
Beyond Workflow Management:
Product-Driven Case Handling

W.M.P. van der Aalst
Department of Technology Management

Eindhoven University of Technology
P.O. Box 513, NL-5600 MB, Eindhoven

The Netherlands

w.m.p.v.d.aalst@tm.tue.nl

P.J.S. Berens
Pallas Athena
P.O. Box 747

NL 7300 AS, Apeldoorn
The Netherlands

paul.berens@pallas-athena.com

ABSTRACT
In the last decade, workflow technology has become one of the
building blocks for realizing enterprise information systems.
Unfortunately, the application of contemporary workflow
management systems is limited to well-defined and well-
controlled environments. In practice, workflow technology often
fails because of limited flexibility. We advocate a paradigm shift
to overcome this problem: Workflows should not be driven by
pre-specified control-flows but by the products they generate.
This paper presents the software package FLOWer which fully
supports this paradigm shift.

Categories and Subject Descriptors
H.4.1 [Information Systems Applications]: Office Automation -
Workflow management.

General Terms
Management, Design, Human Factors, Languages, Theory,
Verification.

Keywords
Workflow management, case handling, workflow management
systems, product-driven design, FLOWer.

1. INTRODUCTION
In the last three decades, there have been many attempts to build
information systems to support (business) processes. What was
called ‘office automation’ in the mid-70s is nowadays called
‘workflow management’. From a technological point of view,
much progress has been made. Moreover, processes moved from
second-class citizens to first-class citizens of the enterprise
information system. The traditional data-oriented approaches
have been replaced by process-oriented paradigms (e.g., BPR,
CPI, etc.) [9]. Unfortunately, despite all the jubilant stories of
suppliers, the application of workflow management (WFM)

systems [12,15,18] is still limited. Where WFM is actually
applied, it is clear that the majority of the supported processes are
very simple. For more complex processes, WFM systems are
either not applicable or require considerable modeling and
implementation efforts. For non-trivial processes, the degree of
customization is typically high. The process models driving the
WFM system are either kept simple by removing all flexibility or
are complex and non-transparent to address exceptions
adequately.

If the process model is kept simple, only a more or less
idealized version of the preferred process is supported. As a
result, the real run-time process is often much more variable than
the process specified at design-time. The only way to handle
changes is to go behind the system’s back. If users are forced to
bypass the WFM system quite frequently, the system is more a
liability than an asset. If the process model attempts to capture all
possible exceptions [20], the resulting model becomes too
complex to manage and maintain.

Many authors have pointed out the importance of workflow
flexibility, e.g., many workshops and special issues of journals
have been devoted to the topic [3,5,13,14]. Few of the results
reported are really applicable in a practical setting and the impact
on contemporary WFM systems is limited. We argue that the core
of the problem is the fact that routing is the only mechanism
driving the workflow, i.e., work is moved from on worktray to
another based on pre-specified causal relations. This causes the
following problems:
- Work needs to be straight jacketed into activities. Although

activities are considered to be atomic by the WFM system,
they are not atomic for the user. Clustering atomic activities
into workflow activities is required to distribute work.
However, the actual work is done at a much more fine-
grained level.

- Routing is used for both work distribution and
authorization. As a result, only crude mechanisms can be
used to align workflow and organization.

- By focusing on control flow the context, i.e., data related to
the entire case and not just the activity, is moved to be
background. Typically, such context tunneling results in
errors and inefficiencies.

- Routing focuses on what should be done instead of what can
be done. This push-oriented perspective results in rigid
inflexible workflows.

To overcome these problems we propose a paradigm shift: The
case and not the routing should drive the workflow. The case is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GROUP'01, Sept. 30-Oct. 3, 2001, Boulder, Colorado, USA.
Copyright 2001 ACM 1-58113-294-8/01/0009...$5.00.

the object which is being handled. One should think of the case
as being the product which is ‘manufactured’ by executing the
workflow process. The characteristics of the product should drive
the workflow. Typically, the product is information, e.g., a
decision based on various data. By focusing on the product
characteristics, one can replace push-oriented routing from one
worktray to another by pull-oriented mechanisms centered around
the data objects relevant for a case.

In this paper, we propose product-driven case handling as
the mechanism to support, distribute, and manage work
processes. The focus is on work processes where traditional
WFM systems based on a traditional flow-oriented production-
line paradigm fall short. FLOWer, developed by Pallas Athena
and based on practical experiences with contemporary WFM
systems, fully supports this paradigm shift. The interested reader
is invited to play with an on-line demo which shows the
functionality of FLOWer: http://www.pallas-athena.com/.

2. ON THE RELATION BETWEEN
MANUFACTURING AND WORKFLOW
From a logistical point of view, there are many similarities
between administrative processes and production processes (cf.
Platier [17]). Both kinds of processes focus on the routing of
work (workflow) and the allocation of work to resources. In a
production system, the products are physical objects and the
principal resources are machines, robots, humans, conveyor belts
and trucks. In an administrative process the products are often
informational (e.g. documents) and most of the resources are
human. Although there are many similarities, there are also some
logistical aspects in which an administrative process differs from
a typical manufacturing process [2]:
- Making a copy is easy and cheap. In contrast to making a

copy of a product like a car, it is relatively easy to copy a
piece of information (especially if it is in electronic form).

- There are no real limitations with respect to the in-process
inventory. Informational products do not require much space
and are easy to access (especially if they are stored in a
database).

- There are less requirements with respect to the order in
which activities are executed. Human resources are flexible
and there are few technical constraints.

- Quality is difficult to measure. What is the quality of the
decision to accept an insurance claim?

- Quality of end-products may vary. A manufacturer of cars
has a minimal quality level that any product should satisfy.
However, in an administrative process it might be attractive
to skip certain checks to reduce the workload.

- Transportation of electronic data is timeless. In a network
information travels at the speed of light.

- Production to stock is seldom possible. Every product is
unique, therefore it is difficult to produce in advance. It is
not possible to process an insurance claim before it arrives.

- Loops or rework occurs frequently in administrative
processes, but are very seldom or even impossible in
production processes. In addition the required behavior is
very different. In an administrative process reuse of
information is easy, but in a production process reuse
requires disassembly and reassembly.

- The customer (can) influence(s) the handling in an
administrative process whereas in a production process the
influence is restricted to before the process starts.

Nevertheless, the two types of processes have a lot in common.
Consider for example performance indicators such as throughput
time, waiting time, service level and utilization. These
performance indicators play a prominent part in both domains.

In manufacturing, the Bill-Of-Material (BOM) is used to
drive the production process [16]. Consider for example Material
Requirements Planning, often referred to as MPR-I, which
determines the production schedule based on the ordered
quantities, current stock, and the composition of product as
specified in the BOM. Contemporary Enterprise Resource
Planning (ERP) systems such as SAP R/3 also take resource
availability into account and use more refined algorithms.
Nevertheless, production is driven by the structure of the product
and product design is driven by desirable characteristics of the
manufacturing process.

For administrative processes generating information-
intensive products such as mortgage loans, driving permits,
customs declarations, salary payments, etc. the relation between
the product and the process is seldom made explicit. Clearly, the
interaction between the product and the process is in the back of
everyone’s mind. However, there is not a standardized way to
describe the product and the workflow process is usually
designed without proper consideration of the product. Consider
for example the processing of insurance claims. The product is
basically a decision: Either the claim is accepted (followed by a
payment) or the claim is rejected. All kind of information
elements may play a role in making this decision. One can think
of these information elements as raw materials or subassemblies.
The workflow process should manufacture the decision while
taking criteria such as product quality, average flow time, service
level, and handling costs into account.

Driven by management principles such as Business Process
Reengineering (BPR) [9], the focus has shifted from data and
organization to processes. The problem is not this focus but the
way processes are designed [19]. Workflow designs are typically
made by small groups of consultants, managers and specialists.
As a result, the processes are incomplete, subjective, and at a too
high level (“The devil is in the details”).

What can we learn from all of this?
- Lesson 1: There are many differences between

administrative processes and production processes.
Therefore, one should not simply transfer concepts from
manufacturing to workflow. The push-oriented nature of
contemporary WFM systems is not applicable for highly-
dynamic knowledge-intensive processes.

- Lesson 2: The current focus on business processes should
not result in a blind spot for the ‘product’ being
manufactured. The status of the product in terms of
information objects should be visible and used as a starting
point for any workflow design.

Based on these two lessons, we propose a paradigm shift and a
tool to support product-driven case handling.

3. PRODUCT-DRIVEN CASE HANDLING
In this section we first introduce the concepts and then provide a
meta model for Product-Driven Case Handling (PDCH).
3.1 PDCH Concepts
The central concept for PDCH is the case and not the activities or
the routing from one worktray to another. The case is the
‘product’ which is manufactured and at any time workers should
be aware of this context. Examples of cases are the evaluation of

http://www.pallas-athena.com/

a job application, the verdict on a traffic violation, the outcome of
a tax assessment, and the ruling for an insurance claim.

To handle a case, activities need to be executed. Activities
are logical units of work. Many WFM systems impose the so-
called ACID properties on activities. This means that an activity
is considered to be atomic and either carried out completely or
not at all. We use a less rigid notion. Activities are simply chunks
of work which are recognized by workers, e.g. like filling out an
electronic form. As a rule-of-thumb, activities are separated by
points where a transfer of work from one worker to another is
likely/possible. Please note that activities separated by points of
‘work transfer’ can be non-atomic, e.g., the activity ‘book
business trip’ may include tasks such as ‘book flight’, ‘book
hotel’, etc.

Clearly activities are related and cases follow typical
patterns. A process is the ‘recipe’ for handling cases of a given
type. In many WFM systems, the specification of process fixes
the routing of cases along activities and workers have hardly any
insight in the whole. As a result exceptions are difficult to handle
because they require unparalleled deviations of standard recipe.
Since “exceptions are the rule”, precedence relations among
activities should be minimized.

If the workflow is not exclusively driven by precedence
relations among activities and activities are not considered to be
atomic, then another paradigm is needed to support the handling
of cases. Workers will have more freedom but need to be aware
of the whole case. Moreover, the case should be considered as a
‘product’ with structure and a current state. For knowledge-
intensive processes, the state and structure of any case is based on
a collection of data objects. A data object is a piece of
information which is present or not present and when it is present
it has a value. In contrast to existing WFM systems, the logistical
state of the case is not determined by the control-flow status but
by the presence of data objects. This is truly a paradigm shift:
PDCH is also driven by data-flow instead of exclusively by
control-flow. This provides a balance between the data-oriented
approaches of the 80-ties and the process-oriented approaches of
the 90-ties.

It is important that workers have insight in the whole case
when they are executing activities. Therefore, all relevant data
should be presented to the worker. Moreover, workers should be
able to look at other data objects associated to the case they are
working on (assuming proper authorization). Forms are used to
present different views on the data objects associated to a given
case. Activities can be linked to a form to present the data objects
most relevant.

Forms are only a way of presenting data objects. The link
between data objects, activities, and processes is specified
directly. Each data object is linked to a process. So-called free
data objects can be changed while the case is being handled. A
data object that is explicitly linked to an activity is either
mandatory or restricted. If a data object is mandatory, it is
required to complete the activity. If a data object is restricted,
then it is required to complete the activity and it cannot be
entered in preceding or subsequent activities. That means that the
information can be processed if and only if at least one of the
activities for which the information is restricted is now at hand.

Actors are the workers executing activities and are grouped
into roles. Roles are specific for processes, i.e., there can be

multiple roles named ‘manager’ as long as they are linked to
different processes. One actor can have multiple roles and roles
may have multiple actors. Roles can be linked together through
role graphs. A role graph specifies ‘is_a’ relations between roles.
This way, one can specify that anybody with role ‘manager’ also
has the role ‘employee’.

For each process and each activity three roles need to be
specified: the execute role, the redo role, and the skip role.
- The execute role is the role that is necessary to carry out the

activity or to start a process.
- The redo role is necessary to undo activities, i.e., the case

returns to the state before executing the activity. Note that it
is only possible to undo an activity if all following activities
are undone as well.

- The skip role is necessary to pass over activities. In order to
skip over two consecutive activities, the worker needs to
have the skip role for both activities.

The three types of roles associated to activities and processes
provide a very powerful mechanism for modeling a wide range of
exceptions. The redo ensures a very dynamic (as it is dependent
on the role of the employee and the status of the case) and
flexible form of a loop. The skip takes care of a range of
exceptions that would otherwise have to be modeled in order to
pass over activities. Of course, there are ways of avoiding
undesirable effects: you can define the ‘no-one’ or ‘nobody’ role
in every process that is higher than all the other roles and that no
user can perform. You can also define an ‘everyone’ role that is
lower than all others. An activity with the ‘no-one’ redo role can
never be undone again and it would then also not be possible to
go back to an earlier activity. This is a very effective way to
model ‘points of no return’. An execute everyone role means that
the activity can be carried out by anyone who at least has a role in
that process (because that person is then, after all, at least equal to
the everyone role).

3.2 PDCH UML meta model
To structure the concepts introduced thus far, we use a UML

object model. The object model shown in Figure 1 describes the
concepts at a meta level.

The classes case, process, activity, data object, data value,
form, role, and actor correspond to the entities discussed in this
paper. Association instance_of links cases to processes. Each
case is linked to one process but one process can be linked to
many cases. Association consists_of shows that a process may
contain many activities but each activity is part of a single
process. Association p_has_roles shows that this also holds for
roles. There is an m-to-n correspondence between actors and
roles as is indicated by the association a_has_roles. Association
is_a specifies the role graph. Forms are linked to activities and
data objects. This is indicated by the associations has_form and
has_f_data. Note that there may be forms which are not
connected to any activity. These forms are linked directly to a
process as expressed by the association has_p_form. This refers
to the essence of case handling: values of data object may be
viewed or updated (assuming proper authorization) without
executing activities. Each form corresponds to one process. This
is not shown in Figure 1 but can easily be added by an additional
association between form and process.

1

0..* has_data

0..*

0..*

mandatory

0..*
0..*

restricted

1

0..* execute

1

0..* skip

1

0..* redo

1
0..*

has_form

0..*

0..*

has_f_data

1

0..*

consists_of

1

0..*

p_has_roles

1

0..*

instance_of

0..*

0..*

a_has_roles

1

0..*

value_of

10..* has_values

activity

data object

process

role

case actordata value

form precedence

0..*

0..*

input

0..*

0..*

output

0..*

0..1

has_p_form

0..*

0..*

is_a

Figure 1: PDCH meta model.

The object class precedence contains precedence
relations. Like in any WFM system these precedence relations
are used to calculate which activities are first in line to be
executed [1]. It is possible to use these relations to model
sequential behavior. If a precedence relation has multiple
outputs, then it can be used to model an AND-split or an OR-
split. If a precedence relation has multiple inputs, then it can
be used to model an AND-join or an OR-join. Using these
precedence relations one can specify all routing constructs
available in traditional WFM systems. However, the
associations mandatory, restricted, redo, skip, and execute
show that there are additional mechanisms to handle cases.

The associations redo, skip, and execute link roles to
activities. Traditional WFM systems only support the execute
role. The redo and skip roles allow for more flexibility. Note
that a meaningful definition of these roles is only possible for
acyclic workflow graphs, i.e., cyclic precedence relations are
not allowed. Skip and redo actions require a notion of ‘before’
and ‘after’. In cyclic workflow graphs, ‘before’ and ‘after’ are
ill-defined. Note that iteration can be emulated using execute
and redo. This is consistent with the statement “workflow

loops are exceptions” raised by several authors [6]. The skip
and redo roles lead to a very dynamic behavior: not just
specific loops are modeled, but a whole range of loops,
depending on the role(s) of the user working on the case.

The associations mandatory and restricted link data
objects to activities. The association has_data denotes the link
between data objects and processes. These data objects are
either free and not linked to a specific activity or they are
linked to specific activities through the associations
mandatory and/or restricted. Mandatory data objects need to
be present to complete the corresponding activity. Restricted
data objects can only be entered when the corresponding
activity is enabled. Although the associations mandatory and
restricted suggest a tight coupling between data objects and
activities, data objects are really linked to processes/cases and
roles/actors. Free data objects can be changed and/or entered
while executing the activity but also before and after
executing the activity. Mandatory data objects can also be
entered before, during, or after the execution of the activities
linked through association mandatory. However, an activity
can only be completed once all mandatory data objects are

present. It is important to note that a mandatory data object
may appear in forms not linked to one of the corresponding
activities. This means that mandatory data objects can be
entered in advance. The value of a mandatory data object can
only be entered or changed if the employee has a role that is
equal to or higher than the execute role in at least one of the
activities. An example of such a mandatory data object is the
policy number of a client. The policy number may be entered
before the value is really required for further processing. If a
data object is restricted to one or more activities, the value of
the data object can only be entered or changed if one of the
activities is, in fact, the next one due to be carried out at that
moment. An example is the ‘Approved?’ data object that can
only be carried out if the activity ‘approve insurance claim’ is
next in line.

3.3 PDCH dynamics
Figure 1 gives a static view of the case handling process. The
state of a case is completely determined by objects of the class
data value. Each object of this class is linked to a concrete
case and a data object. This indicates whether the value of a
data object is present and if it is present, the corresponding
value is given. Note that in traditional WFM systems the state
of a case is based on a ‘control-flow pointer’, e.g., if Petri nets
are used, the configuration of tokens [1]. For case handling,
the data objects unambiguously specify the state and enabled
activities. To describe the corresponding mechanism, we first
give the five potential states of an activity instance, i.e., an
activity which may or may not be executed for a given case:
(1) initial, (2) enabled, (3) completed, (4) undone, and (5)
skipped. An activity instance starts in state initial. An instance
becomes enabled if all preceding activities have been
completed or skipped. An instance becomes skipped if the
activity instance was enabled but skipped explicitly by a user
with the proper skip role or if there was a choice in the
process (i.e. an OR-split) resulting in a scenario not enabling
the activity. An instance becomes undone if the activity
instance was executed but was rolled back via a redo action.
An activity instance is completed if and only if:
- all previous activities have been completed (or skipped),
- all mandatory/restricted data objects of an activity have a

value, and
- the so-called completion condition of an activity is true.
The completion condition is normally set to ‘TRUE’ which
means that it is sufficient to give all mandatory data objects a
value. Note that the fact whether an activity is completed only
depends on the values of data objects. This illustrates the
changeover from control-flow to PDCH.

4. FLOWer
In this section, we give a brief description of FLOWer, Pallas
Athena’s case handling product. FLOWer can be used for
flexibly structured processes, but also has the functionalities
necessary for traditional production workflow. FLOWer
compensates for many of the shortcomings of the traditional
WFM systems and offers organizations new mechanisms to
respond effectively to change. Flexibility is guaranteed
through data-driven workflows, redo and skip capabilities,
and activity independent forms. FLOWer goes beyond
workflow: It fully supports the concepts appearing in the meta
model shown in Figure 1.

4.1 FLOWer architecture
Figure 2 shows the architecture of FLOWer. FLOWer
consists of a number of components: FLOWer Studio,
FLOWer Case Guide, FLOWer CFM, FLOWer Integration
Facility, and FLOWer Management Information and Case
History Logging.

FLOWer
CFM

D R

FLOWer Functionality

FLOWer
STUDIO

FLOWer Case guide
 Queues/queries

Integration
functionality

FLOWer CFM

adapt
definition
adapt

definition

FLOWer
Management Info

Case History Logging

FLOWer
Management Info

Case History Logging

analysis/planninganalysis/planning

adapt
operation
adapt

operation
adjust workdistributionadjust organisation

adjust execution

adjust design

adjust organisation

Figure 2: The architecture of FLOWer.

FLOWer Studio is the graphical design environment. It is
used to define processes, activities, precedences, data objects,
and forms. FLOWer Case Guide is the client application
which is used to handle individual cases. FLOWer queue
corresponds to the worktray, worklist or in-basket of
traditional WFM systems. The FLOWer queue provides a
refined mechanism to look for cases satisfying specified
search criteria. FLOWer CFM (ConFiguration Management)
is used to define users (i.e. actors), work profiles, and
authorization profiles. The profiles are used to map users onto
roles. FLOWer CFM is also available at the operational level
to allow for run-time flexibility. FLOWer Management
Information and Case History Logging can be used to store
and retrieve management information at various levels of
detail. FLOWer Integration Facility provides the functionality
to interface with other applications. The following services are
supported on the client side: COM objects (synchronous),
Command Line Interface integration, DLL (NT/Windows) or
shared libraries (UNIX), parameterized invocation of client
applications such as MS Excel, MS Word etc. The following
is available on the server side: C-API, SQL integration to
access external databases, APPC (separately available C
module), and DCOM (via C wrapper). The basic FLOWer
functionality is also available through an API (Application
Program Interface). This allows you, for example, to develop
your own client or to use FLOWer as a workflow (or even
better – a case handling) engine. In the remainder we focus on
the end-user interface and the design interface of FLOWer.
The first component (FLOWer Case Guide) illustrates the
difference between WFM systems and case handling tools
from a user perspective. The second component (FLOWer
Studio) is used to discuss some of the more advanced features.

4.2 FLOWer Case Guide
The traditional worktray supported by the traditional WFM
systems is used to push work items (i.e. activities enabled for
a specific case) to workers without presenting the proper

context and reducing operational flexibility. FLOWer Case
Guide, the client application of FLOWer, is very different.
First of all, the whole case is shown, i.e., there is no context

tunneling. Second, workers are not forced to execute activities
in a fixed predefined order.

(a) (b)

Figure 3: Two screenshots of the case guide of FLOWer.
Figure 3 shows two screenshots of the case guide. The

screenshots used in this section are taken from a process for
dealing with (motor) insurance claims. The left screen, i.e.,
Figure 3(a), corresponds to the initial screen when initiating a
new case. The case guide window consists of three zones. The
top zone provides the context and can be used to navigate
through the process. The zone below this one provides the
contents of that sub-process with the status line and activities,
sub-processes and decisions. To the left of the status line
(also called the time line or wave front) are all the process
objects that still need to be handled, on the status line is what
is due to be processed now and to the right of the line is what
has been completed. The objective is to get all the objects to
the right of the status line. If an activity is colored (i.e. not
white), the employee can carry it out. The bottom zone
contains the forms. The user clicks on the first activity, Claim
Start, which opens the first form. The first form is used to

initialize the insurance claim. After executing activity Claim
Start the corresponding icon is moved to the right side of the
status line. Since Register Claim is specified as the next step
in the process, it is moved on the status line. The icon
corresponding to Register Claim indicates that it is not an
activity but a sub-process. FLOWer allows for sub-processes.
(This functionality will be discussed in more detail later.)
Witness Statement is also a sub-process. As Figure 3(a)
shows, activities corresponding to choices have different
icons. The zone at the bottom of the window indicates that
there are four forms directly linked to the process at this level.
Note that these forms can be opened at any point in time, i.e.,
the status line only suggests the execution of activities on the
status line. A user with proper authorization can open each of
these forms at any time and can implicitly progress the state of
the case through the addition of information.

Figure 3(b) shows the case guide after starting the sub-
process Register Claim and successfully completing the first
activity in this sub-process. The top zone gives context
information: The window provides information about a case
of the process Motor Claim with the locus of control confined
to the sub-process Register Claim. The zone in the middle

indicates that the first activity in Register Claim has been
completed and that there are two activities on the status line:
Policy holder data and Opposite party data. Both activities
are enabled. Note that inside the sub-process different forms
are offered to the worker.

Figure 4: A FLOWer form containing free, mandatory, and restricted data objects.

Figure 4 shows a FLOWer form. This form corresponds to the
activity Collect case data, i.e., the first activity of sub-process
Register Claim. The form provides a view on a subset of the data
objects associated to the case.

FLOWer forms have all the options that are standard for
current form packages. A form can be linked to zero or more
activities or sub-processes. On the other hand, only one form can
be connected to an activity. The statuses of the data objects on a
FLOWer form are shown to the user. FLOWer indicates, for
example:
- those data objects that are mandatory in order to complete

the activity that is now on the status line and to which this
form is connected;

- those data objects that already have a value but that need to
be re-confirmed or adapted because a previous activity was
carried out again.
Because a form can be connected to more than one activity,

the user can carry out various activities through one form and in a
single session. If all mandatory data objects have been entered,
FLOWer automatically completes the activity and immediately
shows the mandatory fields belonging to the next activity that is
connected to this form. The user therefore does not need to return
to a work tray to start up the following activity. In other words, an
experienced employee can process a case largely through the
forms. Moreover, FLOWer also ensures that an employee can
only enter information on those fields for which he or she has
permission (on the basis of the Role Model and the status of the
case). This allows you to model that an employee with a low role

can only fill in a part of the form, and an employee with a high
role can fill in the entire form.

4.3 FLOWer Studio
The process design environment of FLOWer is called Studio. In
this graphic design environment a process can be designed in full.
A design consists broadly of four elements:
1. Process flow to determine the sequence of processing. The

available object types are described below;
2. Role graph in which the roles and their interrelationships are

recorded. A role represents an authorization level within a
process. The roles and role graph are defined for each
process;

3. Data that is important for handling the process;
4. Forms where the data can be shown and entered.
Let us first consider the process flow, i.e., the way precedence
relations etc. are handled in FLOWer. The following types of
process objects or nodes are available:
- Activity, with three sub-types, namely an activity connected

to: a FLOWer form, a standard letter, or an application. A
standard letter is a feature to automatically create documents
- with data text integration - allowing all the data of the case
to be used.

- Sub-plan or sub-process, also consisting of three types:
static, dynamic, or sequential.

- Decision, in two types: user decision and system decision. A
user decision is taken by the user during processing. A
system decision is taken by FLOWer during processing,
based on the data known at the time.

The process objects mentioned are used in the process flow. A
process flow is, in fact, a flow diagram, or graph. The process
flow describes the order in which the process objects should be
handled. A sub-process is an object that is also a graph. In this
way a tree structure is formed with a main process and below it,
the sub-processes.

The UML meta model given in Figure 1 did not incorporate
sub-processes. Since FLOWer supports three sub-processes
relevant for case handling we discuss the three types of sub-
processes in more detail:
- Static sub-process. A static sub-process represents a part of

the process that is grouped for purposes of structuring. An
example is ‘Register Claim Data’ in the case of a motor
claim. This sub-process contains a number of activities, all of
which relate to registering the claim.

- Dynamic sub-process. A dynamic sub-process represents a
part of the process that needs to be repeated a number of
times during processing. An example is the ‘Process
Witness’ function in the case of a motor claim. This sub-
process needs to be repeated for each witness. It goes without
saying that at any time the employee could have more than
one witness to deal with. Note that a dynamic sub-process is
not the same as iteration. In the case of iteration, part of the
process is carried out again whereby the previous result is
overwritten. In a dynamic sub-process a number of separate
sub-processes are created. In the example mentioned, there is
exactly one sub-process for each witness.

- Sequential sub-process. A sequential sub-process is similar
to a dynamic sub-process with the difference that, with
sequential sub-processes, only one sub-process can ever be
worked on at a time. In other words, a new instance is only
possible after the previous one has been completed. An

example is ‘Request Information’ in the case of a motor
claim. If the information does not arrive in time, the first sub-
process is terminated and a new instance is created, whereby
the information is again requested. A sequential sub-process
is particularly suitable for modeling reminders and diary
entries.

The static sub-process is supported by most WFM systems.
However, as indicated in [4], many workflow systems have
problems dealing with sub-processes which are instantiated
multiple times at run-time. The dynamic sub-process and the
sequential sub-process constructs of FLOWer are powerful
mechanisms to deal with these multiple instances inside a single
case. Note that sub-processes were not considered in Figure 1.

FLOWer uses a role to indicate a permission or authorization
level. A role is always connected to a process. This allows us to
define the role of ‘Senior Handler’, for example, for the ‘Settle
Motor Claim’ process and the role ‘Senior Handler’ for the
‘Process Credit Application’ process. These roles are different
because a role exists within the context of a process. An employee
has the role of ‘Senior Handler’, for example, for the ‘Settle
Motor Claim’ but not for the ‘Process Credit Application’
process. Besides, it is also possible to connect an employee to a
function to which a collection of roles (with their accompanying
processes) can be connected. These possibilities mean optimum
flexibility. Roles can also be used to screen a process. You can
opt, for example, to model that only an employee with the
‘Medical Adviser’ role can view the part of a process (activities,
data etc.,) that relates to medical matters.

Organizations are modeled by collections of roles for
different processes. It is possible to define that one role is higher
than the other role by placing the roles in a so-called role graph. A
higher role can always do everything that a lower role can do, in
other words there is succession, except for the screening
functionality. In that case even higher roles are not allowed to
even see, let alone carry out, the screened process parts. The
relationships between the different roles can be specified
graphically using a so-called role graph.

FLOWer uses the relationships in the role graph to determine
what a user can do based on his/her roles. To do this, FLOWer
uses the role model described in the meta model, i.e., the process
designer has to define three roles for each process object (node):
(1) the execute role, (2) the redo role, and (3) the skip role. The
execute role is the role that is necessary to carry out an activity or
to start a sub-process. This role is consistent with what the WfMC
calls a role [15]. The WfMC does not identify the other two types
(i.e., redo and skip). Nevertheless, they are essential for creating
operational flexibility. The redo role on an activity is the role that
is necessary to return the case to before that activity. Suppose that,
in a case such as ‘Settle Motor Claim’, an employee wants to redo
an activity carried out earlier, such as ‘Register Claim Data’. This
means that all the interim activities also need to be carried out
again. The employee may only do this if he/she has a role that is at
least as high as all the redo roles of the interim activities and the
‘Register Claim Data’ activity itself. Also he/she must then at
least have the execute role of ‘Register Claim Data’ in order to
handle this activity again. The skip role is necessary to pass over
an activity. In order to skip two consecutive activities, for
example, the employee must have a role that is at least equal to
the skip role of those two activities.

In administrative processes, progress is determined by the
data that is present. This is a generally accepted fact. Some of this

data is purely process control data that can be used, for example,
in decisions. In this way the typing of a case as ‘straightforward’
or ‘complex’ determines the subsequent activities. Other data is
purely content-related such as the telephone number of a client,
for example. But some data includes both aspects and is relevant
for both the content and the control. An example is the level of the
claim amount that determines the control, but is also defined in a
primary (or legacy) system.

FLOWer has extensive possibilities for defining and typing
data, including structures and arrays. It is even possible to define
all data (so including all content data) in FLOWer. But this is not
necessary, of course. With the integration functionality of
FLOWer, this type of data can also be stored only in the primary
systems.

FLOWer is completely data driven and uses data to
determine the state of a case. A data object within a process can
be connected to zero or more activities. The nature of this
connection determines the importance of the data object for the
activity. FLOWer supports the types free, mandatory, and
restricted mentioned earlier. An activity has been completed if all
previous activities have been completed (or skipped), all
mandatory/restricted data objects of an activity have a value, and
the completion condition of an activity evaluates to true.

If an employee wants to give a restricted data object a value,
the accompanying activity must be due to be carried out (be
positioned on the status line) or the employee must move the
status line by skipping the activities that are in between or by
redoing the activity again. This is only possible if he or she has
the appropriate role, as described in the FLOWer role model.

Moving the status line influences the activities that had
already been carried out and are now in front of the status line
again. These now have to be carried out again. In FLOWer it is
not necessary to give all involved data objects a value again.
FLOWer remembers the value entered earlier and gives the data
objects a special status, ‘awaiting confirmation’. The user can
then confirm the value or values for each data object or activity.

The fact that FLOWer Studio allows for the definition of
powerful links between activities, roles, and data objects results in
an extremely flexible model where the user, depending on his or
her role, can process a very large number of exceptions. But, on
the other hand, by using restricted data objects and the ‘no-one’
role, it is also relatively simple to force the sequential order of
handling.

A detailed discussion on FLOWer CFM, FLOWer
Integration Facility, and FLOWer Management Information and
Case History Logging is beyond the scope of this paper. Using
these tools it is possible to fine-tune the operational and
organizational aspects of case handling, to integrate with a variety
of applications ranging from legacy systems to web-based
solutions, and to obtain detailed management information. It is
important to note that FLOWer clearly distinguishes
authorization and distribution aspects. The process model does
not contain any references to specific behavior at run-time. E.g. it
is possible that two workgroups use different distribution
mechanisms. This is clearly an characteristic of the work
distribution and not of the process.

The interested reader is referred to an on-line demo which
shows the functionality of FLOWer: http://www.pallas-
athena.com/.

5. RELATED WORK
Many authors have addressed the issue of workflow flexibility. In
recent years, there have been many workshops, edited books, and
special issues of journals on workflow flexibility [3,5,13,14].
Agostini and De Michelis [6] argue that very simple workflow
models should be used and exceptions should be dealt with by
hand through so-called “linear jumps’. Other authors, e.g., [7],
give concrete adaptation rules. Some authors even state that
“workflow change is a workflow” [8]. Several authors propose a
more declarative style of specifying workflows. Consider for
example the Vortex paradigm [11]. These are just a few pointers
to the elaborate literature on workflow flexibility.

The problems with respect to designing process models for
real-life processes have been recognized in [2,10,19]. Herrmann
[10] seeks a solution by using semi-structured workflow models.
Reijers et al. [2,19] propose the product-driven approach adopted
in this paper.

Vendors of WFM systems have also been struggling with
flexibility issues. Systems such as InConcert (TIBCO) allow for
ad-hoc routing of workflow instances (i.e. cases). However, these
systems require on-the-fly modifications of process models by
end-users. Vectus (London-Bridge/Hatton Blue) is one of the few
systems also aiming at case handling. Compared to FLOWer, the
focus is more on Customer Relationship Management (CRM)
than supporting a variety of workflow processes. Recently,
Staffware extended their workflow management system with a
case handler. Unfortunately, the case handler only works within
the context of a single step in the process.

6. CONCLUSION
There are currently very few, if any, workflow systems available
that can be applied to flexible processes with frequent exceptions
and where individual employees have to be able to carry out a
wide range of different steps. This type of functionality is called
‘operational flexibility’. Most standard workflow packages do not
support this because each exception needs to be explicitly
modeled. Furthermore, there is often no functionality available for
allowing one user to control several steps in a process. Standard
workflow packages also fail to provide another type of process
support: case handling. Case handling involves approaching a
case-related or folder-related task from the context of the entire
folder. Those carrying out the process must have at all times full
insight into all the tasks and activities that could be carried out or
have already been carried out at any given moment.

To address these issues we have developed a meta model to
support product-driven case handling (PDCH). The meta model
has been used to identify the differences with conventional
workflow management. It should be noted that contemporary
WFM systems only support a specific form of case handling, i.e.,
case handling with context tunneling, rigid routing (i.e., no redo
or skip and all data object restricted), and a push-oriented
distribution of work items.

In this paper we also presented a system to support PDCH.
FLOWer is unique in providing both operational flexibility as
well as case handling facilities. The development of the first fully
operational version of FLOWer was completed in the middle of
2000. Therefore, the installed base is limited. However, the
diversity of the processes currently supported by FLOWer is
impressive. Examples of case-handling processes currently
managed by FLOWer are: application for Dutch citizenship,
handling of house tax complaints, handling of complex social

http://www.pallas-athena.com/
http://www.pallas-athena.com/

benefits applications and complaints, handling of insurance
claims, and handling of lawsuits.

7. ACKNOWLEDGMENTS
We thank all the people involved in the development of FLOWer.
Special thanks go the FLOWer development team of Pallas
Athena. We also thank the anonymous referees for their
comments.

8. REFERENCES
1 W.M.P. van der Aalst. The Application of Petri Nets to

Workflow Management. The Journal of Circuits,
Systems and Computers, 8(1):21-66, 1998.

2 W.M.P. van der Aalst. On the automatic generation of
workflow processes based on product structures.
Computers in Industry, 39:97-111, 1999.

3 W.M.P. van der Aalst, J. Desel, and A. Oberweis,
editors. Business Process Management: Models,
Techniques, and Empirical Studies, volume 1806 of
Lecture Notes in Computer Science. Springer-Verlag,
Berlin, 2000.

4 W.M.P. van der Aalst, A.H.M. ter Hofstede, B.
Kiepuszewski, and A.P. Barros. Advanced Workflow
Patterns. In O. Etzion and P. Scheuermann, editors, 7th
International Conference on Cooperative Information
Systems (CoopIS 2000), volume 1901 of Lecture Notes
in Computer Science, pages 18-29. Springer-Verlag,
Berlin, 2000.

5 W.M.P. van der Aalst and S. Jablonski, editors.
Flexible Workflow Technology Driving the Networked
Economy, Special Issue of the International Journal of
Computer Systems, Science, and Engineering, volume
15, number 5, 2000.

6 A. Agostini and G. De Michelis. Improving Flexibility
of Workflow management Systems. In [3], pages 218-
234.

7 Casati, S. Ceri, B. Pernici, and G. Pozzi. Workflow
Evolution. Data and Knowledge Engineering,
24(3):211-238, 1998.

8 C.A. Ellis and K. Keddara. A Workflow Change Is a
Workflow. In [3], pages 218-234.

9 M. Hammer and J. Champy. Reengineering the
corporation. Nicolas Brealey Publishing, London,
1993.

10 T. Herrmann, M. Hoffmann, K.U. Loser, and K.
Moysich. Semistructured models are surprisingly
useful for user-centered design. In Coop2000, Sophia-
Antipolis, France, May 2000.

11 R. Hull, F. Llirbat, E. Simon, J. Su, G. Dong, B.
Kumar, and G. Zhou. Declarative Workflows that
Support Easy Modification and Dynamic Browsing. In
Proceedings of International Joint Conference on Work
Activities Coordination and Collaboration (WACC'99),
pages 69-78, 1999.

12 S. Jablonski and C. Bussler. Workflow Management:
Modeling Concepts, Architecture, and Implementation
International Thomson Computer Press, 1996.

13 M. Klein, C. Dellarocas, and A. Bernstein, editors.
Proceedings of the CSCW-98 Workshop Towards
Adaptive Workflow Systems, Seattle, Nov. 1998.

14 M. Klein, C. Dellarocas, and A. Bernstein, editors.
Adaptive Workflow Systems, special issue of the
journal of Computer Supported Cooperative Work,
volume 9, numbers 3-4, 2000.

15 P. Lawrence, editor. Workflow Handbook 1997,
Workflow Management Coalition. John Wiley and
Sons, New York, 1997.

16 A. Orlicky. Structuring the bill of materials for mrp.
Production and Inventory Management, pages 19-42,
Dec 1972.

17 E.A.H. Platier. A logistical view on business processes:
BPR and WFM concepts (in Dutch). PhD thesis,
Eindhoven University of Technology, Eindhoven,
1996.

18 G. Poyssick and S. Hannaford. Workflow
Reengineering. Adobe Press, Mountain View, CA,
1996.

19 H. Reijers and K. Voorhoeve. On the Optimal Design
of Processes and Information Systems (in Dutch).
Informatie, 42:50-57, December, 2000.

20 D.M. Strong and S.M. Miller. Exceptions and
exception handling in computerized information
processes. ACM Transactions on Information Systems,
13(2):206-233, 1995.

	INTRODUCTION
	ON THE RELATION BETWEEN MANUFACTURING AND WORKFLOW
	PRODUCT-DRIVEN CASE HANDLING
	PDCH Concepts
	PDCH UML meta model
	PDCH dynamics

	FLOWer
	FLOWer architecture
	FLOWer Case Guide
	FLOWer Studio

	RELATED WORK
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

