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Abstract

In order to streamline business processes and increase competitiveness, organizations need to

have a deep insight into the resources that they deploy. Among others, they need to understand how

these resources act in groups to achieve organizational outcomes. Accurate and timely information

is a sine qua non to achieve this understanding. Process mining can be exploited for the purpose

of deriving organizational models from event logs that contain resource-related data. But existing

process mining techniques are not fully up to this task, as they are not able to cope with the multi-

faceted nature of business processes and are not yet able to determine how resource groupings are

involved in process execution. In addition, there is no provision for how to evaluate the quality of

discovered organizational models.

To tackle these challenges, we propose a novel framework, OrdinoR, capable of supporting

discovery of organizational models using event logs, their evaluation, and their analysis. OrdinoR

is constructed around a rich notion of organizational model where resource groupings are linked

to multiple dimensions of process execution. The framework also provides a set of measures

for systematically evaluating such models and analyzing the behavior of resource groups therein.

Experiments have been conducted to evaluate the framework using a publicly available real-life

dataset. These demonstrate the usefulness of the approach.
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1. Introduction

Modern organizations operate in an ever-changing context. To do so successfully, they have

to be able to rapidly adapt their business processes and optimally marshal their resources [1].

This is easier to achieve when these processes are formally captured and executed by business

process management systems and the human resources are members of appropriate organizational

groupings. The capability to constantly evolve organizational groups alongside changing business

processes is essential for organizations [1, 2] and it is thus imperative that they maintain accurate

and timely insights into these groups [3]. Clearly, relying on organizational charts — too static

and often too high-level — or on managers’ intuition — too vague and often anecdotal — will not

be conducive to achieving this capability [4].

A promising approach to obtaining accurate and timely insights into resource groupings and

their involvement in business processes is through the use of process execution data, which is readily

available in many contemporary process-aware information systems [5], e.g., Enterprise Resource

Planning systems. This data is stored in so-called event logs and records activities undertaken

at a specific time in the context of the execution of a certain instance of a process (often known

as a case) [5, 1]. In addition, it may record resources who executed those activities. As such,

event logs capture the trails of human resource participation in actual business process execution,

and therefore provide a reliable starting point for mining timely process- and resource-related

information [6, 7].

Process mining [5] offers a growing body of methods to extract knowledge from event logs

for process management and improvement. The subfield of organizational model mining [6] is

concerned with the study of groups of human resources, specifically how models can be derived

from event logs to reflect resource groupings in process execution. The relatively underexplored

area of organizational model mining [6, 8, 9] contains some research gaps which impede its use in

practice. Three open issues in particular will be explored in this paper.

Figure 1 illustrates these issues. Process execution concerns three primary dimensions, i.e.,

case, activity, and time. Thus, events in a log can be viewed as data points in three-dimensional

space. Existing methods for mining organizational models mainly focus on the activity dimension,

but rarely consider the case and time dimensions. This narrow focus is limiting when resource

groupings need to be considered across different cases (e.g., specialist groups dedicated to particular

customers) or across different time periods (e.g., employees playing the same role but working
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Figure 1: An illustration of the research gaps in organizational model mining (represented by the dashed lines)

different shifts). Furthermore, organizational models discovered by existing methods often do not

transcend the mere clustering of resources — they do not describe how the discovered resource

groups were involved in process execution. It is therefore challenging to use these models for

understanding the behavior of resource groups. Last but not least, existing research relies on

either domain knowledge or mining-method specific metrics to evaluate discovered models — a

generic evaluation approach is still missing. In view of these gaps, we formulate three research

questions:

RQ1. How to utilize information on multiple dimensions of process execution when discovering

organizational models from an event log?

RQ2. How to link discovered resource groups with process execution to describe their involvement?

RQ3. How to evaluate discovered organizational models against input event logs?

In this paper, we address these research questions by proposing a novel framework, namely

OrdinoR1, for organizational model mining from event logs. Our contributions are as follows.

• We define a new, rich notion of organizational model as the foundation of the framework.

It considers multiple dimensions of process execution and links the relevant execution in-

formation with resource groupings (addressing RQ1 and RQ2). Such a model can capture

comprehensive knowledge about resource groups and their involvement in processes (which

1“Ordino” means “to arrange” in Latin, and the R stands for “resources”.
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has not been addressed in the literature).

• We propose two measures, fitness and precision, for assessing discovered organizational mod-

els against input event logs. These measures form a generic basis for model evaluation in the

framework (addressing RQ3).

• We propose a set of measures for analyzing organizational models, whose application deep-

ens the understanding of how resource groups and their members are involved in process

execution (a further contribution to RQ2).

• We operationalize our framework by developing an approach to discover, evaluate, and ana-

lyze organizational models, and by implementing an open-source tool.

• We conduct extensive and replicable experiments on publicly available, real-life event logs to

test our proposals and report our findings.

Our research extends the process mining literature on knowledge discovery of the organiza-

tional perspective by identifying key research gaps and proposing a novel approach to address

them. Application of our research empowers organizations by guiding decisions on organizational

structure design and staff deployment toward process improvement.

The remainder of this paper is structured as follows. Section 2 provides background to our

research and related work. Section 3 introduces the research method applied in our research.

Section 4 elaborates on the design of the proposed framework OrdinoR. Section 5 presents the

approach as a realization of this framework. Section 6 reports on experiments conducted on real-

life event log data along with our findings. Section 7 discusses the limitations of our work and

directions for future investigations. Finally, Section 8 concludes the paper.

2. Background and Related Work

A business process consists of a set of logically connected activities performed in an organization

and captures possible alternative ways to achieve a business goal [2, 1]. An instance of the execution

of a process is a case [5]. Process execution involves human resources performing a sequence of

activities in the process. Human resources play roles and hold positions in an organization, and

form resource groups [1, 6] representing various organizational entities, such as departments and

project teams. Data related to process execution is recorded by process-aware information systems,
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notably in the form of event logs [5]. An event log consists of a set of events with a range of event

attributes, providing factual information on how activities were performed.

Process mining can be used to derive insights from event logs, helping managers of organizations

understand and improve human resource management in business processes [6, 7]. There are four

main research topics in process mining relevant to human resources, including organizational model

mining (e.g., [6, 10, 9]), social network mining (e.g., [11, 12, 13]), rule mining (e.g., [7, 14, 15]),

and behavior profile mining (e.g., [16, 4, 17]).

The focus of this paper is on organizational model mining. As in general process mining re-

search, the key problem in organizational model mining concerns the discovery of models from

input event logs to represent the real behavior of process execution [5] — in this case, the group-

ings of resources [6]. State-of-the-art research (e.g., [8, 9, 18, 19]) addresses the problem by first

characterizing how individual resources participate in process execution or how they interact with

each other. Then, the problem is transformed into a clustering (as in [18, 9]) or a community-

detection problem (as in [8, 19]), and dedicated techniques are applied to solve them. As a result,

a discovered organizational model comprises groups of resources with similar characteristics in

process execution.

Guided by our research questions, we establish three perspectives to review the related work.

The first perspective concerns the dimensions of process execution considered when discovering

organizational models. An event log suitable for mining organizational models records information

on activity labels, resource identifiers, case identifiers, and timestamps. Hence, the participation of

human resources in process execution can be analyzed from multiple dimensions — how resources

carry out activities (activity), how they are involved in different cases (case), how they work at

different times (time), and how they interact with each other (resource interaction). The second

perspective concerns whether discovered models capture the involvement of resource groups in

process execution. The third perspective concerns the evaluation of discovered models. Among

the related work, some merely demonstrate the use of their proposed methods (demonstration

only), while others evaluate the quality of discovered models by either comparing a discovered

model against relevant domain knowledge (compare to domain knowledge), e.g., official organiza-

tional structures, or adopting measures to assess the effectiveness of the applied technique (assess

performance). Since the model discovery problem targets deriving a model from event logs to

capture resource groupings in process execution, we also consider input event logs necessary for
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evaluating discovered models (refer to input log). This is consistent with how model quality is

typically evaluated in process mining research [1, 5], by comparing model behavior to log data.

Table 1 classifies the existing research on organizational model mining in terms of these three

perspectives. Below, we elaborate on the analysis of literature.

Table 1: Classification of state-of-the-art literature on discovering organizational models from event logs

Paper

Dimensions considered
Discovered models
capturing resource
group involvement

Evaluation of

in model discovery discovered models

activity case time
resource demonstration compare to assess refer to

interaction only domain knowledge performance input log

[6]
√ √ √ √

[10]
√ √ √ √

[18]
√ √

[20]
√ √ √

[21]
√ √ √ √

[19]
√ √

[22]
√ √

[8]
√ √

[9]
√ √

[23]
√ √

[24]
√ √

[25]
√ √

[26]
√ √

1. Are the multiple dimensions of process execution considered when discovering organizational

models? Most existing methods only consider the activity dimension, since common resource

grouping schemes (e.g., business roles, functional units) often result in specialized groups of em-

ployees handling specific activities in a process. Some existing research exploits the information

on resource interactions (e.g., handover of work between the execution of adjacent activities), in

particular studies that focus on the reporting relationships among employees [24, 25, 26]. On the

other hand, information related to cases and time is rarely considered when discovering organiza-

tional models. Only Song and Van der Aalst [6] exploit case information in event logs and discover

employee teams assembled for collective tasks. The multiple dimensions of process execution are

yet to be explored for discovering various resource groupings.

2. Do the discovered organizational models describe the involvement of groups in process execution?

In existing work, discovered organizational models can represent groupings of human resources.

But only a few approaches [6, 20, 21, 10] allow their models to capture the connection between

identified resource groups and process execution. This connection should characterize the precise
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involvement of these groups in the process, e.g., their responsibilities or permissions. Establishing

this connection is important to understanding how resources are best deployed.

3. How are the discovered models evaluated? Some existing studies only concern a demonstra-

tion of how a proposed method can be applied to an event log to discover organizational mod-

els [20, 21, 22, 24, 25, 26], without measuring the quality of the discovered models. Others conduct

evaluation on the discovered models by two means. The first is to compare models with some

domain knowledge that is relevant to resource groupings in the process, such as official organi-

zational structures or business roles [6, 18, 10, 9, 23]. Clearly, this relies on the availability of

domain knowledge. In addition, the evaluation results can be flawed, since human resource group-

ings in reality may deviate from the referenced domain knowledge. Another means is to assess

the performance of the applied techniques for model discovery [8, 19], which often requires using

a technique-specific method. For example, Appice [8] applies a community-detection technique to

discover organizational models and adopts a measure named “modularity” to evaluate how effec-

tively that community-detection technique performs. However, modularity is a measure specific to

community-detection problems and cannot be applied to evaluate models discovered using other

techniques, e.g., those based on cluster analysis. So far, none of the existing studies has considered

using input event logs for evaluating the quality of organizational models discovered from the logs.

The remainder of this paper introduces how we address the foregoing issues by establishing a

novel framework for organizational model mining.

3. Research Method

We adapt and apply the Design Science Research Methodology (DSRM) [27] and follow the

guidelines proposed by Hevner et al. [28] to develop our framework — a purposeful and viable

artifact for organizational model mining in the process mining domain (Guideline 1: Design as an

Artifact). Figure 2 illustrates our research method.

Existing research [6, 29, 7] has shown the need to support the understanding of human resource

behavior in business processes and the value of exploiting process execution data for that purpose

(Guideline 2: Problem Relevance). We start the DSRM process by reviewing the literature and

identifying the key open issues in state-of-the-art organizational model mining research, introduced

in the previous section.
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Figure 2: Apply DSRM [27] to develop the OrdinoR framework for organizational model mining

In view of the identified gaps, we define our main objective as to develop a framework that

satisfies several requirements, including: (1) it should enable discovering organizational models

from event logs by considering multi-dimensional process execution information; (2) discovered

organizational models in this framework should describe how resource groups were involved in

process execution; and (3) discovered models should be evaluated against input event logs. Based

on these requirements, we rigorously define and formalize the notions related to event logs and

organizational models, and use them as the basis for designing and developing our framework

(Guideline 5: Research Rigor). Section 4 elaborates on the framework.

We propose an approach to realize the framework and implement it as a software tool (Guide-

line 5: Research Rigor). Section 5 presents the approach and the implementation, which are then

evaluated through experiments on publicly available, real-life data (Guideline 3: Design Evaluation;

Guideline 5: Research Rigor) collected from two different business domains. We exploit evaluation

results on the collected dataset to iterate the design of our framework and its implementation

(Guideline 6: Design as a Search Process). Section 6 reports on the experiments.

Finally, we document the steps taken to develop the framework and share the software imple-

mentation as an open-source tool (Guideline 4: Research Contributions). We report our research

and its contributions in the paper at hand (Guideline 7: Communication of Research).

4. OrdinoR Framework

4.1. Overview

We propose OrdinoR, a novel framework for organizational model mining, as shown in Figure 3.

We introduce a new, richer notion of organizational model as the foundation of the framework.
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Compared with the state-of-the-art, our organizational model specifies not only resources and

their groups, but also the connection between resource groups and the multiple dimensions of

process execution, captured by the so-called execution contexts. We elaborate on these concepts

in Sections 4.3 and 4.4.

Built upon the new notion of organizational model, the OrdinoR framework is designed to

support the following three types of organizational model mining tasks.

1. Discovery of organizational models: This task is to construct models from event logs to

reflect the groupings of resources and their involvement in process execution (Section 4.5).

2. Evaluation of organizational models: This task is to assess model quality by comparing

models against event logs using fitness and precision measures (Section 4.6).

3. Analysis of organizational models: This task is to examine the actual behavior of resource

groups captured in organizational models using event logs. Findings from such analyses can

provide insights into group-oriented organizational analytics (Section 4.7).

model qualitymodel quality

Discover
organizational 

models

Evaluate
organizational 

models

Analyze 
organizational 

models

event logevent log

resourcesresource groupsexecution contexts

organizational model

cases

time

activities

cases

time

activities

insights into 
groups and members

Figure 3: Overview of the OrdinoR framework for organizational model mining. Three types of mining tasks are

supported: discovery, evaluation, and analysis, highlighted in different colors respectively
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4.2. Event Log

The starting point is an event log that records process execution data. Table 2 shows an

example event log that records an insurance claim handling process. Rows correspond to events

and columns correspond to various event attributes.

Table 2: A fragment of an example event log

case id activity name timestamp resource customer type

... ... ... ... ...

654423 register request 29-08-2018 15:02 Pete normal

654424 register request 29-08-2018 16:08 Pete normal

654424 confirm request 29-08-2018 16:12 normal

654423 get missing info 29-08-2018 16:28 Ann normal

654423 confirm request 29-08-2018 16:45 normal

654423 check insurance 30-08-2018 09:09 John normal

654424 check insurance 30-08-2018 09:22 Sue normal

654425 register request 30-08-2018 10:07 Bob VIP

654423 accept claim 30-08-2018 11:32 John normal

654424 reject claim 30-08-2018 11:45 Sue normal

654423 pay claim 30-08-2018 11:48 normal

654425 confirm request 30-08-2018 12:44 VIP

654425 check insurance 30-08-2018 13:32 Mary VIP

654425 accept claim 30-08-2018 14:09 Mary VIP

654425 pay claim 30-08-2018 14:14 VIP

... ... ... ... ...

We define a general data structure for event logs (Def. 1). An event log (EL) contains a set of

uniquely identifiable events (E), a set of event attribute names (Att), and the corresponding event

attribute values carried by each event (as specified by function π). It is possible that an event does

not carry any value for a given event attribute, e.g., in Table 2 there are events with no resource

information. Hence, function π is a partial function mapping the attributes of events to values.

Definition 1 (Event Log). Let E be the universe of event identifiers, UAtt be the universe of

possible attribute names, and UVal be the universe of possible attribute values. EL = (E,Att , π)

with E ⊆ E, E 6= ∅, Att ⊆ UAtt , and π : E → (Att 6→ UVal) is an event log. Event e ∈ E has

attributes dom(π(e)). For an attribute x ∈ dom(π(e)), πx(e) = π(e)(x) is the attribute value of x

for event e.

Next, we elaborate on the definition of event attributes needed for storing the essential informa-

tion about process execution (Def. 2). An event log usually records multiple cases. Each case can
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be uniquely identified and is related to a sequence of events corresponding to activities executed

at some specific time. As the minimum requirement for event logs, events have three standard

attributes: case identifier (case), activity name (act), and timestamp (time). Optionally, an event

records the resource (res) executing the activity. In addition to these four common attributes, an

event log may record event attributes such as customer type and cost, which vary across different

processes and information systems.

Definition 2 (Event Attributes). Let C ⊆ UVal , A ⊆ UVal , T ⊆ UVal and R ⊆ UVal denote

the universe of case identifiers, the universe of activity names, the universe of timestamps, and

the universe of resource identifiers, respectively. Any event log EL = (E,Att , π) has four special

attributes: {case, act , time, res} ⊆ Att such that, for any e ∈ E:

• {case, act , time} ⊆ dom(π(e)),

• πcase(e) ∈ C is the case to which e belongs,

• πact(e) ∈ A is the activity e refers to,

• πtime(e) ∈ T is the time at which e occurred, and

• πres(e) ∈ R is the resource that executed e if res ∈ dom(π(e)).

Let Eres = { e ∈ E | res ∈ dom(π(e)) } denote the set with all events that have resource information

and Enres = {e ∈ E | res 6∈ dom(π(e))} the set of events that do not have this information.

4.3. Execution Context

A key feature of the organizational models proposed in our research is its ability to capture

the involvement of resource groups in process execution. This is achieved through the notion of

execution context.

In business process execution, the groupings of resources are often associated with certain con-

texts, as reflected in event logs by the different types of activities or cases performed by resources,

or the times when resources perform activities [6]. Consider the example event log of an insurance

claim handling process in Table 2. Pete and Bob only performed activity “register (a claim) re-

quest”, while John, Sue, and Mary performed “check insurance” and decided whether to “accept”

or “reject” a claim. This may be linked with different business roles of employees. In the meantime,

Bob and Mary only handled a claim from a “VIP” customer, while others only handled claims from

“normal” customers. This can be a result of the insurance company setting up separate teams for

VIP and normal customers.
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We introduce the concepts of case types, activity types, and time types (Def. 3) to categorize

the possible values carried by the three standard event attributes in an event log (i.e., case, act,

and time), respectively. These are inspired by the research on process cubes [30]. Case types

correspond to the classification of cases and can be derived based on relevant case-level event

attributes. For instance, in the above example, case types may be determined by the customer

types of insurance claims. Similarly, activity types categorize activity names into groups of relevant

activities (e.g., registration, approval) and time types classify timestamps into periods (e.g., days

of a week, different hours of a day).

Definition 3 (Case Types, Activity Types, and Time Types). Let CT , AT , and T T denote the

sets of names of case types, activity types, and time types, respectively. The functions ϕcase : CT →

P(C), ϕact : AT → P(A), and ϕtime : T T → P(T ) define partitions over C, A, and T , respectively.

We will use a special type ⊥ that is associated with all cases, all activities, and all times, i.e.

ϕcase(⊥) = C, ϕact(⊥) = A, and ϕtime(⊥) = T . The sets CT , AT , and T T only share this special

type and are otherwise mutually disjoint. We define CO = CT × AT × T T .

We now formalize the notion of execution context (Def. 4) as consisting of a case type, an activity

type, and a time type. Each execution context characterizes a possible way of executing an activity

in a process and can be associated with a specific set of events that share similar characteristics.

For instance, we can relate the first two events in the example log (Table 2) to the same execution

context (“normal case”, “registration activity”, “Wednesday afternoon”). Note that an execution

context can be specified with a “wild-card” for any of its constituent components of case type,

activity type, and time type. The ⊥ symbol (formally, as per the previous definition, ⊥ is a case

type, an activity type, and a time type) is used for those components that are not meant to be

restricting. Consider for example the execution context (“normal case”,⊥, “Wednesday”). This

execution context concerns all process activities that are executed on Wednesdays when handling

insurance claims from normal customers.

Definition 4 (Execution Context). An execution context co is an element of CO. Given an event

log EL = (E,Att , π) and an execution context co = (ct , at , tt),

[E]co = { e ∈ E | πcase(e) ∈ ϕcase(ct) ∧ πact(e) ∈ ϕact(at) ∧ πtime(e) ∈ ϕtime(tt) }

is the set of events in the log having that execution context.
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Figure 4 illustrates the notion of execution context. In Figure 4a, events are seen as data points

in a three-dimensional space capturing information on cases, activities, and time. An event may

be related to an individual resource executing an activity. In Figure 4b, event attribute values on

each of the three dimensions are partitioned by some specified collection of case types, activity

types, and time types. Each combination of a case type, an activity type, and a time type specifies

an execution context, represented as a “cube” in the data space. Resources who originated events

from the same cubes may belong to the same resource group.

time

activities

cases

resources

eventevent

(a) events

time 
types

activity types resources

case 
types

execution
context
execution
context

(b) execution contexts

Figure 4: Illustration of (a) events as data points in three-dimensional space along the dimensions of case, activity,

and time, and (b) execution contexts as “cubes” characterized by case types, activity types, and time types

4.4. Organizational Model

Our notion of organizational model (Def. 5) incorporates the concept of execution context.

While this model contains, as per usual, the resource groups (RG) and their members (mem), it

further captures the involvement of resource groups in process execution, i.e., the “capabilities” of

groups, by linking groups with execution contexts (cap).

Definition 5 (Organizational Model). Let R be the universe of resources, then OM = (RG ,

mem, cap) is an organizational model where RG is a set of resource groups, mem : RG → P(R)

maps each resource group onto its members, and cap : RG → P(CO) maps each resource group

onto its possible execution contexts.

Figure 5 illustrates the proposed notion of organizational model. The many-to-many relation-

ships capture the fact that a resource may belong to multiple groups and a resource group may

be associated with multiple execution contexts. Formally, there may exist two distinct groups rg1

and rg2 such that mem(rg1) ∩mem(rg2) 6= ∅ and cap(rg1) ∩ cap(rg2) 6= ∅.
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normal,contact,afternoon normal,register,afternoon

BobBob PetePeteBob Pete SueSueJohnJohn SueJohn

VIP,register,morningVIP,register,morning

ct,at,ttct,at,ttct,at,ttct,at,tt
resource 
(group member)

resource group
execution context 
(group capability)

other related
execution context

Legend

Figure 6: Visualization of an example organizational model related to the event log in Table 2

Figure 6 depicts the visualization of an example organizational model, in which different

colored-shapes represent resources, resource groups, and their related execution contexts, respec-

tively. For instance, “Group 0” has two member resources, Bob and Pete, who are capable of

executing activities related to execution contexts (VIP, register, morning) and (normal, register,

afternoon). These two execution contexts, as the group’s capabilities, are underlined in the visu-

alization.
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4.5. Discovering Organizational Models

To discover organizational models from an event log, it is useful to view events as samples

of resource behavior in process execution [14]. We use the term resource event to denote an

event that captures a resource’s involvement in some execution context. A resource-event log

(Def. 6) is a multiset of resource events and represents a resource view on process execution data

through execution contexts, i.e., a resource-event log records how some resources performed certain

activities for certain cases at certain times when they participated in the execution of a process.

A resource-event log can be derived from an event log using a collection of execution contexts

(Def. 7).

Definition 6 (Resource-Event Log). A resource event is a tuple (r, co) ∈ R×CO. A resource-event

log RL ∈ B(R× CO) is a multiset of resource events.

Definition 7 (Derived Resource-Event Log). Let EL = (E,Att , π) be an event log and CO ⊆ CO

be a pre-defined collection of execution contexts. The resource-event log derived from EL and CO

is RL(EL,CO) = [ (πres(e), co) | co ∈ CO , e ∈ Eres • e ∈ [E]co ].

Table 3 shows an example resource-event log derived from the event log in Table 2, using

execution contexts defined based on the case types, activity types, and time types below.

• Two case types are defined based on the event attribute “customer type”, which distin-

guishes two groups of customers, namely normal and VIP. Therefore, {654423, 654424} ⊆

ϕcase(normal) and {654425} ⊆ ϕcase(VIP).

• Four activity types are defined: register, contact, check, and decide. {“register request”,

“confirm request”} ⊆ ϕact(register), {“get missing info”, “pay claim”} ⊆ ϕact(contact),

{“check insurance”} ⊆ ϕact(check), {“accept claim”, “reject claim”} ⊆ ϕact(decide);

• Two time types are defined by dividing working hours in a day into two time frames, namely

morning and afternoon. Therefore, timestamps of events are categorized accordingly, e.g.,

“30-08-2018 09:09” ∈ ϕtime(morning), “29-08-2018 15:02” ∈ ϕtime(afternoon).

Note that a resource event can have multiple occurrences. For example, the first two rows in

Table 3 both refer to the same resource event (Pete, normal, register, afternoon), indicating that

Pete conducted an activity in the same execution context twice.

15



Table 3: A fragment of an example derived resource-event log

resource case type activity type time type

... ... ... ...

Pete normal register afternoon

Pete normal register afternoon

Ann normal contact afternoon

John normal check morning

Sue normal check morning

Bob VIP register morning

John normal decide morning

Sue normal decide morning

Mary VIP check afternoon

Mary VIP decide afternoon

... ... ... ...

Organizational models can be discovered from an event log based on the similarities of resources

characterized by a corresponding derived resource-event log. To do this, the following tasks need

to be addressed:

1. Determine execution contexts by specifying the relevant case types, activity types, and time

types based on the input event log;

2. Discover resource groupings by identifying clusters of resources who share similar behavior

in process execution according to the derived resource-event log; and

3. Associate resource groups with execution contexts to describe the involvement of resource

groups in process execution.

4.6. Evaluate Organizational Models

As discussed in the literature review, it remains an open issue how to evaluate discovered

organizational models against input event logs. We address this gap by introducing two notions

to organizational model mining, namely fitness and precision (cf. [5]), and their corresponding

quantitative measures. The two notions are based on the new definition of organizational model

and provide two perspectives for assessing an organizational model with respect to an event log.

Fitness. Fitness evaluates the completeness [31] of a model with respect to a log, i.e., to what

degree behavior observed in the log is allowed by the model. To quantify fitness, we first introduce

the notion of conforming events (Def. 8). Given a log and a model, an event in the log is conforming

if its originating resource is allowed by the model to execute it. We define a measure for fitness
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(Def. 9), which yields a value between 0 and 1. Note that only events with resource information

(i.e., events in Eres) should be considered (hence fitness is only defined if there are events with

resource information in the event log).

Definition 8 (Conforming Events). Let EL = (E,Att , π) be an event log and OM = (RG ,

mem, cap) be an organizational model.

Econf =
{
e ∈ Eres

∣∣ ∃rg∈RG,co∈cap(rg)[πres(e) ∈ mem(rg) ∧ e ∈ [E]co]
}

is the set of all conforming events. Enconf = Eres \ Econf consists of all non-conforming events.

Definition 9 (Fitness). Let EL = (E,Att , π) be an event log with Eres 6= ∅. The fitness of an

organizational model OM with respect to event log EL is

fitness(EL,OM ) =
|Econf |
|Eres |

.

The fitness between a model and a log is good when most events in the log are conforming

events. fitness(EL,OM ) = 1 if resources only performed events in EL that they were allowed to

perform according to OM . fitness(EL,OM ) = 0 if no event in EL was executed by a resource

actually allowed to perform it according to OM . Following the definitions, all events with re-

source information in the example event log (Table 2) are conforming events. Hence, the example

organizational model shown in Figure 6 has a fitness of 1 with respect to the example event log.

Precision. Precision evaluates the exactness [31] of a model with respect to a log, i.e., the extent

to which behavior allowed by the model is observed in the log. To quantify precision, we propose

the notion of candidate resources (Def. 10). Given a log and a model, the candidate resources of

an event refer to resources in the model who are allowed to perform the event. The idea is that a

perfectly precise model allows exactly the behavior described in the log.

Definition 10 (Candidate Resources). Let EL = (E,Att , π) be an event log and OM = (RG ,

mem, cap) be an organizational model. cand : E → P(R) maps events onto sets of candidate

resources (possibly empty). For each e ∈ E,

cand(e) =
{
r ∈ R

∣∣ ∃rg∈RG,co∈cap(rg)[r ∈ mem(rg) ∧ e ∈ [E]co]
}

is the set of candidate resources for event e. cand(E) =
⋃

e∈E cand(e) is the overall set of candidate

resources.
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We also introduce the notion of allowed events (Def. 11). Given a log and a model, an event

in the log is an allowed event if it has at least one candidate resource in the model.

Definition 11 (Allowed Events). Let EL = (E,Att , π) be an event log and OM = (RG ,mem, cap)

be an organizational model. Then Eallowed = { e ∈ Eres | cand(e) 6= ∅ } is the set containing all

allowed events.

Based on the above, the precision of a model with respect to an event log can be measured by

considering the fraction of resources allowed by the model to perform events in the log (Def. 12).

Like the fitness measure, the precision measure also yields a value between 0 and 1. Note that

precision is only defined if there are allowed events in an event log according to a model.

Definition 12 (Precision). Let EL = (E,Att , π) be an event log and OM = (RG ,mem, cap) be an

organizational model, with Eallowed 6= ∅. The precision of organizational model OM with respect

to event log EL is

precision(EL,OM ) =
1

|Eallowed |
∑

e∈Econf

|cand(E)| − |cand(e)|+ 1

|cand(E)|
.

Accordingly, precision(EL,OM ) = 1 if and only if every allowed event in EL is a conforming

event and each of them has no other candidate resource than the one who executed the event. On

the other hand, precision(EL,OM ) = 0 if and only if none of the allowed events is a conforming

event. For instance, given the organizational model in Figure 6, the first event in the example log in

Table 2 (“654423, register request, 29-08-2018 15:02, Pete, normal”) has two candidate resources,

Bob and Pete, and all events with resource information are allowed events. The precision of this

model with respect to the log is 0.883, suggesting that the model allows some extra behavior to

happen, in addition to that recorded in the event log.

For an organizational model discovered from an event log, fitness and precision can be used to

assess its quality in terms of how it captures the information recorded in the log, i.e., the reality. A

good discovered model is expected to describe the reality both completely (achieving high fitness)

and exactly (achieving high precision). Fitness and precision can be incorporated into a single

measure for an overall evaluation, e.g., by calculating the F1-score [31].

4.7. Analyzing Organizational Models

In this section, we discuss how organizational models can be analyzed to examine the behavior of

resource groups. An organizational model outlines the groupings of resources and their capabilities
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in terms of process execution. We can extend a model by using event frequencies and temporal

information about cases in an event log, and thus “replay” how resource groups in the model and

their members participated in a process.

As a starting point, we introduce four quantitative measures that can be used for analyzing an

organizational model. Note that all these measures only apply to events with resource information

in an event log, i.e., events in Eres .

Group relative focus (Def. 13) specifies how much of the overall work by a resource group was

performed in an execution context. It can be used to measure how a resource group distributed its

workload across different execution contexts, i.e., work diversification of a group. Note that group

relative focus is only defined if there are events executed by some member of the group.

Definition 13 (Group Relative Focus). Given event log EL = (E,Att , π), execution contexts

CO, and organizational model OM = (RG ,mem, cap), for any resource group rg ∈ RG with

{ e ∈ Eres | πres(e) ∈ mem(rg) } 6= ∅, its relative focus on execution context co ∈ CO can be mea-

sured by

RelFocus(rg , co) =
|{ e ∈ [Eres ]co | πres(e) ∈ mem(rg) }|
|{ e ∈ Eres | πres(e) ∈ mem(rg) }|

.

Group relative stake (Def. 14) specifies how much of work performed in an execution context was

done by a resource group. It can be used to measure how the workload devoted to an execution

context was distributed across different resource groups in an organizational model, i.e., work

participation by the groups. Note that group relative stake is only defined if there are events

having the execution context.

Definition 14 (Group Relative Stake). Given event log EL = (E,Att , π), execution contexts CO,

and organizational model OM = (RG ,mem, cap), for any resource group rg ∈ RG, its relative

stake in execution context co ∈ CO, with [Eres ]co 6= ∅, can be measured by

RelStake(rg , co) =
|{ e ∈ [Eres ]co | πres(e) ∈ mem(rg) }|

|[Eres ]co|
.

Group coverage (Def. 15) specifies the proportion of members of a resource group that performed

in an execution context. Note that group coverage is only defined if there are resources in the

resource group.

Definition 15 (Group Coverage). Given event log EL = (E,Att , π), execution contexts CO, and

organizational model OM = (RG ,mem, cap), for any resource group rg ∈ RG with mem(rg) 6= ∅,
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the proportion of group members covered by execution context co ∈ CO can be measured by

Cov(rg , co) =

∣∣{ r ∈ mem(rg)
∣∣ ∃e∈[Eres ]coπres(e) = r

}∣∣
|mem(rg)|

.

Group member contribution (Def. 16) specifies how much work conducted in an execution

context by a group was performed by a specific group member. It can be used to measure how a

group’s workload related to an execution context was distributed across its members. Note that

group member contribution is only defined if there are events executed by some member of the

resource group in the execution context.

Definition 16 (Group Member Contribution). Given event log EL = (E,Att , π), execution con-

texts CO, and organizational model OM = (RG ,mem, cap), for resource group rg ∈ RG and

execution context co ∈ CO, with { e ∈ [Eres ]co | πres(e) ∈ mem(rg) } 6= ∅, the contribution of a

group member r ∈ mem(rg) can be measured by

MemContr(r, rg , co) =
|{ e ∈ [Eres ]co | πres(e) = r }|

|{ e ∈ [Eres ]co | πres(e) ∈ mem(rg) }|
.

Consider the example organizational model in Figure 6. For resource group “Group 0” and one

of its capabilities (VIP, register, morning), we have:

• RelFocus(“Group 0”, (VIP, register, morning)) = 0.333,

• RelStake(“Group 0”, (VIP, register, morning)) = 1.0,

• Cov(“Group 0”, (VIP, register, morning)) = 0.5, and

• MemContr(Bob, “Group 0”, (VIP, register, morning)) = 0,

• MemContr(Pete, “Group 0”, (VIP, register, morning)) = 1.0.

As shown above, resources in “Group 0” devoted 33% of their total workload (indicated by

RelFocus) to carrying out activities related to “registering requests for VIP cases in the morning”;

“Group 0” is the only group that contributed to such work (indicated by RelStake) in the process;

only 50% of the group members (indicated by Cov) actually participated in this type of work,

and that is resource Pete (indicated by MemContr). Furthermore, these model analysis measures

can also be used to “diagnose” the differences between an organizational model and a log. In the

example organizational model, we can find that “Group 0” is the only one that has a comparatively

20



low group coverage in terms of its capabilities — the model considers both of its members, Bob

and Pete, capable of performing in both execution contexts, but the event log does not show such

behavior. This explains the imperfect precision (0.883). Also, if the example model is a discovered

model, then the revealed differences can inform how to improve the discovery method.

5. Approach

5.1. Design of Approach

Figure 7 shows an overview of our approach to realize the proposed OrdinoR framework. First,

an event log with the standard attributes (case, act, time) and resource information (res) is used as

input for learning a set of execution contexts. A resource-event log can then be derived and utilized

for discovering resource groups. Next, the discovered resource groups are “profiled” using execution

contexts to describe the group capabilities in process execution. Finally, an organizational model is

constructed and subsequently evaluated and analyzed by applying the measures in the framework.

event 
log

resource-event 
log

Learn 
execution 
contexts

Discover 
resource 
groups

resource 
groups

Profile 
resource 
groups

organizational  
model

Evaluate 
discovered

models

Analyze
discovered

models

Figure 7: An overview of how to use the OrdinoR framework

Learning execution contexts. Execution contexts can be determined directly if prior knowledge

about the categorization of cases, activities, and time periods is available. For instance, managers

can decide time types based on the seasonal patterns of how employees work.

When such knowledge is limited, there are process mining techniques that can be applied to

automatically learn a meaningful collection of case types, activity types, and time types. Examples

include mining local process models [32] to find subsets of process activities representing frequent

patterns (informing activity types), and using trace clustering [33] to find coherent sets of cases

21



(informing case types). However, deriving a general method for learning execution contexts is a

far from trivial problem. For validation purposes, we discuss three approaches.

1. ATonly considers only activity types and defines each activity label as an activity type. The

other two dimensions are omitted, i.e., all events will have the special type ⊥ as the case

type and time type (see Def. 3). ATonly can be applied as a basic solution, since activity

information is standard for event logs.

2. CT+AT+TT (case attribute) defines each activity label as an activity type and specifies time

types according to the seven week days, i.e., time types will be “Monday”, “Tuesday”, etc.

Case types are defined based on a selected case attribute that is meaningful for distinguishing

between different variants of cases in an input event log.

3. CT+AT+TT (trace clustering) is similar to the foregoing approach, except that case types

are defined by applying context-aware trace clustering [33]. Trace clustering assigns a cluster

label to each case and this label is considered the case type for all events in the case.

Discovering resource groups. Resource groups are discovered by identifying resources with simi-

lar behavior according to a resource-event log derived from the previous step. To this end, we

first build a set of features from a derived resource-event log to characterize individual resource

behavior. We consider the variety of execution contexts in which a resource worked and the oc-

currences of resource events. As a result, we can construct a feature matrix [31] where each row

corresponds to a resource, each column corresponds to an execution context, and each entry value

denotes the number of occurrences of the resource event. Table 4 shows an example feature matrix

characterizing the behavior of six resources.

With a resource feature matrix, we can address the task of identifying similar resources by

applying established cluster analysis techniques in data mining [31]. In our validation, we adopt Ag-

glomerative Hierarchical Clustering (AHC) [31] and Model-based Overlapping Clustering (MOC) [34].

AHC results in disjoint resource groups and MOC results in potentially overlapping groups.

Profiling resource groups. The final step is to profile each discovered resource group with a set of

relevant execution contexts characterizing the group’s capabilities in process execution.

We first consider a strategy, namely FullRecall, which accounts for all historical behavior by any

member of a resource group. Given a derived resource-event log RL(EL,CO), the set of execution

22



Table 4: An example resource feature matrix related to the example resource-event log in Table 3. Note that a

resource feature matrix in practice will usually have more rows and columns

resource

(normal, (normal, (normal, (VIP, (normal, (VIP, (VIP,

register, contact, check, register, decide, check, decide

afternoon) afternoon) morning) morning) morning) afternoon) afternoon)

Ann 0 1 0 0 0 0 0

Bob 0 0 0 1 0 0 0

John 0 0 1 0 1 0 0

Mary 0 0 0 0 0 1 1

Pete 2 0 0 0 0 0 0

Sue 0 0 1 0 1 0 0

contexts for profiling a group rg is

cap(rg) =
{

co ∈ CO
∣∣ ∃r∈mem(rg)(r , co) ∈ RL(EL,CO)

}
.

Applying this definition, a resulting organizational model will capture all observed behavior recorded

in the log and will thus achieve the best fitness. However, the use of FullRecall risks linking a re-

source group with an excessive number of execution contexts. This is because FullRecall considers

every resource event related to any group member, even if that event may represent rare behavior.

Hence, we introduce another strategy OverallScore that ranks execution contexts according to

how frequent and how popular they are with respect to the members of a resource group. If the

process activities within an execution context were mostly taken by a specific group, or by the

majority of members in a group, then this execution context is likely associated with the group.

OverallScore can be formalized as selecting execution contexts based on the weighted average of

two model analysis measures, group relative stake and group coverage, i.e.,

cap(rg) = { co ∈ CO | ω1 · RelStake(rg , co) + ω2 · Cov(rg , co) ≥ λ },

where λ is a threshold in range (0, 1), and ω1, ω2 are non-negative weights satisfying ω1 + ω2 = 1.

Applying OverallScore links a resource group to only its most relevant execution contexts and

hence leads to models with relatively balanced fitness and precision.

Table 5 presents an example of applying these two strategies to profile a group with two

resources, John and Sue.
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Table 5: An example of profiling a resource group with two members, applying both FullRecall and OverallScore

(ω1 = ω2 = 0.5, λ = 0.8)

mem(rg)
cap(rg) cap(rg)

(applying FullRecall) (applying OverallScore)

“John”, “Sue”

(normal, check insurance, Thursday)

(normal, check insurance, Thursday)(normal, accept claim, Thursday)

(normal, reject claim, Thursday)

5.2. Implementation

We developed an open-source software tool implementing the approach above. It consists of (1)

an extensible Python library2 and (2) a web-based application3, enabling users to perform organi-

zational model mining tasks and visualize the outcomes. The tool was built following a modular

design and therefore can be extended to integrate new methods and measures for organizational

model mining in the future.

6. Experiments

We conducted extensive experiments with the aim to demonstrate how organizational models

can be discovered from event log data by applying our approach, and how those models can be

evaluated and analyzed using the proposed measures in the framework.

6.1. Experiment Dataset

Two real-life event logs were used for experiments, which are both publicly available online.

The first log (WABO4) records the receipt phase of a building permit process in an anonymous

Dutch municipality. The second log (BPIC175) records data related to a loan application process

in a Dutch financial institute. Both of them satisfy the basic requirements for event logs defined

previously, containing case identifiers, activity labels, timestamps, and resource information. In

addition, they also carry several case-level attributes, such as the one recording loan purposes in

BPIC17.

2The OrdinoR library: https://royjy.me/to/ordinor
3Web-based tool for organizational model mining: https://royjy.me/to/arya
4‘WABO’, CoSeLoG project: https://doi.org/10.4121/uuid:a07386a5-7be3-4367-9535-70bc9e77dbe6
5BPI Challenge 2017: https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
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To obtain the experiment dataset, we preprocessed the original logs to filter out redundant

event data, keeping only events recording the completion of activities. This filtering step ensures

that each activity instance in process execution is counted exactly once. Table 6 reports the basic

statistics of the preprocessed event log dataset.

Table 6: Basic statistics of the preprocessed event logs for experiments

Log #cases #events #activities #resources

WABO 1,434 8,577 27 48

BPIC17 31,509 475,306 24 144

6.2. Experiment Setup

The approach designed for validation (Section 5.1) includes several alternative methods at

each intermediate step of model discovery. In the experiments, we tested all combinations of

these alternatives. Figure 8 depicts an overview of the experiment setup — each organizational

model is discovered using a selected execution contexts learning method, a resource groups dis-

covery method, and a resource groups profiling method, respectively. Discovered models are then

evaluated and analyzed.

WABO 
log

ATonly

CT+AT+TT
(case attribute)

AHC

MOC

Full
Recall

Evaluate
organizational

model
Overall
Score

CT+AT+TT
(trace clustering)

Analyze
organizational

model

BPIC17 
log

Figure 8: An overview of the experiment setup: each path in the graph specifies a selection of methods applied on

an input event log

Combining all these alternatives resulted in a considerable number of organizational models to

be discovered, evaluated, and analyzed. Therefore, we applied the principles of scientific workflow

to efficiently conduct the experiments. The use of scientific workflow also benefits future research
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that wishes to replicate or modify our experiments. The following shows how we configured the

methods at each intermediate step in model discovery6.

In terms of methods for learning execution contexts, ATonly requires no specific configuration.

For CT+ AT+TT (case attribute), we selected the attribute recording the channel of environmental

permit application for log WABO, and the attribute recording the loan purpose of applicants for

log BPIC17. For CT+AT+TT (trace clustering), we applied the original configurations in the paper

of Bose and Van der Aalst [33].

In terms of discovering resource groups, we applied the same configuration for both clustering

techniques, AHC and MOC. The Euclidean distance was selected as the proximity measure, and

the number of resource groups (clusters) was decided by using cross-validation [31], in which the

potential group number was tested between 2 and 10.

In terms of profiling resource groups, FullRecall requires no specific configuration. For Over-

allScore, we performed a grid search within the range [0.1, 0.9] using a search step of 0.1 to determine

the weights (ω1 and ω2) and the threshold (λ).

6.3. Results and Findings

6.3.1. Model Evaluation and Comparison

In the experiments, we discovered and evaluated a total of 24 organizational models (12 per

log). We compared models discovered from the same event log to investigate how different model

discovery methods impact model quality. The baseline models used in the comparisons were the

ones with the highest F1-scores (the best quality), as shown in Table 7.

Table 7: Discovered models with the best quality used as baselines in the comparisons

Log Configuration
Model statistics Evaluation

#execution contexts #groups fitness precision F1

WABO CAT (tc) MOC OS 307 9 0.876 0.577 0.696

BPIC17 CAT (tc) AHC OS 1884 10 0.831 0.641 0.724

Configuration: CAT = CT+AT+TT, tc = trace clustering; OS = OverallScore

We compared between three sets of discovered organizational models with respect to the three

steps in model discovery. Note that models in the same set differ only in terms of the method

6Details of experiment configuration can be found here: https://royjy.me/to/om2-experiments
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Table 8: Comparing models discovered from applying ATonly, CT+AT+TT (case attribute), or CT+AT+TT (trace

clustering) for learning execution contexts

Log Configuration
Model statistics Evaluation

#execution contexts #groups fitness precision F1

WABO

ATonly

MOC OS

27 9 0.947 0.407 0.569

CAT (ca) 263 9 0.843 0.448 0.586

CAT (tc) 307 9 0.876 0.577 0.696

BPIC17

ATonly

AHC OS

24 10 0.923 0.530 0.673

CAT (ca) 2020 10 0.810 0.629 0.708

CAT (tc) 1884 10 0.831 0.641 0.724

Configuration: CAT = CT+AT+TT, ca = case attribute, tc = trace clustering; OS = OverallScore

applied for that particular step. In the following tables, results of the baseline models are underlined

to aid comparisons.

Learning execution contexts. (Table 8) Models produced from applying ATonly have a higher fitness

compared to the baseline. This is because applying ATonly led to a relatively coarser collection of

execution contexts, thus related the same number of events to fewer execution contexts. Conse-

quently, more events can be fit by a model. However, model precision was harmed due to having

excessive candidate resources for events.

On the other hand, comparing between models generated from using CT+ AT+TT (case at-

tribute) and CT+AT+TT (trace clustering), we can observe that the latter ones have comparatively

higher values in both fitness and precision. This indicates using a trace clustering technique can

lead to more reasonable case types, which better capture the categorization of different cases in

comparison to relying on a single case attribute.

Discovering resource groups. (Table 9) The baseline models produced from applying MOC have

higher fitness but lower precision, compared to those from AHC. This is expected, because resource

groups discovered using MOC can be overlapped, whereas the AHC ones are disjoint. When groups

are overlapped, a resource can be a member of more than one group, and can thus be linked with

more execution contexts. As a result, models with overlapping groups can potentially fit more

events (increasing fitness) but link excessive candidate resources to events (reducing precision).

Profiling resource groups. (Table 10) Using FullRecall resulted in models with perfect fitness, but

this method sacrifices much precision, because resource groups are usually linked with a large

number of irrelevant execution contexts. This is similar to the concept of “flower models” [5]
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Table 9: Comparing models discovered from applying AHC or MOC for discovering resource groups

Log Configuration
Model statistics Evaluation

#execution contexts #groups fitness precision F1

WABO CAT (tc)
AHC

OS
307 9 0.815 0.595 0.687

MOC 307 9 0.876 0.577 0.696

BPIC17 CAT (tc)
AHC

OS
1884 10 0.831 0.641 0.724

MOC 1884 8 0.957 0.406 0.571

Configuration: CAT = CT+AT+TT, tc = trace clustering; OS = OverallScore

Table 10: Comparing models discovered from applying FullRecall or OverallScore for profiling resource groups

Log Configuration
Model statistics Evaluation

#execution contexts #groups fitness precision F1

WABO CAT (tc) MOC
FR 307 9 1.000 0.067 0.125

OS 307 9 0.876 0.577 0.696

BPIC17 CAT (tc) AHC
FR 1884 10 1.000 0.169 0.290

OS 1884 10 0.831 0.641 0.724

Configuration: CAT = CT+AT+TT, tc = trace clustering; FR = FullRecall, OS = OverallScore

in process model discovery. On the other hand, the baseline models (applying OverallScore) have

better precision while maintaining moderate fitness, since execution contexts were selectively linked

to resource groups based on frequency and popularity.

Conclusion. Fitness and precision proposed in our framework can provide a generic and consistent

basis for evaluating organizational models discovered using different mining algorithms, which

fulfills the vital missing part of model evaluation in the state-of-the-art.

6.3.2. Model Diagnosis

In the experiments for model analysis, we selected a discovered model with the lowest F1-score

(the worst quality overall) and used the model analysis measures to identify the possible reasons.

This model was derived from log WABO applying CT+AT+TT (case attribute)-MOC-FullRecall. It

consists of 48 resources in 9 groups with overlaps and has fitness = 1.0, precision = 0.036, and

F1-score = 0.069. The perfect fitness and poor precision of this model imply that some resource

groups and execution contexts were inappropriately linked during discovery, causing certain events

in the log to have excessive candidate resources (Def. 10). To identify such groups and execution

contexts, we applied the group relative stake (Def. 14) and group coverage (Def. 15) measures.
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Group relative stake can reveal whether a group had only little contribution to an execution

context, while group coverage can reveal whether only a small number of group members were

involved in an execution context.

Table 11 presents the average values of the two measures for each group in the model, along

with the rankings of groups based on those values. We can tell that “Group 3” is the one with the

comparatively lowest group relative stake and group coverage among all groups.

Table 11: Average group relative stake and group coverage of the resource groups in the selected model

resource
#members

#execution average rank of avg. average rank of avg.

group contexts group relative stake group relative stake group coverage group coverage

Group 0 1 68 0.220 9 1.000 1

Group 1 3 133 0.280 7 0.569 3

Group 2 37 234 0.684 1 0.124 9

Group 3 6 128 0.306 6 0.359 6

Group 4 5 151 0.355 4 0.440 4

Group 5 2 122 0.236 8 0.693 2

Group 6 5 150 0.350 5 0.405 5

Group 7 12 209 0.476 2 0.285 8

Group 8 8 203 0.407 3 0.330 7

We therefore focused on “Group 3” by investigating all its associated execution contexts. The

box plots in Figure 9 summarize the distributions of group relative stake and group coverage values,

respectively. Figure 9a shows that, in half of its associated 128 execution contexts, “Group 3”

contributed a fair amount of work (more than 22.2%). However, Figure 9b indicates that most

execution contexts involved no more than half of the group members (Q3 = 0.5). More specifically,

the median value (0.167, or 1/6) indicates that the work in these execution contexts was performed

by only one group member.

0.0 0.2 0.4 0.6 0.8 1.0

0.222
 Q1 = 0.139  Median = 0.222    Q3 = 0.441

(a) group relative stake

0.0 0.2 0.4 0.6 0.8 1.0

Q1 = Median = 0.167        Q3 = 0.5

(b) group coverage

Figure 9: Distributions of group relative stake and group coverage of “Group 3”

We concluded from the results that the selected low-quality model over-generalized the capa-

bility of “Group 3”, linking the group with execution contexts that were only specific to a small

number of group members. We furthered our analysis by examining individual execution contexts
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and individual group members of “Group 3”. Table 12 shows the bottom-five execution contexts

with the lowest group relative stake and group coverage. The group relative stake values indicate

that less than 5% of the total work performed in these execution contexts was actually committed

by resources from “Group 3”. Moreover, for each of the execution contexts, only 1 of 6 group

members performed the work, as indicated by group coverage.

Table 12: Execution contexts linked to “Group 3” with the lowest group relative stake and group coverage

execution context
group group member

relative stake coverage contribution

(CT.Desk, AT.Confirmation of receipt-complete, TT.4) 0.034 0.167 Resource 21 (100%)

(CT.Desk, AT.T02 Check confirmation of receipt-complete, TT.4) 0.037 0.167 Resource 19 (100%)

(CT.Desk, AT.Confirmation of receipt-complete, TT.2) 0.040 0.167 Resource 18 (100%)

(CT.Desk, AT.T06 Determine necessity of stop advice-complete, TT.1) 0.045 0.167 Resource 18 (100%)

(CT.Desk, AT.T02 Check confirmation of receipt-complete, TT.3) 0.048 0.167 Resource 19 (100%)

Conclusion. The above analyses can be replicated on other resource groups and their associated

execution contexts in the selected model. We can therefore extend our previous model evaluation

through explaining the discrepancies between the model and the actual behavior in the log.

7. Discussion

7.1. Threats to Validity

The first concern is internal validity. Event logs — however extensive and detailed — can only

capture certain information about actual business processes, the participating employees, or their

organizations. Hence, confounding factors may exist in terms of how employees are organized into

groups and involved in process execution. But these factors are not reflected by organizational

models discovered from event logs. Clearly, without additional inputs, knowledge discovered from

a set of data can hardly transcend the scope of the original data collection. Therefore, to mitigate

the impact of confounding factors, it is vital to understand the scope and characteristics of event

logs and their corresponding processes when applying our approach and interpreting the outputs.

Another concern is external validity. While the selected techniques and data are suitable exam-

ples of the respective artifacts in our research, experimental results are prone to few circumstances

and therefore may not be generalized easily. Also, the results may risk being biased due to the

specificity of the selected techniques and data. To address these limitations, it is essential to first
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explore the configurability of the OrdinoR framework. We used rigorous formalization to define

the requirements for event log data used in the framework. We have also outlined the key tasks

of discovering organizational models, which provide initial criteria for selecting or developing the

corresponding techniques. Besides, in the experiments we have shown how data mining techniques,

e.g., cross-validation and grid search, can be useful for configuring specific parameters in the pro-

posed approach. Based on the above, an extensive benchmark can be performed in future work

using more event logs from different contexts and applying a wider variety of techniques to study

the impact of various configurations. Also, artificial data from process simulation can be included

as a complement to real-life data to cover unusual scenarios. Still, proper configuration of the

framework and the approach requires understanding the context of input data, and may need to

be conducted case by case. Finally, it is worth noting that experimentation is inevitably limited

when investigating how to apply the framework to real problems — future evaluations need to

involve case studies in real-world organizations.

7.2. Future Work

In addition to those immediate next steps outlined above, there are many possibilities for future

research opened up by the OrdinoR framework. Among others, we highlight the conformance

checking of organizational models, i.e., comparing the modeled-behavior with the real-behavior as

reflected in event logs [5]. To begin with, organizational models are constructed from existing

employee groupings, such as departments, business roles, and project teams. This can be done

by identifying (1) employee groups and their members involved in process execution, and (2)

the patterns or rules regarding how process activities are performed based on the grouping. Data

other than event logs may be needed, e.g., documents about work distribution rules and timetables

showing employee shifts.

Then, given an organizational model, either discovered or based on existing employee groups,

conformance checking can be performed. More specifically, fitness and precision in the OrdinoR

framework can be used for global conformance checking — measuring the extent of commonalities

between the modeled and actual behavior of human resource groups. The model analysis measures,

e.g., group coverage, can be used for local conformance checking — showing where and how the

modeled human resource groups differ from reality.

Hence, combining conformance checking with organizational model mining capability, the Or-

dinoR framework lays the foundation for systematically exploiting process execution data to guide
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the design of organizational structures (covering, e.g., role designation and employee team com-

position) and staff deployment alongside changing business processes. Organizations can thus be

empowered to evolve organizational structures toward process improvement, and to iteratively

evaluate their decisions to enhance coordination, team effectiveness, and work satisfaction. To

support this capacity-building, future work can investigate additional information needed in event

logs to measure those goals.

8. Conclusion

We have proposed a framework based on a new definition of organizational models in the context

of business processes. Compared to existing research, our organizational models establish a linkage

from human resources via resource groups to activities, case types, and time periods, and can

thus describe the involvement of resource groups in process execution. Another aspect of novelty

concerns the model evaluation and analysis measures for organizational models. These measures

contribute a rigorous and generic means for assessing the quality of discovered organizational

models, and support for understanding the actual behavior of groups and their members in process

execution. Furthermore, our framework opens the door to conformance checking of organizational

models and can therefore bridge process analytics with analyses on organizational structures.
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