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Gyunam Park1(B), Aaron Küsters2, Mara Tews2, Cameron Pitsch2,
Jonathan Schneider2, and Wil M. P. van der Aalst1

1 Process and Data Science Group (PADS), RWTH Aachen University,
Aachen, Germany

{gnpark,wvdaalst}@pads.rwth-aachen.de
2 RWTH Aachen University, Aachen, Germany
{aaron.kuesters,mara.tews,cameron.pitsch,

lennart.schneider}@rwth-aachen.de

Abstract. Several decision points exist in business processes (e.g.,
whether a purchase order needs a manager’s approval or not), and dif-
ferent decisions are made for different process instances based on their
characteristics (e.g., a purchase order higher than e500 needs a manager
approval). Decision mining in process mining aims to describe/predict
the routing of a process instance at a decision point of the process. By
predicting the decision, one can take proactive actions to improve the
process. For instance, when a bottleneck is developing in one of the pos-
sible decisions, one can predict the decision and bypass the bottleneck.
However, despite its huge potential for such operational support, existing
techniques for decision mining have focused largely on describing deci-
sions but not on predicting them, deploying decision trees to produce log-
ical expressions to explain the decision. In this work, we aim to enhance
the predictive capability of decision mining to enable proactive opera-
tional support by deploying more advanced machine learning algorithms.
Our proposed approach provides explanations of the predicted decisions
using SHAP values to support the elicitation of proactive actions. We
have implemented a Web application to support the proposed approach
and evaluated the approach using the implementation.

Keywords: Process mining · Decision mining · Machine learning ·
Operational support · Proactive action

1 Introduction

A process model represents the control-flow of business processes, explaining the 
routing of process instances. It often contains decision points, e.g., XOR-split 
gateway in BPMN. The routing in such decision points depends on the data 
attribute of the process instance. For instance, in a loan application process, the 
assessment of a loan application depends on the amount of the loan, e.g., if the 
amount is higher than e5,000, it requires advanced assessment and, otherwise, 
simple assessment.
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Decision mining in process mining aims to discover a decision model that
represents the routing in a decision point of a business process [8]. The discovered
decision model can be used for 1) describing how decisions have been made and
2) predicting how decisions will be made for future process instances. While
the focus has been on the former in the literature, the latter is essential to
enable proactive actions to actually improve business processes [13]. Imagine we
have a bottleneck in advanced assessment due to, e.g., the lack of resources. By
predicting the decision of a future loan application, we can take proactive action
(e.g., suggesting to lower the loan amount to conduct simple assessment), thus
facilitating the process.

To enable such operational support, a decision model needs to be both 1)
predictive (i.e., the model needs to provide reliable predictions on undesired/
decisions) and 2) descriptive (i.e., domain experts should be able to interpret
how the decision is made to elicit a proactive action). Figure 1 demonstrates
these requirements. Figure 1(a) shows a decision point in a loan application pro-
cess, and there is a bottleneck in advanced assessment. Our goal is to accurately
predict that a loan application with the amount of e5,500 and interest of 1.5%
needs advanced assessment, which is undesired due to the bottleneck, and recom-
mend actions to avoid the bottleneck. Figure 1(b) shows four different scenarios.
First, if we predict a desired decision (i.e., predicting the simple assessment), no
action is required since the simple assessment has no operational issues. Second,
if we predict an undesired prediction incorrectly (e.g., incorrectly predicting
the advanced assessment), we recommend an inadequate action. Third, if we
predict the undesired decision correctly but no explanations are provided, no
action can be elicited due to the lack of explanations. Finally, if we predict the
undesired decision, and the corresponding explanations are provided (e.g., the
amount/interest of the loan has a positive/negative effect on the probability of
conducting the advanced assessment, respectively), we can come up with relevant
actions (e.g., lowering the amount or increasing the interest rate).

Fig. 1. (a) Decision point in a process model. (b) Different scenarios showing that
decision mining needs to be predictive and descriptive to enable operational support.

Existing work has focused on the descriptive capability of decision models
by deploying highly interpretable machine learning algorithms such as decision
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trees [8,11,15]. However, it leads to limited predictive capability due to the
limitation of decision trees, such as overfitting and instability (i.e., adding a
new data point results in regeneration of the overall tree) [16]. In this work, we
aim to enhance the predictive capabilities of decision mining, while providing
explanations of predicted decisions. To this end, we estimate the decision model
by using machine learning algorithms such as support vector machines, random
forests, and neural networks. Next, we produce explanations of the prediction of
the decision model by using SHAP values.

We have implemented the approach as a standalone web application. Using
the implementation, we have evaluated the accuracy of predicted decisions using
real-life event logs. Moreover, we have evaluated the reliability of explanations
of predicted decisions by conducting controlled experiments using simulation
models.

This paper is structured as follows. First, we discuss related work on decision
mining and explainability in Sect. 2. Next, we introduce process models and
event logs in Sect. 3. In Sect. 4, we provide our proposed approach. In Sect. 5,
we explain the implementation of a web application based on the approach.
Sect. 6 evaluates the approach based on the implementation using simulated
and real-life event logs. We conclude this paper in Sect. 7.

2 Related Work

Several approaches have been proposed to learn decision models from event logs.
Rozinat et al. [15] suggest a technique based on Petri nets. It discovers a Petri
net from an event log, identifies decision points, and employs classification tech-
niques to determine decision rules. De Leoni et al. [8] extend [15] by dealing with
invisible transitions of a Petri net and non-conforming process instances using
alignments. These methods assume that decision-making is deterministic and all
factors affecting decisions exist in event logs. To handle non-determinism and
incomplete information, Mannhardt et al. [11] propose a technique to discover
overlapping decision rules. In [2], a framework is presented to derive decision
models using Decision Model and Notation (DMN) and BPMN. All existing
approaches deploy decision trees due to their interpretability. To the best of
our knowledge, no advanced machine learning algorithms have been deployed to
enhance the predictive capabilities of decision models along with explanations.

Although advanced machine learning approaches provide more accurate pre-
dictions compared to conventional white-box approaches, they lack explainability
due to their black-box nature. Recently, various approaches have been proposed
to explain such black-box models. Gilpin et al. [4] provide a systematic litera-
ture survey to provide an overview of explanation approaches. The explanation
approaches are categorized into global and local methods. First, global explana-
tion approaches aim to describe the average behavior of a machine learning model
by analyzing the whole data. Such approaches include Partial Dependence Plot
(PDP) [6], Accumulated Local Effects (ALE) Plot [1], and global surrogate mod-
els [3]. Next, local explanation approaches aim to explain individual predictions
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by individually examining the instances. Such approaches include Individual
Conditional Expectation (ICE) [5], Local Surrogate (LIME) [14], and Shapley
Additive Explanations (SHAP) [10]. In this work, we use SHAP to explain the
predictions produced by decision models due to its solid theoretical foundation
in game theory and the availability of global interpretations by combining local
interpretations [10].

3 Preliminaries

Given a set X, we denote the set of all multi-sets over X with B(X). f�X is
the function projected on X: dom(f�X) = dom(f) ∩ X and f�X(x) = f(x) for
x ∈ dom(f�X).

3.1 Process Models

Decision mining techniques are independent of the formalism representing pro-
cess models, e.g., BPMN, YWAL, and UML-activity diagrams. In this work, we
use Petri nets as the formalism to model the process.

First, a Petri net is a directed bipartite graph of places and transitions. A
labeled Petri net is a Petri net with the transitions labeled.

Definition 1 (Labeled Petri Net). Let Uact be the universe of activity names.
A labeled Petri net is a tuple N=(P, T, F, l) with P the set of places, T the set of
transitions, P ∩T=∅, F ⊆ (P ×T )∪ (T ×P ) the flow relation, and l ∈ T �→ Uact

a labeling function.

Fig. 2. An example of Petri nets highlighted with decision points.

Figure 2 shows a Petri net, N1 = (P1, T1, F1, l1), where P1 = {p1, . . . , p6},
T1 = {t1, . . . , t7}, F1 = {(p1, t1), (t1, p2), . . . }, l1(t1) = Create purchase order,
l1(t2) = Request standard approval, etc.

The state of a Petri net is defined by its marking. A marking MN ∈ B(P ) is
a multiset of places. For instance, MN1 = [p1] represents a marking with a token
in p1. A transition tr ∈ T is enabled in marking MN if its input places contain
at least one token. The enabled transition may fire by removing one token from
each of the input places and producing one token in each of the output places.
For instance, t1 is enabled in MN1 and fired by leading to M ′

N1
= [p2].
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Definition 2 (Decision Points). Let N=(P, T, F, l) be a labeled Petri net. For
p ∈ P , p• = {t ∈ T | (p, t) ∈ F} denotes it outgoing transitions. p ∈ P is a
decision point if |p • | > 1.

For instance, p2 is a decision point in N1 since p2• = {t2, t3} and |p2 •| > 1.

Table 1. An example of event logs.

Case id Activity Timestamp Resource Total-price Vendor

PO92 Create purchase order 09:00 05.Oct.2022 Adams 1,000 Apple

PO92 Request standard order 11:00 07.Oct.2022 Pedro 1,000 Apple

PO93 Create purchase order 13:00 07.Oct.2022 Peter 1,500 Samsung

. . . . . . . . . . . . . . . . . .

3.2 Event Logs

Definition 3 (Event Logs). Let Uevent be the universe of events, Uattr the
universe of attribute names ({case, act, time, res} ⊆ Uattr ), and Uval the uni-
verse of attribute values. An event log is a tuple L = (E, π) with E ⊆ Uevent as
the set of events and π ∈ E → (Uattr � Uval) as the value assignments of the
events.

Table 1 shows a part of an event log L1 = (E1, π1). e1 ∈ E1 repre-
sents the event in the first row, i.e., π1(e1)(case) = PO92, π1(e1)(act) =
Create Purchase Order, π1(e1)(time) = 09:00 05.Oct.2022, π1(e1)(res) = Adams,
π1(e1)(total-price) = 1,000, and π1(e1)(vendor) = Apple.

4 Explainable Predictive Decision Mining

In this section, we introduce an approach to explainable predictive decision min-
ing. As shown in Fig. 3, the proposed approach consists of two phases: offline
and online phases. The former aims to derive decision models of decision points,
while the latter aims at predicting decisions for running process instances along
with explanations. In the offline phase, we compute situation tables based on
historical event logs and estimate decision models using the situation tables. In
the online phase, we predict decisions for ongoing process instances and explain
the decision.
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Fig. 3. An overview of the proposed approach.

4.1 Offline Phase

First, we compute situation tables from event logs. Each record in a situation
table consists of features (e.g., total price of an order) and a decision in a decision
point (e.g., t2 at decision point p2 in Fig. 2), describing how the decision has been
historically made (e.g., at decision point p2 in Fig. 2, standard approval (i.e., t2)
was performed when the total price of an order is e1,000).

Fig. 4. An example of the proposed approach.

Definition 4 (Situation Table). Let Ufeature be the universe of feature
names and Ufmap = Ufeature � Uval the universe of feature mappings. Let
N=(P, T, F, l) be a labeled Petri net and p ∈ P a decision point. sitp ∈ UL →
B(Ufmap × p•) maps event logs to situation tables (i.e., multi-sets of feature
mappings and decisions). Sp={sitp(L) | L ∈ UL} denotes the set of all possible
situation tables of p.

The table in Fig. 4(a) represents a situation table of p2 in Fig. 2 derived from
the event log depicted in Table 1. For instance, the first row in Fig. 4(a) describes
that request standard approval (t2) was executed when human resource Adams
performed create purchase order (i.e., res-CPO) for the order of e1,000 (i.e.,
total-price) with Apple (i.e., vendor). Formally, s1 = (fmap1, t2) ∈ sitp2 (L1)
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where fmap1 ∈ Ufmap such that fmap1 = {(res-CPO,Adams), (vendor,Apple),
(total-price, 1,000)}. Note that, s1 corresponds to event e2 in Table 1 and fmap1
is derived from all historical events of PO92.

A decision model provides the likelihood of each transition in a decision point
based on a given feature, e.g., when the total price of an order (i.e., feature)
is e1,800, standard approval will be performed with the likelihood of 0.2 and
manager approval with the likelihood of 0.8.

Definition 5 (Decision Model). Let N=(P, T, F, l) be a labeled Petri net and
p ∈ P a decision point. Let dmapp ∈ p• → [0, 1] be a decision mapping that
maps decisions to likelihoods such that the sum of all likelihoods adds up to 1,
i.e., Σp′∈p•dmapp(p′) = 1. Dp denotes the set of all possible decision mappings.
DMp ∈ Ufmap → Dp is the set of all possible decision models of p that map
feature mappings to decision mappings.

We estimate decision models based on situation tables.

Definition 6 (Estimating Decision Models). Let N=(P, T, F, l) be a labeled
Petri net and p ∈ P a decision point. estimatep ∈ Sp → DMp is a function
estimating a decision model from a situation table.

The estimation function can be built using many machine learning algorithms
such as neural networks, support vector machines, random forests, etc.

4.2 Online Phase

Using the decision model derived from the offline phase, we predict the decision
of a running process instance and explain the prediction. Using the feature of
a running process instance depicted in Fig. 4(b), a decision model may produce
the prediction shown in Fig. 4(c), leading to the final decision of request manager
approval that has the highest likelihood. Next, we compute an explanation for the
decision (i.e., the effect of each feature on the prediction) as shown in Fig. 4(d),
e.g., total-price has a positive effect of 0.6 while vendor has a negative effect of
0.2. In other words, total-price increases the likelihood of predicting the decision
of request manager approval by the magnitude of 0.6 and vendor decreases it by
the magnitude of 0.2, respectively.

In this work, we use SHAP values [10] to provide explanations of decisions.
SHAP values are based on Shapley values. The concept of Shapley values comes
from game theory. It defines two elements: a game and some players. In the
context of predictions, the game is to reproduce the outcome of the model, and
the players are the features used to learn the model. Intuitively, Shapley values
quantify the amount that each player contributes to the game, and SHAP values
quantify the contribution that each feature brings to the prediction made by the
model.

Definition 7 (Explaining Decisions). Let fmap ∈ Ufmap be a feature map-
ping and F = {f1, f2, . . . , fi, . . . } = dom(fmap) denote the domain of fmap.
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Let N=(P, T, F, l) be a labeled Petri net, p ∈ P a decision point, and dmp a
decision model. Let t ∈ p• be a target transition. The SHAP value of feature fi
for predicting t is defined as:

ψt
fi =

∑

F ′⊆F\{fi}

|F ′|!(|F | − |F ′| − 1)!

|F |! (dmp(fmap�F ′∪{fi})(t) − dmp(fmap�F ′)(t))

For fmap, expdmp,t(fmap) = {(f1, ψt
f1

), (f2, ψt
f2

), . . . } is the explanation of pre-
dicting t using dmp.

As shown in Fig. 4(d), for feature mapping fmap′ described in Fig. 4(b),
the explanation of predicting t3 (i.e., request manager approval) using decision
model dm′

p2 is expdm′
p2,t3

(fmap′) = {(total-price, 0.6), (vendor,−0.2)}. In other
words, total-price has a positive effect with the magnitude of 0.6 on the decision
of t3 and vendor has a negative effect with the magnitude of 0.2.

Moreover, we can provide a global explanation of a decision model by aggre-
gating SHAP values of multiple running instances. For instance, by aggregating
all SHAP values of total-price for predicting t3, e.g., with the mean absolute
value, we can compute the global effect of total price to the prediction.

5 Implementation

We have implemented a Web application to support the explainable decision min-
ing with a dedicated user interface. Source code and user manuals are available at
https://github.com/aarkue/eXdpn. The application comprises three functional
components as follows.

Discovering Process Models. This component supports the discovery of pro-
cess models based on inductive miner [7]. The input is event data of the standard
XES. The discovered accepting Petri net is visualized along with its decision
points.

Decision Mining. This component supports the computation of situation
tables from event logs and the estimation of decision models from the computed
situation table. First, it computes situation tables with the following three types
of features:

– Case features: Case features are on a case-level and used for predicting all
decisions related to that case.

– Event features: Event features are specific to an event and used for predicting
decisions after the occurrence of the event.

– Performance features: Performance features are derived from the log. It
includes elapsed time of a case (i.e., time duration since the case started) and
time since last event (i.e., time duration since the previous event occurred).
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Next, the estimation of decision models uses the following machine learning
algorithms: Random Forests, XGBoost, Support Vector Machines (SVMs), and
Neural Networks.

Visualizing Decisions and Explanations. This component visualizes the F1
score of different machine learning algorithms and suggests the best technique
based on the score. Moreover, it visualizes the explanation of the decision both
at local and global levels. Local explanations are visualized with force plot (cf.
Fig. 5(a)), decision plot (cf. Fig. 5(b)), and beeswarm plot (cf. Fig. 5(c)), whereas
global explanations are visualized with bar plot (cf. Fig. 5(d)), force plot (cf.
Fig. 5(e)), and beeswarm plot (cf. Fig. 5(f)). We refer readers to [9] for the details
of different plots.

6 Evaluation

In this section, we evaluate the approach by conducting experiments using
the implementation. Specifically, we are interested in answering the following
research questions.

– RQ1: Does the advanced machine learning algorithm efficiently predict the
decisions?

– RQ2: Does the approach provides reliable explanations for the predictions?

6.1 RQ1: Prediction Accuracy

In order to answer RQ1, we conduct experiments using real-life event logs: Busi-
ness Process Intelligence Challenge (BPIC) 20121 and BPIC 20192. For each
event log, we first discover a process model and determine decision points. Then
we estimate different decision models for each decision point and compare the
performance of the decision models using 5-fold cross-validation. To measure the
performance of the decision model, we use F1 scores. Each model is instantiated
with suitable, event-log-specific parameters, which have largely been obtained
from a parameter grid search on each decision point as well as manual test runs.
For decision tree algorithms, we apply pruning steps to avoid too many splits
that result in decision trees harder to interpret in practice due to their complex-
ity.

Table 2 shows the F1 score of different machine learning algorithms in differ-
ent real-life event logs3. The top two scores for each decision point are highlighted
with bold fonts. XGBoost shows good scores for all decision points except p14 in
BPIC 2012 and p4 in BPIC 2019. The scores for Support Vector Machine belong
to the top two scores for most of the decisions except p4 and p6 in BPIC 2012

1 https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f.
2 https://doi.org/10.4121/uuid:d06aff4b-79f0-45e6-8ec8-e19730c248f1.
3 The experimental results are reproducible in https://github.com/aarkue/eXdpn/

tree/main/quantitative analysis along with the corresponding process model.
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Fig. 5. Local explanations: (a) Force plot, (b) Decision plot, and (c) Beeswarm
plot explain how the model arrived at the decision of a running instance (i.e., request
manager approval with the likelihood of 0.98). For instance, (a) visualizes the positive
(red-colored) and negative (blue-colored) features with increasing magnitudes. Global
explanations: (d) Bar plot, (e) Beeswarm plot, and (f) Force plot explain how the
model arrived at the decision of all running instances (both on request standard approval
and request manager approval). For instance, (d) visualizes the mean absolute SHAP
value for each feature on predicting request standard approval (blue-colored bar) and
request manager approval (red-colored bar), showing that total-price has the highest
impact on both predictions. (Color figure online)

and p8 and p11 in BPIC 2019, whereas the ones for Neural Network belong to
the top two scores in p4, p6 and p14 in BPIC 2012 and p4 and p8 in BPIC 2019.
Decision Tree shows the top two scores only for p16 in BPIC 2012 and p11 in
BPIC 2019.
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Table 2. F1 scores of applying different machine learning algorithms in different deci-
sion points. The bold font shows the top two results in each decision point.

Event logs BPI challenge 2012 (only offers) BPI challenge 2019 (filtered)

Decision point p4 p6 p12 p14 p16 p19 p3 p4 p8 p11

Algorithms Decision tree 0.6888 0.7545 0.7955 0.9633 0.9612 0.9263 0.9555 0.9948 0.8135 1.0000

XGBoost 0.7189 0.7897 0.8004 0.9697 0.9612 0.9407 0.9632 0.9948 0.8293 1.0000

Support vector machine 0.7151 0.7799 0.8023 0.9701 0.9612 0.9414 0.9649 0.9950 0.8096 0.9997

Neural network 0.725 0.8048 0.7955 0.9698 0.9607 0.9317 0.9583 0.9981 0.8191 0.9949

6.2 RQ2: Reliability of Explanations

To answer RQ2, we design a simulation model to simulate a Purchase-To-Pay
(P2P) process using CPN tools [12]. The simulation model allows us to fully
define the decision logic of decision points. Based on the decision logic, we quali-
tatively evaluate if the generated explanation is reliable. Figure 6 shows the Petri
net discovered using inductive miner [7] from an event log generated by the sim-
ulation model, with highlighted decision points. Decision point (c) describes the
decision of whether the purchase order is held at customs or not. The decision
logic in the simulation model is as follows: If 1) a purchase order originates from
outside the EU and 2) the base price per item is higher than e50, the order is
held at customs.

Fig. 6. Petri net discovered from the simulated P2P event logs.

The beeswarm plot in Fig. 7(a) explains the decision at decision point (c).
The Non-EU origin (high value of origin Non EU) has a strong positive impact
on the probability of being held at customs according to the decision model.
Moreover, the existence of items in category Odds and Ends, which have low
base prices, has a negative impact on the probability, whereas the existence
of items in category Electronics, which have high base prices, has a positive
impact on the probability. When the individual product names, categories, and
vendors are excluded (see Fig. 7b), the four most impactful features that remain
are exactly the ones used in the logic of the underlying simulation model: The
EU or Non-EU origin, the total price and the number of items in the order.
Overall the decision logic as interpretable through the plots corresponds to the
underlying logic applied in the simulation model, showing that the explanation
obtained is reliable.
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Fig. 7. Qualitative analysis showing the explanation plots of decision point (c) using
a neural network model.

7 Conclusions

In this paper, we proposed an approach to explainable predictive decision min-
ing. In the offline phase of the approach, we derive decision models for different
decision points. In the online phase, we predict decisions for running process
instances with explanations. We have implemented the approach as a web appli-
cation and evaluated the prediction accuracy using real-life event logs and the
reliability of explanations with a simulated business process.

This paper has several limitations. First, the explanation generated by the
proposed approach is less expressive than the logical expression generated by
traditional decision mining techniques. Also, we abstract from the definition of
features that can be used to construct the situation tables, focusing on explaining
several possible features in the implementation. In future work, we plan to extend
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the approach with a taxonomy of features to be used for the comprehensive
construction of situation tables. Moreover, we plan to connect the explainable
predictive insights to actual actions to improve the process.

Acknowledgment. The authors would like to thank the Alexander von Humboldt
(AvH) Stiftung for funding this research.
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