
Monitoring Constraints in Business
Processes Using Object-Centric Constraint Graphs

Gyunam Park ID and Wil. M. P. van der Aalst ID

Process and Data Science Group (PADS), RWTH Aachen University
{gnpark,wvdaalst}@pads.rwth-aachen.de

Abstract. Constraint monitoring aims to monitor the violation of constraints in
business processes, e.g., an invoice should be cleared within 48 hours after the corre-
sponding goods receipt, by analyzing event data. Existing techniques for constraint
monitoring assume that a single case notion exists in a business process, e.g., a
patient in a healthcare process, and each event is associated with the case notion.
However, in reality, business processes are object-centric, i.e., multiple case notions
(objects) exist, and an event may be associated with multiple objects. For instance,
an Order-To-Cash (O2C) process involves order, item, delivery, etc., and they in-
teract when executing an event, e.g., packing multiple items together for a delivery.
The existing techniques produce misleading insights when applied to such object-
centric business processes. In this work, we propose an approach to monitoring
constraints in object-centric business processes. To this end, we introduce Object-
Centric Constraint Graphs (OCCGs) to represent constraints that consider the in-
teraction of objects. Next, we evaluate the constraints represented by OCCGs by
analyzing Object-Centric Event Logs (OCELs) that store the interaction of different
objects in events. We have implemented a web application to support the proposed
approach and conducted two case studies using a real-life SAP ERP system.

Keywords: Constraint Monitoring · Object-Centric Process Mining · Compliance
Checking · Process Monitoring

1 Introduction

It is indispensable for organizations to continuously monitor their operational problems
and take proactive actions to mitigate risks and improve performance [2]. Constraint mon-
itoring aims at detecting violations of constraints (i.e., operational problems) in business
processes of an organization by analyzing event data recorded by information systems [8].
Once violations are detected, the organization can activate management actions to cover
the respective violation [10].

A plethora of techniques has been suggested to implement constraint monitoring. For
instance, a technique is proposed to detect events violating constraints, e.g., detecting
an X-ray event with a long waiting time, using behavioral profiles and Complex Event
Processing (CEP) [13]. Maggi et al. [9] propose a technique to detect process instances
violating constraints, e.g., detecting a patient with multiple executions of X-rays, using
Linear Temporal Logic (LTL).

https://orcid.org/0000-0001-9394-6513
https://orcid.org/0000-0002-0955-6940


2 G. Park and W.M.P. van der Aalst

The existing techniques assume that an event in event data is associated with a sin-
gle object of a unique type (so-called case), e.g., a patient in a healthcare process. Thus,
constraints are defined over the single case notion, e.g., each patient (i.e., case) should
be registered before triage. However, in real-life business processes, an event may be
associated with multiple objects of different types, i.e., real-life business processes are
object-centric [1]. For instance, the omnipresent Purchase-To-Pay (P2P) process involves
different object types, e.g., purchase order, material, invoice, goods receipt, etc., and an
event may be associated with multiple objects of different types, e.g., clearing invoice
is associated with a purchase order, an invoice, and a goods receipt to enable so-called
three-way matching.

Fig. 1: Comparing (a) traditional and (b) object-centric constraint monitoring

Applying the existing techniques to such object-centric settings results in misleading
insights. Fig. 1(a) shows events of a “case” in an Order-To-Cash (O2C) process using
order as the case notion. First, an order is placed, and the availability of two items of
the order is checked, respectively. Next, one of the items is picked, and the invoice of
the order is sent to the customer. Afterward, the other item is picked, and the payment of
the invoice is collected. Finally, the items are packed and delivered to the customer. The
three constraints shown in Fig. 1(a) are violated by the case. For instance, Constraint 1 is
violated since pick item is followed by send invoice in the case and Constraint 3 is violated
since pick item is preceded by send invoice.

However, in reality, the order and each item have different lifecycles as shown in
Fig. 1(b). First, we place an order with two items. While the invoice is sent and the pay-
ment is collected for the order, we check the availability of each item and pick each of
them. We finally deliver the order with two items after packing two items together. In



Monitoring Object-Centric Constraints in Business Processes 3

this object-centric setting, constraints should be defined in relation to objects to provide
accurate insights. For instance, Constraint 1* extends Constraint 1 with the correspond-
ing object type (i.e., item). Contrary to Constraint 1, Constraint 1* is not violated since
pick item is directly followed by pack item for any items. Moreover, we can analyze more
object-centric constraints by considering the interaction of different objects. First, we can
analyze if an execution of an activity involves (un)necessary objects (cf. Constraint 4 and
Constraint 5). Also, we can analyze the cardinality of objects for executing an activity (cf.
Constraint 6 and Constraint 7).

In this work, we propose a technique for constraint monitoring in object-centric set-
tings. To this end, we first introduce object-centric behavioral metrics that can be com-
puted from Object-Centric Event Logs (OCELs), e.g., a metric to measure the degree to
which pick item precedes pack items in the lifecycle of items. Next, we develop Object-
Centric Constraint Graphs (OCCGs) to formally represent constraints using such metrics.
Finally, monitoring engine evaluates the violation of the constraints represented by OC-
CGs by analyzing OCELs.

We have implemented a web application to support the approach. A demo video and
a manual are available at https://github.com/gyunamister/ProPPa.git. More-
over, we have conducted case studies with a production process and a Purchase-To-Pay
(P2P) process supported by an SAP ERP system.

The remainder is organized as follows. We discuss the related work in Sec. 2 and
present the preliminaries, including OCELs in Sec. 3. In Sec. 4, we introduce object-
centric behavioral metrics. Afterward, we present OCCGs to formally represent con-
straints and the monitoring engine to evaluate the violation of the constraints in Sec. 5.
Next, Sec. 6 introduces the implementation of the proposed approach and case studies
using real-life event data. Finally, Sec. 7 concludes the paper.

2 Related Work

Many approaches have been proposed to monitor the violation of constraints by analyzing
event data. Weidlich et al. [13] propose a technique to abstract process models to behav-
ioral profiles and produce event queries from the profile. Violated executions of events are
monitored using Complex Event Processing (CEP) engines with the event queries. Awad
et al. [5] define a set of generic patterns regarding the occurrence of tasks, their ordering,
and resource assignments and generate anti-patterns from the generic patterns to monitor
event executions. Maggi et al. [9] represent control-flow properties of a running process
instance using Linear Temporal Logic (LTL) and evaluate their violations at runtime. Also,
Petri-net-based constraints are aligned with event logs to evaluate whether the execution
of business processes conforms to the constraints [12]. Indiono et al. [7] propose an ap-
proach to monitoring Instance-Spanning Constraints (ISCs) that span multiple instances
of one or several processes based on Rete algorithm. However, the existing techniques
may produce misleading insights in object-centric settings since it does not consider the
interaction among objects of different types. Moreover, object-centric constraints, e.g.,
the cardinality of an object type for the execution of an activity, are not supported in the
existing techniques.

https://github.com/gyunamister/ProPPa.git


4 G. Park and W.M.P. van der Aalst

Table 1: A fragment of an event log.
event id activity timestamp order item

e93 place order (po) 25-10-2022:09.35 {o1} {i1,i2,i3}
e94 evaluate credit (ec) 25-10-2022:13.35 {o1} /0
e95 confirm order (co) 25-10-2022:15.35 {o1} {i1,i2,i3}

This paper is in line with the recent developments in object-centric process mining [1].
Object-centric process mining breaks the assumption of traditional process mining tech-
niques that each event is associated with a single case notion (i.e., object), allowing one
event to be associated with multiple objects. Moreover, a process discovery technique is
proposed to discover Object-Centric Petri Nets (OCPNs) from OCELs [3]. Furthermore,
Adams et al. [4] propose a conformance checking technique to determine the precision
and fitness of the net, and Park et al. propose an approach to object-centric performance
analysis [11]. Esser and Fahland [6] propose a graph database as a storage format for
object-centric event data, enabling a user to use queries to calculate different statistics.
This work extends the current development in the field of object-centric process mining
by proposing a constraint monitoring technique in object-centric settings.

3 Preliminaries

Given a set X , the powerset P(X) denotes the set of all possible subsets. We denote a
sequence with σ=⟨x1,...,xn⟩ and the set of all sequences over X with X∗. Given a sequence
σ ∈X∗, x∈σ if and only if ∃1≤i≤|σ | σ(i)=x.

Definition 1 (Universes). Uei is the universe of event identifiers, Uoi is the universe of
object identifiers,Uact is the universe of activity names,Utime is the universe of timestamps,
Uot is the universe of object types, Uattr is the universe of attributes, Uval is the universe
of values, and Umap=Uattr ↛Uval is the universe of attribute-value mappings. For any
f ∈Umap and x /∈dom( f ), f (x)=⊥.

Using the universes, we define an object-centric event log as follows.

Definition 2 (Object-Centric Event Log). An object-centric event log is a tuple L=(E,O,
µ, R), where E ⊆ Uevent is a set of events, O ⊆ Uoi is a set of objects, µ ∈ (E →
Umap)∪ (O → (Utime → Umap)) is a mapping, and R ⊆ E × O is a relation, such that
for any e∈E, µ(e)(act)∈Uact and µ(e)(time)∈Utime, and for any o∈O and t,t ′∈Utime,
µ(o)(t)(type)=µ(o)(t ′)(type) ∈ Uot. UL is the set of all possible object-centric event
logs.

For the sake of brevity, we denote µ(e)(x) as µx(e) and µ(o)(t)(x) as µ t
x(o). Since

the type of an object does not change over time, we denote µ t
type(o) as µtype(o). Table 1

describes a fraction of a simple event log L1=(E1,O1,µ1,R1) with E1={e93,e94,e95},
O1={o1, i1, i2, i3}, R1={(e93,o1),(e93, i1), ...}, µact(e93)=po, µtime(e93)=25-10-2022:09.35,
µtype(o1)=Order, and µtype(i1)=Item.

We define functions to query event logs as follows:



Monitoring Object-Centric Constraints in Business Processes 5

Definition 3 (Notations). For an object-centric event log L=(E,O,µ,R), we introduce
the following notations:

– acts(L)={µact(e) |e∈E} is the set of activities,
– events(L,a)={e∈E |µact(e)=a} is the set of the events associated to a∈acts(L),
– types(L)={µtype(o) |o∈O} is the set of object types,
– objects(L,ot)={o ∈ O | µtype(o)=ot} is the set of the objects associated to ot ∈

types(L),
– events(L,o)={e∈E |(e,o)∈R} is the set of the events containing o∈O,
– objects(L,e)={o∈O |(e,o)∈R} is the set of the objects involved in e∈E,
– seq(o)=⟨e1,e2,...,en⟩ such that events(L,o)={e1,e2,...,en} and µtime(ei)≤µtime(e j)

for any 1≤ i< j≤n is the sequence of all events where object o∈O is involved in, and
– trace(o)=⟨a1,a2, ... ,an⟩ such that seq(o)=⟨e1,e2, ... ,en⟩ and ai=µact(ei) for any

1≤ i≤n is the trace of object o∈O.

For instance, acts(L1)={po,ec,co}, events(L1,po)={e93}, types(L1)={Order,Item},
objects(L1,Order)={o1}, events(L1,o1)={e93,e94,e95}, objects(L1,e93)={o1,i1,i2,i3},
seq(o1)=⟨e93,e94,e95⟩, and trace(o1)=⟨po,ec,co⟩.

Using the notations, we characterize an event log as follows:

Definition 4 (Log Characteristics). Let L=(E,O,µ,R) be an object-centric event log.
For ot∈ types(L) and a,b∈acts(L), we define the following characteristics of L:

– #L(ot,X)=|{o ∈ objects(L,ot) | ∀x∈X x ∈ trace(o)}| counts the objects of type ot
whose trace contains X ⊆acts(L),

– #L(ot,a,b)=|{o ∈ objects(L,ot) | ∃1≤i< j≤|trace(o)| trace(o)(i)=a∧ trace(o)( j)=b}|
counts the objects of type ot whose trace contains a followed by b,

– #0
L(ot,a)=|{e ∈ events(L,a) | |{o ∈ objects(L,e) | µtype(o)=ot}|=0}| counts the

events relating no objects of type ot for the execution of a,
– #1

L(ot,a)=|{e ∈ events(L,a) | |{o ∈ objects(L,e) | µtype(o)=ot}|=1}| counts the
events relating one object of type ot for the execution of a, and

– #∗L(ot,a)=|{e ∈ events(L,a) | |{o ∈ objects(L,e) | µtype(o)=ot}| > 1}| counts the
events relating more than one object of type ot for the execution of a.

For instance, #L1(Order,{po})=1, #L1(Item,{po})=3, #L1(Item,{po,ec})=0, #L1(
Order,po,ec)=1,#0

L1
(Order,ec)=0,#0

L1
(Item,ec)=1,#1

L1
(Order,po)=1,#1

L1
(Item,po)=0,

#∗L1
(Order,po)=0, and #∗L1

(Item,po)=1.

4 Object-Centric Behavioral Metrics

To introduce OCCGs, we first explain three types of object-centric behavioral metrics de-
rived from an event log: ordering relation, object involvement, and performance metrics.
Such metrics are used to define the semantics of OCCGs in Sec. 5.

An ordering relation metric refers to the strength of a causal/concurrent/choice rela-
tion between two activities in an OCEL w.r.t. an object type.

Definition 5 (Ordering Relation Metrics). Let L be an object-centric event log. For
ot∈ types(L) and a,b∈acts(L), we define the following ordering relation metrics of L:



6 G. Park and W.M.P. van der Aalst

– causalL(ot,a,b)=

{
#L(ot,a,b)

#L(ot,{a,b}) ,if #L(ot,{a,b})>0

0,otherwise

– concurL(ot,a,b)=


1− max(#L(ot,a,b),#L(ot,b,a))−min(#L(ot,a,b),#L(ot,b,a))

#L(ot,a,b)+#L(ot,b,a) ,

if #L(ot,a,b)+#L(ot,b,a)>0
0,otherwise

– choiceL(ot,a,b)=

{
1− #L(ot,{a,b})+#L(ot,{a,b})

#L(ot,{a})+#L(ot,{b}) ,if #L(ot,{a})+#L(ot,{b})>0

0,otherwise

causalL(ot,a,b), concurL(ot,a,b), and choiceL(ot,a,b) all produce values between 0
(weak) and 1 (strong). For L1 in Table 1, causalL1(Order,po,co)=1, concurL1(Order,po,
co)=0, choiceL1(Order,po,co)=0, showing that po and co has a strong (not only directly,
but also eventually) causal ordering relation.

Next, an object involvement metric quantitatively represents how the execution of an
activity involves objects.

Definition 6 (Object Involvement Metrics). Let L be an object-centric event log. For
ot ∈ types(L) and a ∈ acts(L), we define three object involvement metrics of L in the
following.

– absentL(ot,a)= #0
L(ot,a)

|events(L,a)| is the strength of ot’s absence in a’s execution.

– singularL(ot,a)= #1
L(ot,a)

|events(L,a)| is the strength of ot’s singularity in a’s execution.

– multipleL(ot,a)= #∗L(ot,a)
|events(L,a)| is the strength of ot’s multiplicity in a’s execution.

All object involvement metrics produce values between 0 (weak) and 1 (strong). For
L1 in Table 1, absentL1(Item,ec)=1, showing that items are not involved in the execution
of ec. singularL1

(Order,po)=1 and multipleL1
(Item,po)=1, indicating that the execution

of po involves only one order and multiple items.
Finally, a performance metric refers to a performance/frequency value related to the

execution of an activity.

Definition 7 (Performance Metrics). Let L be an object-centric event log. Let Umeasure
be the universe of performance/frequency measure names, e.g., the average waiting time.
A performance metric of L, perf L ∈ (acts(L)×Umeasure) ↛ R, maps an activity and a
performance/frequency measure to the value of the performance/frequency measure w.r.t.
the activity.

Note that we deliberately “underspecify” performance metrics, abstracting from the
definition of individual performance metrics. Performance metrics may include the aver-
age number of objects per object type for the execution of an activity (e.g., the average
number of items for placing an order), the average sojourn time for the execution of an
activity (e.g., the average sojourn time for confirming an order), etc. For L1 in Table 1,
perf L1

(po,avg-num-items)=3, which denotes that the average number of items for po
in L1 is 3. Also, perf L1

(co,avg-sojourn-time)=2 hours, which denotes that the average
sojourn time for co in L1 is 2 hours.



Monitoring Object-Centric Constraints in Business Processes 7

5 Object-Centric Constraint Monitoring

In this section, we explain our proposed approach to object-centric constraint monitoring.
To this end, we first introduce Object-Centric Constraint Graphs (OCCGs) to represent
constraints. Next, we introduce a monitoring engine to evaluate the violation of constraints
represented by OCCGs by analyzing OCELs.

5.1 Object-Centric Constraint Graphs (OCCGs)

An OCCG is a directed graph that consists of nodes and edges, as depicted in Fig. 2. Nodes
consist of activities, object types, and formulas. A formula is a logical expression defined
over performance measures of an activity using relational operators (≤,≥,=) as well
as logical operators such as conjunction (∧), disjunction (∨), and negation (¬). Edges
describe control-flow, object involvement, and performance edges.

Fig. 2: Graphical notations of OCCGs. act∈Uact, ot∈Uot, and τ ∈ [0,1].

Definition 8 (Object-Centric Constraint Graph). Let F(X) be the set of all possi-
ble logical expressions with set X. Let A ⊆ Uact, OT ⊆ Uot, and F ⊆ F(Umeasure).
Let C={causal,concur,choice,skip} be the set of control-flow labels and I={0..0,1..1
,1..∗,2..∗} the set of object involvement labels. An object-centric constraint graph is a
graph cg=(V,Eflow,Eobj,Eperf ,lc,li,lτ) where

– V ⊆A∪OT∪F is a set of nodes,
– Eflow⊆A×OT×A is a set of control-flow edges,
– Eobj⊆OT×A is a set of object involvement edges,
– Eperf ⊆F×A is a set of performance edges,
– lc ∈ Eflow → C maps control-flow edges to control-flow labels such that, for any
(a,ot,b)∈Eflow, if lc((a,ot,b))=skip, a=b,

– li∈Eobj→ I maps object involvement edges to object involvement labels, and
– lτ ∈Eflow∪Eobj→ [0,1]maps control-flow and object involvement edges to thresholds.

Ucg denotes the set of all possible object-centric constraint graphs.

Fig. 3(a)-(k) introduces some example of OCCGs defined in an O2C process. For
instance, Fig. 3(a) is formally represented as follows: cg′=(V ′,E ′

flow, /0, /0,l
′
c, /0,l

′
τ) where

V ′={collect payment,send reminder},E ′
flow={e1=(collect payment,Order,send reminder)},

l′c(e1)=causal, and l′τ(e1)=0.



8 G. Park and W.M.P. van der Aalst

Fig. 3: Examples of object-centric constraint graphs.

We define the semantics of an OCCG with the notion of violation. An OCCG is
violated in an OCEL if all constraints represented in its edges are satisfied.

Definition 9 (Semantics of object-centric constraint graphs). Let L be an object-centric
event log. An object-centric constraint graph cg=(V,Eflow,Eobj,Eperf ,lc,li,lτ) is violated
in L if
1. for any e=(a,ot,b)∈Eflow s.t. ot∈types(L)∧a,b∈acts(L),

– causalL(ot,a,b)> lτ(e) if lc(e)=causal,
– concurL(ot,a,b)> lτ(e) if lc(e)=concur,
– choiceL(ot,a,b)> lτ(e) if lc(e)=choice, and
– 1− #L(ot,{a})

|objects(L,ot)| > lτ(e) if lc(e)=skip,
2. for any e=(ot,a)∈Eobj s.t. ot∈types(L)∧a∈acts(L),

– absentL(ot,a)> lτ(e) if li(e)=0..0,
– singularL(ot,a)> lτ(e) if li(e)=1..1,
– 1−absentL(ot,a)> lτ(e) if li(e)=1..∗, and
– multipleL(ot,a)> lτ(e) if li(e)=2..∗,

3. for any ( f ,a)∈Eperf s.t. a∈acts(L), f evaluates to true w.r.t. perf L.

For instance, Fig. 3(a) is violated if collect payment is preceded by send reminder at all
w.r.t. Order, Fig. 3(b) is violated if pick item and pack item are concurrently executed with
the strength higher than 0.7 w.r.t. Item, Fig. 3(e) is violated if confirm order is executed
without involving Item at all, Fig. 3(k) is violated if the average waiting time of the last
two days for deliver order is longer than 15 hours, and its execution involves multiple
orders with the strength higher than 0.1, etc.

5.2 Monitoring Engine

A monitoring engine analyzes the violation of OCCGs by analyzing an OCEL.

Definition 10 (Monitoring Engine). A monitoring engine monitor ∈ UL × Ucg →
{true, false} is a function that maps an object-centric event log and an object-centric



Monitoring Object-Centric Constraints in Business Processes 9

constraint graph to a Boolean value. For any L∈UL and cg∈Ucg, monitor(L,cg)=true
if cg is violated in L, and false, otherwise.

We implement the monitoring engine by 1) computing the object-centric behavioral
metrics of an event log and 2) evaluating the violation of OCCGs based on them. First,
the derivation of ordering relation metrics and object involvement metrics is deterministic
according to Def. 5 and Def. 6, respectively. However, the computation of performance
metrics is non-trivial. In this work, we use the approach proposed in [11] to compute
performance measures, such as sojourn time, waiting time, service time, flow time, syn-
chronization time, pooling time, and lagging time, and frequency measures, such as object
count, object type count, etc. Finally, using the object-centric behavioral metrics, we eval-
uate the violation of OCCGs according to Def. 9.

6 Implementation and Case Studies

This section presents the implementation of the approach presented in this paper and
evaluates the feasibility of the approach by applying it to a production process and a P2P
process of a real-life SAP ERP system.

6.1 Implementation

The approach presented in this work has been fully implemented as a web application1

with a dedicated user interface. The following functions are supported:
– Importing OCELs in different formats, including OCEL JSON, OCEL XML, and

CSV.
– Designing object-centric constraint graphs using graphical tools.
– Computing object-centric behavioral metrics of OCELs and evaluating the violation

of object-centric constraint graphs based on the metrics.
– Visualizing monitoring results with detailed analysis results.

6.2 Case Study: Production Process

Using the implementation, we conduct a case study on a production process of a ficti-
tious company supported by an SAP ERP system. The process involves four object types:
production order, reservation, purchase requisition, and purchase order. Fig. 4 shows a
process model of the production process using Object-Centric Petri Nets (OCPNs) as a
formalism. We refer readers to [3] for the details of OCPNs.

We represent the following constraints using OCCGs:
– Skipping Purchase Requisition Approval (PRA); A purchase requisition should not

skip the approval step at all. Fig. 5(a) represents the constraint.
– No reservation for Purchase Requisition Approval (PRA); The execution of approve

purchase requisition is supposed to include the corresponding reservation most of
the time. Fig. 5(b) represents the constraint.

1 A demo video and sources: https://github.com/gyunamister/ProPPa.git

https://github.com/gyunamister/ProPPa.git


10 G. Park and W.M.P. van der Aalst

Fig. 4: Production process: First, a production order is created with a variable number of
reservations (i.e., required materials). Next, a purchase requisition is released and approved.
Afterward, a purchase order is created based on the purchase requisition. Once the order is released,
the reservations are received and issued for production. Finally, the production order is confirmed.

– Excessive reservations per Production Order (PO); The execution of create pro-
duction order should not involve more than one reservation on average. Fig. 5(c)
represents the constraint.

– Delayed Purchase Order Release (POR); The average sojourn time of release pur-
chase order should be less than 15 days. Fig. 5(d) represents the constraint.

Fig. 5: OCCGs representing the constraints of the production process.

We monitor the process using three OCELs extracted from the SAP ERP system. Each
event log contains events of different time windows; LJan22

prod , LFeb22
prod , and LMar22

prod contain
events of Jan., Feb., and Mar. 20222. Table 2 shows the monitoring result. For instance, no
reservation for PRA and excessive reservations per PO are violated for the three months.
Skipping PRA only is violated in the last two months, while delayed RPO is violated only
for Feb. 2022.

Table 2: Monitoring results of the production process. ✓denotes the violation.

Constraints Event log
LJan22

prod LFeb22
prod LMar22

prod
Skipping PRA ✓ ✓

No reservation for PRA ✓ ✓ ✓
Excessive reservations per PO ✓ ✓ ✓

Delayed POR ✓

6.3 Case Study: Procure-To-Pay (P2P) Process

Next, we explain a case study on the P2P process. The process involves five object types:
purchase requisition, material, purchase order, goods receipt, and invoice. Fig. 6 shows
a process model of the process.

We represent the following constraints using OCCGs:

2 Event logs are publicly available at https://github.com/gyunamister/ProPPa.git.

https://github.com/gyunamister/ProPPa.git


Monitoring Object-Centric Constraints in Business Processes 11

Fig. 6: P2P process: First, a purchase requisition is created with multiple materials. Next, a purchase
order is created based on the purchase requisition and materials. Afterward, the materials are
received and a goods receipt is issued. Then, the materials are verified and issued, and concurrently
the invoice for the purchase order is received and cleared.

– Concurrency between Verify Material (VM) and Plan Goods Issue (PGI); VM and
PGI are usually not supposed to be concurrently executed. Fig. 7(a) represents the
constraint.

– Clearance of multiple invoices; The execution of clear invoice should not involve
multiple invoices at all. Fig. 7(b) represents the constraint.

– Excessive materials per Purchase Order (PO); The execution of create purchase
order should involve less than five materials on average. Fig. 7(c) represents the
constraint.

– Delayed Purchase Order Creation (POC); The average sojourn time of create pur-
chase order should be less than three days. Fig. 7(d) represents the constraint.

Fig. 7: OCCGs representing the constraints of the P2P process.

We monitor the process using three OCELs extracted from the SAP ERP system. Each
event log contains events of different time windows; L1

p2p starting from 01-Aug-2021 and end-
ing at 14-Oct-2021, L2

p2p starting from 15-Oct-2021 and ending at 18-Jan-2022, and L3
p2p starting

from 01-Feb-2022 and ending at 16-May-2022. Table 3 shows the monitoring result. Concur-
rency between VM and PGI and clearance of multiple invoices are only violated in the
first two time windows, whereas Excessive materials per PO and delayed POC are only
violated in the last time window.

Table 3: Monitoring results of the P2P process. ✓denotes the violation.

Constraints Event log
L1

p2p L2
p2p L3

p2p
Concurrency between VM and PGI ✓ ✓

Clearance of multiple invoices ✓ ✓
Excessive materials per PO ✓

Delayed POC ✓



12 G. Park and W.M.P. van der Aalst

7 Conclusion

In this paper, we proposed an approach to process-level object-centric constraint monitor-
ing. To this end, we first introduced object-centric behavioral metrics and defined OCCGs
using the metrics. The proposed monitoring engine evaluates the constraints represented
by OCCGs by analyzing OCELs. We have implemented the approach as a Web application
and discussed two case studies.

This paper has several limitations. The suggested object-centric constraint graphs only
represent the constraints selectively introduced in this work. More advanced constraints
are not considered, e.g., ordering relations with the temporality (e.g., eventual or direct
causality). Also, constraint graphs do not support timed constraints, e.g., no involvement
of an object type during a specific period of time. In future work, we plan to extend the
proposed approach to support more complete set of constraints, including more advanced
constraints. Another interesting direction of future work is to apply the proposed approach
to real-life business processes.

Acknowledgment
The authors would like to thank the Alexander von Humboldt (AvH) Stiftung for funding
this research.

References
1. van der Aalst, W.M.P.: Object-centric process mining: Dealing with divergence and

convergence in event data. In: Ölveczky, P.C., Salaün, G. (eds.) SEFM 2019. pp. 3–25
2. van der Aalst, W.M.P.: Process Mining - Data Science in Action. Springer (2016)
3. van der Aalst, W.M.P., Berti, A.: Discovering object-centric Petri nets. Fundam. Informaticae

175(1-4), 1–40 (2020)
4. Adams, J.N., van der Aalst, W.M.P.: Precision and fitness in object-centric process mining. In:

Ciccio, C.D., Francescomarino, C.D., Soffer, P. (eds.) ICPM 2021. pp. 128–135. IEEE (2021)
5. Awad, A., et al.: Runtime detection of business process compliance violations: an approach

based on anti patterns. In: Wainwright, R.L., et al. (eds.) 30th ACM SAC. pp. 1203–1210 (2015)
6. Esser, S., Fahland, D.: Multi-dimensional event data in graph databases. J. Data Semant.

10(1-2), 109–141 (2021)
7. Indiono, C., Mangler, J., Fdhila, W., Rinderle-Ma, S.: Rule-based runtime monitoring of

instance-spanning constraints in process-aware information systems. In: Debruyne, C., et al.
(eds.) OTM 2016. pp. 381–399 (2016)

8. Ly, L.T., Maggi, F.M., Montali, M., Rinderle-Ma, S., van der Aalst, W.M.P.: Compliance
monitoring in business processes: Functionalities, application, and tool-support. Inf. Syst. 54,
209–234 (2015)

9. Maggi, F.M., Westergaard, M., Montali, M., van der Aalst, W.M.P.: Runtime verification of
LTL-based declarative process models. In: Khurshid, S., Sen, K. (eds.) RV 2011. pp. 131–146

10. Park, G., van der Aalst, W.M.P.: Action-oriented process mining: bridging the gap between
insights and actions. Progress in Artificial Intelligence pp. 1–22 (2022)

11. Park, G., Adams, J.N., van der Aalst, W.M.P.: OPerA: Object-centric performance analysis.
In: Ralyté, J., et al. (eds.) ER 2022. vol. 13607, pp. 281–292 (2022)

12. Ramezani, E., Fahland, D., van der Aalst, W.M.P.: Where did I misbehave? diagnostic informa-
tion in compliance checking. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. pp. 262–278

13. Weidlich, M., Ziekow, H., Mendling, J., Günther, O., Weske, M., Desai, N.: Event-based moni-
toring of process execution violations. In: Rinderle-Ma, S., et al. (eds.) BPM 2011. pp. 182–198


	 Monitoring Constraints in Business Processes Using Object-Centric Constraint Graphs 

