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Abstract—Stochastic process models are a type of model that
explicitly include elements of probability in describing an orga-
nization, facilitating different modes of analysis and simulation.
Having obtained models of an organizational process, say through
process mining, using them well depends on understanding their
quality, and being able to compare different models. There may
not be a single optimal stochastic model for a process, but trade-
offs between models, decided by their intended use. Reasoning
about trade-offs in a precise way requires quantitative measures,
and an understanding of how these measures relate, including
whether they capture independent underlying properties.

This paper is an empirical investigation of measures for
stochastic process models built from real-life logs. The experi-
mental design assembles a large collection of models built both
randomly and by discovery techniques. A wide spectrum of
candidate measures, drawn from and inspired by the process
mining literature, are applied using these models. Based on
this analysis, three stochastic quality dimensions are proposed:
adhesion, entropy and simplicity.

Index Terms—stochastic process mining, process conformance,
Stochastic Petri Nets, adhesion, entropy, simplicity

I. INTRODUCTION

The everyday behaviour of an organization - and hence
much of its impact in the world - depends on people and
systems in the organization. When the actions of such human
and machine “street-level bureaucrats” [1] are recorded in
information systems, they can be transformed into models of
the organization through process mining [2]. The notion of
whether something is routine or unusual is captured explicitly
with probability weightings in stochastic process models.
Formalized models, such as stochastic Petri nets [3], can be
used for process analysis and improvement, to investigate
performance, or as a component of business process simu-
lation. This automated discovery and analysis is the focus of
stochastic process mining.

Process model quality measures, such as proportion of
replayable traces, or number of model components, have been
defined to evaluate and guide model construction, as part
of the study of process conformance [2]. In (non-stochastic)
control-flow mining, the many quality measures that exist
are organized according to four quality dimensions: fitness,
precision, simplicity and generalization [2, p188]. This scheme

allows statements like “this discovery technique trades off
precision for simplicity” to be backed up with empirical
evidence from measures for those dimensions.
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Fig. 1: Models exemplifying adhesion and entropy variations
relative to log LE “ rxa, by20, xa, b, cy2, xa, b, c, cy1, xe, fy1s.

Using established control-flow process mining dimensions
as a starting point, in this paper, we investigate the question
of what dimensions may describe the quality of stochastic
process models. The mathematical space being explored is
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not purely analytical, as the underlying event logs to which
models are compared are real-life empirical data on the social
behaviour of organizations. This suggests using an exploratory
quantitative analysis. To conduct it empirically, we collected
and evaluated stochastic process models for real-life processes.
Models were tested against a set of computationally cheap
measures, based mainly on log-model comparisons. Further
testing was performed with two stochastic process confor-
mance measures [4], [5]. The process model collection con-
sisted of Stochastic Labelled Petri Nets (SLPNs) [4] and was
constructed by both random generation and discovery tech-
niques. Existing stochastic process discovery techniques [6],
[7], [8] were leveraged, and supplemented by the use of a new
genetic miner, Stochastic Evolutionary Tree Miner (SETM).

This empirical data was analysed for correlation and prin-
cipal components (PCA), discovering three components. We
name these as stochastic process model quality dimensions:
adhesion, entropy and simplicity. Adhesion represents how
little change is required to modify one process into another.
Figure 1 previews these dimensions with multiple models for
an example event log; more detailed discussion is in Section V.

This paper contributes 1) An experimental design for in-
vestigating stochastic process quality measure relationships
2) measures supporting that investigation 3) proposed model
quality dimensions. After formal preliminaries in Section II,
experimental design is explicated in Section III, including
measures and model generation. Section IV is a quantitative
analysis, with dimensions named in Section V. Section VI
discusses related work, and Section VII concludes.

II. PRELIMINARIES

Petri net and process mining definitions are used throughout
(see [3], [2, p80], [4]). Sequences are shown as xa1, . . . , any
and concatenation as `. The set of multisets (bags) over type C
is BpCq, and real-valued multisets are B`pCq. Multiset union
and intersection are \ and [ respectively.

Definition II.1 (Activities and Event Logs). Let A be a set of
activities in a process, and A˚ the possible sequences of those
activities. A trace σ P A˚ is a sequence of activities. Event
logs are multisets of traces BpA˚q.

L is the set of all logs. |L| is the number of traces in a log
L P L, and ||L|| the number of events. The number of cases
matching trace σ in log L P L is denoted Lrσs.

Definition II.2 (Stochastic Language). A stochastic language
Θ for traces over activity set A is a function Θ : A˚ Ñ r0, 1s
which denotes a probability for each trace, and sums to unity.

Definition II.3 (Petri nets). A Petri net is a tuple pP, T, F,M0q

of places P , transitions T , flow relation F Ď pPˆT qYpTˆP q
and initial marking M0. Markings are multisets of places M P

BpP q indicating a state of the Petri net.

The first node in F represents an incoming node and
the second an outgoing. Transitions are enabled when every
incoming place contains a token. Transitions fire, changing the

state of the net by consuming incoming tokens and producing
tokens for outgoing places.

Petri nets can be extended to model probabilities. To avoid
ambiguity, we refer to nets without probability constructs as
place-transition nets, following [3].

Definition II.4 (Stochastic Labelled Petri Net). An SLPN [4]
is a tuple pP, T, F,M0,W, λq such that pP, T, F,M0q is a
place-transition net. A weight function W : T Ñ R` assigns
each transition a weight. Labelling function λ : T Ñ AY tτu
then provides a mapping from transitions to a symbol library
of activities A. τ is a silent label where τ R A.

When transitions Te Ď T are enabled in a particular
marking, a transition t P Te fires according to the probability
given by W ptq

ř

t1PTe
W pt1q

. The sequences of labels generated by a
series of transitions through the model forms a trace, and the
collection of such traces and their probabilities is the SLPN’s
stochastic language. We assume traces end in deadlock.

Figure 1 shows example SLPNs. We define the set of all
SLPNs as G. SLPNs are a labeled variant of Stochastic Petri
Nets (SPNs) [3] and Generalized SPNs (GSPNs) [3].

Event Logs

XM collection EV collection

ran
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m
genetic
miner
(SETM)

GDT SPN [6]
Estimators [7]
Toothpaste [8]

exploration
measures	

evaluation
measures

XM dataset EV dataset

dimensional analysis �

Fig. 2: Experiment design for investigating stochastic quality
dimensions, from logs to models, measures and analysis.

III. EXPERIMENT DESIGN

Figure 2 illustrates the experiment design. A large number
of models were generated from event logs, then a variety
of measures calculated. The resulting collection was then
analyzed for possible model and measure relations. Models
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were collected using random generation, a genetic miner
(SETM), and existing stochastic process discovery techniques.
This diversity of models allows for variation in model quality
across different measures. Measures were partitioned into
experimental and computationally cheap exploration measures,
and already existing, more expensive, evaluation measures.
The use of cheap measures made testing a large set of models
practical. The full set of models, called the XM collection,
were measured using exploration measures. The discovery
technique subset, called the EV collection, was also measured
using evaluation measures. The measure results for these
models are termed the XM and EV datasets respectively.

Firstly, this section reviews existing evaluation measures,
to both explain their application here, and familiarize readers
with measures specific to stochastic process models. Secondly,
we introduce a technique for generating a play-out log for an
SLPN model. Thirdly, play-out logs and other techniques are
used to define a number of exploration measures, including
new measures. Lastly, the techniques used for model genera-
tion are outlined, as well as the data collection procedure.

A. Evaluation Measures

Conformance measures for stochastic process models have
been a focus of recent research. The three published techniques
known to the authors are used here as evaluation measures.

The truncated Earth-movers’ distance [5] (tEMSC) repre-
sents the shared probability mass between logs or stochastic
models. This measure is calculated using both the string edit
(Levenshtein) distance and the Earth-movers’ distance across
a reallocation matrix of paths in the stochastic languages
of model and log. This experiment used a probability mass
threshold of 0.8, shown as tEMSC0.8.

Entropy precision (HP ) and recall (HF ) [4] calculate
the respective log-facing and model-facing components of
a Stochastic Deterministic Finite Automata (SDFA). Both
measures have a stronger theoretical basis for representing
partial traces than the exploration measures in Table I. Uses
have shown both success differentiating high-quality models
and limitations on application to lower quality models [7].
Unsound, non-SDFA, or lower quality models may result in
extended runtimes or non-termination.

B. Stochastic Play-out Logs

A number of exploration measures make use of play-out
logs [2, p41], an established process mining technique for gen-
erating event log traces based on process models. For place-
transition Petri nets, a standard way of generating play-out logs
is by “playing the token game”: noting the traces generated
when the model advances from the initial marking through
subsequent states. The token game with place-transition nets
requires making arbitrary choices or introducing a probability
function for choosing between enabled transitions. Stochastic
models, such as SLPNs, already include explicit probability
functions which define behaviour when multiple transitions
are enabled. This can productively constrain the generation
of possible play-out logs to a far smaller set of outputs. The

play-out log can then substitute for the model when comparing
other logs or models, allowing measurement of models which
otherwise could not be practically included in the experiment.
By using a finite representation to approximate the possibly
infinite stochastic language of the model, a stochastic play-out
log eliminates or greatly reduces the need for multiple samples
to represent possible traces.

Definition III.1 (Play-out log). A play-out log Lp P B`pA˚q
is a positive real-valued multiset of traces.

In real-valued multisets, the count of a member is in R`,
e.g., rxay3.4, xb, cy2.0s. The set of all play-out logs is L` Ą L.
The ¨ operator scales all occurrence values by a factor.

Definition III.2 (Stochastic play-out log generator). A log
generator is a function f : GˆNÑ L`, taking an SLPN and
a target size, and giving a play-out log, such that |fpg, kq| “ k.

Detail of implementation function spg is in Appendix A.

C. Exploration Measures

Eighteen exploration measures were used. To allow the
analysis of a large set of models, computational cheapness
was prioritized. Measures, summarised in Table I and detailed
in Appendix B, are either existing measures in the literature, or
simplifications of existing measures or dimensions. We found
a play-out log target generation size of 1000 traces allowed
for good granularity within reasonable execution times.

Definition III.3 (Measures and Play-out Measures). A mea-
sure is a function comparing models and logs, µ : G ˆ L` Ñ
r0, 1s. A play-out measure is a function comparing play-out
logs and event logs, π : L` ˆ L` Ñ r0, 1s.

Given a play-out measure π, a model-log measure µπ is
calculated from a model g P G, a play-out log size k, and an
event log L P L using µπpg, k, Lq “ πp |L|k ¨ spgpg, kq, Lq.

The experimental design concept for each measure, and
categorization by existing control-flow dimensions, are sum-
marized in Table I. The log-only measures trace count (LTC)
and event count (LEC) were also captured.

D. Model Generation

A variety of models were included in the experiment to
allow for the observation of more general relationships. Gen-
eration techniques were chosen to include different anticipated
quality profiles, including low, moderate and higher quality
models, using random generation and discovery techniques.

Each technique was applied to six public event logs, sum-
marized in Table II. For XM (exploration), 18 exploration
measures were calculated across each model, with sample size
n “ 9301. For EV (evaluation), a smaller set of discovery
and estimated higher quality models had three additional
evaluation measures calculated.

Random models were generated using Probabilistic Process
Trees (PPTs) [8]. PPTs are a form of weighted process tree
which correspond to a subset of SLPNs. To limit complexity,
models larger than the arbitrary cutoffs of 1000 transitions or
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TABLE I: Measures and their design rationale

Abbrv. Measure Name Design Concept
Exploration measures
EMT Earth Movers With Play-out Trace Earth Movers
TMO Trace Probability Mass Overlap Probability Mass
TOR Trace Overlap Ratio Probability Mass
ARG Activity Ratio Gower Fitness
TRG2 Trace Ratio Gower length 2 Fitness
TRG3 Trace Ratio Gower length 3 Fitness
TRG4 Trace Ratio Gower length 4 Fitness
HIFT Play-out Entropy Intersection Fitness Fitness
HIPT Play-out Entropy Intersection Precision Precision
HJFT Play-out Entropy Projection Fitness Fitness
HJPT Play-out Entropy Projection Precision Precision
SSENC Structural Simplicity by entity count Simplicity
SSEDC Structural Simplicity by edge count Simplicity
SSS Structural Simplicity incl. stochastic Simplicity
TGF1 Generalization by Trace Floor count 1 Generalization
TGF5 Generalization by Trace Floor count 5 Generalization
TGF10 Generalization by Trace Floor count 10 Generalization
TGDU Generalization by trace uniqueness Generalization
Evaluation measures
tEMSC0.8 Earth Movers truncated Earth Movers
HP Entropy Precision Precision
HF Entropy Recall Fitness
Log measures
LTC Log Trace Count Log
LEC Log Event Count Log

TABLE II: Event logs

Log Traces Variants |A| Domain
BPIC 2013 closed 1487 183 4 Issue tracking
BPIC 2013 incidents 7554 1511 3 Incident tracking
BPIC 2018 control 43808 59 7 EU Agriculture policy
BPIC 2018 reference 43802 515 6 EU Agriculture policy
Road Traffic Fines 150370 231 11 Italian policing
Sepsis 1054 846 16 Hospital diagnosis

a tree depth of 30 were excluded. Up to 1000 random models
were generated for each log. Randomly generated models were
anticipated to be of lower quality.

A novel genetic miner for discovering stochastic process
models, the Stochastic Evolutionary Tree Miner (SETM), was
implemented for this experiment. It is based on the Evolution-
ary Tree Miner [9]. The SETM generates random PPTs for the
initial generation of models. Next, four possible mutations are
applied: to add a node (including silent transitions), mutate
a single node, remove a subtree, or remove useless nodes
(specifically to apply Preserving Compression rules [8]). These
mutations preserve valid and consistent tree weights. Models
were exported as SLPNs.

Where used, the SETM was run across 1000 generations
with a fitness function incorporating all eighteen exploration
measures with equal weight. The fittest model in each genera-
tion was added to the XM (exploration) collection, generating
a spectrum of models of moderate quality. The genetic miner
yielded results for four of the logs in this experiment; the two
logs with most activities did not yield results.

Models generated by existing discovery techniques were
also included in the XM collection, and were anticipated to
be of higher quality. Public implementations of stochastic
process discovery techniques for GSPNs [6], [7], [8] created
a further 103 models relating to the selected event logs. The

Fig. 3: Correlations between exploration measures and log
measures on the XM and EV combined dataset, ordered to
show groups of correlated measures.

EV collection comprised only these discovered models. The
state of the art in stochastic discovery techniques still yield
low-quality models in a number of cases, so there were broad
ranges of values available for analysis of the EV dataset.

Exploration measures and SETM were implemented in Java
using the ProM framework1. Experiments were run on a Linux
clustered data centre using 50 Gb of RAM.

IV. QUANTITATIVE ANALYSIS

We performed an exploratory quantitative analysis on the
dataset of model measures, discovering three orthogonal com-
ponents, which were examined for robustness.

A. Analysis

Analyses of correlations and principal components [10]
were performed to determine commonality, and orthogonality
between measures, that indicated potential quality dimensions.

To weight the three sources of models equally across
random, SETM and discovery sources, sources with less than
1000 models had data points repeated as if resampled. Sample
sizes quoted throughout exclude resampling.

A correlation matrix for the exploration measures was gen-
erated for the XM and EV datasets. As seen in Figure 3, some
measures are identical or very highly correlated (ą 0.99q,
with observable groupings of correlation and orthogonality.
For example, TGDU and TOR are very highly correlated.
The number of dimensions was estimated using a scree plot,
suggesting three dimensions covering 89.3% of the dataset

1All source code is accessible at https://github.com/adamburkegh/spm dim
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Fig. 4: Variation by log across the first two principal compo-
nents on the XM and EV combined dataset.

variance for exploration measures. An Anderson-Darling test
for normality showed no variables fit a normal distribution
(p ă 0.001q, ruling out techniques such as factor analysis.

Next, a scaled Principal Component Analysis (PCA) was
performed to analyse the contribution of measures and identify
potential dimensions. PCA uses an input data set to calculate
orthogonal components that successively maximize variance.
Different logs showed different profiles on the principal com-
ponents, as seen in Figure 4, but the components do not simply
correspond to the source logs. For example, though the Road
Traffic Fines models are disjoint with the BPIC2013 incidents
models, models from other logs intersect in measure space.
A check against model generation type correspondence was
similar. The first three principal components covered 54.5%,
19.2%, and 15.5% of the variance.

The principal component analysis was then repeated for the
EV dataset, including evaluation measures. A scree plot again
suggested three dimensions. Including only models for which
all measures were available, sample size n “ 72, the three
components cover 52.9%, 17.8% and 11.0% of the variance.

B. Robustness Tests

We performed robustness tests on result subsets to evaluate
generalizability. These are summarized below, with additional
figures excluded due to space limitations.

The EV dataset already excludes random and genetically-
mined (SETM) models. When SETM models are excluded
from the XM dataset, the three dimensions remain identifiable.
The second and third components are reversed across the
XM dataset and the EV dataset, but are associated with
many of the same measures. Entropy Trace Fitness (HIFT)
remains associated with the first component, but Entropy Trace
Precision (HIPT) is more closely correlated with HIFT, and the
second component is strongly associated with ARG. Similar,
but not identical, components are identified when including
evaluation measures, with HIFT more correlated with the
second component rather than the first.

Fig. 5: Measure contribution heatmap by component, on
exploration measures for the combined XM and EV dataset.

Fig. 6: Measure contribution heatmap by component, for
exploration and evaluation measures on the EV dataset.

Analysis was also performed on subsets selected by log,
which was largely consistent with the identified dimensions.
On some subsets closely correlated measures became collinear
and an arbitrary measure had to be excluded to proceed with
analysis. Measures showing this behaviour were the groups
(TOR,TMO) and the TGF measures.

V. QUALITY DIMENSIONS

We propose the names adhesion, entropy and simplicity for
the three empirical dimensions. Figures 5 and 6 show the
contribution of the principal component for a measure on the
exploration and evaluation datasets respectively. Measures are
ordered by dimension contribution. In the EV dataset, Entropy
becomes more explanatory than Simplicity.

Adhesion. To represent how little effort is required to
transform one stochastic language into another, we introduce
the term adhesion. Such a transformation can involve both
modifying which traces the process accepts, and the proba-
bility of those traces. An informal interpretation is how few
changes a manager needs to make for their team to adhere
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to a different way of working. In this experiment the PCA1
component showed correlation with the evaluation measure
Earth Movers Distance (tEMSC0.8), and exploration measures
Entropy Trace Fitness (HIFT) and Trace Generalization Floor
(TGF5/10). It also showed moderate correlation with Earth
Movers With Play-out Trace (EMT).

Entropy measures the amount of information in a system:
in this case the combination of log and model. The measures
of entropy precision HP and recall HF [4] both contributed
to this dimension, along with entropy precision tracewise
HIPT. Activity and subtrace measures ARG and TRG2-4
approximated this dimension on the EV dataset and proxied for
more granular measures on the XM dataset. The identification
of entropy is supported by related stochastic formalizations [4],
and its well-established status in information theory.

Simplicity in models is well-recognized as a virtue in science
generally [11], and a desirable dimension in process models
specifically [2, p118]. The three simplicity measures used,
SSEDC, SSENC, and SSS, were highly correlated and largely
orthogonal to other components, with SSS best aligned with
the PCA dimension.

The SSEDC and SSENC measures showed some correlation
with entropy on the EV dataset, and are sensitive to only
control-flow variation in models. Most divergence between
simplicity measures was caused by SSS having zero values
for 22 discovery models, including 1 from the GDT SPN
technique [6] and 21 from the estimator technique [7]. This is
a limitation of the measure, but for this analysis, it provides
evidence for the sensitivity of the experiment design, and a
common simplicity dimension.

A. Discussion

The proposed dimensions have a number of explanatory
features, within the constraints of the experiment.

The adhesion dimension is distinct from control-flow quality
dimensions in the following way. Fitness represents whether
the model can represent the entirety of the language of the
log. Adhesion instead represents how little change is required
to alter the stochastic language to match the target. tEMSC0.8
measures this dimension by capturing both small trace-level
alterations (for instance., adding a missing activity) and re-
allocated probability mass. Precision characterizes a type of
modelling efficiency: how much of the model is needed to
represent shared elements between model and log. Adhesion
relates to stochastic language probability weightings, so the
TGF measures, which examine traces with more probability
mass, approximate it. It also encompasses the idea of edit cost
to change paths, so substring-based measures such as TRG2-4
have some correlation in sets of higher quality models.

Figure 1 shows four models for the simple example log LE .
This log has a frequently used path xa, by, with a number of
much rarer variations. The examples use tEMSC0.8 to measure
adhesion and the sum of HP and HF to measure entropy.

Model 1a has high adhesion and entropy by modeling only
the most frequent path and its suffixes. 1b models the most
frequent trace simply, but includes paths not represented in

the log such as activities y and z. The model covers most of
the probability mass, and little needs to change to represent
missing traces, but much of the information in the log is not
represented. Model 1c includes much information not in the
log, but still describes some of the probability mass of the
paths. Lastly, model 1d represents many of the paths in the
log, but is not representative of their probability, so has high
entropy and low adhesion. Simplicity also varies across these
examples, with 1a being simpler than 1c.

The entropy dimension discovered combines fitness and
precision measures. This suggests considering these as two
aspects of a single dimension, and the future design of
new entropy-based measures to reflect the dimension directly.
Subtrace sensitivity is an approximation to entropy in both
datasets, particularly for lower quality models where trace-
based measures are zero. The HIPT also shows some cor-
relation with this dimension on both datasets, despite only
considering full traces. On the other hand, the examples show
that like their control-flow counterparts, entropy fitness and
precision can be made to vary independently of each other in
some cases. Perhaps further study may establish that they are
not only useful descriptive tools for stochastic process models,
but can also act as orthogonal dimensions under more specific
conditions than those observed in this experiment.

Exploration measures correlated with the adhesion and
entropy dimensions might be employed as estimators for adhe-
sion in contexts where tEMSC0.8 or HP cannot be calculated,
or where execution cost is crucial.

These results have limitations. A wide range of models and
logs were used, but other datasets may reveal other elements.
Larger logs of over 200,000 traces or 16 activities were not
used, and SETM use was limited by larger numbers of log
activities. The stochastic models used were limited to SLPNs,
though some of the discovery models were derived from dis-
covery algorithms with BPMN output, and a mix of discovery
algorithms were used. The use of PPTs for random generation
and for the seed generation in the SETM limits the possible
models generated, though it also constrains them to sound
models with consistency constraints on stochastic weights.
The SETM evolutionary fitness function, which includes all
the exploration measures, may tend to a correlative effect
between measures. The recurrence of the same correlations
when excluding SETM models suggests this effect, if it exists,
was not large.

As an experimentally derived theory, further experimen-
tation will be the ultimate test of generality for all of the
proposed dimensions. Currently, these orthogonal dimensions
comprise a descriptive tool, not a predictive quantitative
model, and future experiments may yield further insights. It is
promising that features corresponding to the dimensions can
be qualitatively observed in specific models above.

VI. RELATED WORK

In both the natural sciences [11] and statistical learning [12],
the aim is usually to choose a single best model based on some
universal calculation, with the exact form of that calculation
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a matter of robust debate [11]. In process mining, choice
of model is seen as a context-driven judgement call, where
desirable criteria are necessarily traded-off against one another.
That approach is supported by the concept of quality dimen-
sions. Initial investigations explored dimensions such as struc-
tural and behavioural appropriateness [13] before converging
on fitness, precision, simplicity and generalization [14], [2].

The current study builds directly on the analysis of
genetically-mined control-flow models [14], both in study
design, and direct extension of the Evolutionary Tree Miner
code [9]. That work conducted a qualitative study on classes of
models generated with different genetic miner constraints. In
this work, the dimensions derived through quantitative analysis
in Section IV are applied to a small qualitative analysis in
Section V-A.

At least one quantitative study comparing process mea-
sures and dimensions has been conducted for control-flow
dimensions [15]. Factor analysis was used to identify common
components, for which clear correspondence was found for
existing fitness and precision measures. Simplicity was ex-
cluded from the analysis. Like this study, it does not provide
evidence for a generalization dimension. Also like this study,
it abstracts from the log in ways that could prevent such a
dimension being detected. Correspondence among groups of
measures was clearer than for the current study, which may
be due to concepts not translating to stochastic models, or
the computationally cheaper exploration measures not being
as generally useful as proven control-flow measures.

Stochastic conformance measures are reviewed in Sec-
tion III-A. A framework for calculating behavioural simplic-
ity [16] can also accommodate stochastic models. In contrast
to the structural simplicity used in this paper, behavioural
simplicity represents the underlying problem complexity rather
than the specific model representation. The relationship be-
tween behavioural simplicity and other quality measures re-
mains of research interest.

As well as the GSPN discovery techniques used in this
experiment [6], [7], [8], other recent research has shown
techniques for discovering probability-annotated BPMN mod-
els [17], probabilistic declarative models [18], non-classical
probability Bayesian networks [19] and Bayesian models for
place-transition Petri nets [20]. The Bayesian technique [20]
also has potential applications for model comparison and new
conformance measures.

VII. CONCLUSION

Stochastic process models provide a description of the
“everydayness” of work in organizations. To help in the
use and evaluation of these models, we conducted an em-
pirical study of stochastic process model quality measures
and relationships. Models were generated from six real-life
logs and collected using both random model generation and
process discovery. Analyzing a variety of computationally
cheap measures across thousands of models, three quality
dimensions were observed using principal component analysis.
Two dimensions were identified with model simplicity and

log-model system entropy. An adhesion dimension is also
proposed, which represents how little change is needed for a
model to match the stochastic language of a log. Future work
may further explore the theoretical basis of these dimensions,
construct correlating measures, and challenge the theory with
further empirical tests.

APPENDIX

A. Stochastic Play-out Log Generator

The stochastic play-out log generator implemented for these
experiments is represented as function spg. Function eb : G ˆ
BpP q Ñ PpT q returns all enabled transitions for a net and a
marking. Function tg : GˆBpP qˆT Ñ BpP q returns the new
marking after a transition fires.

Let g “ pP, T, F,M0,W, λq below
tr : T ˆ G Ñ A˚

trpt, gq “ xy if λptq “ τ else xλptqy
sdlg : G ˆ BpP q ˆ NÑ L

sdlgpg,m, nq “ \
tPebpg,mq

rσf | σ “ trpt, gq ` σtl

^ d “ floorp
nW ptq

Ws
q ` surpluspt, g,m, nq

^ σtl P sdlgpg, tgpg,m, tq, dqs

where Ws “
ÿ

t1Pebpg,mq

W pt1q

spgpg, nq “sdlgpg,M0, nq

The function takes a target size as a trace “budget”, then
recursively splits the budget according to each possible state in
a token game, and the relative weights of enabled transitions.

Rounding, represented by the surplus function, is done by
lexical order of the transition labels, then to the transition with
the least allocation, then arbitrarily. The implementation also
imposes a maximum trace length of 5000 to limit the impact
of models generating very long traces (from certain loops).

B. Detailed Exploration Measures

This section details the measures summarized in Table I.
For the measure definitions below, let event log L P L, model
g P G. To obtain the playout log M P L`, the model g is
played out to k traces, then occurrences are scaled to match
the original log: M “

|L|
k ¨ spgpg, kq.

The first measure is a simplification of the stochastic Earth
Movers’ distance [5].

EMT Earth Movers with play-out trace weighting.

EMT pM ,Lq “ 1´
1

|L|

ÿ

σPL

maxpLrσs ´M rσs, 0q

Two measures address how much of the probability mass of
the log is in shared traces.

TMO Trace Probability mass overlap.

TMOpM ,Lq “
ÿ

σPL[M

pL[Mqrσs

|L|
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TOR Trace overlap ratio.

TORpM ,Lq “
|L[M |

|L|
Analysis of which subtraces occur in both log and model
(represented by the play-out log) approximate fitness.
ARG The Gower’s similarity [21] between activity count ratio
vectors. This measure is designed to be deliberately sensitive
to variation between poor quality models, when other measures
may be zero. Given log L, take STnpLq to be the subtraces
of length n, σs#L the subtrace frequency of σs, with each
occurrence in a trace counted, and ||L||n to be the total
subtraces of length n. ARG is a special case: ARG=TRG1.
TRGn Subtrace ratios, activity ratios generalized to sub-traces
of length n. TRG2, TRG3 and TRG4 are all measured.

TRGnpM ,Lq “
ÿ

σPSTnpL\Mq

1´ yσ

where yσ “
1

maxpσ#L, σ#Mq

ˇ

ˇ

ˇ

ˇ

σ#L

||L||n
´
σ#M

||M ||n

ˇ

ˇ

ˇ

ˇ

Two simplified variants of evaluation measure entropy [4],
based on play-out logs, are used to define fitness and precision
measures. The first uses bag intersection.
HIFT Play-out entropy intersection fitness.

HIFT pM ,Lq “ minp1,
HpL[Mq

HpLq
q

HIPT Play-out entropy intersection precision.

HIPT pM ,Lq “ minp1,
HpL[Mq

HpMq
q

The second entropy variant uses SDFA projection [4] function
P : L` ˆ L` Ñ L`, where traces are used as SDFA tokens.

PpL1, L2q “LP \ rxy
|L1|´|LP |s

where LP “ rσi P L1 | Dją0 σ
j P L2s

HJFT Play-out entropy projection fitness.

HJFT pM ,Lq “
HpPpL,Mqq

HpLq
HJPT Play-out entropy projection precision.

HJPT pM ,Lq “
HpPpM,Lqq

HpMq
Three simplicity measures are scaled by log size to impose a
valid upper bound of 1.
SSENC Structural simplicity by entity count [22].

SSENC pg ,Lq “ maxp1´
|P | ` |T |

|L|
, 0q

SSEDC Structural simplicity by edge count [22].

SSEDC pg ,Lq “ maxp1´
|F |

|L|
, 0q

SSS Structural simplicity by all structural components in
SLPNs. This accounts for stochastic features not found in
existing structural simplicity measures.

SSS pg ,Lq “ maxp1´
1

|L|
p|P | ` |T | ` |F | ` |

ď

tPT

W ptq|q, 0q

The following generalization measures are at a trace level, and
are taken from example measures in [23].

TGF1 Generalization by trace floor, genL2Mq
[23]. We also

use TGF5 and TGF10 as measures for trace floors of 5 and
10 respectively.

TGF1 pM ,Lq “
|rσ P l|σ PM ^ Lrσs ě qs|

|L|
with q ě 1

TGDU Generalization by trace uniqueness difference,
genL2MHB

[23].

TGDU pM ,Lq “
|rσ P L|σ PM s| ´ |L[M |

|L|
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