filter or exclude workshop publications.

Given the search results, we evaluated the literature based on
three knockout criteria according to the scope outlined in Section 1.
First, we focus on approaches whose primary focus is process dis
covery. Second, we exclude work that solely provides conceptual
ideas without providing a specific algorithm and use case studies
applying process discovery. For instance, in Kindler et al. (2006), a
general framework to incrementally discover process models from
document and version management systems is presented, and in
Hammori et al. (2004), requirements for an interactive workflow
mining system are described.

Third, we focus on approaches that utilize domain knowledge in
the process discovery phase (cf. Fig. 2). Thus, we exclude approaches
that utilize domain knowledge solely in the event data pre-proces
sing phase because these approaches address event data pre-pro
cessing in a general manner. Event data pre-processing is required/
beneficial for any applied process mining technique, and it is con
sidered a separate research area. For instance, we exclude domain-
knowledge-utilizing filtering techniques (Sadeghianasl et al., 2020;
Martin et al., 2019; Sani et al., 2019; Gschwandtner et al., 2014), label
splitting techniques (Lu et al., 2016), and event abstraction techni
ques (van Zelst et al., 2021). Further, we exclude domain-knowledge-
utilizing post-processing approaches for process models, i.e., ap
proaches only applied after the actual discovery phase. However, as

discussed in Section 4.2.6, process model repair techniques can also
be used to discover a process model incrementally. Thus, we con
sider process model repair techniques in this literature review. It
should be noted that we do not, though, provide a complete over
view of all existing approaches to process model repair unless the
techniques differ according to the identified distinguishing char
acteristic regarding use in the context of process discovery. Fur
thermore, from the point of view of process discovery, a detailed
comparison of model repair techniques makes little sense since the
mode of operation to discover a model is the same. Analogously, we
exclude pure post-processing approaches. Moreover, we exclude
approaches that use only domain knowledge and no event data to
discover a process model. For example, in (Friedrich et al., 2011), the
authors describe an approach that learns a model based only on
natural language descriptions of a process and does not use any
event data. Apart from the listed restrictions, we include all ap
proaches that are intended to discover a process model and utilize
domain knowledge in addition to event data.

Table 3 shows the number of found publications for each data
base and the number of remaining publications after gradually ap
plying the three knockout criteria.5 After removing duplicates, we
identified 12 relevant approaches from the database queries. In ad
dition to the conducted database queries, we applied backward
search for all 12 identified publications (Brocke et al., 2009). Thus,
we evaluated all references from each of the 12 identified publica
tions. After removing duplicates, the 12 identified papers cite in total
270 publications. From these 270 publications, 10 fulfill all three
criteria. We found one publication/approach among the ten identi
fied publications we did not identify before with the database
searches. Thus, we finally identified 13 domain-knowledge-utilizing
discovery approaches that are included in this literature review. An
overview of the identified approaches is presented in Table 4.

5.2. Descriptions of identified approaches

This section briefly describes each identified domain-knowledge-
utilizing approach to provide an overview of how the approaches
work and, in particular, how domain knowledge is utilized.
Following the order in Table 4, we individually present the ap
proaches. Note that in Section 5.3, we discuss and compare the
different approaches based on the identified distinguishing features,
cf. Fig. 6.

5.2.1. Approach A1
Goedertier et al. (2009) present an automated approach that

utilizes a priori domain knowledge. The approach allows providing
prior knowledge about which process activities are executed in
parallel and which are sequentially executed. This information is
utilized to enrich the given event log with missing behavior because
event logs are often incomplete and do not contain all possible
scheduling sequences of parallel behavior. For instance, assume
there are n atomic process activities executed in parallel. In this case,
there exist n! many sequential executions of these n activities. Any
missing sequential execution in the event log is automatically added
based on the provided domain knowledge. Based on the domain
knowledge, the approach learns a Petri net that may contain, for
example, loops, duplicate labels, and non-free choice constructs.

5.2.2. Approach A2
Maggi et al. (2011) propose an automated approach to learn a

process model, i.e., a DECLARE model graphically represented as a
ConDec model (Pesic and van der Aalst, 2006). DECLARE consists of

1 http://scopus.com
2 https://dl.acm.org/
3 https://link.springer.com/
4 https://www.scopus.com/sources.uri (Accessed 11/25/2021).

5 Detailed information on the search terms used, the literature found, and the
application of the three criteria can be found in the supplementary material.

D. Schuster, S.J. van Zelst and W.M.P. van der Aalst Computers in Industry 137 (2022) 103612

10

http://scopus.com
https://dl.acm.org/
https://link.springer.com/
https://www.scopus.com/sources.uri

behavioral templates to represent specific relationships between
process activities. The user restricts (a priori domain knowledge) the
algorithm to a desired subset of templates that the algorithm is al
lowed to use, i.e., which templates appear in the resulting process
model. The approach automatically learns constraints based on the
selected templates and generates a process model out of this. Fur
thermore, the approach guarantees that the given event data fits the
discovered constraints.

5.2.3. Approach A3
Rembert et al. (2013) propose an automated discovery approach

that utilizes a priori, explicit domain knowledge in the form of an
augmented Information Control Net (ICN), i.e., an imperative form
alism. An ICN represents relationships between process activities. In
an extended ICN, the user assigns belief values (between 0 and 1) to
the relationships, expressing the user’s belief in the given de
pendency between the corresponding activities. Based on the event
data and the augmented ICN, a process model is automatically
learned and presented as an ICN. The authors explicitly highlight
cases where event data contain uncertainties or where important
but infrequent process behavior is present in the event data as a
primary application of their approach.

5.2.4. Approach A4
Yahya et al. (2013) present an automated approach that utilizes a

priori domain knowledge. A user can specify the following re
lationships between activities: causal, unrelated, parallel. Ad
ditionally, start and end activities can be specified. Based on the
notion of activity proximity, which reflects the relations between
activities as recorded in the event log, and the specified domain
knowledge, a process model is learned, i.e., a directed graph,
showing the directly-follows-relation between activities.

5.2.5. Approach A5
Dixit et al. (2015) present an automated approach. The approach

uses an initial process model, event data, and user-specified con
straints, i.e., DECLARE constraints, as input. Thus, the approach uses
domain knowledge a priori. Given the initial process model, a brute
force method is applied to generate different models by randomly
applying edit operations. Next, the resulting models are evaluated
based on the event data—standard quality measures are calculated,
i.e., replay fitness, precision, generalization, and simplicity—based on
the number of applied edit operations and the number of satisfied
user-specified constraints. For an introduction to the standard
quality measures, we refer to (van der Aalst, 2016, Chapter 6.4.3).
These six measures are used to create a Pareto front of the best
process models. Compared to Fig. 2, the approach returns multiple
process models after the discovery phase. Finally, the obtained se
lection of process models is presented to the user, who must select
the final process model. We categorize this user feedback as a pos
teriori.

5.2.6. Approach A6
Greco et al. (2015, 2012) propose an automated process discovery

approach that utilizes explicit domain knowledge in the form of
precedence constraints, i.e., a declarative formalism. These pre
cedence constraints specify the dependencies among the process
activities and are an additional input next to event data, i.e., a priori.
Process models are represented as extended C-nets. The approach
guarantees that the resulting C-net describes the behavior in the
event data and fulfills the given precedence constraints; otherwise,
no model is returned. The authors explicitly highlight the log com
pleteness problem, i.e., when event data does not include all possible
executions of the actual process to be discovered, as a suited use case
of their approach.

Table 3
Overview of the literature search process. First, we queried the given databases. We identified 12 publications matching the scope of this literature review. Starting from these 12
publications, we conducted backward search that resulted in 10 identified publications. The backward search identified a new previously unidentified approach. Thus, we
identified in total 13 publications/approaches.

Number of publications satisfying

Source Hits Criterion 1. Criteria 1. and 2. Criteria 1., 2., and 3.

Scopus 43 20 13 9
ACM Digital Library 60 26 11 2
SpringerLink 408 79 63 10
Σ 12 (duplicates removed)
Backward Search (given the 12 identified publications) 270 10
Σ 13 (duplicates removed)

Table 4
Overview of the identified approaches ordered by publication year. Note that when an approach is refined/extended over multiple publications, we list the year of the most recent
publication.

Approach ID First author Ref. Year Description

A1 Goedertier et al. Goedertier et al. (2009) 2009 Section 5.2.1
A2 Maggi et al. Maggi et al. (2011) 2011 Section 5.2.2
A3 Rembert et al. Rembert et al. (2013) 2013 Section 5.2.3
A4 Yahya et al. Yahya et al. (2013) 2013 Section 5.2.4
A5 Dixit et al. Dixit et al. (2015) 2015 Section 5.2.5
A6 Greco et al. Greco et al. (2015, 2012) 2015 Section 5.2.6
A7 Fahland et al. Fahland and van der Aalst (2015, 2012) 2015 Section 5.2.7
A8 Armas-Cervantes et al. Armas-Cervantes et al. (2017a) 2017 Section 5.2.8
A9 Canensi et al. Canensi et al. (2017) 2017 Section 5.2.9
A10 Dixit et al. Dixit et al. (2018b) 2018 Section 5.2.10
A11 Yürek et al. Yürek et al. (2018) 2018 Section 5.2.11
A12 Ferilli et al. Ferilli and Esposito (2013), Ferilli (2020) 2020 Section 5.2.12
A13 Schuster et al. Schuster et al. (2020) 2020 Section 5.2.13

D. Schuster, S.J. van Zelst and W.M.P. van der Aalst Computers in Industry 137 (2022) 103612

11

5.2.7. Approach A7
Fahland and van der Aalst (2015, 2012) introduce the field of

process model repair and present a process model repair approach.
Given a process model and an event log containing traces that the
model does not support, the repair approach alters the process
model such that the model accepts all traces in the event log and is
as similar—both from a language and a structural point of view—as
possible to the original model. Therefore, we categorize this repair
approach as interactive/incremental, i.e., starting from an initial
process model (explicit, a priori domain knowledge), we repair the
process model by incrementally adding trace variants to it (explicit,
in vivo domain knowledge). The repair approach generally works on
Petri nets, i.e., no restriction on a specific subclass. Moreover, an
auto-complete option is theoretically given by automatically adding
all remaining, non-fitting trace variants from a given log.

5.2.8. Approach A8
Armas-Cervantes et al. (2017a) propose a model repair approach,

which we categorize as interactive/incremental like A7. Compared to
A7, this approach relies on user feedback. The approach uses BPMN as
process model formalism. By applying conformance checking tech
niques to a given event log and BPMN model, mismatches between
the model and the data are detected and visualized in a BPMN model
editor. These visualizations of discrepancies between the model and
the log are an essential feature of the approach. Next to visualizing
the discrepancies, the approach also visualizes repair proposals in
the model. Based on the visual feedback, the user can then manually
repair the process model or apply the suggested repair. As a possible
disadvantage, the authors mention the potential effort for the user if
there are many discrepancies between the log and the model.

5.2.9. Approach A9
Canensi et al. (2017) introduce an interactive/incremental process

discovery approach tailored for medical process mining use cases.
Initially, the approach automatically discovers a process model, i.e., a
log-tree, using an existing, non-domain-knowledge-utilizing algo
rithm (Bottrighi et al., 2016). The discovered log-tree describes the
entire event log, i.e., no automatic filtering is applied. Note that a
log-tree can contain the same activity label various times because it
encodes all traces from the event log in a tree structure. Given the
discovered log-tree, a user can specify a posteriori subgraphs and
provide these as domain knowledge to the approach. Given the
subgraphs, the approach identifies all occurrences of these sub
graphs in the log-tree and highlight them to the user. Based on user
feedback, i.e., a user selects all or a subset of the identified subgraphs
in the log-tree, the approach merges the selected subgraphs to ob
tain a simplified log-tree. However, note that this merging might
result in a log-tree that describes additional behavior that is not
present in the initially discovered log-tree.

5.2.10. Approach A10
Dixit et al. (2018b) propose an interactive/incremental process

discovery approach where the user models the process model in an
interactive editor with support of the underlying algorithm, which
recommends modeling options based on the provided event log.
Starting from an initial model that does not contain any activity from
the event data, the user gradually extends the model by adding new
elements. Thus, the approach uses implicit domain knowledge in
vivo. The process model formalism used is free-choice (Desel and
Esparza, 2005) workflow nets, a subclass of Petri nets. The approach
guarantees that the Petri net under construction remains sound, a
favorable property of Petri nets, by restricting the edit operations to
the application of synthesis rules (Desel and Esparza, 2005). During
editing the net, the user gets constant feedback and support from
the tool regarding positioning new elements and relations between

process activities. Additionally, the tool offers an auto-complete
option.

5.2.11. Approach A11
Yürek et al. (2018) present an interactive/incremental discovery

approach that uses explicit domain knowledge in vivo. First, the
approach automatically discovers a DFG from the provided event
data. Afterward, a user can explicitly change the model by ag
gregating, deleting, and adding activities to the DFG. However, the
actual change of the DFG is processed by the algorithm and the user
only specifies where/how/what should be changed, e.g., between
process activity a and b process activity x should be executed. Then,
the algorithm modifies the underlying data model accordingly and
discovers a new process model. This procedure can be executed
iteratively, cf. (Yürek et al., 2018, Fig. 3).

5.2.12. Approach A12
Ferilli and Esposito (2013) and Ferilli (2020) propose an inter

active/incremental process discovery approach. First-Order Logic
(FOL) (declarative) is the formalism used to represent process be
havior. Starting from an initial model, i.e., a set of formulae that
might also be empty, new process behavior can be added in
crementally by the user. The approach uses explicit domain knowl
edge a priori (initial model) and in vivo (incremental adding of
process behavior). The approach also learns information on the
process beyond the control flow. For instance, the process model, i.e.,
FOL formulae, also includes information on resources involved in
executing process activities. As for the other incremental ap
proaches, the approach offers an auto-complete option.

5.2.13. Approach A13
Schuster et al. (2020) propose an interactive/incremental process

discovery approach where a user incrementally selects process be
havior not yet supported by a process model under construction.
Starting from an initial process model (i.e., explicit and a priori do
main knowledge), a user incrementally selects a trace variant not
supported by the current process model yet. We categorize these
incrementally selected trace variants as explicit and in vivo domain
knowledge. The selected trace variant, potential previously selected
trace variants, and the current process model are fed into the in
cremental discovery approach. The approach alters the process
model such that the resulting model supports the previously added
traces and the selected trace variant. The returned process model is
then used as input in the next iteration, where the user adds the next
trace variant to the model under construction. The approach uses
process trees as a process model formalism and guarantees that the
incrementally selected trace variants fit the resulting model. Further,
the approach offers an auto-complete option by simply adding all the
behavior of an event log to the model.

5.3. Discussion

This section compares the different approaches and discusses the
different characteristics per distinguishing feature. A compact
overview of this comparison can be found in Table 5, in which we list
the different characteristics per distinguishing feature for each ap
proach. Table 6 provides an overview of the number of approaches
that have been categorized according to the different characteristics
of the distinguishing features. Subsequently, each feature is dis
cussed individually, following the order given in Fig. 6.

5.3.1. Timing of domain knowledge provision
Comparing the timing of domain knowledge provision, we ob

serve that ten approaches assume domain knowledge to be provided
a priori, six approaches utilize domain knowledge in vivo, and two
approaches utilize domain knowledge a posteriori, i.e., after the

D. Schuster, S.J. van Zelst and W.M.P. van der Aalst Computers in Industry 137 (2022) 103612

12

actual discovery phase. Note that the feature timing of domain
knowledge provision is not mutually exclusive (cf. Table 2), e.g., an
approach can utilize domain knowledge a priori and in vivo. Further
note that we have excluded approaches that focus solely on post-
processing process models, cf. Section 5.

Interestingly, only six approaches support in vivo utilization of
domain knowledge, i.e., these allow the user to interact with the
algorithm during the actual discovery. Three out of these six ap
proaches (i.e., A7, A12, and A13) follow an incremental discovery
approach, i.e., traces are incrementally selected by the user and
added to a process model under construction by the algorithm. Two
other approaches (i.e., A8, A10) assume that the user is actively
providing feedback by either modeling or repairing the process
model guided by suggestions from the algorithm. Although A11 also
allows editing an initially discovered process model, the algorithm
does not provide the user with any modeling suggestions compared
to the previous two approaches. This observation shows that current
algorithms are very limited in terms of the variety of in vivo utili
zation of domain knowledge and that many possibilities of in vivo
utilization of domain knowledge have not yet been explored.

5.3.2. Domain knowledge type
Twelve out of thirteen approaches utilize explicit domain

knowledge, and only four , i.e., A5, A8, A9, and A10, utilize user
feedback. Only A10 solely utilizes user feedback. Note that the fea
ture domain knowledge type is not mutually exclusive, cf. Table 2.
Further note that the automated approaches utilize only explicit
domain knowledge since these approaches do not offer user inter
action, as discussed in Section 4.3.

The process discovery algorithms incrementally adding traces to
a process model under construction (i.e., A7, A8, A10, and A12) use
an initial model a priori, explicit domain knowledge, and user-se
lected traces in vivo. The user-selected traces are explicit domain
knowledge within the discovery phase.

The remaining approaches that utilize explicit domain knowl
edge (i.e., A1-A6, A9 and A11) use declarative as well as imperative
formalisms. We observe the following formalisms to represent ex
plicit domain knowledge: control flow constraints (e.g., precedence
constraints and DECLARE constraints), initial process models, aug
mented ICNs, and incrementally selected traces. Precedence con
straints and DECLARE constraints are both declarative formalisms.

Table 5
Classification and overview of process discovery approaches utilizing domain knowledge and/or user feedback (La Rosa et al., 2011; Armas-Cervantes et al., 2017b; Dixit et al.,
2018a; Schuster et al., 2021a).

D. Schuster, S.J. van Zelst and W.M.P. van der Aalst Computers in Industry 137 (2022) 103612

13

However, the DECLARE formalism is more expressive than pre
cedence constraints because DECLARE contains precedence con
straints and offers further constraints, e.g., the DECLARE formalism
enables the user to specify the exact number of times a process
activity must occur. Augmented ICNs are an imperative formalism
modeling the control flow of process activities. However, in practical
use, it might be difficult for the user to assign a value between 0 and
1 to the different control flow relations, which expresses the cer
tainty of the user for to the relation.

Comparing the utilized user feedback across the approaches (i.e.,
A5, A8, A9, and A10), we observe the following interaction options:
selecting a final model out of multiple candidates (i.e., A5), mod
eling/repairing a model based on suggestions from the algorithm in
an editor (i.e., A10/A8), and selecting identical process model parts
that are to be merged (i.e., A9).

5.3.3. Degree of interactivity
Comparing the degree of interactivity, we observe that five ap

proaches (i.e., A1-A4 and A6) are fully-automated. The remaining
approaches are classified as interactive/incremental, i.e., they sup
port in vivo provision of domain knowledge or some form of user
feedback. All interactive/incremental approaches, except for A5 and
A9, offer an auto-complete option, i.e., these approaches can also be
used in an automated way without mandatory domain knowledge
provision. Note that to both approaches, i.e., A5 and A9, an auto-
complete option could be easily added. In the case of A5, the ap
proach would have to decide at the end which process model to
return based on some predefined criteria instead of leaving this
decision to the user. Similarly, A9 could simply merge all detected
identical process model parts.

5.3.4. Output process model formalism and restrictions
Comparing the used process model formalisms, we see that a

wide range of different formalisms is used. We observe that only two
approaches use declarative formalisms to represent the discovered
model, while the other approaches use imperative formalisms.
However, most of the used process model formalisms are not
common in industrial applications, for instance, process trees, C-
nets, and ICNs.

The most common formalism used by the identified approaches
is Petri nets. Except for one approach (i.e., A7), approaches using
Petri nets focus on a subclass, i.e., either process trees or free-choice
workflow nets. Process trees are widely used in state-of-the-art
conventional process discovery approaches, e.g., the Inductive Miner
(Leemans et al., 2013) and the Evolutionary Tree Miner (Buijs et al.,
2014). However, it is important to note that the expressiveness of
process trees is limited, e.g., long-term dependencies—a choice at
the beginning of a process influences a choice later in the pro
cess—cannot be modeled. On the other hand, process trees guar
antee favorable behavioral characteristics, e.g., they are deadlock-
free, i.e., a process tree cannot be in a state where no more activity
can be executed although the end has not yet been reached.
Therefore, process trees are an important subclass of Petri nets for
process mining use cases but have inherent limitations. Similarly,
according to (van der Aalst, 2016, cf. Chapter 6.4), free-choice
workflow nets cannot reflect all behavior from real-life processes. A4
and A11 use a simple graph representation, i.e., a DFG, as process
model formalism. Although DFGs are widely used in industrial ap
plications of process mining, this formalism has low expressiveness
compared to the other imperative formalisms observed. For ex
ample, control flow operators such as choices and parallel joins/
splits cannot be modeled because DFGs represent only process

Table 6
Overview of the number of approaches assigned to the individual characteristics, cf. Fig. 6. We marked features that are not mutually exclusive
with *, cf. Table 2. For the calculation of the relative numbers of the characteristics of the second level, we have taken the absolute number of the
characteristics of the corresponding first level as a basis.

D. Schuster, S.J. van Zelst and W.M.P. van der Aalst Computers in Industry 137 (2022) 103612

14

activities and their potentially directly following process activities.
van der Aalst (2019) extensively explains the use of DFGs and the
pitfalls of deriving misleading diagnoses from DFGs.

5.3.5. Output guarantees
We observe that eight approaches provide guarantees concerning

the discovered process model, and five approaches do not. Most
approaches guarantee that the initially given or incrementally se
lected event data fit the discovered process model, i.e., the recorded
process behavior in the event data conforms to the discovered pro
cess model. Thereby, it is important to distinguish between ap
proaches guaranteeing that the entire given event data are fitting
(i.e., A2, A6, A9) and approaches (i.e., A7, A8, A12, and A13), allowing
the user to interactively select the desired process behavior to be
included in the process model under construction. If there is no
option for the user to interactively influence the process model
during the process discovery phase, e.g., by selecting desired process
behavior from the event data to be included in the model or by
editing the process model under construction, data-quality is even
more critical. All process behavior captured in the given event da
ta—including noise, incomplete behavior, etc.–will be represented in
the discovered process model if the approach guarantees full fitness.
Therefore, the quality of the input event data is critical to the suc
cessful application of the techniques above.

Interestingly, only approach A2 provides guarantees regarding
the a priori, explicit domain knowledge, and the resulting process
model. The approach guarantees that the resulting model fits the
given event data and the precedence constraints between process
activities given as explicit domain knowledge. This leads to an in
teresting design decision. Suppose domain knowledge and event
data have conflicting information about the process to be discovered.
In that case, the approach must decide, i.e., either return nothing
because no solution satisfies both domain knowledge and event
data, favor domain knowledge over event data, or vice versa. For
instance, the user could model the precedence constraint specifying
process activity a is always executed before b; however, we observe
the exact opposite in the event data. A6 is designed to not return a
model unless both event data and domain knowledge can be fully
represented in a process model. Although we have argued that
guarantees regarding the discovered process model are of great
importance, the above example shows that such guarantees can also
lead to challenges. For example, approach A3 offers no guarantees;
however, it may still be useful in practice not to always favor domain
knowledge over event data, or vice versa, but to focus on the sta
tistically significant behavior of event data and domain knowledge
instead.

5.3.6. Application focus
We observe that eleven out of thirteen approaches have been

mainly designed for process discovery by comparing the application
focus. Nevertheless, we identified two model repair approaches that
can also be used to discover a process model incrementally, as de
scribed in Section 3.5. Although this observation is not surprising,
the two process model repair techniques demonstrate the link from
model repair to interactive and incremental process discovery.

5.3.7. Software realization
Regarding software support, we note that eight approaches have

been realized in software. Of these, six approaches are available as a
plugin within the process mining toolkit ProM (Verbeek et al.,
2010).6 ProM is an open-source software tool for process mining that
provides general process mining functionality and offers the possi
bility to distribute algorithms and approaches via a plugin manager.

A13 has been implemented in a standalone software tool called
Cortado (Schuster et al., 2021a),7 which is designed explicitly for
incremental process discovery. A8 has been integrated into the tool
called Apromore (La Rosa et al., 2011).8 Apromore is a general process
mining software tool that includes various process mining func
tionality next to the process model repair functionality. For five
approaches, no software realization is (publicly) available, or the
status is unknown to us. All software realizations offer a graphical
user interface, allowing users to apply the approach easily.

6. Adoption in industry

In this section, we briefly focus on the adoption of process
mining, especially of domain-knowledge-utilizing process discovery
approaches, in industry. In general, process mining technologies are
used in a wide range of industrial sectors, for instance, manu
facturing (Rozinat et al., 2009; Park et al., 2015), healthcare (Rojas
et al., 2016; Yang and Su, 2014), education (Bogarín et al., 2018) and
auditing (Jans et al., 2013; van der Aalst et al., 2010). We refer to
Reinkemeyer (2020) for various examples of process mining use
cases at various organizations, e.g., Siemens, Uber, BMW, and Bosch.
Further use case studies can be found in (Thiede et al., 2018).

The overall market for process mining is growing. The market
size growth of 2021 is estimated to be 70%, and in 2022 the market
growth rate is estimated to be between 40% and 50% (Kerremans
et al., 2021). These growth rates indicate the increasing relevance of
process mining technology in industry. According to Kerremans et al.
(2021), more than 40 commercial process mining tools are available
from various vendors, including Apromore, Celonis, IBM, SAP, and
UiPath.

A comparison of different process mining tools is outside the
scope of this literature review. In general, the existing commercial
tools offer different process mining technologies, but often there is a
focus on the functionality offered (Kerremans et al., 2021). According
to Martin et al. (2021, Table 4), existing solutions often do not cover a
wide range of process mining functionalities.

Looking at process discovery functionality in commercial tools,
we observe that many existing tools offer limited process discovery
functionality. From our perspective, many of the existing conven
tional process discovery algorithms developed in academia (Augusto
et al., 2018; van Dongen et al., 2009) are not used in commercial
tools. Often, commercial process mining tools offer only simplified
process discovery techniques that discover a Directly-Follows Graph
(DFG) as a process model. However, DFGs lack advanced control flow
structures, and their expressiveness is significantly limited com
pared to other process model formalisms, like Petri nets and BPMN.
We refer to van der Aalst (2019) for an extensive discussion on the
limitations of DFGs. Nevertheless, process discovery is a common
use case for process mining in industry (Kerremans et al., 2021).

The development of domain-knowledge-utilizing process dis
covery approaches is still at an early stage. Few approaches exist
compared to conventional process discovery. From the 13 identified
approaches in this literature review, eight are realized in software
tools. Six out of these eight approaches are available as a plugin
within ProM (Verbeek et al., 2010), an open-source process mining
tool developed by academia. Although ProM is a great success in
academia and offers a variety of process mining functionality, it is
hardly used in industry according to our knowledge due to profes
sional support, scalability, and ease of use. Two out of the eight
approaches that have been realized in software tools are available in
standalone tools. Approach A13 (cf. Table 5) is realized in a tool that
is developed by academia and is in an early stage of development.

6 https://www.promtools.org/

7 https://cortado.fit.fraunhofer.de/
8 https://apromore.org/

D. Schuster, S.J. van Zelst and W.M.P. van der Aalst Computers in Industry 137 (2022) 103612

15

https://www.promtools.org/
https://cortado.fit.fraunhofer.de/
https://apromore.org/

Thus, this approach is not used in industry at this moment. Approach
A8 (cf. Table 5) is the only approach identified in this literature re
view realized in a commercial, open-source process mining tool. In
addition, we are not aware of any other identified domain-knowl
edge-utilizing process discovery approaches that commercial ven
dors have adopted in their software tools.

In short, domain-knowledge-utilizing process discovery is at an
early stage from both an academic and an industrial perspective.
Nevertheless, process discovery is a central use case of process
mining in industry (Kerremans et al., 2021). Given the challenges,
opportunities, and future directions of process mining presented in
Section 2, e.g., hybrid intelligence and hybrid models, domain-
knowledge-utilizing process discovery techniques have a great po
tential to become a valuable asset within the set of process mining
techniques for industry.

7. Challenges for future work

This section lists the main challenges and directions for future
work and the design of domain-knowledge-utilizing process dis
covery approaches. The identified challenges are based on the ob
servations made when comparing the presented approaches, cf.
Section 5, and the status regarding the adoption in industry pre
sented in Section 6. In total, we have identified ten challenges for
future work, which are listed below.

7.1. Blending explicit domain knowledge and user feedback

Ten identified approaches (cf. Table 5) use either solely explicit
domain knowledge or user feedback during the discovery phase.
However, both types of domain knowledge are independently
proven to be valuable in the context of learning a process model
from event data. Therefore, approaches should not be limited to
either user feedback or explicit domain knowledge and utilize both
types.

7.2. Increased interaction

An interesting direction for future work is to combine different
approaches to leverage diverse domain knowledge, rather than fo
cusing only on limited and specific domain knowledge, as most ex
isting approaches do. For example, combining incremental process
discovery, i.e., a user incrementally selects trace variants, with an
assisted model editor, where the user is guided by an algorithm
when editing the model. Moreover, approaches might offer the user
the option to provide feedback on various levels of detail, i.e., dif
ferent options to integrate domain knowledge in vivo. For example, a
user could provide feedback on the exact positioning of some pro
cess activities within a model and, at a later stage of the process
discovery phase, only guide the algorithm in which trace variants
should be added. In short, the goal should be to create overarching
approaches that combine different ideas, each of which has in
dividually proven useful in the context of process discovery.

7.3. Offering different interactivity modes

Existing approaches can be clearly categorized to one of the two
introduced degrees of interactivity, i.e., automated and interactive/
incremental (cf. Section 4.2.3). Six out of eight interactive/incre
mental approaches offer an auto-complete option. However, ideally,
an approach offers both modes giving the user maximal flexibility to
discover a process model. For example, imagine a discovery ap
proach is executed in an automatic mode. During the automated
discovery phase, the user gets constant feedback and observes an
undesirable tendency in the model being constructed. Then, the user
switches to an interactive/incremental mode, makes slight changes

to the model, and switches back to automatic mode The described
mode-switching requires that the user is able to interact at specific
points during the discovery, i.e., break points. These breakpoints
have to be chosen carefully, on the one hand, to give the user enough
opportunities to interact, and on the other hand, not to be too fine-
grained to avoid overburdening the user.

7.4. Scalable conformance checking

Many presented approaches use conformance checking techni
ques. Especially alignments (Adriansyah, 2014)– a state-of-the-art
conformance checking technique that provide detailed diagnostics
compared to other conformance checking techniques– are used in
four identified approaches, i.e., A5, A7, A8, and A13. Alignments are
used to relate a process model with an event log to, e.g., recommend
edit options and repair a model. In general, many conformance
checking techniques, especially alignments, are computationally
complex (Carmona et al., 2018) and provide non-deterministic di
agnostics, i.e., there are usually many optimal alignments
(Adriansyah, 2014). However, in general, domain-knowledge-uti
lizing discovery approaches need a constant comparison between
the model and the event log. Therefore, fast conformance checking
techniques are critical to enabling interaction and fast suggestions
from an interactive process discovery algorithm. In this context,
research on the applicability of conformance approximation tech
niques, such as Bauer et al. (2020), Fani Sani et al. (2020), and
Schuster et al. (2021b), within interactive process discovery is
needed.

7.5. Minimizing the representational bias

As discussed in Section 5.3.4, the approaches A4, A9, and A11 use
simple process model formalisms, i.e., DFGs and log-trees that both
have limited expressiveness compared to, e.g., Petri nets and BPMN.
Also, in Section 6, we highlighted the dominance of DFGs as the
prominent process model formalism in commercial tools and
pointed to (van der Aalst, 2019), discussing the limitations of DFGs.
Also in (van der Aalst et al., 2012b), the authors mention the need for
process model formalism that supports basic control flow structures.
Further, four presented algorithms that use advanced process model
formalism restrict the class of discoverable models. Such restrictions
are generally made because discovery algorithms can be designed
more easily if certain restrictions on the output process model
formalism can be assumed. For example, approaches A5 and A13
work on process trees (i.e., sound, block-structured Workflow nets)
or free-choice Workflow nets. Both block-structured and free-choice
Workflow nets are important subclasses of Petri nets. However, the
expressive power of these subclasses is limited compared to Petri
nets. Note that many real-life processes tend to be non-free-choice
and non-block-structured (van der Aalst, 2016, cf. Section 6.4). Fur
ther, common restrictions are, e.g., the absence of duplicate activity
labels, i.e., multiple elements in a process model are labeled with the
same activity, and silent labels, which are needed to model specific
control flow patterns in various formalisms. Therefore, in future
discovery approaches, the discoverable models' target class and
potential restrictions should be carefully considered. We refer to
(van der Aalst et al., 2012a) for an extensive discussion on the re
presentational bias.

7.6. Enhanced process model visualizations

As we can observe in Table 5, many different process model
formalisms are used to visualize process models, e.g., C-nets, Petri
nets, process trees, DFGs, and BPMN. It is important to note that
most of these modeling formalisms are hardly used in industrial
practice. Of the five modeling formalisms mentioned, one could

D. Schuster, S.J. van Zelst and W.M.P. van der Aalst Computers in Industry 137 (2022) 103612

16

argue that BPMN (Dumas et al., 2013) and DFGs, as discussed in
Section 6, are the most widely used in industry. Especially for
interactive discovery approaches, it is of utmost importance to
choose an appropriate process model visualization because a user
has to quickly understand a process model in an interactive pro
cess discovery setting. The relevance of the challenge described
here is supported by (Martin et al., 2021, Table 4). The authors
identify non-standard visualizations of process mining outcomes
as a challenge for the adaption of process mining in industry. Also
in (van der Aalst et al., 2012b), the authors list the challenge of
improving usability and understandability for non-experts as a
key challenge. Note that this does not necessarily imply that also
the underlying algorithms need to be specified for the chosen
visualization. For example, a process tree may be visualized as a
BPMN model to the user, but internally the algorithm operates on
a process tree data structure.

7.7. Domain knowledge specification

Many approaches utilize explicit domain knowledge. However,
little research has been done on supporting the user in specifying
the domain knowledge in the context of process discovery. For in
stance, we are not aware of studies within process mining that
analyze which formalisms are easy to understand by end-users and
how a user can be assisted/guided in specifying explicit domain
knowledge. In Martin et al. (2021), the authors present challenges
regarding the application process mining in organizations. The au
thors identify insufficient analytical and technical skills of people
applying process mining in industry. Therefore, we conclude that
user support is of great importance in the specification of domain
knowledge.

7.8. Domain knowledge prioritization

As discussed in Section 5.3.5, domain-knowledge-utilizing algo
rithms have to decide if the given domain knowledge and the given
event data have conflicting information on the process to be dis
covered. An interesting direction for future work is to involve the
user whenever such conflicts occur within the process discovery
phase and let the user interactively decide which information, i.e.,
event data or domain knowledge, is prioritized per conflict. Ad
ditionally, dynamic and automatic strategies, i.e., not to statically
always favor domain knowledge over event data or vice versa if
conflicts occur, are an interesting direction for future work.

7.9. Software support

Even more than with conventional process discovery, sophisti
cated software implementing the interactive/incremental discovery
approaches is of great importance for the acceptance and success of
said techniques. Since conventional process discovery is fully-auto
mated (cf. Fig. 1), the user's interaction with the algorithm is limited;
hence, sophisticated software support is less critical for conventional
process mining. However, there is a clear need for sophisticated
software support for process discovery approaches that utilize user
feedback, i.e., where user computer interaction is present. As dis
cussed in Section 6, only approach A8 is available in a commercial
tool (La Rosa et al., 2011), and only eight out of 13 approaches are
realized in software tools.

7.10. Alternative perspectives

Most presented approaches focus solely on learning the control
flow of a process. However, event data typically contain much more

information, e.g., resource and time information. These data are
often not exploited by process discovery algorithms, although pro
cess model formalisms like BPMN offer modeling elements to re
present information beyond the control flow, e.g., organizational
structures and data flow. For example, consider Fig. 4a. Especially in
an interactive process discovery setting, information beyond the
control flow in event data, e.g., resource and timing information,
combined with the users’ domain knowledge on the process under
consideration could be advantageous for obtaining more extensive
process models. The challenge is supported by findings presented in
Martin et al. (2021). The authors identify the analysis of processes
with the focus on resources as an opportunity for using process
mining in industry.

The presented challenges and directions for future interactive,
domain-knowledge-utilizing approaches show that many inter
esting open research questions exist, and much can still be achieved
in this area. We hope that these identified challenges and opportu
nities will provide new impetus and ideas for further developments.

8. Conclusion

Process mining provides various methods, techniques, and tools
to analyze operational processes in a data-driven manner system
atically. Process discovery is a key discipline within process mining.
Conventional process discovery deals with the automatic learning of
a process model from event data. The low quality of models dis
covered with conventional process discovery algorithms and the
presence of prior knowledge, i.e., domain knowledge, about the
process to be discovered lead to domain-knowledge-utilizing pro
cess discovery algorithms.

This paper provided a systematic review of process discovery
techniques that additionally utilize domain knowledge next to event
data. First, we identified distinguishing features to categorize and
classify domain-knowledge-utilizing process discovery approaches.
Then, based on the distinguishing features, we compared and dis
cussed thirteen identified approaches selected by objective criteria.
Finally, based on the comparison and the discussion, we identified
ten open challenges for future domain-knowledge-utilizing process
discovery approaches. These challenges highlight the potential of
using domain knowledge and user feedback within data-driven
process discovery and demonstrate the need for further develop
ment in this area.

Declaration of Competing Interest

The authors declare the following financial interests/personal
relationships which may be considered as potential competing in
terests: The third author, Wil M. P. van der Aalst, has an affiliation
with the commercial software vendor Celonis SE. However, this af
filiation did not influence the study in any way or affect objectivity.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in
the online version at doi:10.1016/j.compind.2022.103612.

References

Adriansyah, A., 2014. Aligning Observed and Modeled Behavior (Ph.D. thesis).
Eindhoven University of Technology. DOI: 10.6100/IR770080.

Armas-Cervantes, A., van Beest, N.R.T.P., Rosa, M.L., Dumas, M., García-Bañuelos, L.,
2017a. Interactive and incremental business process model repair. In: Proceedings
of the On the Move to Meaningful Internet Systems. OTM 2017 Conferences –
Confederated International Conferences: CoopIS, C&TC, and ODBASE 2017,

D. Schuster, S.J. van Zelst and W.M.P. van der Aalst Computers in Industry 137 (2022) 103612

17

https://doi.org/10.1016/j.compind.2022.103612

Rhodes, Greece, 23–27 October 2017, Part I, vol. 10573 of Lecture Notes in
Computer Science, Springer, pp. 53–74. DOI: 10.1007/978-3-319-69462-7_5.

Armas-Cervantes, A., van Beest, N.R.T.P., Rosa, M.L., Dumas, M., Raboczi, S., 2017b.
Incremental and interactive business process model repair in apromore. In:
Proceedings of the BPM Demo Track and BPM Dissertation Award co-located with
15th International Conference on Business Process Modeling (BPM 2017),
Barcelona, Spain, 13 September 2017, vol. 1920 of CEUR Workshop Proceedings,
CEUR-WS.org.URL: http://ceur-ws.org/Vol-1920/BPM_2017_paper_206.pdf.

Augusto, A., Conforti, R., Dumas, M., LaRosa, M., Maggi, F.M., Marrella, A., Mecella, M.,
Soo, A., 2018. Automated discovery of process models from event logs: review and
benchmark. IEEE Trans. Knowl. Data Eng. 31 (4), 686–705. https://doi.org/10.1109/
TKDE.2018.2841877

Bauer, M., van der Aa, H., Weidlich, M., 2020. Sampling and approximation techniques
for efficient process conformance checking. Inf. Syst. https://doi.org/10.1016/j.is.
2020.101666

Benevento, E., Dixit, P.M., Sani, M.F., Aloini, D., van der Aalst, W.M.P., 2019. Evaluating
the effectiveness of interactive process discovery in healthcare: a case study. In:
Proceedings of the Business Process Management Workshops – BPM 2019
International Workshops, Vienna, Austria, 1–6 September 2019, Revised Selected
Papers, vol. 362 of Lecture Notes in Business Information Processing, Springer, pp.
508–519. DOI: 10.1007/978-3-030-37453-2_41.

Bogarín, A., Cerezo, R., Romero, C., 2018. A survey on educational process mining.
WIREs Data Min. Knowl. Discov. 8 (1), e1230. https://doi.org/10.1002/widm.1230

Bottrighi, A., Canensi, L., Leonardi, G., Montani, S., Terenziani, P., 2016. Trace retrieval
for business process operational support. Expert Syst. Appl. 55, 212–221. https://
doi.org/10.1016/j.eswa.2015.12.002

Brocke, J.v., Simons, A., Niehaves, B., Niehaves, B., Reimer, K., Plattfaut, R., Cleven, A.,
2009. Reconstructing the giant: on the importance of rigour in documenting the
literature search process. In: Proceedings of the ECIS 2009, AIS Electronic Library
(AISeL). URL: https://aisel.aisnet.org/ecis2009/161/.

Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P., 2014. Quality dimensions in
process discovery: the importance of fitness, precision, generalization and sim
plicity. Int. J. Coop. Inf. Syst. 23 (01), 1440001. https://doi.org/10.1142/
S0218843014400012

Canensi, L., Leonardi, G., Montani, S., Terenziani, P., 2017. Multi-level interactive
medical process mining. In: Artificial Intelligence in Medicine. Springer
International Publishing, Cham, pp. 256–260. https://doi.org/10.1007/978-3-319-
59758-4_28

Carmona, J., van Dongen, B.F., Solti, A., Weidlich, M., 2018. Conformance Checking –
Relating Processes and Models. Springerhttps://doi.org/10.1007/978-3-319-
99414-7

Chinosi, M., Trombetta, A., 2012. BPMN: an introduction to the standard. Comput.
Stand. Interfaces 34 (1), 124–134. https://doi.org/10.1016/j.csi.2011.06.002

Desel, J., Esparza, J., 2005. Free Choice Petri Nets, No. 40. Cambridge University
Presshttps://doi.org/10.1017/CBO9780511526558

Dixit, P.M., Buijs, J.C.A.M., van der Aalst, W.M.P., 2018a. Prodigy: human-in-the-loop
process discovery. In: Proceedings of the 12th International Conference on
Research Challenges in Information Science (RCIS), pp. 1–12. doi: 10.1109/RCIS.
2018.8406657.

Dixit, P.M., Verbeek, H.M.W., Buijs, J.C.A.M., van der Aalst, W.M.P., 2018b. Interactive
data-driven process model construction. In: Proceedings of the Conceptual
Modeling – 37th International Conference, ER 2018, Xi’an, China, 22–25 October
2018, vol. 11157 of Lecture Notes in Computer Science, Springer, pp. 251–265. DOI:
10.1007/978-3-030-00847-5_19.

Dixit, P.M., Buijs, J.C.A.M., van der Aalst, W.M.P., Hompes, B., Buurman, H., 2015.
Enhancing process mining results using domain knowledge. In: Ceravolo, P.,
Rinderle-Ma, S., (Eds.), Proceedings of the 5th International Symposium on Data-
driven Process Discovery and Analysis (SIMPDA 2015), Vienna, Austria, 9–11
December 2015, vol. 1527 of CEUR Workshop Proceedings, CEUR-WS.org, pp.
79–94. URL: http://ceur-ws.org/Vol-1527/paper6.pdf.

Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A., 2013. Fundamentals of Business
Process Management. Springerhttps://doi.org/10.1007/978-3-642-33143-5

Dunzer, S., Stierle, M., Matzner, M., Baier, S., 2019. Conformance checking: a state-of-
the-art literature review. In: Proceedings of the 11th International Conference on
Subject-Oriented Business Process Management, pp. 1–10. doi: 10.1145/3329007.
3329014.

Fahland, D., van der Aalst, W.M.P., 2012. Repairing process models to reflect reality. In:
Barros, A., Gal, A., Kindler, E. (Eds.), Business Process Management. Springer Berlin
Heidelberg, Berlin, Heidelberg, pp. 229–245. https://doi.org/10.1007/978-3-642-
32885-5_19

Fahland, D., van der Aalst, W.M.P., 2015. Model repair – aligning process models to
reality. Inf. Syst. 47, 220–243. https://doi.org/10.1016/j.is.2013.12.007

M. Fani Sani S.J. van Zelst W.M.P. vanderAalst Conformance checking approximation
using subset selection and edit distance Advanced Information Systems
Engineering 2020 Springer International Publishing Cham 234 251 doi: 10.1007/
978-3-030-49435-3_15].

Ferilli, S., Esposito, F., 2013. A logic framework for incremental learning of process
models. Fundam. Inform. 128, 413–443. https://doi.org/10.3233/FI-2013-951

Ferilli, S., 2020. Incremental declarative process mining with WoMan. In: Proceedings
of the IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS), pp.
1–8. doi: 10.1109/EAIS48028.2020http://dx.doi.org/10.1109/EAIS48028.2020.
9122700.9122700.

Friedrich, F., Mendling, J., Puhlmann, F., 2011. Process model generation from natural
language text. In: Advanced Information Systems Engineering. Springer Berlin
Heidelberg, pp. 482–496. https://doi.org/10.1007/978-3-642-21640-4_36

Goedertier, S., Martens, D., Vanthienen, J., Baesens, B., 2009. Robust process discovery
with artificial negative events. J. Mach. Learn. Res. 10, 1305–1340. https://doi.org/
10.5555/1577069.1577113

Greco, G., Guzzo, A., Lupia, F., Pontieri, L., 2015. Process discovery under precedence
constraints. ACM Trans. Knowl. Discov. Data 9 (4), 32:1–32:39. https://doi.org/10.
1145/2710020

Greco, G., Guzzo, A., Pontieri, L., 2012. Process discovery via precedence constraints.
In: Raedt, L.D., Bessiere, C., Dubois, D., Doherty, P., Frasconi, P., Heintz, F., Lucas, P.J.
F. (Eds.), Proceedings of the ECAI 2012 – 20th European Conference on and
Applications. Including Prestigious Applications of and Applications (PAIS-2012)
System Demonstrations Track, Montpellier, France, 27–31 August 2012, vol. 242 of
Frontiers in and Applications IOS Press, pp. 366–371. doi: 10.3233/978-1-61499-
098-7-366.

Gschwandtner, T., Aigner, W., Miksch, S., Gärtner, J., Kriglstein, S., Pohl, M., Suchy, N.,
2014. Timecleanser: a visual analytics approach for data cleansing of time-or
iented data,. In: Proceedings of the 14th International Conference on Knowledge
Technologies and Data-Driven Business, i-KNOW ’14, Association for Computing
Machinery, New York, NY, USA. doi: 10.1145/2637748.2638423.

Hammori, M., Herbst, J., Kleiner, N., 2004. Interactive workflow mining. In:
Proceedings of the Business Process Management: Second International
Conference, BPM 2004, Potsdam, Germany, 17–18 June 2004, vol. 3080 of Lecture
Notes in Computer Science, Springer, pp. 211–226. doi: 10.1007/978-3-540-
25970-1_14.

Jans, M., Alles, M., Vasarhelyi, M., 2013. The case for process mining in auditing:
sources of value added and areas of application. Int. J. Account. Inf. Syst. 14 (1),
1–20. https://doi.org/10.1016/j.accinf.2012.06.015

Kerremans, M., Srivastava, T., Choudhary, F., 2021. Market Guide for Process Mining,
Technical Report, Gartner.

Kindler, E., Rubin, V., Schäfer, W., 2006. Incremental workflow mining based on
document versioning information. In: Unifying the Software Process Spectrum.
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 287–301. https://doi.org/10.
1007/11608035_25

La Rosa, M., Reijers, H.A., van der Aalst, W.M.P., Dijkman, R.M., Mendling, J., Dumas, M.,
García-Bañuelos, L., 2011. Apromore: an advanced process model repository.
Expert Syst. Appl. 38 (6), 7029–7040. https://doi.org/10.1016/j.eswa.2010.12.012

Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P., 2013. Discovering block-structured
process models from event logs - a constructive approach. In: Application and
Theory of Petri Nets and Concurrency. Springer Berlin Heidelberg, Berlin,
Heidelberg, pp. 311–329. https://doi.org/10.1007/978-3-642-38697-8_17

Leemans, S.J., 2017. Robust Process Mining with Guarantees (Ph.D. thesis). Eindhoven
University of Technology. URL: https://research.tue.nl/en/publications/robust-
process-mining-with-guarantees.

Lu, X., Fahland, D., van den Biggelaar, F.J.H.M., van der Aalst, W.M.P., 2016. Handling
duplicated tasks in process discovery by refining event labels. In: Business Process
Management. Springer International Publishing, Cham, pp. 90–107. https://doi.
org/10.1007/978-3-319-45348-4_6

Maggi, F.M., Mooij, A.J., van der Aalst, W.M.P., 2011. User-guided discovery of de
clarative process models. In: Proceedings of the IEEE Symposium on and Data
Mining, CIDM 2011, Part of the IEEE Symposium Series on 2011, 11–15 April 2011,
Paris, France, IEEE, pp. 192–199. DOI: 10.1109/CIDM.2011.5949297.

Martin, N., Martinez-Millana, A., Valdivieso, B., Fernández-Llatas, C., 2019. Interactive
data cleaning for process mining: a case study of an outpatient clinic’s appoint
ment system. In: DiFrancescomarino, C., Dijkman, R., Zdun, U. (Eds.), Business
Process Management Workshops. Springer International Publishing, Cham, pp.
532–544. https://doi.org/10.1007/978-3-030-37453-2_43

Martin, N., Fischer, D.A., Kerpedzhiev, G.D., Goel, K., Leemans, S.J.J., Röglinger, M., van
der Aalst, W.M.P., Dumas, M., La Rosa, M., Wynn, M.T., 2021. Opportunities and
challenges for process mining in organizations: results of a Delphi study. Bus. Inf.
Syst. Eng. 63 (5), 511–527. https://doi.org/10.1007/s12599-021-00720-0

Nickerson, R.C., Muntermann, J., Varshney, U., 2010. Taxonomy development in in
formation systems: a literature survey and problem statement. In: Proceedings of
the ECIS 2010. AIS Electronic Library (AISeL). doi: 10.1016/j.is.2016.07.011.

Park, Minjeong, Song, Minseok, Baek, Tae Hyun, Son, SookYoung, Ha, Seung Jin, Cho,
Sung Woo, 2015. Workload and Delay Analysis in Manufacturing Process Using
Process Mining. In: Asia Pacific Business Process Management. AP-BPM 2015.
Lecture Notes in Business Information Processing Springer, Cham. https://doi.org/
10.1007/978-3-319-19509-4_11

Pérez-Alfonso, D., Fundora-Ramírez, O., Lazo-Cortés, M.S., Roche-Escobar, R., 2015.
Recommendation of process discovery algorithms through event log classifica
tion. In: Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Sossa-Azuela, J.H.,
OlveraLópez, J.A., Famili, F. (Eds.), Pattern Recognition. Springer International
Publishing, pp. 3–12. https://doi.org/10.1007/978-3-319-19264-2_1

Pesic, M., van der Aalst, W.M.P., 2006. A declarative approach for flexible business
processes management. In: Proceedings of the International Conference on
Business Process Management, Springer, pp. 169–180. DOI: 10.1007/
11837862_18.

Reinkemeyer, L., 2020. Process Mining in Action: Principles, Use Cases and Outlook.
Springer Naturehttps://doi.org/10.1007/978-3-030-40172-6

D. Schuster, S.J. van Zelst and W.M.P. van der Aalst Computers in Industry 137 (2022) 103612

18

http://ceur-ws.org/Vol-1920/BPM_2017_paper_206.pdf
https://doi.org/10.1109/TKDE.2018.2841877
https://doi.org/10.1109/TKDE.2018.2841877
https://doi.org/10.1016/j.is.2020.101666
https://doi.org/10.1016/j.is.2020.101666
http://10.1007/978-3-030-37453-2_41
https://doi.org/10.1002/widm.1230
https://doi.org/10.1016/j.eswa.2015.12.002
https://doi.org/10.1016/j.eswa.2015.12.002
https://aisel.aisnet.org/ecis2009/161/
https://doi.org/10.1142/S0218843014400012
https://doi.org/10.1142/S0218843014400012
https://doi.org/10.1007/978-3-319-59758-4_28
https://doi.org/10.1007/978-3-319-59758-4_28
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1016/j.csi.2011.06.002
https://doi.org/10.1017/CBO9780511526558
http://dx.doi.org/10.1109/RCIS.2018.8406657
http://dx.doi.org/10.1109/RCIS.2018.8406657
http://dx.doi.org/10.1007/978-3-030-00847-5_19
http://10.1007/978-3-030-00847-5_19
https://doi.org/10.1007/978-3-642-33143-5
http://dx.doi.org/10.1007/978-3-030-00847-5_19
http://dx.doi.org/10.1007/978-3-030-00847-5_19
https://doi.org/10.1007/978-3-642-32885-5_19
https://doi.org/10.1007/978-3-642-32885-5_19
https://doi.org/10.1016/j.is.2013.12.007
http://dx.doi.org/10.1007/978-3-030-49435-3_15
http://dx.doi.org/10.1007/978-3-030-49435-3_15
https://doi.org/10.3233/FI-2013-951
http://dx.doi.org/10.1109/EAIS48028.2020.9122700
http://dx.doi.org/10.1109/EAIS48028.2020.9122700
https://doi.org/10.1007/978-3-642-21640-4_36
https://doi.org/10.5555/1577069.1577113
https://doi.org/10.5555/1577069.1577113
https://doi.org/10.1145/2710020
https://doi.org/10.1145/2710020
http://dx.doi.org/10.3233/978-1-61499-098-7-366
http://dx.doi.org/10.3233/978-1-61499-098-7-366
http://dx.doi.org/10.1145/2637748.2638423
http://dx.doi.org/10.1007/978-3-540-25970-1_14
http://dx.doi.org/10.1007/978-3-540-25970-1_14
https://doi.org/10.1016/j.accinf.2012.06.015
https://doi.org/10.1007/11608035_25
https://doi.org/10.1007/11608035_25
https://doi.org/10.1016/j.eswa.2010.12.012
https://doi.org/10.1007/978-3-642-38697-8_17
https://research.tue.nl/en/publications/robust-process-mining-with-guarantees
https://research.tue.nl/en/publications/robust-process-mining-with-guarantees
https://doi.org/10.1007/978-3-319-45348-4_6
https://doi.org/10.1007/978-3-319-45348-4_6
http://dx.doi.org/10.1109/CIDM.2011.5949297
https://doi.org/10.1007/978-3-030-37453-2_43
https://doi.org/10.1007/s12599-021-00720-0
http://dx.doi.org/10.1016/j.is.2016.07.011
https://doi.org/10.1007/978-3-319-19509-4_11
https://doi.org/10.1007/978-3-319-19509-4_11
https://doi.org/10.1007/978-3-319-19264-2_1
http://dx.doi.org/10.1007/11837862_18
http://dx.doi.org/10.1007/11837862_18
https://doi.org/10.1007/978-3-030-40172-6

Rembert, A.J., Omokpo, A., Mazzoleni, P., Goodwin, R., 2013. Process discovery using
prior knowledge. In: Proceedings of the Service-Oriented Computing – 11th
International Conference, ICSOC 2013, Berlin, Germany, 2–5 December 2013, vol.
8274 of Lecture Notes in Computer Science, Springer, pp. 328–342. DOI: 10.1007/
978-3-642-45005-1_23.

Ribeiro, J., Carmona, J., Mísír, M., Sebag, M., 2014. A recommender system for process
discovery. In: Sadiq, S., Soffer, P., Völzer, H. (Eds.), Business Process Management.
Springer International Publishing, pp. 67–83. https://doi.org/10.1007/978-3-319-
10172-9_5

Rojas, E., Munoz-Gama, J., Sepúlveda, M., Capurro, D., 2016. Process mining in
healthcare: a literature review. J. Biomed. Inform. 61, 224–236. https://doi.org/10.
1016/j.jbi.2016.04.007

Rozinat, A., de Jong, I.S.M., Günther, C.W., der Aalst, W.M.P.v., 2009. Process mining
applied to the test process of wafer scanners in ASML. IEEE Trans. Syst. Man
Cybern. Part C Appl. Rev. 39 (4), 474–479. https://doi.org/10.1109/TSMCC.2009.
2014169

Sadeghianasl, S., ter Hofstede, A.H.M., Suriadi, S., Turkay, S., 2020. Collaborative and
interactive detection and repair of activity labels in process event logs. In:
Proceedings of the 2nd International Conference on Process Mining (ICPM), pp.
41–48. DOI: 10.1109/ICPM49681.2020.00017.

Sani, M.F., Berti, A., van Zelst, S.J., van der Aalst, W.M.P., 2019. Filtering toolkit: in
teractively filter event logs to improve the quality of discovered models. BPM
134–138.http://ceur-ws.org/Vol-2420/paperDT4.pdf.

Schuster, D., van Zelst, S.J., van der Aalst, W.M.P., 2020. Incremental discovery of
hierarchical process models. In: Research Challenges in Information Science.
Springer International Publishing, Cham, pp. 417–433. https://doi.org/10.1007/
978-3-030-50316-1_25

Schuster, D., van Zelst, S.J., van der Aalst, W.M.P., 2021a. Cortado–an interactive tool
for data-driven process discovery and modeling. In: Application and Theory of
Petri Nets and Concurrency. Springer International Publishing, Cham, pp.
465–475. https://doi.org/10.1007/978-3-030-76983-3_23

Schuster, D., van Zelst, S., van der Aalst, W.M.P., 2021b. Alignment approximation for
process trees. In: Process Mining Workshops. Springer International Publishing,
Cham, pp. 247–259. https://doi.org/10.1007/978-3-030-72693-5_19

Suriadi, S., Andrews, R., terHofstede, A.H.M., Wynn, M.T., 2017. Event log imperfection
patterns for process mining: towards a systematic approach to cleaning event
logs. Inf. Syst. 64, 132–150. https://doi.org/10.1016/j.is.2016.07.011

Tax, N., Teinemaa, I., van Zelst, S.J., 2020. An interdisciplinary comparison of sequence
modeling methods for next-element prediction. Softw. Syst. Model. 19 (6),
1345–1365. https://doi.org/10.1007/s10270-020-00789-3

Thiede, M., Fuerstenau, D., BezerraBarquet, A.P., 2018. How is process mining tech
nology used by organizations? A systematic literature review of empirical studies.
Bus. Process Manag. J. 24 (4), 900–922. https://doi.org/10.1108/BPMJ-06-2017-
0148

van der Aalst, W., 2010. Process discovery: capturing the invisible. IEEE Comput. Intell.
Mag. 5 (1), 28–41. https://doi.org/10.1109/MCI.2009.935307

van der Aalst, W., Buijs, J., van Dongen, B., 2012a. Towards improving the re
presentational bias of process mining. In: Data-Driven Process Discovery and
Analysis. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 39–54. https://doi.
org/10.1007/978-3-642-34044-4_3

van der Aalst, W., Adriansyah, A., de Medeiros, A.K.A., Arcieri, F., Baier, T., Blickle, T.,
Bose, J.C., van den Brand, P., Brandtjen, R., Buijs, J., Burattin, A., Carmona, J.,
Castellanos, M., Claes, J., Cook, J., Costantini, N., Curbera, F., Damiani, E., de Leoni,
M., Delias, P., van Dongen, B.F., Dumas, M., Dustdar, S., Fahland, D., Ferreira, D.R.,
Gaaloul, W., van Geffen, F., Goel, S., Günther, C., Guzzo, A., Harmon, P., terHofstede,
A., Hoogland, J., Ingvaldsen, J.E., Kato, K., Kuhn, R., Kumar, A., LaRosa, M., Maggi, F.,
Malerba, D., Mans, R.S., Manuel, A., McCreesh, M., Mello, P., Mendling, J., Montali,
M., Motahari-Nezhad, H.R., zurMuehlen, M., Munoz-Gama, J., Pontieri, L., Ribeiro,
J., Rozinat, A., SeguelPérez, H., terHofstede, R., Sepúlveda, M., Sinur, J., Soffer, P.,
Song, M., Sperduti, A., Stilo, G., Stoel, C., Swenson, K., Talamo, M., Tan, W., Turner,
C., Vanthienen, J., Varvaressos, G., Verbeek, E., Verdonk, M., Vigo, R., Wang, J.,
Weber, B., Weidlich, M., Weijters, T., Wen, L., Westergaard, M., Wynn, M., 2012b.
Process mining manifesto. In: Business Process Management Workshops. Springer
Berlin Heidelberg, Berlin, Heidelberg, pp. 169–194. https://doi.org/10.1007/978-3-
642-28108-2_19

van der Aalst, W.M., van Hee, K.M., van der Werf, J.M., Verdonk, M., 2010. Auditing 2.0:
using process mining to support Tomorrow's auditor. Computer 43 (3), 90–93.
https://doi.org/10.1109/MC.2010.61

van der Aalst, W.M.P., 1996. Structural characterizations of sound workflow nets.
Comput. Sci. Rep. 96 (23), 18–22.

van der Aalst, W.M.P., 1998. The application of Petri nets to workflow management. J.
Circuits Syst. Comput. 8 (01), 21–66. https://doi.org/10.1142/S0218126698000043

van der Aalst, W.M.P., 2016. Data Science in Action, second ed. Springer Berlin
Heidelberghttps://doi.org/10.1007/978-3-662-49851-4_1

van der Aalst, W.M.P., 2018. Process discovery from event data: relating models and
logs through abstractions, WIREs. Data Min. Knowl. Discov. 8 (3). https://doi.org/
10.1002/widm.1244

van der Aalst, W.M.P., van Hee, K.M., ter Hofstede, A.H.M., Sidorova, N., Verbeek,
H.M.W., Voorhoeve, M., Wynn, M.T., 2011. Soundness of workflow nets: classifi
cation, decidability, and analysis. Form. Asp. Comput. 23 (3), 333–363. https://doi.
org/10.1007/s00165-010-0161-4

van der Aalst, W.M.P., 2019. A practitioner’s guide to process mining: limitations of the
directly-follows graph. Procedia Computer Science, cENTERIS 2019 – International

Conference on ENTERprise and Technologies/ProjMAN 2019 – International
Conference on Project MANagement/HCist 2019 – International Conference on
Health and Social Care and Technologies, CENTERIS/ProjMAN/HCist 2019, 164, pp.
321–328. doi: 10.1016/j.procs.2019.12.189.

van Dongen, B., 2020. BPI challenge 2020, 4TU. ResearchData. https://doi.org/10.4121/
uuid:52fb97d4-4588-43c9-9d04-3604d4613b51

van Dongen, B.F., Alves de Medeiros, A.K., Wen, L., 2009. Process Mining: Overview
and Outlook of Petri Net Discovery Algorithms. Springer Berlin Heidelberg, pp.
225–242. https://doi.org/10.1007/978-3-642-00899-3_13

van Zelst, S.J., Mannhardt, F., de Leoni, M., Koschmider, A., 2021. Event abstraction in
process mining: literature review and taxonomy. Granul. Comput. 6 (3), 719–736.
https://doi.org/10.1007/s41066-020-00226-2

Verbeek, E., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P., 2010. Prom 6: the
process mining toolkit. In: Proceedings of the Business Process Management 2010
Demonstration Track, Hoboken, NJ, USA, 14–16 September 2010, vol. 615 of CEUR
Workshop Proceedings, CEUR-WS.org. URL: http://ceur-ws.org/Vol-615/paper13.
pdf.

Webster, J., Watson, R.T., 2002. Analyzing the past to prepare for the future: writing a
literature review. MIS Q. 26 (2) (xiii-xxiii).

Yahya, B.N., Bae, H., Sul, S.-o., Wu, J.-Z., 2013. Process discovery by synthesizing ac
tivity proximity and user’s domain knowledge. In: Song, M., Wynn, M.T., Liu, J.
(Eds.), Asia Pacific Business Process Management. Springer International
Publishing, Cham, pp. 92–105. https://doi.org/10.1007/978-3-319-02922-1_7

Yang, W., Su, Q., 2014. Process mining for clinical pathway: literature review and fu
ture directions, in: Proceedings of the 11th International Conference on Service
Systems and Service Management (ICSSSM), pp. 1–5. DOI: 10.1109/ICSSSM.2014.
6943412.

Yürek, I., Birant, D., Birant, K.U., 2018. Interactive process miner: a new approach for
process mining. Turk. J. Electr. Eng. Comput. Sci. 26 (3), 1314–1328. https://doi.
org/10.3906/elk-1708-112

Daniel Schuster is a scientist at the Data Science &
Artificial Intelligence department of the Fraunhofer
Institute for Applied Information Technology FIT. In ad
dition, he is a Ph.D. candidate under the supervision of
Wil M. P. van der Aalst at the Chair for Process and Data
Science of the RWTH Aachen University. His research
interests include the field of process mining. He is par
ticularly interested in interactive process discovery, i.e.,
incorporating human intelligence into data-driven pro
cess discovery.

Sebastiaan J. van Zelst is a senior scientist in process
mining affiliated to the Fraunhofer Institute for Applied
Information Technology and the RWTH Aachen
University. His research interests include event data
processing, real-time process monitoring, data-driven
process optimization, and the application of hybrid in
telligence in process mining. He has co-authored over 35
peer-reviewed conference contributions and over 10
peer-reviewed journal contributions in process mining.
Personal website: https://sebastiaanvanzelst.com.

Wil M.P. van der Aalst is a full professor at RWTH
Aachen University, leading the Process and Data Science
(PADS) group. He is also the Chief Scientist at Celonis,
part-time affiliated with the Fraunhofer FIT, and a
member of the Board of Governors of Tilburg University.
He also has unpaid professorship positions at
Queensland University of Technology (since 2003) and
the Technische Universiteit Eindhoven (TU/e). Currently,
he is also a distinguished fellow of Fondazione Bruno
Kessler (FBK) in Trento, deputy CEO of the Internet of
Production (IoP) Cluster of Excellence, co-director of the
RWTH Center for Artificial Intelligence. His research in
terests include process mining, Petri nets, business pro
cess management, workflow management, process

modeling, and process analysis. Wil van der Aalst has published over 250 journal
papers, 22 books (as author or editor), 550 refereed conference/workshop publica
tions, and 80 book chapters. Personal website: http://www.padsweb.rwth-aachen.de/
wvdaalst/.

D. Schuster, S.J. van Zelst and W.M.P. van der Aalst Computers in Industry 137 (2022) 103612

19

http://dx.doi.org/10.1007/978-3-642-45005-1_23
http://dx.doi.org/10.1007/978-3-642-45005-1_23
https://doi.org/10.1007/978-3-319-10172-9_5
https://doi.org/10.1007/978-3-319-10172-9_5
https://doi.org/10.1016/j.jbi.2016.04.007
https://doi.org/10.1016/j.jbi.2016.04.007
https://doi.org/10.1109/TSMCC.2009.2014169
https://doi.org/10.1109/TSMCC.2009.2014169
http://dx.doi.org/10.1109/ICPM49681.2020.00017
http://ceur-ws.org/Vol-2420/paperDT4.pdf
https://doi.org/10.1007/978-3-030-50316-1_25
https://doi.org/10.1007/978-3-030-50316-1_25
https://doi.org/10.1007/978-3-030-76983-3_23
https://doi.org/10.1007/978-3-030-72693-5_19
https://doi.org/10.1016/j.is.2016.07.011
https://doi.org/10.1007/s10270-020-00789-3
https://doi.org/10.1108/BPMJ-06-2017-0148
https://doi.org/10.1108/BPMJ-06-2017-0148
https://doi.org/10.1109/MCI.2009.935307
https://doi.org/10.1007/978-3-642-34044-4_3
https://doi.org/10.1007/978-3-642-34044-4_3
https://doi.org/10.1007/978-3-642-28108-2_19
https://doi.org/10.1007/978-3-642-28108-2_19
https://doi.org/10.1109/MC.2010.61
http://refhub.elsevier.com/S0166-3615(22)00007-0/sbref41
http://refhub.elsevier.com/S0166-3615(22)00007-0/sbref41
https://doi.org/10.1142/S0218126698000043
https://doi.org/10.1007/978-3-662-49851-4_1
https://doi.org/10.1002/widm.1244
https://doi.org/10.1002/widm.1244
https://doi.org/10.1007/s00165-010-0161-4
https://doi.org/10.1007/s00165-010-0161-4
http://dx.doi.org/10.1016/j.procs.2019.12.189
https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51
https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51
https://doi.org/10.1007/978-3-642-00899-3_13
https://doi.org/10.1007/s41066-020-00226-2
http://ceur-ws.org/Vol-615/paper13.pdf
http://ceur-ws.org/Vol-615/paper13.pdf
http://refhub.elsevier.com/S0166-3615(22)00007-0/sbref49
http://refhub.elsevier.com/S0166-3615(22)00007-0/sbref49
https://doi.org/10.1007/978-3-319-02922-1_7
http://dx.doi.org/10.1109/ICSSSM.2014.6943412
http://dx.doi.org/10.1109/ICSSSM.2014.6943412
https://doi.org/10.3906/elk-1708-112
https://doi.org/10.3906/elk-1708-112
https://sebastiaanvanzelst.com
http://www.padsweb.rwth-aachen.de/wvdaalst/
http://www.padsweb.rwth-aachen.de/wvdaalst/

	Utilizing domain knowledge in data-driven process discovery: A literature review
	1. Introduction
	2. Related work
	3. Background
	3.1. Event data
	3.2. Process models
	3.3. Process discovery
	3.4. Conformance checking
	3.5. Process model repair

	4. Distinguishing features for domain-knowledge-utilizing process discovery
	4.1. Identification and construction strategy
	4.2. Distinguishing features
	4.2.1. Timing of domain knowledge provision
	4.2.2. Domain knowledge type
	4.2.3. Degree of interactivity
	4.2.4. Output process model formalism
	4.2.5. Output guarantees
	4.2.6. Application focus
	4.2.7. Software realization

	4.3. Dependencies among characteristics and features

	5. Literature review
	5.1. Design
	5.2. Descriptions of identified approaches
	5.2.1. Approach A1
	5.2.2. Approach A2
	5.2.3. Approach A3
	5.2.4. Approach A4
	5.2.5. Approach A5
	5.2.6. Approach A6
	5.2.7. Approach A7
	5.2.8. Approach A8
	5.2.9. Approach A9
	5.2.10. Approach A10
	5.2.11. Approach A11
	5.2.12. Approach A12
	5.2.13. Approach A13

	5.3. Discussion
	5.3.1. Timing of domain knowledge provision
	5.3.2. Domain knowledge type
	5.3.3. Degree of interactivity
	5.3.4. Output process model formalism and restrictions
	5.3.5. Output guarantees
	5.3.6. Application focus
	5.3.7. Software realization

	6. Adoption in industry
	7. Challenges for future work
	7.1. Blending explicit domain knowledge and user feedback
	7.2. Increased interaction
	7.3. Offering different interactivity modes
	7.4. Scalable conformance checking
	7.5. Minimizing the representational bias
	7.6. Enhanced process model visualizations
	7.7. Domain knowledge specification
	7.8. Domain knowledge prioritization
	7.9. Software support
	7.10. Alternative perspectives

	8. Conclusion
	Declaration of Competing Interest
	Appendix A. Supplementary material
	References

