
Discovering Sound Free-choice Work�ow Nets

With Non-block Structures

Tsung-Hao Huang and Wil M. P. van der Aalst

Process and Data Science (PADS), RWTH Aachen University, Aachen, Germany
{tsunghao.huang, wvdaalst}@pads.rwth-aachen.de

Abstract. Process discovery aims to discover models that can explain
the behaviors of event logs extracted from information systems. While
various approaches have been proposed, only a few guarantee desirable
properties such as soundness and free-choice. State-of-the-art approaches
that exploit the representational bias of process trees to provide the guar-
antees are constrained to be block-structured. Such constructs limit the
expressive power of the discovered models, i.e., only a subset of sound
free-choice work�ow nets can be discovered. To support a more �exible
structural representation, we aim to discover process models that provide
the same guarantees but also allow for non-block structures. Inspired by
existing works that utilize synthesis rules from the free-choice nets the-
ory, we propose an automatic approach that incrementally adds activities
to an existing process model with prede�ned patterns. Playing by the
rules ensures that the resulting models are always sound and free-choice.
Furthermore, the discovered models are not restricted to block struc-
tures and are thus more �exible. The approach has been implemented
in Python and tested using various real-life event logs. The experiments
show that our approach can indeed discover models with competitive
quality and more �exible structures compared to the existing approach.

Keywords: Process Discovery · Free-choice Net · Synthesis Rules.

1 Introduction

Process discovery aims to construct process models that re�ect the behaviors of
a given event log extracted from information systems [2]. As it is a non-trivial
problem, many challenges remain. In most cases, the one and only "best model"
does not exist as there are trade-o�s among the four model quality metrics,
namely �tness, precision, generalization, and simplicity [2]. In addition to the
quality metrics, there exist properties that one would like to have for the discov-
ered models. One of the important properties is being a sound work�ow net as
soundness ensures the absence of deadlocks, proper completion, etc. [1] and it is
a prerequisite for many crucial automated analyses such as conformance check-
ing. The other desirable structural property is being free-choice [3]. In free-choice
nets, choices and synchronizations are separated. This provides an easy conver-
sion between the discovered models and many process modeling languages such
as Business Process Modeling Notation (BPMN) since the equivalent constructs

https://orcid.org/0000-0002-3011-9999
https://orcid.org/0000-0002-0955-6940

2 T. Huang et al.

(dedicated split and join connectors) are naturally embedded. Furthermore, free-
choice nets have been studied extensively and thus supported by an abundance
of theories [10], which provide e�cient analysis techniques.

While various discovery algorithms have been proposed, only a handful of
them provides such guarantees. State-of-the-art discovery algorithms like the In-
ductive Miner (IM) [15] are able to discover sound free-choice work�ow nets by
exploiting its representational bias. However, due to the same reason, the discov-
ered models are constrained to be block-structured. This limits the expressive
power of such models, i.e., only a subset of the sound free-choice work�ow nets
can be discovered. As an example, Fig. 1a shows a sound free-choice work�ow
net (with non-block structures) discovered by our approach1. The same language
can never be expressed by the model discovered by IM, as shown in Fig. 1b.

b c d

f g

a

e

h

(a) A model discovered by our approach. The
same language cannot be expressed by the
models discovered using the Inductive Miner,
which uses process trees internally.

b

c

d

f g

a

e

h

(b) A model discovered by the IM using the
log generated by the model in (a). The two
branches before c need to be synchronized �rst
before d can be executed.

Fig. 1: Examples showing the need for the non-block process models discovery. Note
that the trace ⟨a, b, c, d, e, f, g, h⟩ that is possible in (a) cannot be replayed by (b).

In this paper, we aim to discover sound free-choice work�ow nets with non-
block structures. Inspired by the interactive process discovery approach in [11,12],
we develop an automatic process discovery algorithm that incrementally adds
activities to an existing net using synthesis rules [10]. Since checking the feasibil-
ity for the application of the synthesis rules is computationally expensive, we use
log heuristics to locate the most possible position for the to-be-added activity
on the existing process model instead of evaluating all possible applications of
synthesis rules as in [11]. Additionally, we identify the need for an additional
rule and extend the set of patterns introduced in [12].

Playing by the rules ensures that the discovered process models by our ap-
proach are guaranteed to be sound free-choice work�ow nets [10,11]. Moreover,
the discovered models are not constrained to block structures. Last but not least,
the level of replay �tness is guaranteed via a threshold set by the users. The
approach has been implemented in Python and evaluated using various public-
available real-life event logs. The evaluation shows that our approach is able to
discover non-block structured models with competitive qualities compared to the
state-of-the-art discovery algorithm.

The remainder of the paper is organized as follows. We review the related
work in Sec. 2 and introduce necessary concepts in Sec. 3. Sec. 4 introduces the
approach. Sec. 5 presents the experiment and Sec. 6 concludes the paper.

1 The proposed approach has dedicated silent transitions for start and end as de�ned
later in Def. 5. We dropped them here for ease of comparison.

Discovering Sound Free-choice Work�ow Nets With Non-block Structures 3

2 Related Work

An overview of process discovery is out of the scope of this paper, we refer to
[7,14] for more details. In this section, we focus on process discovery techniques
that guarantee soundness (and free-choice) properties. Approaches like [6,8] can
discover non-block structured models but cannot guarantee both properties.
While Split Miner discovers models that are deadlock-free, they are not nec-
essarily sound [8].

The family of Inductive Miner (IM) algorithms [15] guarantees sound and
free-choice of the discovered models by exploiting the representational bias of
the process tree. By design, a process tree represents a sound work�ow net. It is
a rooted tree where the leaf nodes are activities and the non-leaf nodes are the
operators. The hierarchical representation has a straightforward translation to
Petri net. However, the resulting models are limited to being block-structured as
a process tree can only represent process models that can be separated into parts
that have a single entry and exit [15]. Consequently, process trees can only rep-
resent a subset of sound work�ow nets. The same arguments hold for approaches
that are based on process trees such as the Evolutionary Tree Miner (ETM) [9]
and the recently developed incremental process discovery approach [16].

Applying the synthesis rules [10], the interactive process discovery approaches
developed in [12,13,11] ensure soundness and free-choice properties. A semi-
automatic interactive tool, ProDiGy, is proposed in [12] to recommend the best
possible ways to add an activity to an existing model.

Our approach di�ers from [12,13,11] in several ways. First, we adopt an
automatic setting as the order of adding activities is predetermined and the best
modi�cation to the existing net is selected based on the model quality. Second,
we use log heuristics to locate the most suitable position for adding the new
activity instead of evaluating all the possibilities of synthesis rules applications.
Moreover, we identify the need for a new rule as the desired models often cannot
be discovered without going back and forth by a combination of reduction and
synthesis rules [13]. Lastly, the set of patterns is extended and formally de�ned.

3 Preliminaries

We denote the set of all sequences over some set A as A∗, the power set of
A as P(A), and the set of all multisets over A as B(A). For some multiset
b ∈ B(A), b(a) denotes the number of times a ∈ A appears in b. For a given
sequence σ = ⟨a1, a2, ..., an⟩ ∈ A∗, |σ| = n is the length of σ and dom(σ) =
{1, 2, ..., |σ|} is the domain of σ. ⟨⟩ is the empty sequence. σ(i) = ai denotes the
i-th element of σ. Given sequences σ1 and σ2, σ1 · σ2 denotes the concatenation
of the two. Let A be a set and X ⊆ A be a subset of A. For σ ∈ A∗ and a ∈ A,
we de�ne ↾X∈ A∗→X∗ as a projection function recursively with ⟨⟩↾X = ⟨⟩,
(⟨a⟩ · σ)↾X = ⟨a⟩ · σ↾X if a ∈ X and (⟨a⟩ · σ)↾X = σ↾X if a /∈ X. For example,
⟨x, y, x⟩↾{x,z} = ⟨x, x⟩. Projection can also be applied to multisets of sequences,
e.g., [⟨a, b, a⟩6, ⟨a, b, c⟩6, ⟨b, a, c⟩2]↾{b,c} = [⟨b⟩6, ⟨b, c⟩8].
De�nition 1 (Trace, Log). A trace σ ∈ U∗

A is a sequence of activities, where
UA is the universe of activities. A log L ∈ B(U∗

A) is a multiset of traces.

4 T. Huang et al.

De�nition 2 (Log Properties). Let L ∈ B(U∗
A) and a, b ∈ UA.

� #(a, L) = Σσ∈L|{i ∈ dom(σ)|σ(i) = a}| is the times a occurred in L.
� #(a, b, L) = Σσ∈L|{i ∈ dom(σ)\{|σ|}|σ(i) = a∧σ(i+1) = b}| is the number

of direct successions from a to b in L.

� caus(a, b, L) =

{
#(a,b,L)−#(b,a,L)

#(a,b,L)+#(b,a,L)+1 if a ̸= b
#(a,b,L)

#(a,b,L)+1 if a = b
is the strength of causal rela-

tion (a, b).
� Apre

c (a, L) = {apre ∈ UA|caus(apre, a, L) ≥ c} is the set of a's preceding
activities, determined by threshold c.

� Afol
c (a, L) = {afol ∈ UA|caus(a, afol, L) ≥ c} is the set of a's following

activities, determined by threshold c.
� As(L) = {σ(1) |σ ∈ L ∧ σ ̸= ⟨⟩} is the set of start activities in L.
� Ae(L) = {σ(|σ|) |σ ∈ L ∧ σ ̸= ⟨⟩} is the set of end activities in L.

De�nition 3 (Petri Net, Labeled Petri Net). A Petri net N = (P, T, F) is
a tuple, where P is the set of places, T is the set of transitions, P ∩ T = ∅, and
F ⊆ (P × T) ∪ (T × P) is the set of arcs. A labeled Petri net N = (P, T, F, l) is
a Petri net (P, T, F) with a labeling function l ∈ T ↛ UA that maps a subset of
transitions to activities. A t ∈ T is called invisible if t is not in the domain of l.

For any x ∈ P ∪ T ,
N•x = {y|(y, x) ∈ F} denotes the set of input nodes and

x
N• = {y|(x, y) ∈ F} denotes the set of output nodes. The superscript N is

dropped if it is clear from the context. The notation can be generalized to set.
For any X ⊆ P ∪ T , •X = {y|∃x∈X(y, x) ∈ F} and X• = {y|∃x∈X(x, y) ∈ F}.
De�nition 4 (Free-choice Net). Let N = (P, T, F) be a Petri net. N is a
free-choice net if for any t1, t2 ∈ T : •t1 = •t2 or •t1 ∩ •t2 = ∅.
De�nition 5 (Work�ow Net (WF-net) [1,11]). Let N = (P, T, F, l) be a
labeled Petri net. W = (P, T, F, l, ps, pe,⊤,⊥) is a WF-net i� (1) it has a dedi-
cated source place ps ∈ P : •ps = ∅ and a dedicated sink place pe ∈ P : pe• = ∅
(2) ⊤ ∈ T : •⊤ = {ps}∧ps• = {⊤} and ⊥ ∈ T : ⊥• = {pe}∧•pe = {⊥} (3) every
node x is on some path from ps to pe, i.e., ∀x∈P∪T (ps, x) ∈ F ∗ ∧ (x, pe) ∈ F ∗,
where F ∗ is the re�exive transitive closure of F .

De�nition 6 (Short-circuitedWF-net [1]). LetW = (P, T, F, l, ps, pe,⊤,⊥)
be a WF-net. The short-circuited WF-net of W , denoted by SC(W), is con-
structed by SC(W)=(P, T∪{t′}, F∪{(⊥, t′), (t′,⊤)}, l, ps, pe,⊤,⊥), where t′ /∈ T .

De�nition 7 (Paths, Elementary Paths). A path of a Petri net N = (P, T, F)
is a non-empty sequence of nodes ρ = ⟨x1, x2, ..., xn⟩ such that (xi, xi+1) ∈ F for
1 ≤ i < n. ρ is an elementary path if xi ̸= xj for 1 ≤ i < j ≤ n.

De�nition 8 (Incidence Matrix [10]). Let N = (P, T, F) be a Petri net. The
incidence matrix N : (P × T) → {−1, 0, 1} of N is de�ned as

N(p, t) =


0 if ((p, t) /∈ F ∧ (t, p) /∈ F) ∨ ((p, t) ∈ F ∧ (t, p) ∈ F)

−1 if (p, t) ∈ F ∧ (t, p) /∈ F

1 if (p, t) /∈ F ∧ (t, p) ∈ F

Discovering Sound Free-choice Work�ow Nets With Non-block Structures 5

For a Petri net N = (P, T, F) and its corresponding incidence matrix N, we use
N(p) to denote the row vector of the corresponding p ∈ P and N(t) to denote
the column vector of the corresponding t ∈ T .

De�nition 9 (Linearly Dependent Nodes [10]). Let N = (P, T, F) be a
Petri net. Q is the set of rational numbers. A place p is linearly dependent if
there exists a row vector v⃗ : P → Q such that v⃗(p) = 0 and v⃗ · N = N(p). A
transition t is linearly dependent if there exists a column vector v⃗ : T → Q such
that v⃗(t) = 0 and v⃗ ·N = N(t).

De�nition 10 (Synthesis Rules [10,11]). Let W and W ′ be two free-choice
work�ow nets, and let SC(W) = (P, T, F, l, ps, pe,⊤,⊥) and SC(W ′) = (P ′, T ′,
F ′, l′, ps, pe,⊤,⊥) be the corresponding short-circuited WF-nets:

� Linear Dependent Place Rule ψP : W
′ is derived from W using ψP , i.e.,

(W,W ′) ∈ ψP if (1) T ′ = T , P ′ = P ∪ {p} and p /∈ P is linear dependent in

SC(W ′), F ′ = F ∪ F̃ where F̃ ⊆ (({p} × T) ∪ (T × {p})) (2) Every siphon
in SC(W ′) contains ps.

� Linear Dependent Transition Rule ψT : W
′ is derived from W using ψT , i.e.,

(W,W ′) ∈ ψT if P ′ = P , T ′ = T ∪ {t} and t /∈ T is linear dependent in

SC(W ′) and F ′ = F∪F̃ where F̃ ⊆ ((P×{t})∪({t}×P)), and ∀t∈T∩T ′ l(t) =
l′(t).

� Abstraction Rule ψA: (W,W
′) ∈ ψA if (1) there exists a set of transitions

R ⊆ T and a set of places S ⊆ P such that (R× S ⊆ F) ∧ (R× S ̸= ∅). (2)
SC(W ′) is constructed by adding an additional place p /∈ P and a transition
t /∈ T such that P ′ = P ∪{p}, T ′ = T ∪{t}, F ′ = (F\(R×S))∪ ((R×{p})∪
({p} × {t}) ∪ ({t} × S)), and ∀t∈T∩T ′ l(t) = l′(t).

Applying the three synthesis rules (ψP , ψT , ψA) to derive W ′ from a sound
free-choice work�ow net W ensures that W ′ is also sound [13,11]. Three proper-
ties need to be hold for a WF-net to be sound (1) safeness: places cannot hold
multiple tokens at the same time (2) option to complete: it is always possible to
reach the marking in which only the sink place is marked. (3) no dead transitions.
Next, we introduce the initial net [11] and show some examples of synthesis rules
applications.

De�nition 11 (Initial Net [13]). Let W = (P, T, F, l, ps, pe,⊤,⊥) be a free-
choice WF-net. W is an initial net if P = {ps, p1, pe}, T = {⊤,⊥}, F =
{(ps,⊤), (⊤, p1), (p1,⊥), (⊥, pe)}.

𝑝𝑠 𝑝𝑒

⊤ ⊥𝑝1

(a)

h

𝑝𝑠 𝑝𝑒

⊤ ⊥𝑝1𝑡1𝑝2

(b)

g

h

𝑝𝑠 𝑝𝑒

⊤ ⊥𝑝1

𝑝2𝑝3 𝑡2

𝑡1

(c)

g

h

𝑝𝑠 𝑝𝑒

⊤ ⊥𝑝1

𝑝2𝑝3 𝑡2

𝑡1

𝑝4

(d)

Fig. 2: Examples of synthesis rules applications starting from (a) The initial net. (b)
Using ψA, p2 and t1 are added to the initial net with R = {⊤} and S = {p1}. (c) Using
ψA, p3 and t2 are added to previous net with R = {⊤} and S = {p2}. (d) p4 is added
using ψp as p4 is a linear combination of p3 and p2.

6 T. Huang et al.

The initial net is shown in Fig. 2a. Clearly, it is a sound free-choice work�ow
net. Starting from the initial net, one can incrementally add additional nodes
according to the synthesis rules. Fig. 2 shows example applications of synthesis
rules starting from the initial net.

4 Approach

With the necessary concepts introduced, we are now ready to introduce the ap-
proach. We start by showing the basic idea of the approach with the help of
Fig. 3 before diving into each step in detail. Internally, the approach incremen-
tally adds a new activity to an existing net. The �gure shows a single iteration.
In each iteration, we have an existing model from the previous iteration and a
log projected on the already added activities so far and the to-be-added one.

We start by locating the most likely position to add the new activity deter-
mined by log heuristics. The result of this step is a subset of nodes of the existing
model. The set of nodes will then be used to prune the search space. Then, the
prede�ned patterns are applied to the existing net to get a set of candidate nets.
Lastly, we select the best net (next existing net) out of the candidates in terms of
�tness and precision. Note that the existing net in the �rst iteration is initiated
by the initial net (Def. 11). As a running example, consider the correspond-
ing log that is used to discover the Petri net in Fig.1a by our approach: Ls =
[⟨a, b, c, d, f, g, h⟩22, ⟨a, b, c, f, d, g, h⟩14, ⟨a, e, b, c, d, f, g, h⟩13, ⟨a, e, b, c, f, d, g, h⟩13,
⟨a, e, b, c, f, g, d, h⟩10, ⟨a, b, c, f, g, d, h⟩10, ⟨a, b, e, c, d, f, g, h⟩6, ⟨a, b, e, c, f, g, d, h⟩3,
⟨a, b, e, c, f, d, g, h⟩3, ⟨a, b, c, d, e, f, g, h⟩2, ⟨a, b, c, e, d, f, g, h⟩2, ⟨a, b, c, e, f, g, d, h⟩1,
⟨a, b, c, e, f, d, g, h⟩1]. The instances provided in Fig. 3 shows the 3rd iteration for
the running example Ls. In the following subsections, we introduce the details
of each step.

(1) Pruning search

space using log

heuristics

(2) Add new activity to
the existing net with
pre-defined patterns

[𝑑, 𝑔, ℎ 76, 𝑔, 𝑑, ℎ 24]

Projected Log 𝐿𝑖

Existing Net

𝑊𝑖 = (𝑃𝑖 , 𝑇𝑖 , 𝐹𝑖 , 𝑙𝑖 , 𝑝𝑠, 𝑝𝑒 , ⊤, ⊥)

(3) Select the best net
for the next iteration

Next Existing Net

𝑊𝑖+1 = (𝑃𝑖+1, 𝑇𝑖+1, 𝐹𝑖+1, 𝑙𝑖+1, 𝑝𝑠, 𝑝𝑒 , ⊤, ⊥)

To-be-added Activity 𝛾(𝑖)

𝑉𝑖 ⊆ 𝑃𝑖 ∪ 𝑇𝑖

Set of Candidate Nets 𝐶𝑖

skiploop
…

…

Fig. 3: An example of a single iteration of our approach.

4.1 Ordering Strategies for Adding Activities

Before starting any iteration, we need to come up with an order for adding ac-
tivities based on a given log L. It is important as the quality of the discovered
models often depends on the order of adding activities [11]. Moreover, in combi-
nation with the search space pruning, it can in�uence the computation time for
each iteration signi�cantly. In this paper, we introduce two ordering strategies.

Discovering Sound Free-choice Work�ow Nets With Non-block Structures 7

The �rst one is relatively straightforward. The activities in L are simply ordered
by their frequency.

De�nition 12 (Activities-Adding Order, Frequency-Based Ordering).
Let L ∈ B(U∗

A) and A =
⋃

σ∈L{a ∈ σ}. γ ∈ A∗ is an activities-adding order for
L if {a ∈ γ} = A and |γ| = |A|. The frequency-based ordering is orderfreq(L) = γ
such that γ is an activities-adding order and ∀1≤i<j≤|γ|#(γ(i), L) ≥ #(γ(j), L).

The second ordering strategy is similar to the Breadth-�rst Search (BFS) al-
gorithm. The advantage of this is that it also considers the closeness between
activities in the log, rather than just frequency. To explain this ordering strategy,
we �rst de�ne a sub-function.

De�nition 13 (Directly-Precedes Activities Sorting). Let L ∈ B(U∗
A) and

a ∈ UA. A={b ∈ UA|#(b, a, L)>0} is the set of activities directly-precede a in L at
least once and σ ∈ A∗. Directly-precedes activities sorting is sortPreceded(a, L)=σ
such that {b ∈ σ} = A and |σ| = |A| and ∀1≤i<j≤|σ| #(σ(i), a, L) ≥ #(σ(j), a, L).

The function sortPreceded takes an activity a and a log L to return a sequence of
a's directly-preceded activities b that are sorted by the frequency of #(b, a, L).
Finally, we can de�ne the BFS-based ordering strategy.

De�nition 14 (Breadth-First-Search-Based Ordering). Let L ∈ B(U∗
A)

and A=
⋃

σ∈L{a ∈ σ}. BFS-based ordering is de�ned as orderBFS (L)=γ, where
γ is an activities adding order for L and γ=γ1 · γ2 · ... · γ|γ|, for each 1 ≤ j ≤ |γ|,

γj =

{
orderfreq(L↾Ae(L)) if j = 1

sortPreceded(γ(j − 1), L)↾A\{γ(1),γ(2),...,γ(j−1)} otherwise

The function starts by sorting the end activities Ae(L) according to their fre-
quency in the log. Then, it enumerates through the sequence γ and sorts the
preceded activities of γ(j − 1) by the frequency of direct successions. The pro-
jection function in the second case of Def.14 �lters out the activities that are
already in γ.

Compared to the frequency-based ordering, the BFS-based ordering considers
the closeness of the activities. This allows us to add activities that are close
together. Together with the e�ect of the search space pruning, it is expected that
BFS-based ordering would have less computation time. Applying the function
orderBFS to our running example, Ls, we get the activities adding order as
γ = orderBFS (Ls) = ⟨h⟩ · ⟨g, d⟩ · ⟨f⟩ · ⟨c, e⟩ · ⟨⟩ · ⟨b⟩ · ⟨a⟩ · ⟨⟩ = ⟨h, g, d, f, c, e, b, a⟩.
γ is then used to determine the order of adding activities. Given the activities
adding order γ, we de�ne the artifacts for each iteration i as followed.

De�nition 15 (Projected Log). Let L ∈ B(U∗
A) and γ be a activities adding

order for L. The projected log for L in the i-th iteration is Li = L↾{γ(1),γ(2),...γ(i)}.

For instance, the projected log for the running example Ls for the 3rd iteration
is then L3

s = Ls↾{h,g,d} = [⟨d, g, h⟩76, ⟨g, d, h⟩24], as shown in Fig. 3. The to-be-
added activity is denoted as γ(i), which is γ(3) = d for the 3rd iteration. Also,
we denote the existing sound free-choice work�ow net for iteration i as W i . Note
that for the running example, W 1 , W 2 , and W 3 are visualized in Fig. 2a, 2b,
and 2c, respectively.

8 T. Huang et al.

4.2 Search Space Pruning

As checking the feasibility of applying linear dependent rules ψT , ψP is compu-
tationally expensive [11], it is impractical to compute all possible applications
of the synthesis rules. Also, some of them are not of interest. For example, as
shown in Fig. 3, it is clear that the to-be-added activity d never happens after
h in the projected log. Using such information, we can already eliminate the
constructs (applications of synthesis rules) that allow activity d to be executed
after h. Therefore, in each iteration i we start by locating the most likely posi-
tion to add γ(i). This helps us to restrict the application of synthesis rules on
only a subset of nodes, denoted as V i ⊆ P i ∪ T i, in the existing net W i. To do
that, we �rst identify the set of preceding and following activities of γ(i) in the
projected log Li, which would be Apre

c (γ(i), Li) and Afol
c (γ(i), Li) respectively.

Recall that c is a threshold for the causal relation and can be given by users
as an input. We use c = 0.9 as the default value. Then, the corresponding la-
belled transitions are identi�ed in W i. Finally, V i is the set of all the nodes on
the elementary paths from the preceding transitions to the following transitions.
If Apre

c (γ(i), L)/Afol
c (γ(i), L) is an empty set, we use the ⊤/⊥ transitions. For

instance, in Fig. 3, we identify that Apre
c (d, L3

s)=∅ and Afol
c (d, L3

s)={h}. There-
fore, we �nd all the nodes on the elementary paths between every node in {⊤}
and every node in {t1}. As a result, the set V 3 = {⊤, p3, t2, p2, t1} is used to
prune the search space, i.e., to constrain the application of synthesis rules.

Constraining synthesis rules For the abstraction rule ψA, this means that the
set of transitions R and the set of places S used as the preconditions for applying
ψA need to be a subset of V , i.e., S ⊆ V ∧R ⊆ V . For the linear dependent rules
ψP /ψT , the new place/transition (p′/t′) cannot have arcs connected to any node
outside V . This shortens the computation time as certain rules applications can
be removed and there is no need to check their feasibility.

4.3 Patterns

In this section, we introduce the patterns that are used to add activity γ(i) to
the existing free-choice work�ow net W i. First, we motivate the need for an
additional rule.

The need for an additional rule It is proven that any sound free-choice
work�ow net can be constructed by the three synthesis rules ψA, ψP , ψT [10,11].
However, when applying to discover process models, the desirable model is often
not possible to derive due to the existing construct. An example is shown in
Fig. 4. While it is possible to add a transition labeled by a in Fig. 4a, it is not
possible to derive the same net in Fig. 4b as there is no rule allowing such trans-
formation. One possible workaround is to go back and forth by a combination
of reduction and synthesis rules as suggested in [13]. However, once the existing
net becomes more complex, such a solution becomes infeasible to track.

We observe that in many situations (including the example in Fig. 4b), the
desired models cannot be constructed because there is no rule allowing one to
introduce a new transition t and a new place p in between a set of places S and

Discovering Sound Free-choice Work�ow Nets With Non-block Structures 9

b

c

L↾〈c,b〉 = [〈c〉3, 〈b〉3]
b

c a

L↾〈a,b,c〉 = [〈c,a〉3, 〈b〉3]

(a)

L↾〈a,b〉 = [〈a〉3, 〈b〉3] L↾〈a,b,c〉 = [〈c,a〉3, 〈b〉3]
b

c a

b

a

?

(b)

Fig. 4: Examples showing the motivation for the dual abstraction rule ψD. Although
the desirable nets on the right-hand side of (a) and (b) are semantically the same, the
existing synthesis rules only allow the transformation in (a). There is no rule de�ned
for the transformation in (b).

a set of transitions R that are fully connected, i.e., S × R ⊆ F . Therefore, we
de�ne the dual abstraction rule to allow such construct.

De�nition 16 (Dual Abstraction Rule ψD). LetW = (P, T, F, l, ps, pe,⊤,⊥)
and W ′ = (P ′, T ′, F ′, l′, ps, pe,⊤,⊥) be two free-choice work�ow nets. (W,W ′) ∈
ψD if (1) there exists a set of places S ⊆ P and a set of transitions R ⊆ T such
that S × R ⊆ F ∧ S × R ̸= ∅. (2) W ′ is constructed by adding an additional
transition t /∈ T and a place p /∈ P such that P ′ = P ∪ {p}, T ′ = T ∪ {t}, F ′ =
(F \ (S ×R)) ∪ ((S × {t}) ∪ ({t} × {p}) ∪ ({p} ×R)), and ∀t∈T∩T ′ l(t) = l′(t).

As we are only interested in sound free-choice work�ow nets, we need to make
sure that the dual abstraction rule ψD preserves soundness.

Proposition 1 (ψD preserves soundness). Let W = (P, T, F, l, ps, pe,⊤,⊥),
W ′ = (P ′, T ′, F ′, l′, ps, pe,⊤,⊥) be free-choice work�ow nets, and W ′ is derived
from W using ψD, i.e., (W,W

′) ∈ ψD. Then W
′ is sound if W is sound.

Proof. Let t′ ∈ T ′\T and p′ ∈ P ′\P be the new transition and place in W ′. Let
R = p′• and S = •t′. The new net W ′ is free-choice in only two cases. Either

S =
W•R or R = S

W• . In either case, any reachable marking in (W, [ps]) that
does not need to �re tR ∈ R is still reachable in (W ′, [ps]). Also, the reachable
markings in (W, [ps]) that need to �re tR ∈ R can be reached in (W ′, [ps]) as one
can just add t′ somewhere before tR in the corresponding �ring sequence. Then,
it is trivial to see that W ′ ful�ls the three conditions of soundness if W is also
sound. □

Next, we extent the linear dependent place rule ψP . As we aim to add a transition
labeled by γ(i) to the existing labeled free-choice work�ow net W i, only adding
a place p′ by ψP does not su�ce. Hence, in our approach, an application of ψP

is always coupled with a directly followed application of abstraction rule ψA to
include a transition. ψA is applied between the added place p′ and its preset •p′.
This is possible because every transition in •p′ is connected to every place in
{p′} by de�nition, which satis�es the precondition of ψA. An example is shown
in Fig. 5, p5 and t3 are added by ψA directly after the addition of p4 by ψP . To
be more precise, we de�ne the extended rule, ψ′

P , that describes the pattern.

10 T. Huang et al.

De�nition 17 (Extended Linear Dependent Place Rule ψ′
P). LetW=(P,

T, F, l, ps, pe,⊤,⊥) and W ′′=(P ′′, T ′′, F ′′, l′′, ps, pe,⊤,⊥) be free-choice work�ow
nets. (W,W ′′)∈ψ′

P if (1) ∃W ′=(P ′,T ′,F ′,l′,ps,pe,⊤,⊥)(W,W
′)∈ψP ∧ (W ′,W ′′)∈ψA

and (2) ∃!p∗∈P ′′({p∗}=P ′\P) ∧ (((T ′′\T ′)× {p∗}) ⊂ F ′′) ∧ ((T ′ × {p∗}) ̸⊂ F ′′).

g

h

𝑝𝑠 𝑝𝑒

⊤ ⊥𝑝1

𝑝2𝑝3 𝑡2

𝑡1

𝑝4

(a)

g

h

𝑝𝑠 𝑝𝑒

⊤ ⊥𝑝1

𝑝2𝑝3 𝑡2

𝑡1

𝑝4
d

𝑝5 𝑡3

(b)

Fig. 5: (a) ψP adds a place p4. (b) As every transition in •p4 has an arc to every place
in {p4}, one can directly apply ψA to add p5 and t3.

Then, we de�ne the set of nets constructed by every possible single application
of the rules ψA, ψ

′
P , ψT , ψD.

De�nition 18 (Base Candidates Set). LetW=(P, T, F, l, ps, pe,⊤,⊥),W ′ =
(P ′, T ′, F ′, l′, ps, pe,⊤,⊥) be free-choice work�ow nets. Let X=(P ′∪T ′)\(P∪T),
V⊆P∪T , V ′=(P∪T)\V , and let a ∈ UA be an activity label. The base candidates
set is base(W,V, a)={W ′|((W,W ′) ∈ (ψA∪ψT ∪ψ′

P ∪ψD))∧ (∄x∈X(({x}×V ′)∪
(V ′ × {x})) ⊆ F ′) ∧ (l′=l ∪ ((T ′ \ T)× {a}))}.

The base candidates set Ci
base=base(W i, V i, γ(i)) consists of the nets that are

constructed by every possible single application of the rules ψA, ψ
′
P , ψT , ψD to

add a transition labeled by γ(i) to W i considering the the constraints on V i.
Next, we introduce three patterns that make a transition skippable, in a strict

loop, or in an optional (tau) loop. A transition in a strict loop means that the
execution of the transition is required, otherwise it is an optional loop.

De�nition 19 (Pattern-Building Functions). LetW=(P, T, F, l, ps, pe,⊤,⊥)
andW ′ = (P ′, T ′, F ′, l′, ps, pe,⊤,⊥) be two free-choice work�ow nets. Let a ∈ UA

be an activity label and ta ∈ T : l(ta) = a be the corresponding transition in W .
We de�ne the three pattern-building functions2 as

� skip(W,a) =W ′ such that
� (W,W ′) ∈ ψT

� F ′ = F ∪ ({t′} × ta•) ∪ (•ta × {t′}) (where t′ ∈ T ′\T)
� l′ = l (t′ is a silent transition)

� loops(LW, a) is de�ned by two cases:
1. if ∄t∗∈((ta•)•)(|•t∗| > 1)∧(•t∗\ta• ≠ ∅), then loops(W,a) =W ′ such that

� (W,W ′) ∈ ψT

� F ′ = F ∪ (ta• × {t′}) ∪ ({t′} × •ta) (where t′ ∈ T ′\T)
� l′ = l (t′ is a silent transition)

2 The input/output nodes notations (•) used in Def. 19 refer to the input net W . We
drop the superscript for readability.

Discovering Sound Free-choice Work�ow Nets With Non-block Structures 11

2. otherwise, return loops(W
′, a) such that

� (W,W ′) ∈ ψA

� (({ta} × (P ′\P)) ∈ F ′) ∧ (({ta} × P) /∈ F ′)
� l′ = l

� loopτ (W,a) is de�ned by two cases:
1. if ∄t∗∈((ta•)•)(|•t∗| > 1) ∧ (•t∗\ta• ≠ ∅), then loopτ (W,a)=W

′ such that
� (W,W ′) ∈ ψT

� F ′ = F ∪ (ta• × {t′}) ∪ ({t′} × •ta) (where t′ ∈ T ′\T)
� l′ = (l\{(ta, a)}) ∪ {(t′, a)} (the labels of ta and t′ are swapped)

2. otherwise, return loopτ (W
′, a) such that

� (W,W ′) ∈ ψA

� (({ta} × (P ′\P)) ∈ F ′) ∧ (({ta} × P) /∈ F ′)
� l′ = l

The second case of the loop functions is there to keep the free-choice property.
To illustrate the ideas using the running example, consider the net shown in
Fig. 6a as the input net W and t3 (labeled by d) is the transition for which we
are going to apply the functions to derive patterns. Fig. 6b shows that function

g

h

𝑝𝑠 𝑝𝑒

⊤ ⊥𝑝1

𝑝2𝑝3 𝑡2

𝑡1

𝑝4
d

𝑝5 𝑡3

(a) the net (W). t3 (labeled by d)
is the target transition.

g

h

𝑝𝑠 𝑝𝑒

⊤ ⊥𝑝1

𝑝2𝑝3 𝑡2

𝑡1

𝑝4
d

𝑝5 𝑡3

𝑡4

(b) skip(W,d) adds a silent tran-
sition t4 that makes t3 skippable.

g

h

𝑝𝑠 𝑝𝑒

⊤ ⊥𝑝1

𝑝2𝑝3 𝑡2

𝑡1

𝑝6
d

𝑝5 𝑡3 𝑝4𝑡4

(c) an intermediate net W ′ (be-
tween (a) and (d)) constructed to
keep the free-choice property.

g

h

𝑝𝑠 𝑝𝑒

⊤ ⊥𝑝1

𝑝2𝑝3 𝑡2

𝑡1

𝑝6
d

𝑝5 𝑡3 𝑝4𝑡4

𝑡5

(d) the resulting net of
loops(W,d), which makes t3
in a loop.

Fig. 6: Examples showing how the functions are applied to derive patterns.

skip(W,d) simply adds a silent transition t4 with the same connection as t3 to
W . Fig. 6c and 6d show an application of loops(W,d) and illustrate the need
for the two cases for the loop functions. As shown in Fig. 6c, the second case
of loops is applied since there exists a transition t1 ∈ ((t3•)•) with more than
one place in its preset (| • t1| > 1) and •t1\t3• ̸= ∅. Therefore, W ′ (Fig. 6c) is
�rst constructed by adding p6 and t4. Then, the function returns loops(W

′, d).
Now, the �rst case should be applied. In this case, t5 is added with the reverse
connections of t3. As indicated, the second case in the loop functions helps to
keep the free-choice property. Imagine a net that is constructed by adding t′ to
the net in Fig. 6a with connections (p4, t

′) and (t′, p5). Such a net makes t3 in a

12 T. Huang et al.

loop but it is no longer a free-choice net. The constructs of loops and loopτ are
almost the same, the di�erence is that the labels of t3 and the silent transition
t5 are swapped.

Finally, to get the set of candidate nets Ci, we apply the three pattern-
building functions to every net W ∈ Ci

base. Observe that all the nets in Fig. 6
are elements of C3.

4.4 Selection and Fall-through

Selection In the last step, we select the next existing net W i+1 from the set
of candidates Ci evaluated by the projected log Li. The selection is done in a
stepwise manner. We �rst try to �lter out the candidates that do not reach a
user-de�ned replay �tness threshold θ and then select the best net out of the
rest in terms of F1 score, which is calculated as the harmonic mean of �tness
and precision. We use alignment-based �tness [4] and precision [5].

Fall-through If none of the nets in Ci reach the �tness threshold θ, we adopt
a fall-through. This is done by going back to Step 2, where γ(i) is added to
W i = (P i, T i, F i, li, ps, pe,⊤,⊥), but without the constraints of V i. This can
also be seen as setting V i = P i ∪ T i. In this case, a new place p′ with arcs
{(⊤, p′), (p′,⊥)} can be always added by ψP as p is linear dependent on ps and
pe. Then, the patterns building functions can be applied to ensure that the �tness
threshold θ is guaranteed in every iteration.

5 Evaluation

In this section, we present the experiments conducted to evaluate our approach.
The presented approach in this paper is implemented in Python using PM4Py3

and can be accessed here4. As mentioned, the algorithm takes as inputs a log
and three parameters including two thresholds θ, c, and the types of ordering
strategy. Using this implementation, we conduct three experiments to address
the following questions (1) How e�ective are the pre-de�ned patterns? (2) What
are the e�ects of the ordering strategy on the model quality and the execution
time? (3) Can the model quality be improved by the non-block structures?

5.1 Experiment Setup

Dataset: We use four public available real-life event logs, which are BPI20175,
helpdesk6, hospitalBilling7, and tra�c8 respectively. BPI2017 is split into two
sub logs, BPI2017A and BPI2017O, using the event pre�xes. To focus on the
mainstream behaviors, the logs are �ltered to include at least 95% of the cases.
3 https://pm4py.�t.fraunhofer.de/
4 https://github.com/tsunghao-huang/synthesisRulesMiner
5 https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
6 https://doi.org/10.4121/uuid:0c60edf1-6f83-4e75-9367-4c63b3e9d5bb
7 https://doi.org/10.4121/uuid:76c46b83-c930-4798-a1c9-4be94dfeb741
8 https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5

Discovering Sound Free-choice Work�ow Nets With Non-block Structures 13

Experiment 1 (E�ectiveness of patterns): The �rst experiment aims to
evaluate how e�ective are the pre-de�ned patterns. As our approach is based on
[11], this can be evaluated by comparing the quality of the intermediate models
of our approach to the ones from ProDiGy [12], which adopts a similar setting.
To conduct the experiment, we follow the top recommendation of ProDiGy in
every step to get the intermediate models and compare the models' quality with
ours. We use the projected log of every iteration to evaluate the model obtained
after adding additional activity to the model. To have a fair comparison, we
force our approach to use the same order of adding activities from ProDiGy.

Experiment 2 (E�ects of Ordering Strategy & Search Space Pruning):
The order of adding activities to the log is crucial to our approach as model
quality is highly dependent on the order [11]. Moreover, the order can in�uence
the execution time due to its in�uence on the search space pruning. Therefore, we
would like to investigate the e�ects of the ordering strategy on the model quality
and the execution time. To set up the experiment, we apply the approach to the
�ve event logs using the two di�erent ordering strategies while keeping the other
two parameters at the same values. We evaluate the model quality in terms of
�tness, precision, and F1 score. In addition, we keep track of the ratio of the

reduced nodes, which is calculated by |V i|
|P i∪T i| . This gives us an indication of the

e�ectiveness of search space pruning.

Experiment 3 (E�ects of non-block structures): In this experiment, we
compare our approach to the state-of-the-art: Inductive Miner - Infrequent (IMf)
[15]. As the models discovered by IMf are guaranteed to be sound free-choice
work�ow net as well, comparing our approach with IMf enables us to see if the
models can bene�t from the non-block structures discovered by our approach.
For each event log, we apply IMf using �ve di�erent values ([0.1, 0.2, 0.3, 0.4, 0.5])
for the �lter threshold and choose the best model (by F1 score) to compare the
quality with the ones discovered by our approach in experiment 2.

For all the experiments, we use the alignment-based approaches to calculate
�tness [4] and precision [5]. We also calculate the F1 score as the harmonic mean
of the �tness and precision.

5.2 Results

E�ectiveness of Patterns Fig. 7 shows the result of the comparison. The
�tness and precision are the average values of the �ve event logs. As one can
see from the �gures, both approaches can capture the behaviors quite well for
the �rst three activities added. When adding more activities to the model,
our approach has consistently higher values for both �tness and precision than
ProDiGy. One might think that this is expected as we extend the set of patterns
used in ProDiGy. However, note that ProDiGy evaluates every possible synthesis
rules applications while we only focus on a subset of the nodes using log heuris-
tics. There is a trade-o� between optimal solution and time in our approach.
Nevertheless, the results show that the extended patterns enable us to discover
models with higher quality compared to the existing approach, ProDiGy, while
limiting the search space.

14 T. Huang et al.

1 2 3 4 5 6 7 8 9 10 11
Number of activities added

0.4

0.6

0.8

1.0

Fit
ne

ss

our approach
ProDiGy

(a) Fitness

1 2 3 4 5 6 7 8 9 10 11
Number of activities added

0.4

0.6

0.8

1.0

Pr
ec

isi
on

our approach
ProDiGy

(b) Precision

Fig. 7: Results on �tness and precision comparison for the e�ectiveness of patterns

E�ects of Ordering Strategy and Search Space Pruning Tab. 1 shows the
results of experiments 2 and 3. We observe that the BFS-based ordering strat-
egy performs better than the frequency-based strategy (in terms of F1 score and
time) for four of the �ve logs. We further investigate the reason for the shorter
execution time of BFS-based ordering. As shown in Fig. 8, it turns out that

the BFS-ordering strategy is more e�ective (lower V i

P i∪T i) in reducing the search
space at the later stage of the discovery process.

2 3 4 5 6 7 8 9 10 11
Number of activities added

0.1

0.3

0.5

0.7

Ra
tio

 o
f n

od
es

 re
du

ce
d

V
i

Pi
Ti frequency

BFS

Fig. 8: Comparison of the to-be-considered
nodes ratio for each iteration between the
two ordering strategies.

As the model grows, checking the pre-
conditions of an application for the
linear dependent place or transition
rule becomes more expensive. Reduc-
ing the search space more e�ectively
at the later stage is more bene�cial in
terms of execution time in most cases.
BFS-based ordering achieves this by
considering the closeness of activities
in the process. In such case, activities
that are closer together are added �rst
and it is more likely for BFS-based
ordering to focus on a smaller subset
of nodes on the existing net when pruning the search space compared to the
frequency-based one.

E�ects of Non-block Structures Table 1 shows that compared to IMf, the
models discovered by our approach have higher F1 scores for four of the �ve
logs. Note that the �tness values of the models discovered by our approach are
all higher than the de�ned threshold 0.95. In general, IMf tends to discover mod-
els with higher �tness values while our approach discovers models with higher
precision. In IMf, one can use the �lter threshold to balance �tness and precision.
This is also the case in our approach, the user can set a lower �tness thresh-
old to include more candidate nets that are less �tting but more precise. Fig. 9
shows the discovered models from the two approaches for the hospitalBilling
log. While the overall structure of Fig. 9a is similar to its counterpart in Fig. 9b,
our approach discovered non-block structures at the later stage of the process.
Such construct is not possible to model by IMf. The result shows that our ap-

Discovering Sound Free-choice Work�ow Nets With Non-block Structures 15

Table 1: Results about e�ects of ordering strategy and comparison to IMf

Log Miner
Ordering
Strategy

IMf
�lter

Fitness Precision F1 Time (s)

BPI2017A
ours frequency - 0.970 0.947 0.958 734
ours BFS - 0.989 0.935 0.961 342
IMf - 0.2 0.999 0.936 0.967 10

BPI2017O
ours frequency - 0.994 0.962 0.978 560
ours BFS - 0.989 1.000 0.994 240
IMf - 0.2 0.997 0.907 0.950 7

helpdesk
ours frequency - 0.972 0.984 0.977 54
ours BFS - 0.981 0.976 0.978 44
IMf - 0.2 0.967 0.950 0.958 1

hospital
billing

ours frequency - 0.961 0.810 0.879 567
ours BFS - 0.989 0.935 0.961 407
IMf - 0.2 0.982 0.906 0.943 45

tra�c
ours frequency - 0.960 0.930 0.945 321
ours BFS - 0.964 0.720 0.825 427
IMf - 0.4 0.904 0.720 0.801 28

proach can discover sound free-choice work�ow nets with non-block structures
and produce competitive model quality as the state-of-the-art algorithm.

(a) The discovered model using our approach. Due to the more �exible structure, one can execute
EMPTY, BILLED, or REOPEN after CODE NOK while only BILLED or REOPEN are exe-
cutable after CODE OK. The construct is not discoverable by IMf.

(b) The discovered model using IMf. Note that activity REOPEN is dropped by the �lter of IMf.

Fig. 9: The models discovered by our approach and IMf for the hospitalBilling log.

6 Conclusion and Future Work

In this paper, we present a discovery algorithm that aims to discover sound free-
choice work�ow nets with non-block structures. The algorithm utilizes the syn-
thesis rules to incrementally add activities with prede�ned patterns to discover
models that are guaranteed to be sound and free-choice. Moreover, a certain
level of replay �tness is guaranteed by a user-de�ned threshold.

The approach has been implemented and evaluated using various real-life
event logs. The results show that the process models discovered by our approach
have higher model quality (in terms of both replay �tness and precision) than
the existing approach [12], which also depends on synthesis rules. Moreover, our

16 T. Huang et al.

approach produces competitive model quality compared to the state-of-the-art:
Inductive Miner - infrequent. For future work, we plan to explore more advanced
ordering strategies and investigate their in�uences on the model quality and
computation time. The other direction is to further speed up the approach as
the long execution time is a clear limitation. This could be done by exploiting
the log-based heuristics further.

Acknowledgements. We thank the Alexander von Humboldt (AvH) Stiftung
for supporting our research.

References

1. van der Aalst, W.M.P.: The application of Petri nets to work�ow management. J.
Circuits Syst. Comput. 8(1), 21�66 (1998)

2. van der Aalst, W.M.P.: Process Mining - Data Science in Action, Second Edition.
Springer (2016)

3. van der Aalst, W.M.P.: Using free-choice nets for process mining and business
process management. In: FedCSIS 2021. vol. 25, pp. 9�15 (2021)

4. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on
process models for conformance checking and performance analysis. WIREs Data
Mining Knowl. Discov. 2(2), 182�192 (2012)

5. Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B.F., van der Aalst,
W.M.P.: Measuring precision of modeled behavior. Inf. Syst. E Bus. Manag. 13(1),
37�67 (2015)

6. Augusto, A., Conforti, R., Dumas, M., Rosa, M.L., Bruno, G.: Automated discovery
of structured process models from event logs:the discover-and-structure approach.
Data Knowl. Eng. 117, 373�392 (2018)

7. Augusto, A., Conforti, R., Dumas, M., Rosa, M.L., Maggi, F.M., Marrella, A.,
Mecella, M., Soo, A.: Automated discovery of process models from event logs:
Review and benchmark. IEEE Trans. Knowl. Data Eng. 31(4), 686�705 (2019)

8. Augusto, A., Conforti, R., Dumas, M., Rosa, M.L., Polyvyanyy, A.: Split miner:
automated discovery of accurate and simple business process models from event
logs. Knowl. Inf. Syst. 59(2), 251�284 (2019)

9. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: A genetic algorithm
for discovering process trees. In: CEC 2012. pp. 1�8. IEEE (2012)

10. Desel, J., Esparza, J.: Free Choice Petri Nets. No. 40, Cambridge university press
(1995)

11. Dixit, P.M.: Interactive Process Mining. Ph.D. thesis, Technische Universiteit Eind-
hoven (2019)

12. Dixit, P.M., Buijs, J.C.A.M., van der Aalst, W.M.P.: Prodigy : Human-in-the-loop
process discovery. In: RCIS 2018. pp. 1�12. IEEE (2018)

13. Dixit, P.M., Verbeek, H.M.W., Buijs, J.C.A.M., van der Aalst, W.M.P.: Interactive
data-driven process model construction. In: ER 2018. vol. 11157, pp. 251�265.
Springer (2018)

14. van Dongen, B.F., de Medeiros, A.K.A., Wen, L.: Process mining: Overview and
outlook of Petri net discovery algorithms. Trans. Petri Nets Other Model. Concurr.
2, 225�242 (2009)

15. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Scalable process discovery
and conformance checking. Softw. Syst. Model. 17(2), 599�631 (2018)

16. Schuster, D., van Zelst, S.J., van der Aalst, W.M.P.: Incremental discovery of
hierarchical process models. In: RCIS 2020. vol. 385, pp. 417�433. Springer (2020)

	Discovering Sound Free-choice Workflow Nets With Non-block Structures

