
Detecting Surprising Situations in Event Data

Christian Kohlschmidt, Mahnaz Sadat Qafari, and Wil M. P. van der Aalst

Process and Data Science Chair (PADS)
RWTH Aachen University Aachen, Germany
christian.kohlschmidt@rwth-aachen.de,

{m.s.qafari,wvdaalst}@pads.rwth-aachen.de

Abstract. Process mining is a set of techniques that are used by or-
ganizations to understand and improve their operational processes. The
first essential step in designing any process reengineering procedure is to
find process improvement opportunities. In existing work, it is usually
assumed that the set of problematic process instances in which an un-
desirable outcome occurs is known prior or is easily detectable. So the
process enhancement procedure involves finding the root causes and the
treatments for the problem in those process instances. For example, the
set of problematic instances is considered as those with outlier values
or with values smaller/bigger than a given threshold in one of the pro-
cess features. However, on various occasions, using this approach, many
process enhancement opportunities, not captured by these problematic
process instances, are missed. To overcome this issue, we formulate find-
ing the process enhancement areas as a context-sensitive anomaly/outlier
detection problem. We define a process enhancement area as a set of situ-
ations (process instances or prefixes of process instances) where the pro-
cess performance is surprising. We aim to characterize those situations
where process performance is significantly different from what was ex-
pected considering its performance in similar situations. To evaluate the
validity and relevance of the proposed approach, we have implemented
and evaluated it on a real-life event log.

Keywords: Process mining · process enhancement · context-sensitive
outlier detection · surprising instances.

1 Introduction

Considering the current highly competitive nature of the economy, it is vital
for organizations to continuously enhance their processes in order to meet the
best market standards and improve customer experience. Process enhancement
involves many steps, including finding the process areas where improvements are
possible, designing the process reengineering steps, and estimating the impact of
changing each factor on the process performance. By conducting all these steps,
organizations can benefit from applying process mining techniques. The first step
of process enhancement is detecting those process areas where an improvement
is possible. Process mining includes several techniques for process monitoring

2 M. S. Qafari et al.

and finding their friction points. However, these techniques have the hidden
assumption that all the process instances (cases) are the same. So the set of
problematic cases can be easily identified. For example, the problematic cases can
be identified as the ones with an outlier value with respect to a process feature.
Another common method is using a threshold for a specific process feature.
However, considering the variety of the cases, it is possible that a solution solves
the problem for one group of cases while aggravating the problem for another
group. Moreover, using the current techniques, the performance of the process
in some cases can be considered normal and acceptable compared to the overall
behavior of the process, while it can be considered surprising (i.e. anomalous
or undesirable) when just considering their similar cases. This phenomenon can
lead to overlooking some of the process enhancement opportunities.

As another issue, there are several process instances where the process per-
forms significantly better than other similar process instances. Analyzing the
process behavior while performing these process instances can lead to invalu-
able clues on how to improve the process. Usually, this source of information is
neglected by the current process mining techniques.

To overcome these issues, we formulate finding those areas where a process
enhancement is possible as the problem of finding those groups of process situa-
tions where the process performance is significantly different from their similar
situations. Here, we define a process situation (or simply a situation) as a process
instance or a prefix of it. The proposed method includes four steps (1) enriching
and extracting the data from the event log (2) finding a set of sets of similar
situations (which we call a vicinity cover and each set of similar situations is
a vicinity). Naturally, a measure is needed to measure the similarity between
instances and identify vicinities. However, having access to such a measure is a
strong assumption. Thus we use a machine learning technique to determine the
vicinities in the absence of such a measure. (3) The next step involves finding
the set of surprising situations in each vicinity (if any exist). (4) Finally, a list
of detected sets of surprising situations is presented to the user ordered by their
effect on the process and how surprising they are. These findings can be fur-
ther analyzed to understand the reason for the different behavior of the process
in these surprising situations and gain insights on how to improve the process.
Figure 1 shows the general overview of the proposed method.

For example, consider that in a loan application process with 20 cases, we
are interested in finding those cases where their throughput is surprising. In
this example, each process instance (case) is a situation. Also, we consider two
situations similar if the Levenshtein distance of their activity sequence is at most
one. Figure 2 shows the graph for the cases of this loan application, where each

Fig. 1: The general overview of the proposed method.

Detecting Surprising Situations in Event Data 3

Fig. 2: A graph representing the similarity of situations in a loan application ex-
ample. Each node represents a situation (a process instance). Two situations are
similar if the Levenshtein distance of their activity sequences is at most one. The
vicinity of a node is the set of process instances in the same community. Three
vicinities have been detected in this example, which are colored red, blue, and
green. Surprising situations are highlighted with a darker color. The throughput
of each situation is proportional to the size of its corresponding node.

case corresponds to a node. Two cases are connected if they are similar. The size
of each node is proportional to its throughput. The colors (blue, green, and red)
indicate the vicinities found by the Louvain community detection algorithm [3].
The nodes highlighted with darker colors are the surprising cases where the
throughput is significantly different from the other cases in the same vicinity. In
this example, the throughput was worse than expected for cases 5 and 16 and
better than expected for cases 4 and 10. The process owner can gain actionable
insights by analyzing the behavior of the process in these cases, particularly in
comparison with their vicinity, to enhance the performance of the process in
other similar cases in the future. Note, if we just had considered the overall
performance of this process, these four cases would not have been detected as
their throughput are not far from the average throughput of all cases.

The rest of the paper is organized as follows. In Section 2, a brief overview
of the related work is given. In Section 3, the proposed method is presented.
The experimental results are discussed in Section 4. Finally, in Section 5, the
conclusion is presented.

2 Related work

Existing research on context-aware anomaly detection in process mining is closest
to our work. Here we provide an overview of anomaly detection techniques.

Most existing methods investigate anomalies considering the control-flow per-
spective (e.g., [1,2,7,9,10,16]). These methods generate a reference model from
the event log and apply conformance checking to detect anomalous behavior. A

4 M. S. Qafari et al.

subgroup of these methods known as deviance mining approaches investigate per-
formance anomalies [9]. In [16], the authors identify deviations and bottlenecks
by replaying the event log on an enrich process model with performance infor-
mation. In [7], the authors analyze the deviations between a process model and
an event log to identify which deviations enforce positive performance. In [8], the
anomalous cases in event logs are detected using window-based and Markovian-
based techniques. The drawback of control-flow approaches is that they ignore
a wide range of non-control-flow data, which can be used for more sophisticated
context-sensitive anomaly detection methods.

The authors of [4] propose an anomaly detection approach that incorporates
perspectives beyond the control-flow perspective, such as time and resource-
related information. This approach marks events as anomalies based on a certain
likelihood of occurrence, however, case anomalies are not considered.

Other approaches in this category only focus on specific use cases. The au-
thors of [13] analyze suspicious payment transactions to identify money laun-
dering within a money transfer service. They propose an approach to match
the transactions with the expected behavior given by a process model to iden-
tify many small transactions that end up on the same account. [14] identifies
surprisingly short activity execution times in a process by automatically infer-
ring a Bayesian model from the Petri net representation of the process model.
The authors of [15] use fuzzy association rule learning to detect anomalies. As
these approaches specialize in specific use cases, they do not apply to identify
anomalies in a general process.

A third category is domain-based anomaly detection. For example, the au-
thors of [11] propose an approach that supports the identification of unusual
or unexpected transactions by encoding the cases and assigning an anomaly
score to each case. They use the domain knowledge of domain experts to update
the assigned anomaly scores. The approaches in this category require domain
knowledge to label cases, which limits their applicability.

3 Method

Process mining techniques usually start by analyzing an event log. An event log
is a collection of cases where each case is a sequence of events, in which each
event refers to a case, an activity, and a point in time. More formally,

Definition 1 (Event, Case, Event log). Let C be the universe of case identi-
fiers, A be the universe of activities, T be the universe of timestamps. Moreover,
let D = {D1, . . . ,Dn} be the universe of domain-dependent data attributes. We
define the universe of events as E = C×A×T ×D1×· · ·×DN and each element
e = (c, a, t, d1, . . . , dn) ∈ E an event. Let E+ be the universe of (non-empty)
finite and chronologically ordered sequences of events. We define a case as a se-
quence of events γ ∈ E+ in which all events have the same case identifier; i.e.
∀ei, ej ∈ γπc(ei) = πc(ej) where πc(e) returns the case identifier of event e ∈ E.
We define an event log, L, as a set of cases in which each case has a unique

Detecting Surprising Situations in Event Data 5

case identifier; i.e., ∀γ, γ′ ∈ L(∃e ∈ γ∃e′ ∈ γπc(e) = πc(e
′)) =⇒ γ = γ′. We

denote the universe of all event logs with L.

We assume that we know the process feature that captures the property of
the process that the process owner is interested in its optimization. We call this
feature target feature and denote it with tf where tf ∈ T F = A×D. Note that
the target is composed of an attribute name and an activity name, which indicate
the attribute value should be extracted from the events with that activity name.
The attribute name can be any of the attributes captured by the event log or a
derived one. Moreover, we assume that we know descriptive features, which are
the set of process features that are relevant in measuring the similarity of the
situations. In the following, we explain the surprising situation detection steps.

3.1 Situation Feature Table Extraction

To find the surprising situations, we have to extract the data in the form of
tabular data from the event log. As the detected surprising situations are meant
to be used for root cause analysis, it is important to respect the temporal prece-
dence of cause and effect, indicating that the cause must occur before the effect.
Therefore, we extract the data from that prefix of the case that has been recorded
before the target feature. We call such a prefix a situation. More formally:

Definition 2 (Situation). Let L ∈ L, γ = ⟨e1, . . . , en⟩ ∈ L, prfx (⟨e1, . . . , en⟩) =
{⟨e1, . . . , ei⟩ | 1 ≤ i ≤ n}, a function that returns the set of non-empty prefixes
of a given case, and tf ∈ T F = A×D a target feature. We define the universe
of all situations as S =

⋃
L∈L SL where SL = {σ | σ ∈ prfx (γ) ∧ γ ∈ L} is

the set of situations of event log L. We call each element σ ∈ S a situation.
Moreover, we define sit ∈ (L × T F) × 2S to be the a function that returns
{σ ∈ SL | πa(σ) = act} for a given L ∈ L and tf = (att , act), where πa(σ)
returns the activity name of the last event of σ.

We call the data table created by extracting data from situations a situation
feature table. Please note that each row of the situation feature table extracted
from sit(L, tf) corresponds to a situation in it and this correspondence forms a
bijection. To enrich the event log and extract the situation feature table, we use
the method presented in [12].

3.2 Vicinity detection

Informally, a vicinity is a set of similar situations and a vicinity cover of S ⊆ S
is a set of vicinities of its situations such that their union covers S. Let cov ∈
2S → 22

S
in which ∀S ⊆ S∀S′ ∈ cov(S)

(
S′ ̸= ∅ ∧ (∀σ, σ′ ∈ S′sim(σ, σ′) = 1)

)
and ∀S ⊆ S ∪S′∈cov(S) S

′ = S. Here, sim ∈ S × S → {0, 1} is an indicator
function indicating if σ and σ′ are similar, for σ, σ′ ∈ S.

Using a coverage function, we define a vicinity cover of a set of situations
extracted from an event log with respect to a specific target feature as follows:

6 M. S. Qafari et al.

Definition 3 (Vicinity and Vicinity Cover). Let S = sit(L, tf) be the set
of situations extracted from L ∈ L with respect to the target feature tf ∈ T F and
cov ∈ 2S → 22

S
be a coverage function. We simply define a vicinity cover of S

as cov(S) and we call each member of V ∈ cov(S) a vicinity of S. We denote
the universe of all vicinities by V.

In the sequel, we explain the vicinity detection method separately for the
case where we know the similarity measure and the case where such a similarity
measure is not known.

Vicinity Detection With a Similarity Measure. Let d ∈ S × S → R be
a distance measure. Then we can say a situation is similar to another situation
if their distance is less than α. Now, we can define the similarity function as
simd,α ∈ S ×S → {0, 1} such that simd,α(σ1, σ1) returns 1 if d(σ, σ′) ≤ α and 0
otherwise, for all σ, σ′ ∈ S. In this case, we can determine the vicinity cover of the
set of situations through the coverage function (Definition 3) in which simd,α(., .)
is the similarity function. Another method is to create a graph G = (S,E) in
which each node corresponds to one of the situations extracted from the event
log. There is an edge between two nodes if the distance of their corresponding
situations is smaller than α. Using a community detection algorithm on this
graph, we can determine the vicinities. Note that in this case two situations
are similar if their corresponding nodes are in the same community and each
detected community is a vicinity. A community detection function aims at finding
(potentially overlapping) sets of nodes that optimize the modularity within the
similarity graph. Modularity measures the relative density of edges inside the
communities compared to edges outside the communities.

As another option we can use a clustering method to detect vicinities. We
use k-means as the clustering model to explain the method; however, the general
idea is similar to using other clustering models. To find the surprising situations
using a clustering model, we first cluster the situations using k-means, with a
predefined k, based on their descriptive features. In this method, two situations
are similar if they belong to the same cluster and each cluster forms a vicinity.
Please note that in this case the similarity measure is used to measure the
distance between each situation and the centroids of clusters.

Vicinity Detection Without a Similarity Measure. The availability of a
distance function is a strong assumption. Considering the complexity of the real-
life event data, even for specialists, it is a challenging task to determine such a
distance function. Hence, we use machine learning techniques to detect surprising
situations in the data. In this case, the process expert needs to know the set of
process features relevant to measuring the similarity of the situations and not the
exact distance measure. Here we briefly mention the vicinity detection method
using a classification model.

We mainly use a decision tree as the classification model. We train a decision
tree on the data trying to predict the target feature tf using descriptive features.

Detecting Surprising Situations in Event Data 7

In this method, we consider two situations similar if they belong to the same
node of the tree. Moreover, we consider the set of situations corresponding to
each node of the decision tree (or each node in a subset of nodes of the decision
tree, such as leaves) as a vicinity.

3.3 Surprising Situation Detection

We define the surprising situations in each vicinity as those situations in that
vicinity that significantly differ from the other situations (in that vicinity). Sup-
pose that D ∈ V →

⋃
V ∈V 2V where ∀V ∈ V : D(V) ⊆ V is a function that, given

a set of similar situations (a vicinity), returns its subset of surprising ones. We
call such a function a detector. For example, a detector function can be a func-
tion that returns the subset of situations that exceed a user-defined threshold
value for the target feature. Using this function, we define the set of surprising
situations of a vicinity as follows:

Definition 4 (Surprising Situation Set). Let V ∈ V be a vicinity and D ∈
V →

⋃
V ∈V 2V where ∀V ∈ V : D(V) ⊆ V be a detector function. We define

D(V) as the set of surprising situations in V .

We can find the set of all sets of surprising situations of the set of situations by
applying the detector function on all the vicinities of its vicinity cover.

Definition 5 (Surprising Situation Sets). Let S = sit(L, tf) be the set of
situations extracted from L ∈ L with respect to target feature tf ∈ T F , cov(S)
a vicinity cover of S, and detection function D ∈ V →

⋃
V ∈V 2V . We define the

surprising situation sets of S as {D(V) | V ∈ cov(S)}.

3.4 Ordering Surprising Situations

We define two criteria to order the detected surprising situations: surprisingness
and effectiveness. Suppose U is the set of surprising situations in a vicinity V .
Surprisingness of U measures how rare it is to see such a situation in its vicinity,
whereas effectiveness measures how beneficial it is to enhance the process based
on the findings of root cause analysis of U . More precisely:

Definition 6. Let V ∈ V be a vicinity and U ⊆ V the set of surprising situations
in V , and β ∈ (0, 1] a threshold. We define the surprisingness of U as:

surp(U) = β | avg(U)− avg(V \ U) | +(1− β)
(U)

(V)

and the effectiveness of U as:

eff (U) =

{
(avg(V \ U)− avg(U))× (V \ U) avg(U) < avg(V \ U)

(avg(U)− avg(V \ U))× (U) avg(U) > avg(V \ U)

where (A) denotes the cardinality of A and avg(A) =
∑

s∈A πtf (s)

(A)
for each A ⊆ S

is the average value of the target feature tf for the situations in A.

8 M. S. Qafari et al.

(a) Distribution of the throughput time
for the BPI Challenge 2017 event log cap-
turing the duration from the start to the
end of each case.

(b) Detected outliers of throughput time
of cases of BPI Challenge 2017 event log
using boxplot. Cases durations above 61
days are considered anomalous.

Fig. 3: The throughput time for the BPI Challenge 2017 event log.

In the above definition, we assume that the lower values for tf are more desirable.
If this assumption does not hold, the effectiveness can be similarly defined.

4 Experimental Results

To evaluate the proposed framework1, we present the result of applying it on the
event log for BPI Challenge 2017 [5]. This event log represents an application
process for a personal loan or overdraft within a global financing organization
taken from a Dutch financial institute. We consider throughput as the target
feature. The majority of the cases in the process take between 5 and 40 days.
The average duration for all cases in the event log is around 22 days. Figure 3a
shows the distribution of the throughput time.

Boxplots are frequently used to identify performance anomalies [6]. Thus we
use boxplots as the baseline and call this approach the baseline. The resulting
boxplot is shown in Figure 3b. Using this method, 255 cases with a throughput
of more than 61 days have been considered anomalous. These are the detected
anomalies without any context-awareness of the process.

To apply our approach, we used the following case-level attributes as descrip-
tive features: application type, loan goal, applicant’s requested loan amount, and
the number of offers which is a derivative attribute indicating how many times
the loan application institute offered a loan to the customer. Note that in this
experiment, each case is a situation.

We apply surprising situation detection using a similarity measure, a clas-
sification method (using a decision tree), and also a clustering method (using

1 The implemented tool is available at https://github.com/ckohlschm/detecting-
surprising-instances.

Detecting Surprising Situations in Event Data 9

Fig. 4: Detected surprising situations in each vicinity defined by the decision tree
method.

k-means clustering). We call these three approaches similarity based method,
decision tree method, and k-means clustering method respectively. In all these
methods, to maximize the applicability of the implemented tool and to minimize
the required domain knowledge, we use the boxplot as the detector function (Def-
inition 4) to find the surprising situations in each vicinity.

Decision tree method. For this experiment, we trained a decision (regression)
tree with a maximum depth of 5 and a minimum number of instances per leaf
of 100. We consider the vicinities described by the leaves of the tree. Figure 4
shows the detected surprising situations for the leaves in the decision tree where
each leaf is labeled with a number. Some of the highlights of the comparison of
the results of the decision tree method and the baseline are as follows:

– Application_1839367200 (Case duration 62 days) is barely considered an
outlier in the total dataset, but in its vicinity (Vicinity 4: one offer, limit
raise, loan goal car, requested amount > 11.150) it is far from the average
which is 14 days.

– Vicinity 19, where the number of offers is more than 3 and the requested
amount ≤ 13.162 includes seven surprising situations. These situations have
not been considered outliers by the baseline method. One possible interpre-
tation of this result is that high throughput is acceptable in such situations.
The same applies to vicinity 20.

– Vicinity 5 (one offer, limit raise, Unknown loan goal, requested amount ≤
3000) contains 3 surprising situations that are all overlooked by the baseline
method. The vicinity contains 338 cases with an average throughput time of
13 days which makes cases with a duration of more than 40 days surprising.
The same applies to vicinities 3 and 6.

10 M. S. Qafari et al.

Figure 5 shows the surprisingness (on the left) and effectiveness (on the
right) of the sets of surprising situations detected by the decision tree method.
The set of surprising situations in vicinity 17 has the highest surprisingness.
This vicinity includes 126 situations, where 6 are surprising with an average
throughput of 100 days, whereas the other situations in the vicinity have an
average of 27 days. These are the cases with two offers that use their loan to
pay their remaining home dept and the requested amount is at most 24.500.
The set of surprising situations in vicinity 7 has the highest effectiveness. These
situations correspond to the customers with one offer that apply for a new credit.
Removing the problem that causes the delay in these surprising situations would
reduce the average throughput time for similar cases by more than one day.

k-means clustering method. In this approach, we used k-means clustering to
identify vicinities. For k we use the value 25, which is the number of the vicinities
in the decision tree method and Euclidean distance as similarity measure. This
method results in detecting a total of 280 surprising situations. The plot on the
left side of Figure 6 shows the surprising situations detected in each vicinity.

Fig. 5: Surprisingness and effectiveness of the surprising situations identified by
the decision tree method.

Fig. 6: Detected surprising situations by the k-means clustering and similarity
based method.

Detecting Surprising Situations in Event Data 11

Fig. 7: Venn Diagram showing the intersection of detected surprising situations
using the different methods.

Similarity based method. We run the similarity based approach where the dis-
tance measure is the Euclidean distance of normalized descriptive features (using
min-max method). Then, we use 1.4, which results in 27 clusters (close to 25),
as the threshold to generate a graph. To find the vicinities, we used the Louvain
community detection method [3] on this graph. The plot on the right side of
Figure 6 shows the surprising situations detected in each vicinity.

It is worth noting that the set of surprising situations detected by different
methods was not exactly the same. Figure 7 shows that all the methods agree
on 176 detected surprising situations and for all other situations at least one
method does not select it.

5 Conclusion

Finding the process enhancement areas is a fundamental prerequisite for any
process enhancement procedure that highly affects its outcome. It is usually
assumed that these process areas are known in advance or can be detected easily.
However, utilizing simple methods have the danger of overlooking some of the
opportunities for process enhancement or targeting the wrong ones. In this paper,
we formulate the process of finding process enhancement areas as a method for
finding surprising situations; i.e., detecting those situations where the process
behavior is significantly different from similar situations.

We have implemented the proposed framework with different methods and
evaluated it using real event logs. The experiment shows that the detected sur-
prising (anomalous) situations are overlapping but not identical to the ones of
the baseline, which is currently a common method for finding anomalies. It shows
that to find the best result, it is best to use our framework complementary to
the existing methods; i.e., using both context-sensitive and non-context-sensitive
methods for finding the process enhancement areas.

Acknowledgment

We thank Alexander von Humboldt (AvH) Stiftung for supporting our research.

12 M. S. Qafari et al.

References

1. F. d. L. Bezerra and J. Wainer. Fraud detection in process aware systems. Inter-
national Journal of Business Process Integration and Management, 5(2):121–129,
2011.

2. F. d. L. Bezerra and J. Wainer. A dynamic threshold algorithm for anomaly
detection in logs of process aware systems. 2012.

3. V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding
of communities in large networks. Journal of Statistical Mechanics: Theory and
Experiment, 2008(10):P10008, oct 2008.

4. K. Böhmer and S. Rinderle-Ma. Multi-perspective anomaly detection in business
process execution events. In OTM Confederated International Conferences" On
the Move to Meaningful Internet Systems", pages 80–98. Springer, 2016.

5. J. J. Carmona, M. de Leoni, B. Depaire, and T. Jouck. Process Discovery Contest
2017. 5 2021.

6. R. Conforti, M. La Rosa, and A. H. M. ter Hofstede. Filtering out infrequent
behavior from business process event logs. IEEE Transactions on Knowledge and
Data Engineering, 29(2):300–314, 2016.

7. M. Dees, M. d. Leoni, and F. Mannhardt. Enhancing process models to improve
business performance: A methodology and case studies. In OTM Confederated
International Conferences" On the Move to Meaningful Internet Systems", pages
232–251. Springer, 2017.

8. N. Gupta, K. Anand, and A. Sureka. Pariket: Mining business process logs for root
cause analysis of anomalous incidents. In International Workshop on Databases in
Networked Information Systems, pages 244–263. Springer, 2015.

9. H. Nguyen, M. Dumas, M. L. Rosa, F. M. Maggi, and S. Suriadi. Business process
deviance mining: Review and evaluation. CoRR, abs/1608.08252, 2016.

10. S. Pauwels and T. Calders. An anomaly detection technique for business pro-
cesses based on extended dynamic bayesian networks. In Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing, pages 494–501, 2019.

11. R. Post, I. Beerepoot, X. Lu, S. Kas, S. Wiewel, A. Koopman, and H. Reijers. Active
anomaly detection for key item selection in process auditing. In International
Conference on Process Mining, pages 167–179. Springer, Cham, 2021.

12. M. S. Qafari and W. M. P. van der Aalst. Feature recommendation for structural
equation model discovery in process mining. Progress in Artificial Intelligence,
pages 1–25, 2022.

13. R. Rieke, M. Zhdanova, J. Repp, R. Giot, and C. Gaber. Fraud detection in mobile
payments utilizing process behavior analysis. In 2013 International Conference on
Availability, Reliability and Security, pages 662–669. IEEE, 2013.

14. A. Rogge-Solti and G. Kasneci. Temporal anomaly detection in business pro-
cesses. In International Conference on Business Process Management, pages 234–
249. Springer, 2014.

15. R. Sarno, F. Sinaga, and K. R. Sungkono. Anomaly detection in business processes
using process mining and fuzzy association rule learning. Journal of Big Data,
7(1):1–19, 2020.

16. W. M. P. van der Aalst, A. Adriansyah, and B. van Dongen. Replaying history
on process models for conformance checking and performance analysis. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(2):182–192,
2012.

