
A Generic Trace Ordering Framework for
Incremental Process Discovery

Daniel Schuster1,2[0000−0002−6512−9580], Emanuel Domnitsch2, Sebastiaan J.
van Zelst1,2[0000−0003−0415−1036], and

Wil M. P. van der Aalst1,2[0000−0002−0955−6940]

1 Fraunhofer Institute for Applied Information Technology FIT, Sankt Augustin,
Germany

{daniel.schuster, sebastiaan.van.zelst}@fit.fraunhofer.de
2 RWTH Aachen University, Aachen, Germany

emanuel.domnitsch@rwth-aachen.de, wvdaalst@pads.rwth-aachen.de

Abstract. Executing operational processes generates valuable event data
in organizations’ information systems. Process discovery describes the
learning of process models from such event data. Incremental process
discovery algorithms allow learning a process model from event data
gradually. In this context, process behavior recorded in event data is in-
crementally fed into the discovery algorithm that integrates the added
behavior to a process model under construction. In this paper, we in-
vestigate the open research question of the impact of the ordering of
incrementally selected process behavior on the quality, i.e., recall and
precision, of the learned process models. We propose a framework for
defining ordering strategies for traces, i.e., observed process behavior,
for incremental process discovery. Further, we provide concrete instanti-
ations of this framework. We evaluate different trace-ordering strategies
on real-life event data. The results show that trace-ordering strategies
can significantly improve the quality of the learned process models.

Keywords: Process mining · Process discovery · Ordering effects

1 Introduction

Process mining [17] offers tools and methods to systematically analyze data gen-
erated during the execution of operational processes, e.g., business and produc-
tion processes. These data are referred to as event data, which can be extracted
from organizations’ information systems. Process mining aims to generate valu-
able insights into the processes under investigation to optimize them ultimately.

Process discovery, a key discipline within process mining, comprises algo-
rithms that learn process models from event data. Most process model for-
malisms focus on describing the control flow of process activities. Note that
process model formalisms like BPMN [7] allow modeling, e.g., resource infor-
mation and data flows, besides the control flow of process activities. In short,
process models are an essential artifact within process mining.

2 D. Schuster et al.

Conventional process discovery algorithms [2] are fully automated. Other
than configuring parameter settings, they do not provide any form of interaction.
Thus, they function as a black box from a user’s perspective. Since event data
often have quality issues, e.g., wrongly captured, missing, and incomplete process
behavior, process discovery can be considered an unsupervised learning task.
Many conventional process discovery algorithms yield low-quality models on real-
life event data. Automated filtering techniques, such as [4], attempt to solve such
data quality problems but often remove too much process behavior. In addition,
they cannot add missing process behavior to the event data.

Domain-knowledge-utilizing process discovery aims to overcome the limita-
tions of conventional process discovery by using additional knowledge about the
process under consideration besides event data and by incorporating user feed-
back into the discovery, respectively, learning phase [16]. Incremental process
discovery is a subclass of domain-knowledge-utilizing process discovery where
the user gradually selects process behavior that is added to a process model un-
der construction by the discovery algorithm. With incremental process discovery,
a user can, for example, examine the process model after each incremental exe-
cution and, if necessary, jump back to a previous version of the model and add
other observed process behavior. In this way, the user can steer and influence
the discovery phase compared to conventional process discovery.

In previous work [14], we introduced an incremental process discovery al-
gorithm that allows to gradually add process instances, i.e., individual process
executions, which are also referred to as traces, to a process model under con-
struction. An open research question is the influence of the order in which the
process behavior is gradually inserted into the process model under construction
on the quality of the eventual process model discovered. In this paper, we ad-
dress this research question by exploring strategies to recommend a trace order.
From a practical perspective, these strategies are helpful in situations where, for
example, a user selects several traces at once to be added next but does not have
any preferences about the exact order in which they are added to the model by
the incremental discovery algorithm.

This paper contains two main contributions. First, we define a general frame-
work for trace-ordering strategies within the context of incremental process dis-
covery. The framework can be applied for any incremental process discovery
algorithm that gradually adds traces to a process model. Second, we provide
instantiations of this framework, i.e., various trace-ordering strategies for an ex-
isting incremental process discovery algorithm [14]. Finally, we present an evalu-
ation of the proposed strategies. Our experiments show that using trace-ordering
strategies results in significantly better models than random trace selection, cf.
[15].

The remainder of this paper is organized as follows. In Section 2, we present
related work. Section 3 introduces preliminaries. In Section 4, we introduce a
framework for trace-ordering strategies and provide specific instantiations of this
framework. The evaluation by use of real-life event data of these instantiations
is presented in Section 5. Finally, Section 6 concludes this paper.

A Generic Trace Ordering Framework for Incremental Process Discovery 3

2 Related Work

For a general introduction to process mining, we refer to [17]. In this section, we
mainly focus on process discovery. Compared to, e.g., sequential pattern min-
ing [1], process discovery aims to return process models describing the end-to-end
control-flow of activities within a process. We refer to [17] to further differentiate
process mining from existing data mining techniques. Many conventional pro-
cess discovery algorithms have been developed; a recent overview can be found
in [2]. Regarding the field of domain-knowledge-utilizing process discovery, we
refer to [16] for a recent overview. One of the first approaches to interactive
process discovery was presented in [6]. The approach involves a user creating a
process model gradually in an editor while being supported by the algorithm
with suggestions. Regarding incremental process discovery, few approaches ex-
ist. In [14] an incremental process discovery algorithm has been introduced that
produces process trees. In [10] an incremental approach has been proposed that
represents the process as a set of first-order logic formulae. Techniques for model
repair [8], a research area within process mining, can also be utilized as incre-
mental discovery.

To the best of our knowledge, no related work focuses on trace ordering
neither within incremental process discovery nor within process model repair.
Outside of process mining, in the context of AI/ML, the influence of ordering
data on the learning results has been addressed, for example, in [5,13].

3 Preliminaries

For an arbitrary set X, we define the set of all sequences over X as X∗, e.g.,
〈b, a, b〉 ∈ {a, b, c}∗. We denote a totally ordered set by (X,�). Given a base set
X, we denote the universe of all totally ordered sets by O(X). A multi-set allows
for multiple occurrences of the same element. We denote the set of all possible
multi-sets over a base set X as B(X) and the power set as P(X).

3.1 Event Data

Event data are generated during the execution of operational processes. Table 1
shows an example of an event log. Each row corresponds to an unique event
that records the execution of an activity for a specific process instance. Process
instances are identified by a case-id. Events that belong to the same process
instance, i.e., that have the same case ID, form a trace, i.e., a sequence of events
ordered by their timestamp, for example. Consider Table 1, the trace of the
process instance “A10000” is 〈“Create Fine”, “Send Fine”, “Insert Fine Notifi-
cation”, “Add penalty”, “Payment”〉. An event log typically consists of multiple
traces. Next, we formally define the concept of a trace and an event log. In the
remainder of this paper, we denote the universe of activity labels by A.

Definition 1 (Trace & Event Log). A trace is a sequence of activity labels,
i.e., σ ∈ A∗. An event log is a multi-set of traces, i.e., E ∈ B(A∗). We denote
the universe of event logs by E = B(A∗).

4 D. Schuster et al.

Table 1: Real-life event log from a road traffic fine management process [12]
Event-ID Case-ID Activity label Timestamp . . .

1 A10000 Create Fine 09.03.2007 . . .
2 A10000 Send Fine 17.07.2007 . . .
3 A10000 Insert Fine Notification 02.08.2007 . . .
4 A10000 Add penalty 01.10.2007 . . .
5 A10000 Payment 09.09.2008 . . .
6 A10001 Create Fine 19.03.2007 . . .
7 A10001 Send Fine 17.07.2007 . . .
8 A10001 Insert Fine Notification 25.07.2007 . . .
9 A10001 Insert Date Appeal to Prefecture 02.08.2007 . . .
10 A10001 Add penalty 23.09.2007 . . .
.

→

Create
Fine

×

Send
Fine

τ

Insert Fine
Notification

∧

Add
penalty

	

Payment τ

Fig. 1: Example of a process model represented as a process tree

Since we are only interested in the various sequences of executed process
activities and multiple cases can have the same sequence of executed activities,
we define an event log as a multi-set of traces. For an event log E ∈ E , we write
E = {σ ∈ E} ⊆ A∗ to denote the set of unique traces. For instance, given the
event log E =

[
〈a, b, c〉5, 〈a, b, b〉3

]
, i.e., an event log containing five times the

trace 〈a, b, c〉 and three times the trace 〈a, b, b〉, E =
{
〈a, b, c〉, 〈a, b, b〉

}
.

3.2 Process Models

Process models describe process behavior, especially the control flow of process
activities. For example, consider Figure 1, showing a process tree, i.e., an im-
portant process model formalism within process mining [17]. The process tree
specifies that the activity ‘Create Fine’ is executed first. Next, ‘Send Fine’ is op-
tionally executed, followed by ‘Insert Fine Notification’. Finally, ‘Add Penalty’
is executed parallel to potentially multiple executions of ‘Payment’. A formal
definition of process trees is outside the scope of this paper; we refer to [17].

This paper abstracts from a specific process model formalism, e.g., Petri nets
or process trees. Thus, we generally define the universe of process models byM.
Each process model M defines a language, i.e., a set of accepted traces. As such,
we denote the language of a process model M ∈M by L(M) ⊆ A∗.

A Generic Trace Ordering Framework for Incremental Process Discovery 5

previously
added traces
P ⊆ E

user-selected trace
to be added next

σ ∈ E \ P

(initial) model
M with P ⊆ L(M)

Incremental
Process

Discovery
Algorithm

α

updated previously
added traces
P ′ = P ∪ {σ}

updated model M ′

with P ∪ {σ} ⊆ L(M ′)

Fig. 2: Overview of the procedure of an incremental process discovery algorithm

3.3 Incremental Process Discovery

Conventional process discovery algorithms can be seen as a function d : E →
M. Incremental process discovery algorithms form a specific class of process
discovery algorithms that gradually learn a process model. Figure 2 shows an
overview of the procedure used by incremental process discovery algorithms.
Given an event log E ∈ E and an (initial) process model M ∈M, a trace σ ∈ E
that is added by the incremental process discovery algorithm to the process
model M . The resulting process model M ′, which describes the previously added
traces P and the trace σ, is then used as an input in the next iteration. Next,
we formally define an incremental process discovery algorithm.

Definition 2 (Incremental Process Discovery Algorithm). The function
α : M× P(A∗) × A∗ → M is an incremental process discovery algorithm if
for any process model M ∈ M, set of previously added traces P ∈ P(A∗) with
P ⊆ L(M), and trace to be added σ ∈ A∗ it holds that P ∪{σ} ⊆ L(α(M,P, σ)).

4 Dynamic Trace-Ordering Strategies

In this section, we present the proposed approach to order trace candidates.
First, we present a general framework on how to define trace-ordering strategies
for incremental process discovery. Finally, we present concrete strategies.

4.1 General Framework

In this section, we present the proposed framework for defining Dynamic Trace-
Ordering Strategies (DTOS) for incremental process discovery. In Figure 3, we
depict the proposed framework. A DTOS consists of n≥1 sequentially applied
strategy components (sc). Each strategy component sci orders all input trace
candidates Ci−1 according to some internal logic. The calculated ordering of the
trace candidates represents a ranking which trace should be added next to the
process model M . A ‘minimal’ trace in (Ci−1,�) represents the most suitable
candidate to be added next according to the current strategy component sci.
Next, we formally define a strategy component.

6 D. Schuster et al.

Strategy
component

sc1

E,P,M

(User-selected)
trace

candidates
C0 ⊆ E \ P

Previously
added traces
P ⊆ E

Process
model M

Event log
E ∈ E

f

Filter rate
r1 ∈ [0, 1]

(C0,�) Strategy
component

sc2

E,P,M

C1
f

Filter rate
r2 ∈ [0, 1]

(C1,�)
. . .

C2
Strategy

component
scn

E,P,M

Cn−1
f

Filter rate
rn = 0

(Cn−1,�)

Incremental
Process

Discovery
Algorithm

α

Dynamic Trace-Ordering Strategy (DTOS)

Cn = {σ}

P ∪ {σ}

M ′ C0\{σ}

Fig. 3: Proposed framework for dynamic trace-ordering strategies that consist of
sequentially aligned strategy components, sc1 until scn, which order the trace
candidates from best to worst suitability. After each strategy component, a filter
function f removes the worst suited trace candidates. After the last strategy
component scn, the function f filters such that a single trace candidate σ remains
that is then fed into the incremental process discovery algorithm.

Definition 3 (Strategy component). A strategy component is a function sc :
E × P(A∗) × P(A∗) × M → O(A∗) that maps an event log E ∈ E, a set of
previously added traces P ⊆ E, a set of trace candidates C ⊆ P \ E, and a
process model M ∈M to an ordered set of trace candidates (C,�) ∈ O(C). We
denote the universe of strategy components by SC.

After each strategy component, a filter function f filters out the worst suited
trace candidates. Each call of the filter function f can be configured via a filter
rate ri ∈ [0, 1]. A filter rate of 1 results in no trace candidate being filtered. A
filter rate of 0 results in only one trace candidate remaining. Thus, Cn ⊆ Cn−1 ⊆
... ⊆ C1 ⊆ C0 holds (cf. Figure 3). Each strategy component together with the
subsequent filtering can be viewed as a knock-out step that reduces the number
of trace candidates that are potentially to be added next to the process model
M . Next, we formally define a filter function and a DTOS.

Definition 4 (Filter function). A filter function f : O(A∗)× [0, 1]→ P(A∗)
maps an ordered set of traces (C,�) ∈ O(A∗) and a filter rate r ∈ [0, 1] to
a set of traces C ′ ∈ P(A∗) such that C ′ ⊆ C, |C ′| = max

{
1, dr ∗ |C|e}, and

∀c′ ∈ C ′∀c ∈ C \ C ′(c′ ≤ c).

Definition 5 (Dynamic trace-ordering strategy (DTOS)). A DTOS is a
non-empty sequence of strategy components and corresponding filter rates, i.e.,
〈(sc1, r1), . . . , (scn, rn)〉 ∈ (SC × [0, 1])∗ with rn = 0 for n ≥ 1.

We consciously decided to design a DTOS as a sequence of strategy compo-
nents and filters that work in a knock-out fashion, i.e., every strategy component
orders the trace candidates, and subsequently, a function filters out the worst
trace candidates. This decision was taken to keep the computational effort low
because it is crucial to compute recommendations fast in an interactive process

A Generic Trace Ordering Framework for Incremental Process Discovery 7

discovery setting. The use of multiple strategy components within a DTOS al-
lows combining different aspects when evaluating which trace candidate should
be added next. The general intention of the framework is to initially perform eval-
uations that are fast to calculate within the first strategy components. More com-
plex evaluations should be performed in the later strategy components. These
components will receive fewer trace candidates since the previously executed
strategy components have already filtered out some trace candidates.

4.2 Instantiations

Here, we present specific strategy components, i.e., instantiations of Definition 3.
We provide general applicable strategy components that are independent of a
specific incremental process discovery algorithm and strategy components which
are specifically tailored for the incremental process discovery algorithm intro-
duced in previous work [14]. Next, we briefly present six strategy components.

Alignment Costs Alignments [18] are a state-of-the-art conformance checking
technique that quantifies to which extent a trace can be replayed on a process
model. They further provide diagnostic information on missing and unexpected
behavior when comparing a trace with a process model. The costs of an optimal
alignment reflect the conformance degree of the trace and the closest process
model execution. Given a process model, we can assign costs, i.e., alignment
costs, to each trace candidate. These costs are then used to rank/sort the trace
candidates, i.e., the trace candidate with the lowest costs first and the trace can-
didate with the highest costs last. The intention is to first add trace candidates
to the process model that are close to the specified behavior by the current pro-
cess model. Note that the computation of alignments has an exponential time
complexity, i.e., also called the state space explosion problem [3].

Missing Activities When starting to discover a process model incrementally,
it is likely that the first process models obtained do not describe all process
activities that have been recorded in the event data. This results from the fact
that in many real-life event logs not every trace contains all possible executable
process activities of a process. The ‘missing activities strategy’ ranks the trace
candidates according to their number of activity labels already present in the
process model M . Trace candidates that contain process activities present in
the current process model M get costs 0. For the other trace candidates, costs
correspond to the number of unique activity labels within the trace that are not
yet part of the process model M .

Levenshtein Distance This strategy compares the trace candidates among
each other by calculating the Levenshtein distance, i.e., a metric to compare the
distance between two sequences based on edit operations: insertion, deletion, and
substitution. The idea behind this strategy is to favor traces that are more similar

8 D. Schuster et al.

to all other traces that still need to be potentially added. For example, consider
the three trace candidates with corresponding frequency values in Table 2. We
compare all traces and weigh the different Levenshtein distances according to
the trace frequency. In the example, we would choose the trace 〈a, b〉 as the best
trace candidate to be added next.

Table 2: Example of the weighted Levenshtein distance for trace candidates
Trace candidates Frequency in E Weighted Levenshtein distance Rank

〈a, b〉 100 50 ∗ lev
(
〈a, b〉, 〈a, b, b〉

)
+ 20 ∗ lev

(
〈a, b〉, 〈a, c〉

)
= 70 1

〈a, b, b〉 50 100 ∗ lev
(
〈a, b, b〉, 〈a, b〉

)
+ 20 ∗ lev

(
〈a, b, b〉, 〈a, c〉

)
= 140 2

〈a, c〉 20 100 ∗ lev
(
〈a, c〉, 〈a, b〉

)
+ 50 ∗ lev

(
〈a, c〉, 〈a, b, b〉

)
= 200 3

Brute-Force Assume a process model M , an event log E ∈ E , the set of
previously added traces P ⊆ E, and a set of trace candidates C ⊆ E \ P (cf.
Figure 3). The strategy separately applies the incremental process discovery (cf.
Figure 2) to all trace candidates in C and the model M . As a result, |C| different
process models are obtained. A quality metric, i.e., the F-measure representing
the harmonic mean of recall and precision, is calculated on the given event log E
for each obtained model. The trace candidate that yields a process model with
the highest F-measure is ranked first.

LCA Height This strategy is tailored to the incremental process discovery al-
gorithm introduced in our earlier work [14]. The incremental process discovery
algorithm uses process trees (cf. Figure 1) as a process model formalism. When
incrementally adding a new trace to the model, the central idea of the algorithm
is to identify subtrees that need to be modified so that the new trace fits the lan-
guage of the model. These deviating subtrees are called LCAs in [14]. Depending
on which trace is added, the LCAs that must be altered change.

The key idea of this strategy is to avoid changing large parts of the already
learned process model upon adding a new trace. Thus, the strategy prefers trace
candidates that lead to only minor changes in the process model. Therefore, the
strategy computes for each trace candidate in C ⊆ E the height of the first LCA,
i.e., the first subtree in the process model M , that must be altered3. The height
of an LCA is defined by the path length from the LCA’s root node to the root
node of the entire tree, i.e., the entire process model M . Trace candidates are
then descending ordered based on the first LCA’s height.

Duplicates This strategy is tailored to the incremental process discovery al-
gorithm introduced in our earlier work [14]. These LCAs, i.e., subtrees of the

3 Note that per trace that is incrementally added, various LCAs might be changed.
However, without fully executing the incremental process discovery approach for a
trace, we only can compute the first LCA that must be changed. Therefore, there
is a risk that the first LCA will be rated as good based on the strategy, but that
further LCAs will have to be changed, which the strategy would rate as bad.

A Generic Trace Ordering Framework for Incremental Process Discovery 9

Table 3: Overview of the strategy components
Abbreviation Strategy component (Section 4.2) Algorithmic specific or general

C Alignment Costs general
M Missing Activities general
L Levenshtein Distance general
B Brute Force general
D Duplicates specific
H LCA Height specific

process tree, may have multiple leaf nodes with the same activity label, i.e., du-
plicate labels. In general, duplicate labels can increase the precision of a process
model and are therefore desirable. When altering an LCA, the incremental pro-
cess discovery algorithm [14] rediscovers the LCA using a conventional process
discovery algorithm [11]. The downside of this rediscovery is that the used con-
ventional process discovery algorithm [11] is not able to discover process trees
with duplicate labels. Thus, the rediscovery would remove the potentially de-
sirable duplicate labels in the LCA that have been learned so far. Thus, this
strategy, called Duplicates, favors trace candidates whose first LCA does not
contain leaf nodes with duplicate labels. Trace candidates are ascending ordered
based on the number of duplicate leaf nodes.

5 Evaluation

In this section, we present the experimental evaluation. First, we present the
experimental setup. Subsequently, we present and discuss the results.

5.1 Experimental Setup

To keep the experimental setup independent of a particular user selecting trace
candidates to be added next (cf. Section 1), we assumed the following: given
an event log and an initial process model, all traces are eventually added to the
model incrementally. Thus, the set of trace candidates represents in the beginning
the entire event log. After one incremental discovery step—a trace selected by an
ordering strategy is added to the model by the incremental discovery algorithm—
the added trace is removed from the trace candidate set.

Given the strategy components’ abbreviations in Table 3, we created all po-
tential orderings by shuffling the order of C, M, L, D, and H. Finally, strategy
component B is added to each strategy. Note that the brute force (B) strategy
component is computationally expensive, and therefore we decided to always
add this strategy component at the end. This procedure leads to 5! = 120 differ-
ent strategy component orderings. To avoid further expansion of the parameter
space, we used one filter rate for each strategy component within a strategy, ex-
cept the last one (cf. Figure 3). For instance, the strategy L-H-C-M-D-B F-Rate
10 (cf. Figure 4) represents the strategy where first the Levenshtein distance
component is applied and finally the brute force component. All components

10 D. Schuster et al.

Fig. 4: Legend for the results shown in Figure 5 and Figure 6

within this specific strategy use a filter rate of 0.1=̂10%. We applied the dif-
ferent strategies on real-life event logs using the incremental process discovery
algorithm presented in [14]. Further, we measured the F-measure, i.e., the har-
monic mean of recall and precision, of each incrementally discovered process
model using the given event log. We used four publicly available real-life event
logs [19,12,9].

5.2 Results & Discussion

In Figure 5, we depict the results of 16 dynamic strategies, a static strategy,
i.e., most occurring trace variant first (black line), the brute force component as
a stand-alone strategy (gray line), random trace orderings (blue lines), and the
average of the random trace orderings (red line). Note that we only show a selec-
tion of the strategies evaluated. Per log, we provide two x-axis scales: percentage
of processed traces and percentage of uniquely processed trace variants.

We observe that for all four event logs, the trace candidate order has a sig-
nificant impact on the F-measure, cf. the large area covered by the blue lines in
Figure 5. The solid red line represents the average of the blue lines. Thus, the
red line can be seen as a baseline as it represents the quality of the models if a
random trace order is applied. We see that most strategies are clearly above the
red line. Thus, applying a strategy is often better than randomly selecting trace
candidates. Note that with incremental process discovery, the goal is often not
to include all traces from the event log, as event logs often have data quality
issues. We observe that the brute force approach as a stand-alone strategy (gray
line) often performs better than the other strategies, although the brute force
approach can be considered as a greedy algorithm. For the domestic event log,
the brute force as a stand-alone strategy could not be used as the calculation was
still not completed after several days. In Figure 6 we depict the computation time
per strategy. In general, we observe that an increasing filter rate per strategy
component ordering leads to an increasing computation time. This observation
can be explained because each strategy includes the brute force strategy com-
ponent as the last step. We also find that the brute force approach as a single
strategy (gray bar) has a significantly longer computation time than the other
strategies. In short, it can be stated that many of the presented strategies lead
to better process models, i.e., outperforming randomly selecting a trace to be
added. Nevertheless, no clear strategy can be identified that always works best
on all tested event logs.

A Generic Trace Ordering Framework for Incremental Process Discovery 11

0 20 40 60 80 100
% of processed traces

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F-
M

ea
su

re

0 20 40 60 80 100
% of processed variants

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F-
M

ea
su

re

(a) Domestic declarations log [19]

0 20 40 60 80 100
% of processed traces

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F-
M

ea
su

re

0 20 40 60 80 100
% of processed variants

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F-
M

ea
su

re

(b) Sepsis log (sampled) [9]

0 20 40 60 80 100
% of processed traces

0.5

0.6

0.7

0.8

0.9

1.0

F-
M

ea
su

re

0 20 40 60 80 100
% of processed variants

0.5

0.6

0.7

0.8

0.9

1.0

F-
M

ea
su

re

(c) Road traffic fine management log [12]

0 20 40 60 80 100
% of processed traces

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F-
M

ea
su

re

0 20 40 60 80 100
% of processed variants

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F-
M

ea
su

re

(d) Request for payment log [19]

Fig. 5: F-measure values of the incrementally discovered process models. Most
evaluated strategies (cf. Figure 4) perform better than the baseline (red line).
Blue lines indicate the solution space (not complete, as not every possible trace
ordering can be evaluated due to a large number of trace variants per event log).

12 D. Schuster et al.

L-H-C-M-D-B C-H-L-D-M-B H-C-D-M-L-B C-D-L-H-M-B M.
Trace Ordering Strategies

10
0

10
1

10
2

10
3

10
4

Co
m

pu
ta

tio
n

Ti
m

e
(s

)

F-
Ra

te
: 1

0
40

F-
Ra

te
: 2

0
39

F-
Ra

te
: 4

0
32

2
F-

Ra
te

: 7
0

47
34

F-
Ra

te
: 1

0
9.

1
F-

Ra
te

: 2
0

9.
9

F-
Ra

te
: 4

0
31

3
F-

Ra
te

: 7
0

48
46

F-
Ra

te
: 1

0
10

F-
Ra

te
: 2

0
9.

8
F-

Ra
te

: 4
0

29
4

F-
Ra

te
: 7

0
44

82

F-
Ra

te
: 1

0
9.

2
F-

Ra
te

: 2
0

9.
9

F-
Ra

te
: 4

0
36

1
F-

Ra
te

: 7
0

49
97

11

(a) Domestic declarations log [19]

L-H-C-M-D-B C-H-L-D-M-B H-C-D-M-L-B C-D-L-H-M-B M. B.F.
Trace Ordering Strategies

0
50

10
0

15
0

20
0

25
0

30
0

35
0

Co
m

pu
ta

tio
n

Ti
m

e
(s

)

0.
6

(F
-R

at
e:

 1
0)

0.
6

(F
-R

at
e:

 2
0)

0.
6

(F
-R

at
e:

 4
0)

44
.0

 (F
-R

at
e:

 7
0)

0.
1

(F
-R

at
e:

 1
0)

0.
1

(F
-R

at
e:

 2
0)

0.
2

(F
-R

at
e:

 4
0)

51
.0

 (F
-R

at
e:

 7
0)

0.
1

(F
-R

at
e:

 1
0)

0.
1

(F
-R

at
e:

 2
0)

0.
1

(F
-R

at
e:

 4
0)

46
.0

 (F
-R

at
e:

 7
0)

0.
1

(F
-R

at
e:

 1
0)

0.
1

(F
-R

at
e:

 2
0)

0.
2

(F
-R

at
e:

 4
0)

49
.3

 (F
-R

at
e:

 7
0)

0.1

338

(b) Sepsis log [9]

L-H-C-M-D-B C-H-L-D-M-B H-C-D-M-L-B C-D-L-H-M-B M. B.F.
Trace Ordering Strategies

10
0

10
1

10
2

10
3

10
4

10
5

Co
m

pu
ta

tio
n

Ti
m

e
(s

)

F-
Ra

te
: 1

0
56

2
F-

Ra
te

: 2
0

60
0

F-
Ra

te
: 4

0
61

48
F-

Ra
te

: 7
0

80
69

4

F-
Ra

te
: 1

0
25

2
F-

Ra
te

: 2
0

30
3 F-

Ra
te

: 4
0

68
47

F-
Ra

te
: 7

0
67

60
0

F-
Ra

te
: 1

0
30

2
F-

Ra
te

: 2
0

30
6 F-

Ra
te

: 4
0

68
73

F-
Ra

te
: 7

0
77

76
2

F-
Ra

te
: 1

0
29

8
F-

Ra
te

: 2
0

32
3 F-
Ra

te
: 4

0
56

09 F-
Ra

te
: 7

0
82

37
3

320

310597

(c) Road traffic fine management log [12]

L-H-C-M-D-B C-H-L-D-M-B H-C-D-M-L-B C-D-L-H-M-B M. B.F.
Trace Ordering Strategies

10
0

10
1

10
2

10
3

10
4

Co
m

pu
ta

tio
n

Ti
m

e
(s

)

F-
Ra

te
: 1

0
24

F-
Ra

te
: 2

0
25

F-
Ra

te
: 4

0
21

6
F-

Ra
te

: 7
0

33
30

F-
Ra

te
: 1

0
5.

5
F-

Ra
te

: 2
0

6.
0

F-
Ra

te
: 4

0
15

2
F-

Ra
te

: 7
0

30
51

F-
Ra

te
: 1

0
6.

0
F-

Ra
te

: 2
0

6.
0

F-
Ra

te
: 4

0
32

5 F-
Ra

te
: 7

0
27

88

F-
Ra

te
: 1

0
5.

4
F-

Ra
te

: 2
0

6.
0

F-
Ra

te
: 4

0
15

4
F-

Ra
te

: 7
0

42
39

6

16606

(d) Request for payment log [19]

Fig. 6: Computation time of the strategies (cf. Figure 4) per event log

6 Conclusion

We presented a framework to define trace-ordering strategies for incremental
process discovery. We introduced general strategy components and evaluated
different strategies on real-life event data based on the framework. The results
show that the trace-ordering strategies can improve the quality of the learned
process models. For future work, we are interested in non-sequential composi-
tions of strategy components, e.g., each strategy component ranks all trace can-
didates, and finally, a score is determined. However, this requires more efficient
computable strategy components. Finally, we plan to integrate trace-ordering
strategies in our incremental process discovery tool Cortado [15].

References

1. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proceedings of the
Eleventh International Conference on Data Engineering. IEEE Comput. Soc. Press
(1995). https://doi.org/10.1109/ICDE.1995.380415

2. Augusto, A., Conforti, R., Dumas, M., La Rosa, M., Maggi, F.M., Marrella, A.,
Mecella, M., Soo, A.: Automated discovery of process models from event logs:

https://doi.org/10.1109/ICDE.1995.380415

A Generic Trace Ordering Framework for Incremental Process Discovery 13

Review and benchmark. IEEE Transactions on Knowledge and Data Engineering
31(4) (2019). https://doi.org/10.1109/TKDE.2018.2841877

3. Carmona, J., van Dongen, B., Solti, A., Weidlich, M.: Conformance Check-
ing. Springer International Publishing (2018). https://doi.org/10.1007/978-3-319-
99414-7

4. Conforti, R., La Rosa, M., ter Hofstede, A.H.: Filtering out infrequent behavior
from business process event logs. IEEE Transactions on Knowledge and Data En-
gineering 29(2) (2017). https://doi.org/10.1109/TKDE.2016.2614680

5. Cornuéjols, A.: Getting order independence in incremental learning. In: Machine
Learning: ECML-93, Lecture Notes in Computer Science, vol. 667. Springer Berlin
Heidelberg (1993). https://doi.org/10.1007/3-540-56602-3 137

6. Dixit, P.M., Buijs, J.C.A.M., van der Aalst, W.M.P.: Prodigy : Human-
in-the-loop process discovery. In: 12th International Conference on
Research Challenges in Information Science (RCIS). IEEE (2018).
https://doi.org/10.1109/RCIS.2018.8406657

7. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals
of Business Process Management. Springer Berlin Heidelberg (2018).
https://doi.org/10.1007/978-3-662-56509-4

8. Fahland, D., van der Aalst, W.M.: Model repair — aligning process models to
reality. Information Systems 47 (2015). https://doi.org/10.1016/j.is.2013.12.007

9. Felix Mannhardt: Sepsis cases - event log. https://doi.org/10.4121/uuid:915d2bfb-
7e84-49ad-a286-dc35f063a460

10. Ferilli, S., Esposito, F.: A logic framework for incremental learning of process mod-
els. Fundamenta Informaticae 128 (2013). https://doi.org/10.3233/FI-2013-951

11. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering Block-Structured
Process Models from Event Logs - A Constructive Approach. In: Application and
Theory of Petri Nets and Concurrency, vol. 7927. https://doi.org/10.1007/978-3-
642-38697-8 17

12. M. (Massimiliano) de Leoni, Felix Mannhardt: Road traffic fine management pro-
cess. https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5

13. MacGregor, J.N.: The effects of order on learning classifications by example:
Heuristics for finding the optimal order. Artificial Intelligence 34(3) (1988).
https://doi.org/10.1016/0004-3702(88)90065-3

14. Schuster, D., van Zelst, S.J., van der Aalst, W.M.P.: Incremental discovery of hier-
archical process models. In: Research Challenges in Information Science, Lecture
Notes in Business Information Processing, vol. 385. Springer International Pub-
lishing, Cham (2020). https://doi.org/10.1007/978-3-030-50316-1 25

15. Schuster, D., van Zelst, S.J., van der Aalst, W.M.P.: Cortado—an interactive tool
for data-driven process discovery and modeling. In: Application and Theory of Petri
Nets and Concurrency, Lecture Notes in Computer Science, vol. 12734. Springer
International Publishing (2021). https://doi.org/10.1007/978-3-030-76983-3 23

16. Schuster, D., van Zelst, S.J., van der Aalst, W.M.: Utilizing domain knowledge
in data-driven process discovery: A literature review. Computers in Industry 137
(2022). https://doi.org/10.1016/j.compind.2022.103612

17. van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer Berlin
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4

18. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.: Replaying history on
process models for conformance checking and performance analysis. WIREs Data
Mining and Knowledge Discovery 2(2) (2012). https://doi.org/10.1002/widm.1045

19. van Dongen, B.F.: BPI challenge 2020. https://doi.org/10.4121/uuid:52fb97d4-
4588-43c9-9d04-3604d4613b51

https://doi.org/10.1109/TKDE.2018.2841877
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1109/TKDE.2016.2614680
https://doi.org/10.1007/3-540-56602-3_137
https://doi.org/10.1109/RCIS.2018.8406657
https://doi.org/10.1007/978-3-662-56509-4
https://doi.org/10.1016/j.is.2013.12.007
https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
https://doi.org/10.3233/FI-2013-951
https://doi.org/10.1007/978-3-642-38697-8_17
https://doi.org/10.1007/978-3-642-38697-8_17
https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
https://doi.org/10.1016/0004-3702(88)90065-3
https://doi.org/10.1007/978-3-030-50316-1_25
https://doi.org/10.1007/978-3-030-76983-3_23
https://doi.org/10.1016/j.compind.2022.103612
https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1002/widm.1045
https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51
https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51

	A Generic Trace Ordering Framework for Incremental Process Discovery

