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Abstract. Process mining employs event data extracted from different
types of information systems to discover and analyze actual processes.
Event data often contain highly sensitive information about the people
who carry out activities or the people for whom activities are performed.
Therefore, privacy concerns in process mining are receiving increasing
attention. To alleviate privacy-related risks, several privacy preservation
techniques have been proposed. Differential privacy is one of these tech-
niques which provides strong privacy guarantees. However, the proposed
techniques presume that event data are released in only one shot, whereas
business processes are continuously executed. Hence, event data are pub-
lished repeatedly, resulting in additional risks. In this paper, we demon-
strate that continuously released event data are not independent, and
the correlation among different releases can result in privacy degrada-
tion when the same differential privacy mechanism is applied to each
release. We quantify such privacy degradation in the form of temporal
privacy leakages. We apply continuous event data publishing scenarios
to real-life event logs to demonstrate privacy leakages.

Keywords: privacy preservation · differential privacy · process mining
· privacy leakage · event data.

1 Introduction

Process mining forms a family of techniques used to analyze operational pro-
cesses of organizations. These techniques use event logs extracted from informa-
tion systems. An event log contains sequences of events, and each event reflects
the execution of an activity with some attributes, e.g., the timestamp at which
the activity was performed or the case for which the activity was performed.
Some event attributes may refer to individuals, e.g., patients or customers, thus
raising privacy concerns.

Data regulations, e.g., GDPR [1], limit the analysis of sensitive event logs.
To circumvent such restrictions, Privacy-Preserving Process Mining (PPPM) [8]
proposes techniques to guarantee privacy preservation, e.g., Differential Privacy
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(a) An event log containing trace
variants with their frequencies,
e.g., trace1 happened 4 times.

(b) The actual frequency of
trace variants at each release
point.

(c) Differentially private fre-
quency of trace variants at each
release point.

Fig. 1: Continuous event data release under temporal correlations.

(DP) [4] or group-based privacy preservation techniques, i.e., k-anonymity and
its extensions [17]. DP works based on a noise injection mechanism that injects
noise into published data to ensure that modifying a single user’s record in
the original data has a small impact on the published data. Such an impact is
bounded by ε, so-called privacy budget. The smaller values of ε result in more
noise injection and less privacy leakage.

Process mining techniques, such as process discovery and conformance check-
ing, discover and analyze the control-flow of a process which is based on the
distribution of trace variants, i.e., the control-flow aspect of an event log. A
trace variant is a sequence of activities performed for a case. Various privacy
mechanisms have been proposed to anonymize the control-flow aspect of an
event log [15,17,11,9]. These approaches consider only a one-shot data release.
However, business processes are continuously executed, stressing the need for
Continuous Event Data Publishing (CEDP) [18]. In CEDP, events are collected
up to a certain point in time or meeting a certain condition and published in
the form of event logs. This publishing scenario is done continuously based on a
time-window, e.g., daily, or a count-window, e.g., each new release contains one
new event per trace.

CEDP may result in violating the provided privacy guarantees provided for
separate releases of event logs if there are correlations among continuously re-
leased event logs. For example, consider the continuous release of the event data
in Fig. 1. An organization collects its business process event data in the form of
trace variants frequencies up to a release point and publishes the differentially
private trace variant frequencies. Suppose that each case, e.g., a patient, con-
tributes to only one trace variant at each release point and the trace variant of a
case is the sensitive information that needs to be protected. Note that the trace
variant of a case is considered sensitive information because it contains the en-
tire sequence of activities performed for the case. For example, in the healthcare
context, the activities are treatment-related, and sequences of activities can be
exploited to determine the health conditions of cases, e.g., their diseases.
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In order to provide an ε-DP guarantee, one needs to hide the participation of
an individual in the released output. To this end, the output gets noisified. The
amount of noise is determined by the privacy parameter ε and the sensitivity of
a query. The sensitivity indicates how much uncertainty is required to hide the
contribution of one individual to the query. Here, the query is the frequency of
each trace variant. Since the modification of only one frequency value, i.e., the
contribution of one individual, at a specific release point i in Fig. 1b affects only
one trace variant, the sensitivity is set to 1. Adding noise drawn from a Laplacian
distribution with scale 1/ε, where the sensitivity value is in the numerator, to
perturb each frequency achieves ε-DP at each release point [5], as in Fig. 1c.

However, that may not be true with the existence of temporal correlations. For
example, as shown in Fig. 1b, the frequency of each trace variant at release point i
is not independent of the frequency of its prefix at release point i−1. Thus, adding
Laplacian noise with scale 1/ε at the release point i=3 only achieves 3ε-DP, which
is three times weaker than the first provided guarantee. One can interpret this
situation based on group differential privacy, where correlated data are protected
as a group [3]. Moreover, due to the nature of business processes, traces may have
a particular subtrace pattern, such as “activity b always follows activity a”. Such
temporal correlations can be formulated as conditional probabilities to analyze
their effect on the provided privacy guarantees by DP mechanisms [2].

In this paper, we adapt the approach introduced in [2]. In [2], the authors
assume that probability matrices explaining the correlations between different
releases are given. However, we exploit some characteristics of CEDP to obtain
such probabilities. We show that different event data publishing scenarios can
affect the correlations and the privacy leakage results. We also investigate the
effect of specific event log characteristics on the correlations and privacy leakages.
Our proposal utilizes a transition system to model traces in the form of states at
each point of release. Particularly, we focus on a full-history transition system,
so-called prefix automaton, where each state represents a prefix of a trace from
the start point until the state. We utilize such a transition system to obtain
conditional probabilities between states (traces) at each release point.

The paper is structured as follows. Section 2 discusses related work. Section 3
introduces basic notations and formal definitions. Section 4 demonstrates our
approach to quantify temporal privacy leakage in CEDP. In Section 5, we provide
experiments based on real-life public event logs. Section 6 concludes the paper
and discusses some limitations of the approach.

2 Related Work

A plethora of studies has been conducted to provide privacy for process mining.
In [8], the authors studied the requirements and challenges of providing privacy-
preserving process mining. Several studies applied differential privacy to pub-
lish event logs. Mannhardt et al. [15] applied differential privacy to anonymize
queries over event logs. PRIPEL [10] applies differential privacy to anonymize
timestamps of event logs. SaCoFa [11] integrates differential privacy with event
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log semantics to anonymize the control flow of event logs. In [9], the authors ap-
plied differential privacy to event logs in order to prevent singling out individuals
using the prefixes/suffixes of their traces. However, all of the above mechanisms
assume one-shot data publishing.

Dwork et al. first studied differential privacy under continual observation,
and they presented user-level [7] and event level [6] privacy. Several studies have
investigated applying differential privacy in continuous data publishing. Kellaris
et al. [14] studied the problem of infinite sequences. Fan et al. [12] studied dif-
ferential privacy with a real-time publishing setting. Cao et al. [2] quantified the
risk of using differential privacy under temporal correlation to release continuous
location data. A framework for quantifying risk when publishing only one event
log for process mining has been studied in [16]. To the best of our knowledge, no
study has presented a risk quantification for differential privacy in continuous
event data publishing. Although, in [18], the authors have elaborated possible
attacks against continuous anonymized event data publishing, that work focuses
on group-based privacy preservation techniques.

3 Preliminaries

In this section, we provide formal definitions for event logs, transition systems,
and differential privacy, which will be used to explain the approach.

3.1 Event Log

For a given set A, A∗ is the set of all finite sequences over A, and B(A) is the
set of all multisets over the set A. A finite sequence over A of length n is a
mapping σ ∈ {1, ..., n} → A, represented as σ = 〈a1, a2, ..., an〉 where ai = σ(i)
for any 1 ≤ i ≤ n. |σ| denotes the length of the sequence. Given A and B as two
multisets, A ] B is the sum over multisets, e.g., [a2, b3] ] [b2, c2] = [a2, b5, c2].
A multiset set A can be represented as a set of tuples {(a,A(a))|a ∈ A} where
A(a) is the frequency of a ∈ A. For σ1, σ2∈A∗, σ1@σ2 if σ1 is a subsequence of
σ2, e.g., 〈z, x, a, b〉@〈z, x, a, b, b, c, a, b, c, x〉.

Definition 1 (Event). An event is a tuple e=(c, a, t), where c∈C is the case
identifier, a∈A is the activity associated with the event e, and t∈T is the times-
tamp of the event e. We call ξ=C×A×T the universe of events. Given an event
e = (c, a, t) ∈ ξ, πcase(e) = c, πact(e) = a, and πtime(e) = t.

Note that I and � are artificial start and end activities included in A, i.e.,
{I,�}⊂A. We assume that the case identifiers are dummy identifiers referring
to individuals such as patients, workers, customers, etc. These identifiers cannot
be exploited to directly re-identify individuals.

Definition 2 (Trace, Trace Variant). Let ξ be the universe of events. A trace
σ=〈e1, e2, ..., en〉 in an event log is a sequence of events, s.t., for each ei, ej∈σ,
1≤i<j≤n: πcase(ei)=πcase(ej), and πtime(ei)≤πtime(ej). A trace variant is a
trace where all the events are projected on the activity attribute, i.e., σ∈A∗.
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Definition 3 (Event Log). An event log L is a set of case identifiers and their
corresponding trace variants, i.e., L⊆C×A∗. If (c1, σ1),(c2, σ2)∈L and c1=c2,
then σ1=σ2. L̃=[σ | (c, σ)∈L] is the multiset representation of traces in L, i.e.,
L̃ ∈ B(A∗). Given (c, σ)∈L, πcase((c, σ))=c and πtrace((c, σ))=σ.

For instance, L1 = [(c1, 〈I, a, b, c, f,�〉), (c2, 〈I, a, b, f, c,�〉), (c3, 〈I, d, a, b, c,
g〉), (c4, 〈I, d, a, f, c, h〉)] is an event log with artificial start activities for all the
traces, and artificial end activities for the complete traces, i.e., the traces of c1
and c2. The traces of c3 and c4 are called partial traces, i.e., traces that have not
yet reached the end activity. Note that our definition of an event log represent
the control-flow perspective that is the focus of this work. In general, events of
an event log may contain more attributes, e.g., resources, who perform activities.

3.2 Transition System

In this paper, we aim to quantify the privacy degradation in CEDP due to the
correlations among event logs in different release points. To this end, we need
to adopt an event log representation that helps to study these correlations. We
consider a full-history transition system, so-called prefix automaton, as the event
log representation. A transition system is one of the most basic process mod-
eling notations which consists of states and transitions. States are represented
by circles having unique labels, and transitions are represented by directed arcs
with activity labels. Each transition connects two states. Figure 2 shows a tran-
sition system for the event log L1. The labels of states are specified by a state
representation function, which is defined as follows.

Definition 4 (State). Given σ∈A∗ as a trace and 0≤k≤|σ| as a number, which
indicates the number of events of σ that have occurred, state(σ, k) is a function
that produces a state.

We define statehd() as the state representation functions describing the cur-
rent state by the history of the case, i.e., given σ = 〈a1, a2, ..., an〉 as a trace of
length n, statehd(σ, k) = 〈a1, a2, ..., ak〉.

Definition 5 (Event Log Representation). Let L⊆C×A∗ be an event log
and state() be a state representation function. TSL,state() = (S,A, T ) is a tran-
sition system that represents L based on state() where:

– S = {state(σ, k) | (c, σ)∈L ∧ 0≤k≤|σ|} is the state space;
– A = {σ(k) | (c, σ)∈L ∧ 1≤k≤|σ|} is the set of activities;
– T = [(state(σ, k), σ(k + 1), state(σ, k+1)) | (c, σ)∈L ∧ 0≤k<|σ|] is the multiset of

transitions;
– Sstart = {state(σ, 0) | (c, σ)∈L} is the set of start states; and
– Send = {state(σ, |σ|) | (c, σ)∈L ∧ σ(|σ|) = �} is the set of end states.

Using statehd() as a state representation function, one can create a transition
system where states represent prefixes. Consider L1 = [(c1, 〈I, a, b, c, f,�〉), (c2, 〈I
, a, b, f, c,�〉), (c3, 〈I, d, a, b, c, g〉), (c4, 〈I, d, a, f, c, h〉)] as an event log where c1
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Fig. 2: The history transition system of the event log L1. The circles represent states, and the arcs
represent transitions with activity names as their labels. The numbers below arcs show the frequency
of the corresponding transition.

and c2 have complete traces, and c3 and c4 have partial traces. Figure 2 shows
the history transition system, obtained by considering statehd() as the state
representation function for the event log L1. A history transition system can
be converted to a probabilistic model to show the correlation between states as
conditional probabilities. We utilize such representation of an event log to quan-
tify the correlations between traces. Then, such correlations are used to quantify
temporal privacy leakages of a DP mechanism in CEDP.

3.3 Differential Privacy

Differential privacy provides a formal definition of data privacy. The main idea
of differential privacy is to randomize the data in such a way that an observer
seeing the randomized output cannot tell if a specific individual’s information
was used in the computation [5]. Considering the distribution of trace variants
as our sensitive event data, ε-DP can be defined as follows.

Definition 6 (ε-DP). Let L1 and L2 be two neighbouring event logs that differ

only in a single entry, e.g., L̃2=L̃1 ] [σ], for any σ∈A∗, and let ε ∈ R>0 be the
privacy parameter. A randomized mechanism M:B(A∗)→B(A∗) provides ε-DP

if for any (σ, f) ∈ A∗×N>0 and for all L̃
′ ∈ rng(M):

log
Pr((σ, f) ∈ L̃

′
| M(L̃1))

Pr((σ, f) ∈ L̃′ | M(L̃2))
≤ ε

The parameter ε is called the privacy budget and represents the degree of
privacy. The smaller the privacy budget, the stronger the privacy guarantees.
A real-valued query q can be made differentially private by using a Laplace
mechanism where the noise is drawn from a Laplacian distribution with scale
∆q/ε. ∆q is called the sensitivity of the query q. Intuitively, ∆q denotes the
amount of uncertainty that one needs to incorporate into the output to hide
the contribution of single occurrences at the ε-DP level. In our context, q is the
frequency of a trace variant. Since one individual, i.e., a case, contributes to only
one trace, the sensitivity is ∆q=1 [15,11]. If an individual can appear in more
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Fig. 3: The general overview of continuous event data publishing in process mining.

than one trace, the sensitivity needs to be accordingly increased assuming the
same value for privacy parameter ε [5].

4 Continuous Event Data Publishing

Continuous data publishing can generally be classified into three main cate-
gories: incremental, decremental, and dynamic [13]. In incremental continuous
data publishing, the raw data are cumulatively collected up to a release point,
and they cannot be updated or deleted after the collection phase. In decremental
continuous data publishing, the previously collected raw data can only be deleted
in the later releases. Dynamic data publishing assumes that new raw data can
be added to the previously collected data, and the previously collected data can
be updated or deleted. In the context of process mining, the events generated
by an information system are cumulatively collected, and they are not updated
or deleted after generation, i.e., the continuous event data publishing is incre-
mental. Figure 3 shows the general overview of continuous event data publishing
using an ε-DP mechanism in process mining. Events recorded by information
systems are collected up to a release point i, then ε-DP mechanisms are applied
to provide privacy guarantees for each event log Li.

The incremental nature of CEDP can be considered as the main reason of
temporal correlations among event logs that need to be published at different
release points. For example, the complete traces in an event log Li appear in
all the next releases Li+1, Li+2, · · ·. Moreover, each trace σ in an event log Li

has a prefix in all the previous releases Lj , Lj+1, · · · , Li−1, s.t., j < i and Lj

is the event log where the process of the case having the trace σ started. As
these examples show, temporal correlations can be categorized into two main
categories: forward and backward. Given Li as an event log at release point i,
the former considers temporal correlations between Li and its next releases, and
the latter concerns temporal correlations between Li and its previous releases.

4.1 CEDP Scenarios

Different event data publishing scenarios can have a significant impact on the
privacy leakage based on temporal correlations. In the following, we briefly ex-
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plain some of the different possible scenarios. In general, CEDP scenarios can be
based on a time-window, e.g., weekly, or a count-window, e.g., the number of new
cases. Since time-window-based scenarios are not deterministic in terms of the
amount of new data that can be published in each window, we focus on count-
window-based scenarios to quantify the potential privacy degradation. One can
consider different count-window-based scenarios. For example, an event log is
released when there exist x new cases compared to the previous release, or when
there exist x new events per trace, or when there exist up to x new events per
trace, etc. We classify the count-window-based scenarios into two main types:
certain and uncertain. The former specifies an exact number, e.g., x new events
per trace. The latter specifies a bound, e.g., up to x events per trace. This clas-
sification allows us to assess the effects of certain and uncertain CEDP scenarios
on temporal privacy leakages.

Since events are the smallest units of event logs, to propose a generic ap-
proach, we consider the following certain and uncertain scenarios: (S1) an event
log is released when there exist exactly x new events per trace compared to the
previous release, and (S2) an event log is released when there exist up to x new
events per trace compared to the previous release. In practice, such bounds can
be specified to keep the process mining findings updated. Note that in both sce-
narios, events can belong to a new case or an existing one. In Subsection 4.4, we
demonstrate how to use transition systems to quantify the forward and backward
privacy leakages considering these scenarios.

4.2 Notation Summary

For the sake of simplicity, we assume that the number of releases is λ, which
does not need to be exactly specified. For a given event log L, CL⊂C and AL⊂A
are considered as the finite set of dummy case identifiers and the set of activities
that can appear in different releases of L, respectively. Li denotes an event log
that needs to be released at point i∈[1, λ]. Li contains cases and their current
states describing full history, i.e., traces. σic∈L̃i is the state of a case c at the
release point i. Note that according to Definition 3, each case can only have one
trace in an event log.

We consider Mi as the DP mechanism, which is applied to L̃i to randomize
the count of trace variants. rng(Mi) denotes the set of all possible outputs that
Mi can produce. For simplicity,Mi is considered to be the same DP mechanism,
e.g., a Laplace mechanism, but maybe with different privacy budgets at each
i∈[1, λ]. L̃

′i∈rng(Mi) denotes a differentially private output at release point i.
In the following, we first demonstrate the potential privacy loss ofMi for a single
release of event log at release point i. Then, we quantify the privacy leakage in
the context of continuous releases when i varies from 1 to λ.

4.3 Privacy Leakage of a Single Release

Consider an adversary whose target is to identify the state of a case c ∈ CL at
release point i ∈ [1, λ]. We assume that such an adversary has the knowledge of
all the states at the given release point except the state of the target case c.
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Definition 7 (Adversary without Temporal Correlations - AdL
i
c). Let

Li be an event log that needs to be released at the point i and σic∈L̃i be the state

of case c at the point i. AdL
i
c denotes an adversary whose target is to identify

σic. L
i
c={(c′, σ)∈Li|c6=c′} is the background knowledge of such an adversary.

AdL
i
c observes L̃

′i∈rng(Mi) and tries to distinguish case c’s state. The pri-
vacy leakage of the DP mechanism Mi can be formulated as follows, where
σic, σ

′i
c∈A∗L are two different possible traces for the state of case c.

PL(AdL
i
c ,Mi) := sup

L̃
′i,σic,σ

′i
c

log
Pr(L̃

′i | L̃ic ] σic)
Pr(L̃′i | L̃ic ] σ′ic)

(1)

PL(Mi) := max
c∈CL

PL(AdL
i
c ,Mi) (2)

Equation (2) is another formal representation of differential privacy that for-
mulates the privacy budget as the supremum of privacy leakage, i.e., considering
ε as the privacy budget, PL(Mi)=ε.

4.4 Privacy Leakage of Continuous Releases

We exploit a full-history transition system to calculate probabilities of visiting
states and to generate forward and backward temporal correlations describing
the probabilities for transitions between states. We obtain a transition system
form the last collected event log that needs to be published.

Definition 8 (State Probability). Let TSL,statehd()=(S,A, T ) be a history
transition system based on an event log L, the probability of visiting a state s∈S
is as follows: Pr(s)=|T

′|/|L| where T ′=[(s1, a, s2)∈T |s2=s].

For instance, in Fig. 2, Pr(S3) = 2/4. In the following, we define forward
and backward temporal correlations based on scenarios S1 and S2 (see Subsec-
tion 4.1). Note that to simplify the notation, we abbreviate 〈a1, a2, ..., an〉 as 〈〉n,
and a sequence of event logs that need to be released, i.e., L1, L2, ..., Lλ, as L1..λ.

Definition 9 (Forward Temporal Correlations - FTC). Let TSL,statehd()

= (S,A, T ) be a transition system based on an event log L. The forward tempo-
ral correlations are calculated based on the correlations between adjacent states.
Given s1, s2∈S as two adjacent states, Pr(s2=〈〉n|s1=〈〉n−1) = |T ′′|

|T ′| where T ′ =

[(s, a, s′)∈T | s=s1] and T ′′ = [(s, a, s′)∈T | s=s1 ∧ s′=s2].

– The certain scenario with x∈N>0 new events:
Given s1∈S\Send, for all s2∈S, s.t., s1@s2, and |s2|−|s1|= x: Pr(s2 = 〈〉n|s1 =
〈〉n−x) =

∏x−1
j=0 Pr(s

′
2 = 〈〉n−j |s′1=〈〉n−(j+1)). Otherwise, Pr(s2|s1) = 0. If s1∈Send,

Pr(s2=s1|s1) = 1.
– The uncertain scenario with up to x∈N>0 new events:

Given s1∈S\Send, let fds1 be the distance of the furthest state s2 from s1, s.t.,
s1@s2. fmx

s1=min(x, fds1) is considered as the maximal forward move on the
transition system starting from s1. For all s2 ∈ S, s.t., s1@s2, and for all y ∈
[1,min(x, |s2|−|s1|)]: Pr(s2 = 〈〉n|s1 = 〈〉n−y) = 1/(fmxs1+1) ×

∏y−1
j=0 Pr(s

′
2 =

〈〉n−j |s′1 = 〈〉n−(j+1)), and for y = 0: Pr(s2 = 〈〉n|s1 = 〈〉n−y) = 1/(fmxs1+1).

Otherwise, Pr(s2|s1) = 0. If s1∈Send, Pr(s2=s1|s1) = 1.
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For instance, in Fig. 2, given the certain scenario with x=2, we only con-
sider the states that their distance from a given state is 2. If the given state is
S1, Pr(S5|S1)=1/2 and Pr(S6|S1)=1/2. Other probabilities given S1 are consid-
ered to be zero. However, given the uncertain scenario with x=2, we explore all
the states within the maximal distance 2. fdS1=4 and fmx

S1=min(2, 4). Thus,
Pr(S5|S1)=1/3×1/2, Pr(S6|S1)=1/3×1/2, Pr(S3|S1)=1/3×1, and Pr(S1|S1)=1/3. Other
probabilities given S1 are considered to be zero. Note that in the uncertain sce-
nario, we consider an equal chance for a case to stay in the same state, or move
forward up to maximal x states. This is the reason for the division by fmx

s1+1.

Definition 10 (Backward Temporal Correlations - BTC). Let TSL,statehd()

=(S,A, T ) be a transition system based on an event log L. The backward temporal
correlations can be obtained using Bayesian inference based on FTC.

– The certain scenario with x∈N>0 new events:
Given s2∈S, for all s1∈S, s.t., s1@s2, and |s2|−|s1|= x: Pr(s1 = 〈〉n−x|s2 =
〈〉n) = Pr(s1=〈〉n−x)×Pr(s2=〈〉n|s1=〈〉n−x)/Pr(s2=〈〉n). Otherwise, Pr(s1|s2) = 0.

– The uncertain scenario with up to x∈N>0 new events:
Given s2∈S, let bds2 be the distance of the furthest state s1 from s2, s.t., s1@s2,
and let bmx

s2 = min(x, bds2) be the maximal backward move on the transition sys-
tem starting from s2. For all s1∈S, s.t., s1@s2, and for all y∈[1,min(x, |s2|−|s1|)]:
Pr(s1 = 〈〉n−y|s2 = 〈〉n) = 1/(bmxs2+1)×Pr(s1=〈〉n−x)×Pr(s2=〈〉n|s1=〈〉n−x)/Pr(s2=〈〉n),
and for y=0: Pr(s1 = 〈〉n−y|s1 = 〈〉n) = 1/(bmxs2+1). Otherwise, Pr(s1|s2) = 0.

For instance, in Fig. 2, given the certain scenario with x=2, Pr(S1|S5) =
2/4×1/2

1/4
, and given the uncertain scenario with x=2, Pr(S1|S5)=1/3×

2/4×1/2
1/4

. In

the uncertain scenario, the previous state of a case can be the current state or
any state within the maximal x distance, and this is the reason for the division
by bmx

s2+1. Note that we incrementally update the transition system based on
the last collected event log. Thus, the knowledge regarding correlations is gained
based on all the available data up to the last release point.

Definition 11 (Adversary with Temporal Correlations - AdL
1..λ
c ). Let

L1..λ be the sequence of event logs that need to be released. We denote AdL
1..λ
c

as an adversary who has knowledge of all case’s states in the entire releases
range from 1 to λ except the state of the victim case c∈CL. The background
knowledge of such an adversary is L1..λ

c =
⋃
i∈[1,λ] L

i
c as well as the knowledge

of temporal correlations. Ad
L1..λ
c

F (Ad
L1..λ
c

B ) denotes such an adversary with only
forward (backward) temporal correlations.

Given c∈CL,AdL
1..λ
c observes the differentially private outputs L̃

′1, L̃
′2, . . . , L̃

′λ

of the DP mechanism Mi applied to L̃i at each release point i∈[1, λ] and at-
tempts to identify the state of the case c.

Definition 12 (Temporal Privacy Leakage - TPL). Let AdL
1..λ
c be an ad-

versary with the knowledge of temporal correlations,Mi be a DP mechanism that
is applied to each event log L̃i, i∈[1, λ], and L̃

′i∈rng(Mi) be the corresponding
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differentially private release at each release point. Considering σic, σ
′i
c∈A∗L as two

different possible states for case c∈CL, temporal privacy leakage of Mi w.r.t.

AdL
1..λ
c is defined as follows:

TPL(AdL
1..λ
c ,Mi) := sup

L̃
′1,...,L̃

′λ,σic,σ
′i
c

log
Pr(L̃

′1, . . . , L̃
′λ | L̃ic ] σic)

Pr(L̃′1, . . . , L̃′λ | L̃ic ] σ′ic)
(3)

TPL(Mi) := max
c∈CL

TPL(AdL
1..λ
c ,Mi) (4)

The above-defined temporal privacy leakage can be broken down into back-
ward and forward privacy leakages, as defined in Definition 13 and Definition 14.

Definition 13 (Backward Privacy Leakage - BPL). Backward privacy leak-

age of Mi, i∈[1, λ], w.r.t. Ad
L1..λ
c

B is defined as follows:

BPL(Ad
L1..λ
c

B ,Mi) := sup
L̃
′1,...,L̃

′i,σic,σ
′i
c

log
Pr(L̃

′1, . . . , L̃
′i | L̃ic ] σic)

Pr(L̃′1, . . . , L̃′i | L̃ic ] σ′ic)
(5)

BPL(Mi) := max
c∈CL

BPL(Ad
L1..λ
c

B ,Mi) (6)

Definition 14 (Forward Privacy Leakage - FPL). Forward privacy leakage

of Mi, i∈[1, λ], w.r.t. Ad
L1..λ
c

F is defined as follows:

FPL(Ad
L1..λ
c

F ,Mi) := sup
L̃
′i,...,L̃

′λ,σic,σ
′i
c

log
Pr(L̃

′i, . . . , L̃
′λ | L̃ic ] σic)

Pr(L̃′i, . . . , L̃′λ | L̃ic ] σ′ic)
(7)

FPL(Mi) := max
c∈CL

FPL(Ad
L1..λ
c

F ,Mi) (8)

From Equations (4), (6), and (8), we can conclude Equation (9), which shows
that to quantify the temporal privacy leakage, we need to analyze BPL and
FPL. We subtract PL(Mi) because it is included in both BPL and FPL.

TPL(Mi) = BPL(Mi) + FPL(Mi)− PL(Mi) (9)

Equations (5) and (7) can be expanded based on Bayesian theorem to calcu-
late backward and forward privacy leakages.

Quantifying BPL As shown in [2], using Bayesian theorem, BPL(Ad
L1..λ
c

B ,Mi)
can be simplified as Eq. (10) (cf. Theorem 2 and Eq. (12) in [2]). Since CEDP
is incremental, the trace of a case at release point i−1 cannot be longer than its
trace at release point i. Thus, A≤σ = {σ′∈A∗L | |σ′|≤ |σ|} is the domain of all
possible previous steps.

BPL(Ad
L1..λ
c

B ,Mi
)= sup

L̃
′1,...,L̃

′i−1

σic,σ
′i
c

log

∑
σ
i−1
c ∈A≤

σic

Pr(L̃
′1, . . . , L̃

′i−1 | L̃i−1
c ] σi−1

c )Pr(σi−1
c |σic)

∑
σ′i−1
c ∈A≤

σ′ic

Pr(L̃
′1
, . . . , L̃

′i−1 | L̃i−1
c ] σ′i−1

c )︸ ︷︷ ︸
(a)

Pr(σ
′i−1
c |σ′ic)︸ ︷︷ ︸
(b)

(10)

+ sup

L̃
′i,σic,σ

′i
c

log
Pr(L̃

′i | L̃ic ] σ
i
c)

Pr(L̃
′i | L̃ic ] σ

′i
c)︸ ︷︷ ︸

(c)
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In Eq. (10), the part annotated with (a) refers to BPL at point i−1, (b)
refers to the backward conditional probabilities for the case c given its state
at release point i, and (c) is the privacy leakage of single release at point
i without considering temporal correlations. Based on Eq. (10), if i=1, then

BPL(Ad
L1..λ
c

B ,M1)=PL(AdL
1
c ,M1), and if i>1, BPL(Ad

L1..λ
c

B ,Mi) is as follows,
where ALB(.) is a function to calculate the accumulated BPL.

BPL(Ad
L1..λ
c

B ,Mi)=ALB(BPL(Ad
L1..λ
c

B ,Mi−1)) + PL(AdL
i
c ,Mi) (11)

Equation (11) shows that BPL can be calculated recursively and may ac-
cumulate over time. According to Definition 10, and considering the certain
scenario of event data publishing, the backward temporal correlation between
states of a case is always on an extreme side, i.e., given σic as the state of a case
c∈CL at the release point i∈[1, λ], there exists a state for the case c at release
point i−x, σi−xc , s.t., σi−xc @σic, thus Pr(σi−xc |σic)=1. Consequently, considering

i=2, BPL(Ad
L1..λ
c

B ,M2) is calculated as follows:

BPL(Ad
L1..λ
c

B ,M2
) = sup

L̃
′1,σ1c ,σ

′1
c

log
Pr(L̃

′1 | L̃1
c ] σ

1
c)

Pr(L̃′1 | L̃1
c ] σ′1c)

+ sup
L̃
′2,σ2c ,σ

′2
c

log
Pr(L̃

′2 | L̃2
c ] σ

2
c)

Pr(L̃′2 | L̃2
c ] σ′2c)

= PL(Ad
L1
c ,M1

) + PL(Ad
L2
c ,M2

)

If we consider ε as the privacy budget of the mechanismMi, i.e., for any i ∈
[1, λ], maxc∈CLPL(AdL

i
c ,Mi)=ε. Then, BPL(Ad

L1..λ
c

B ,M2)=2ε. Consequently,

BPL(Ad
L1..λ
c

B ,M3)=3ε, BPL(Ad
L1..λ
c

B ,M4)=4ε, etc. Hence, BPL for CEDP con-
sidering the certain scenario is expected to linearly increase. We investigate this
observation in our experiments.

Quantifying FPL Similar to the backward privacy leakage, the equation of
the forward privacy leakage, i.e., Eq. (7), can also be simplified as Eq. (12)
(cf. Theorem 2 and Eq. (14) in [2]). Since continuous event data publishing is
incremental, the trace of a case at release point i+ 1 cannot be shorter than its
trace at release point i. Thus, A≥σ = {σ′ ∈ A∗L | |σ|≤ |σ′|}.

FPL(Ad
L1..λ
c

F ,Mi
)= sup

L̃
′i+1,...,L̃

′λ

σic,σ
′i
c

log

∑
σ
i+1
c ∈A≥

σic

Pr(L̃
′i+1, . . . , L̃

′λ | L̃i+1
c ] σi+1

c )Pr(σi+1
c |σic)

∑
σ′i+1
c ∈A≥

σ′ic

Pr(L̃
′i+1

, . . . , L̃
′λ | L̃i+1

c ] σ′i+1
c )︸ ︷︷ ︸

(a)

Pr(σ
′i+1
c |σ′ic)︸ ︷︷ ︸
(b)

(12)

+ sup

L̃
′i,σic,σ

′i
c

log
Pr(L̃

′i | L̃ic ] σ
i
c)

Pr(L̃
′i | L̃ic ] σ

′i
c)︸ ︷︷ ︸

(c)

In Eq. (12), the part annotated with (a) refers to FPL at release point i+ 1,
(b) refers to the forward conditional probabilities for the case c given its state
at point i, and (c) is the privacy leakage of single release at point i without
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considering temporal correlations. Similar to Eq. (10), in Eq. (12), if i = 1, then

FPL(Ad
L1..λ
c

F ,M1)=PL(AdL
1
c ,M1), and if i>1, FPL(Ad

L1..λ
c

F ,Mi) is as follows,
where ALF (.) is a function to calculate the accumulated forward privacy leakage.

FPL(Ad
L1..λ
c

F ,Mi)=ALF (FPL(Ad
L1..λ
c

F ,Mi+1)) + PL(AdL
i
c ,Mi) (13)

Equation (13) shows that FPL can also be recursively calculated and may
accumulate over time. Since event data publishing is incremental, the complete
traces remain the same in all the next releases. Thus, FPL in CEDP can be on
an extreme side whenever there exist complete traces in the previous releases.
Moreover, based on Eq. (12), we assume FPL in CEDP depends on the variation
of traces in an event log. For instance, considering the certain scenario, if an event
log only contains one trace variant, FPL can be on an extreme side because the
next state of a new case is certainly known based on the previously recorded
states. Hence, FPL is expected to linearly increase. We investigate the effect of
the trace uniqueness ratio on FPL in our experiments.

Calculating Accumulative Privacy Leakage Cao et al. [2] show that the
accumulative privacy leakages can be formulated as an optimization problem
where the objective function is a ratio of two linear functions and the constraints
are linear equations. Since we rely on transition systems to obtain temporal
correlations, the knowledge of temporal correlations is bounded to the traces in
the state space of the transition system. For the traces that are not included in
the state space, we consider the worst-case w.r.t. the knowledge of correlations,
i.e., no correlation. We assume that adapting the optimization problem from [2],
is a straightforward process. Thus, we avoid including it here. Nevertheless, we
provided the adapted optimization problem and a short explanation regarding
the computational complexity of our approach as supplementary material in our
GitLab repository.3

5 Experiments

The aims of the experiments are as follows: (1) Investigating the effect of tem-
poral correlations among event logs on the provided privacy guarantees, (2)
Exploring the effect of different CEDP scenarios on temporal correlations and
privacy leakages, and (3) Exploring the impact of trace uniqueness in event logs
on temporal privacy leakages. We have implemented a Python script to con-
duct the experiments. The source code is available on GitLab4 and as a Python
package5 that can be installed using pip commands. Table 1 shows the general
statistics of the real-life public event logs that we employed for our experiments.
The trace uniqueness shows the rate of unique traces, i.e., #V ariants/#Traces.
These event logs cover a wide range w.r.t. the trace uniqueness.

3
https://github.com/m4jidRafiei/QDP_CEDP/tree/main/supplementary

4
https://github.com/m4jidRafiei/QDP_CEDP

5
https://pypi.org/project/pm-cedp-qdp/

https://github.com/m4jidRafiei/QDP_CEDP/tree/main/supplementary
https://github.com/m4jidRafiei/QDP_CEDP
https://pypi.org/project/pm-cedp-qdp/
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Table 1: General statistics of the event logs used in the experiments.
Event Log #Events #Unique Activities #Traces #Variants Trace Uniqueness
Sepsis 15214 16 1050 846 80%
BPIC-2013 65533 4 7554 1511 20%
BPIC-2012-App 60849 10 13087 17 0.12%

To simulate CEDP, we need to specify the initial release and a sequence of
event logs that are considered to be continuously published. Thus, we need a
split-point that splits an event log into two parts; initial and continuous. One
can partition an event log into initial and continuous parts in a variety of ways,
e.g., having an initial log that contains all the cases, or having an initial log
that contains x% of cases or events, and so on. We consider the percentage of
events included in the initial part as a criteria for splitting an event log. We split
Sepsis and BPIC-2012-App into two parts such that the initial part contains
roughly 50% of events so that there is enough data to obtain reliable knowledge
regarding the correlations. However, BPIC-2013 is partitioned in such a way that
the initial part contains roughly 35% of events so that there exist no complete
trace, yet, at the same time, there is enough data to discover a transition system
and obtain the probabilities.6 Table 2 shows general statistics of the event logs
partitions after being partitioned. Note that incomplete (partial) traces are the
same in both partitions.

The initial part is published as the first release. Then, each future release is
generated w.r.t. the scenarios S1 and S2 (see Subsection 4.1). In both scenarios,
the window size, i.e., the number of new events per trace in a future release,
varies from 1 to 4. Note that to simulate scenario S2, a random integer within
the window size is generated to determine the number of new events. For each
scenario, we continue the publishing process for up to 5 releases or until there
are no incomplete traces to publish.

Figure 4 and 5 show the privacy leakages for different releases of the event
logs based on the CEDP scenarios S1 and S2, respectively. We consider ε = 0.01
as the privacy budget of a differential privacy mechanism M that is applied
to each release. Thus, for the first release FPL=BPL=TPL=0.01. Recall that
TPL=FPL+BPL−ε. Note that the implementation details of such a mechanism
that does not consider correlations among different releases will not impact our
experiments. In the following, we explain the results for each scenario.

Table 2: General statistics of the initial and continuous parts of event logs used in the experiments.
Event Log Parts #Events #Complete Traces #Incomplete Traces
Sepsis Initial 7290 442 84

Continuous 7924 524 84
BPIC-2013 Initial 21705 0 2271

Continuous 43828 5283 2271
BPIC-2012-App Initial 29227 5849 690

Continuous 31622 6548 690

6
Note that experiments can be extended considering different partitioning scenarios and focusing

on different log characteristics.
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Fig. 4: FPL, BPL, and TPL for different releases of the event logs, when the CEDP scenario is S1,
window size varies from 1 to 4, and ε = 0.01. The window size indicates the number of new events
per trace in a future release.

Scenario S1: The first observation is that the results are the same for all
the event logs. The only different plot is at the bottom right with less number of
releases because there exists no incomplete trace for BPIC-2012-App after the
4th release. Since the previous states are certain, for each state there is one state
with BTC = 1. Thus, the correlations are strong, and BPL linearly increases
for all the event logs. The same results can be seen for FPL due to different
reasons. In Sepsis and BPIC-2012-App, FPL linearly increases because initial
releases of these event logs contain complete traces that remain unchanged in all
the next releases. Thus, there are strong correlations among those traces in all
the releases. Moreover, for the most of the incomplete states (traces) there exist
certain states in future releases. For example, in the second release of Sepsis,
almost 78% of the incomplete states have a certain state when window size is 2.
We see the same trend in BPIC-2013 although there exist no complete trace in its
initial release. This is because of two reasons: (1) there are complete traces that
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Fig. 5: FPL, BPL, and TPL for different releases of the event logs, when the CEDP scenario is S2,
window size varies from 1 to 4, and ε = 0.01. The window size indicates the maximum number of
new events per trace in a future release.

appear in the second release, which is used to discover the updated transition
system, and (2) BPIC-2013 contains a few distinct activities that leads to strong
correlations between states. In BPIC-2013, there exist only 4 unique activities,
and 86% of variants contain only two activities “Accepted” and “Queued”. That
leads to a situation where for many states in the corresponding transition system
there exists only one possible next state that results in strong correlations.

When the window size is increased, one may expect to see lower forward
correlations between states. Particularly, for the event logs with a high trace
uniqueness. However, due to more complete traces that appear by increasing the
window size, FPL does not decrease. We continued releasing Sepsis event logs
considering 4 and 8 as window sizes until there was no more incomplete traces.
According to the results, FPL never decreased.7 Moreover, the trace uniqueness

7
https://github.com/m4jidRafiei/QDP_CEDP/tree/main/more_exp

https://github.com/m4jidRafiei/QDP_CEDP/tree/main/more_exp
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that may affect FPL does not show any impact because of the existence of strong
correlations between states in all the event logs.

Scenario S2: The first observation is that all the event logs follow the same
trend based on the window size. One can see a logarithmic increase for BPL
based on the window size that corresponds to the so-called moderate type of
correlations. That is because for the larger window sizes more states are ex-
plored on the corresponding transition system. Thus, more knowledge is gained
regarding correlations. However, at the same time, more uncertainty is imposed
because the previous state can be any state within the window size distance
(see Definition 10). FPL still linearly increases, similar to scenario S1, which
is mainly due to the complete traces leading to strong correlations. Also, the
results do not change based on the trace uniqueness because of the existence of
the strong correlations.

Scenario S1 vs Scenario S2: By comparing the two CEDP scenarios, one
can see that scenario S1, as a certain scenario, leads to higher privacy leakages,
as expected. That is because certain scenarios result in stronger correlations.
This observation shows that not revealing exact data publishing scenarios in
CEDP can mitigate temporal privacy leakages to some extent.

6 Conclusion and Discussion

In this paper, we quantified the privacy leakage of differential privacy mecha-
nisms in the context of continuous event data publishing under temporal corre-
lations. We utilized transition systems to model and quantify the correlations.
We did experiments on real-life public events logs considering different CEDP
scenarios. Our experiments showed that privacy leakage of a differential privacy
mechanism may increase over time. In the following, we discuss some design
choices, possible next steps, and limitations that need to be taken into account.

The concept of state, which is defined based on a state representation func-
tion, provides a general way to quantify correlations w.r.t. sensitive data. For
instance, if one considers the set of activities in a trace as sensitive data rather
than the sequence, and the corresponding differential privacy mechanism aims
to protect the set of activities in traces. Then, our approach can be adapted
to quantify the corresponding temporal privacy leakage by changing the state
representation function, s.t., each state represents the set of activities in a trace.

The incrementally updated transition system based on the last collected event
log may not be reliable for calculating forward temporal correlations if it contains
only a few states. To gain more reliable knowledge regarding the correlations,
one can consider a minimum number of cases reflecting a specific correlation.
One can also apply more conditions, such as only considering the correlations
obtained based on complete traces.

We only considered the control-flow aspect of event logs, while in reality
the events recorded by information systems often contain more attributes. Each
event attribute in a trace can be used to create a new correlation model or to
alter an existing one. Depending on the attributes present in published event
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logs, one may need to analyze the corresponding correlations to examine pos-
sible privacy leakages. Overall, this work highlights the necessity of designing
differential privacy mechanisms that consider temporal correlations when event
data are continuously published.
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