
Diagnosing Workflow Processes
using Woflan

H.M.W. VERBEEK1, T. BASTEN2 AND W.M.P. VAN DER AALST1

1Faculty of Technology Management, Eindhoven University of Technology, the Netherlands
2Faculty of Electrical Engineering, Eindhoven University of Technology, the Netherlands

Email: h.m.w.verbeek@tue.nl

Workflow management technology promises a flexible solution for business-process
support facilitating the easy creation of new business processes and modification
of existing processes. Unfortunately, today’s workflow products have no support
for workflow verification. Errors made at design-time are not detected and re-
sult in very costly failures at run-time. This paper presents the verification tool
Woflan. Woflan analyzes workflow process definitions downloaded from commer-
cial workflow products using state-of-the-art Petri-net-based analysis techniques.
This paper describes the functionality of Woflan emphasizing diagnostics to locate
the source of a design error. Woflan is evaluated via two case studies, one involving
twenty groups of students designing a complex workflow process and one involv-
ing an industrial workflow process designed by Staffware Benelux. The results
are encouraging and show that Woflan guides the user in finding and correcting

errors in the design of workflows.

Keywords: Workflow management, Petri nets, Verification, Woflan, Case study.

1. INTRODUCTION

Workflow management systems take care of the automated
support and coordination of business processes to reduce
costs and flow times and to increase quality of service and
productivity [23, 26, 28, 29, 38]. A critical challenge for
workflow management systems is their ability to respond
effectively to changes in business processes [6, 7, 13, 27,
32, 48]. Changes may range from simple modifications of
a workflow process such as adding a task to a complete re-
structuring of the workflow process to improve efficiency.
Changes may also involve the creation of new processes. To-
day’s workflow management systems are ill suited to dealing
with frequent changes, because there are hardly any checks
to assure some minimal level of correctness. Creating or
modifying a complex process that combines parallel and
conditional routing is an activity subject to errors. Even
a simple change as adding a task can cause a deadlock or
livelock. A deadlock occurs if at someunexpectedpoint in
the workflow process it is no longer possible to make any
progress for a certain case (workflow instance) that is being
handled. Note that theexpectedtermination of progress is
something desirable, because it corresponds to the success-
ful completion of a case. A livelock occurs if it is possible to
make continuous progress for a certain case, however, with-
out progressing towards successful completion and without
ending in a deadlock (e.g., an endless loop). Contemporary
workflow management systems do not support advanced
techniques to verify the correctness of workflow process def-
initions [2, 24]. These systems typically restrict themselves
to a number of (trivial) syntactical checks. Therefore, seri-

ous errors such as deadlocks and livelocks may remain unde-
tected. This means that an erroneous workflow may go into
production, thus causing dramatic problems for the organi-
zation. An erroneous workflow may lead to extra work, le-
gal problems, dissatisfied customers, managerial problems,
and depressed employees. Therefore, it is important to ver-
ify the correctness of a workflow process definitionbefore
it becomes operational. The role of verification becomes
even more important as many enterprises are making Total
Quality Management (TQM) one of their focal points. For
example, an ISO 9000 certification and compliance forces
companies to document business processes and to meet self-
imposed quality goals [25]. Clearly, rigorous verification of
workflow processes can be used as a tool to ensure certain
levels of quality.

The development ofWoflan1 started at the end of 1996.
The goal was to build a verification tool specifically designed
for workflow analysis. Right from the start, there have been
three important requirements for Woflan:

1. Woflan should beproduct independent, i.e., it should
be possible to analyze processes designed with various
workflow products of different vendors.

2. Woflan should be able to handlecomplex workflows
with up to hundreds of tasks.

3. Woflan should give to-the-pointdiagnostic information
for repairing detected errors.

Based on these requirements, we decided to base Woflan
on Petri nets. Petri nets are a universal modeling language

1see http://www.tm.tue.nl/it/woflan

THE COMPUTERJOURNAL, Vol. ??, No. ??, ????

2 H. VERBEEK, T. BASTEN AND W. VAN DER AALST

with a solid mathematical foundation. Yet, Petri nets are
close to the diagramming techniques used in today’s work-
flow management systems. The efficient analysis techniques
developed for Petri nets allow for the analysis of complex
workflows. The graphical representation of Petri nets and
the available analysis techniques are particularly useful for
generating meaningful diagnostic information. Since the re-
lease of version 1.0 of the tool in 1997, we have been con-
tinuously improving Woflan. Both new theoretical results
and practical experiences stimulated several enhancements.
Pivotal to Woflan is the notion ofsoundnessof a workflow
process [1, 2, 4]. This notion expresses the minimal require-
ments any workflow should satisfy. Informally, a workflow
process is sound if it satisfies the following conditions.

(option to complete) It should always be possible to com-
plete a case (workflow instance) that is handled accord-
ing to the process. This condition guarantees the ab-
sence of deadlocks and livelocks.

(proper completion) It should not be possible that the
workflow process signals completion of a case while
there is still work in progress for that case.

(no dead tasks)For every task, there should be an execu-
tion of the workflow process that executes it. This re-
striction means that every task has a meaningful role in
the workflow process.

The current version 2.1 of Woflan can analyze workflows
designed with the workflow productsCOSA, Staffware, ME-
TEOR, andProtos. COSA (COSA Solutions/Software Ley,
[42]) is one of the leading workflow management systems
on the Dutch workflow market. COSA allows for the mod-
eling and enactment of complex workflow processes which
use advanced routing constructs. The modeling language
of COSA is based on Petri nets. However, COSA does
not support verification. Woflan can analyze any work-
flow process definition constructed by using CONE (COSA
Network Editor), the design tool of the COSA system.
Woflan can also import workflow process definitions from
Staffware (Staffware Plc, [43]). Staffware is one of the most
widespread workflow management systems in the world.
It uses a proprietary graphical input language for defining
workflow process definitions. Nevertheless, Woflan can an-
alyze some useful properties of workflow process defini-
tions made with Staffware. Woflan can also be used to an-
alyze process definitions made with METEOR and Protos.
METEOR (LSDIS, [40]) is a workflow management sys-
tem based on CORBA and supports transactional workflows
([22]). Protos (Pallas Athena, [31]) is a Business-Process-
Reengineering tool which can be used to (re)design and doc-
ument workflow processes.

This paper focuses on version 2.1 of Woflan and, in partic-
ular, on the diagnosis process that it supports. This process
has been developed based on experiences with earlier ver-
sions of Woflan. It implements several well-known Petri-net
analysis techniques that are relevant in the context of work-
flow management. However, it also implements a new tech-

nique; Woflan can generate so-calledbehavioral error se-
quences. One can think of such a behavioral error sequence
as a doomsday scenario: It gives a minimal sequence of
tasks whose execution unavoidably leads to an error. Thus,
it clearly shows the roots of the error in a workflow. These
sequences can be used for diagnosing errors that are not
easy to detect with standard analysis techniques available
in earlier versions of Woflan. The functionality of Woflan
2.1 has been evaluated via two case studies. The first case
study uses workflow process definitions developed by stu-
dents of the courseWorkflow Management & Groupware
(1R420), attended by 42 students of the Eindhoven Univer-
sity of Technology, and the courseWorkflow Management:
Models, Methods, and Tools(25756), attended by 15 stu-
dents of the University of Karlsruhe. These students formed
20 groups which independently designed the workflow in a
travel agency consisting of about 60 tasks and other build-
ing blocks. These workflows were designed with Protos.
We collected the workflows and analyzed them with Woflan
2.1. Most of the designed workflows contained several er-
rors that were repaired using the diagnostics provided by
Woflan. This case study proved to be very useful for test-
ing the diagnosis process of Woflan. The second case study
involves the analysis of an industrial workflow process defi-
nition developed by Staffware Benelux and containing more
than 100 tasks and other building blocks. In the experiment,
a workflow designer of Staffware Benelux introduced sev-
eral (non-trivial) errors in a version of the workflow that was
known to be correct. We analyzed the resulting process def-
inition in Woflan. The exact number of errors and the type
of errors were not known to us. We succeeded in finding six
out of seven errors in the workflow process definition; also,
the corrections we made based on the diagnostics of Woflan
turned out to be the appropriate ones. This second case study
complements the first one; it strengthens our belief that our
approach of workflow-product-independent verification sup-
port is feasible.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces a class of Petri nets called P/T nets and
summarizes some well-known results and analysis tech-
niques. Section 3 introduces the area of workflow manage-
ment and our approach to verification of workflows. In Sec-
tion 4, we present a subclass of P/T nets for modeling work-
flows called WF nets and we formalize the soundness prop-
erty on these WF nets. The section also introduces some
specific techniques for analyzing WF nets, including the
above mentioned technique of behavioral error sequences.
Together with the standard analysis techniques of Section 2,
these techniques form the (mathematical) basis for Woflan.
The inclusion of the material in Sections 2 and 4 makes the
paper self-contained and it allows the interested reader to
study the Petri-net foundation of Woflan. Section 5 discusses
the tool Woflan and the diagnosis process that it supports to
decide whether or not a WF net satisfies the soundness prop-
erty. The two case studies used for evaluating Woflan are
presented in Section 6. Section 7 discusses related work. Fi-
nally, Section 8 presents conclusions and topics for future
work.

THE COMPUTERJOURNAL, Vol. ??, No. ??, ????

DIAGNOSING WORKFLOW PROCESSES USINGWOFLAN 3

FIGURE 1. The example P/T netN

2. P/T NETS

Woflan is based on Petri nets. As indicated in the introduc-
tion, there are several reasons for using Petri nets for the
verification of workflow process definitions. The interested
reader is referred to [2, 10, 18] for a more elaborate dis-
cussion on the use of Petri nets in the workflow domain.
In this section, we introduce a standard class of Petri nets
called P/T nets. First, we introduce some basic definitions
and useful properties. Second, we introduce some analy-
sis techniques on P/T nets. Readers familiar with Petri nets
can browse through this section to become familiar with the
notations used. An extensive treatment of Petri nets can be
found in [16, 33, 34, 35]. In this section, we restrict our-
selves to the material that is needed to understand the foun-
dations of Woflan.

2.1. Basic definitions

2.1.1. P/T nets
A P/T net is a directed graph with two kinds of nodes:tran-
sitionsandplaces. Arcs in the graph always connect a node
of one kind to a node of the other kind.

DEFINITION 2.1. (P/T net) The tripleN = (P, T, F) is
a P/T net iff:

(i). P is a finite, non-empty set of places.
(ii). T is a finite, non-empty set of transitions such that
P ∩ T = ∅.

(iii). F ⊆ (P × T) ∪ (T × P) is a set of directed arcs,
called the flow relation.

It is common practice to draw places by circles and transi-
tions by squares. An example of a P/T net can be seen in
Figure 1. A P/T net models thestructureof a process. The
class of Petri nets introduced in Definition 2.1 is sometimes
referred to as the class ofordinary P/T nets to distinguish it
from the class of Petri nets that allows more than one arc be-
tween a pair of nodes. For the sake of simplicity, we allow

FIGURE 2. An example systemS for netN

in this paper at most one arc between any two nodes. How-
ever, most results extend in a relatively straightforward way
to nets that may have multiple arcs between pairs of nodes.

DEFINITION 2.2. (Preset, postset) Let N = (P, T, F)

be a P/T net. Forn ∈ P ∪ T , the preset ofn, •n, equals
{n0 ∈ P ∪ T |(n0, n) ∈ F}; the postset ofn, n•, equals
{n0 ∈ P ∪ T |(n, n0) ∈ F}.

For a node (a place or a transition)n, its preset corresponds
to the set of nodes (calledinput nodes) from which there is
an arc (called aninput arc) to n; its postset corresponds to
the set of nodes (calledoutput nodes) to which there is an
arc (called anoutput arc) from n.

2.1.2. Systems
Places in a P/T net may contain so-calledtokens. The distri-
bution of tokens over the places determines thestateof the
P/T net, also called themarkingof the P/T net. Graphically,
tokens are typically represented by black dots. For exam-
ple, if we add the marking consisting of a token in the place
labeledi to our example P/T netN of Figure 1, we get the
marked P/T net (or system) as shown in Figure 2. Since a
place may contain multiple tokens, a marking can be repre-
sented as a bag or finite multi-set.

NOTATION 2.1. (Bags) A bag over some alphabetA is
a function fromA to the natural numbers that assigns only
a finite number of elements fromA a positive value. For a
bagX over alphabetA anda ∈ A, X(a) denotes the number
of occurrences ofa in X, often called the cardinality ofa in
X. Note that a finitesetof elements fromA is also a bag
over A, namely the function yielding 1 for every element
in the set and 0 otherwise. The set of all bags overA is
denotedB(A). We use brackets to explicitly enumerate a
bag and superscripts to denote cardinalities. For example,
[a2, b3, c] is the bag with twoa’s, threeb’s, and onec; the
bag [a2

|P(a)], where P is a predicate onA, contains two
elementsa for everya such thatP(a) holds. The sum of

THE COMPUTERJOURNAL, Vol. ??, No. ??, ????

4 H. VERBEEK, T. BASTEN AND W. VAN DER AALST

two bagsX andY, denotedX + Y, is defined as [an
|a ∈

A∧ n = X(a) + Y(a)]. The difference ofX andY, denoted
X −Y, is defined as [an

|a ∈ A∧n = (X(a)−Y(a)) max 0].
Bag X is a subbag ofY, denotedX ≤ Y, iff, for all a ∈

A, X(a) ≤ Y(a).

DEFINITION 2.3. (System) A bag M ∈ B(P) is called
a marking of a P/T net(P, T, F). The pairS = (N, M) is
called asystemwith initial marking M .

2.1.3. Behavior of systems
Using a system, we can model a process structure as well as
the current state of the process. However, we do not know
yet how the process gets from one state to another. For this
reason, we define the so-called firing rule.

DEFINITION 2.4. (Firing rule) Let N = (P, T, F) be
a P/T net. MarkingM of N enables transitiont in T iff
•t ≤ M . MarkingM1 is reached fromM by firing t , denoted

M
t

−→ M1, iff •t ≤ M andM1 = M − •t + t•.

So, a transition isenablediff its preset is a subbag of the
actual marking, implying that there is a token in every input
place of the transition. Note that we use the fact that the
preset is a set and hence a bag. When a transition is enabled,
we can reach a new marking byfiring this transition. This
new marking can be constructed by removing the transition’s
preset from the original marking and adding the transition’s
postset. For example, in our system of Figure 2, only the
register transition is enabled. Whenregister fires,
the new marking becomes [c1 , c2]: The token from place
i is removed and new tokens are added to placesc1 andc2 .

2.2. Analysis of nets

Petri nets are known for the availability of many analysis
techniques. Clearly, this is a great asset in favor of the use of
Petri nets for workflow modeling. The analysis techniques
can be used to prove qualitative properties (safety properties,
invariance properties, deadlock, etc.) and to calculate perfor-
mance measures (response times, waiting times, occupation
rates, etc.). In this paper, the primary focus is on qualitative
verification.

2.2.1. Structural analysis
A structural property of a P/T net is a property that does
not depend on the marking of the net. Therefore, it can be
defined on P/T nets rather than on systems. In process mod-
eling, the simple combination of places and transitions can
be used to devise various routing constructs ranging from a
simple sequence to a delicate mixture of choice and synchro-
nization. In the context of workflow design, certain, more
advanced, constructs are considered to be suspicious and a
potential source of errors. Therefore, we review the standard
structural properties for P/T nets. A strong point of structural
properties is that most of them can be computed efficiently.

As in all directed-graph structures, we can distinguish di-
rected and undirected paths in P/T nets.

FIGURE 3. The short-circuited systemS = (N, [i])

DEFINITION 2.5. ((Strongly) connected P/T net) A P/T
net is calledconnectediff there exists a(n undirected) path
between every two nodes. It isstronglyconnected iff there
exists a directed path between every two nodes.

The P/T netNof Figure 1 is connected, but not strongly con-
nected: For instance, there is no directed path fromo to i .
If we short-circuit netN of Figure 1 with theshortcir-
cuit transition fromo to i , we get a net that is strongly
connected. Figure 3 shows the resulting netN. (Actually, it
shows a system based onN but, at this point, the marking is
not relevant.)

A (directed or undirected) path is calledelementaryiff all
nodes in the path are different.

DEFINITION 2.6. (PT-handle, TP-handle [20]) Let N =

(P, T, F) be a P/T net. A place-transition pair(p, t) ∈

P×T is called a PT-handle iff there exist two elementary di-
rected paths fromp to t sharing only the two nodesp andt ; a
transition-place pair(t, p) ∈ T × P is called a TP-handle iff
there exist two elementary directed paths fromt to p sharing
only nodesp andt .

Since PT-handles and TP-handles can easily introduce de-
sign flaws in (workflow) process definitions (see Section
5.1.4), we name nets without these potentially correctness-
threatening constructs well-handled.

DEFINITION 2.7. (Well-handled P/T net) A P/T net is
well-handlediff it has no PT-handles and no TP-handles.

Net N of Figure 1 is not well-handled: It contains one PT-
handle (see Figure 4) and two TP-handles (see Figure 5).

A P/T net is calledfree-choiceiff every two transitions
sharing at least one input place have identical presets. NetN
of Figure 1 is free-choice.

DEFINITION 2.8. (Free-choice P/T net) A P/T net(P, T,

F) is free-choice iff∀t0, t1 ∈ T : •t0 ∩ •t1 = ∅ ∨ •t0 = •t1.

A net is called a state machine iff all transitions have exactly

THE COMPUTERJOURNAL, Vol. ??, No. ??, ????

DIAGNOSING WORKFLOW PROCESSES USINGWOFLAN 5

(c3, archive)

FIGURE 4. The only PT-handle in netN

one input and one output place.

DEFINITION 2.9. (State machine) A P/T net(P, T, F) is
a state machine iff∀t ∈ T : | • t | = |t • | = 1.

DEFINITION 2.10. (Subnet) Let N = (P, T, F) and
N0 = (P0, T0, F0) be P/T nets. NetN0 is a subnet of netN
iff P0 ⊆ P, T0 ⊆ T , andF0 = F ∩ ((P0 × T0) ∪ (T0 × P0)).

DEFINITION 2.11. (S-component) Let N = (P, T, F)

be a P/T net andN0 = (P0, T0, F0) a subnet ofN; let •

denote the preset and postset functions ofN. SubnetN0 is
an S-component ofN iff N0 is a strongly connected state
machine such that∀p ∈ P0 : •p ∪ p• ⊆ T0.

If a P/T net corresponds to a set of S-components, it is S-
coverable. NetN of Figure 1 has no S-components. P/T net
N of Figure 3 has two S-components (see Figure 6) but is
not S-coverable: Placec8 is not contained in any of these
S-components.

DEFINITION 2.12. (S-coverability) A P/T net(P, T, F)

is S-coverable iff for each placep ∈ P there is an S-
component(P0, T0, F0) of N such thatp ∈ P0.

A place-invariant is a weighted sum over the places that is
invariant under each possible transition firing.

DEFINITION 2.13. (Place-invariant) Let N = (P, T, F)

be a P/T net andw a weight function fromP to the integer
numbers. Functionw is a place-invariant ofN iff ∀t ∈ T :
(
∑

p ∈ •t : w(p)) = (
∑

p ∈ t• : w(p)).

Note that despite the fact that the above explanation of
a place-invariant is in terms of transition firings, a place-
invariant is a structural property: It is independent of the
marking of the net. For example, a place-invariant of net
N of Figure 1 is the function that assigns the weight 1 to the
placesi , c1 , c3 , c5 , ando and 0 to the other places. A con-
venient way to represent this function isi +c1+c3+c5+o.

It is not difficult to see that ifw0 and w1 are place-
invariants, the elementwise sumw0 + w1 and the element-
wise differencew0−w1 are place-invariants too. As a result,
a net has only the place-invariant containing only weights 0
or it has infinitely many place-invariants.

Exchanging the roles of places and transitions in the no-

(register, c4)

(register, c7)

FIGURE 5. TP-handles in netN

tion of a place-invariant yields the concept of a so-called
transition-invariant. However, transition-invariants do not
play a role in this paper.

2.2.2. Occurrence sequences
Behavioral analysis techniques are those techniques that use
the initial marking of a P/T net. Therefore, these techniques
use systems instead of P/T nets. An elementary behav-
ioral technique is the analysis of the so-calledoccurrence
sequencesof a system. An occurrence sequence is simply a
chain of transition firings.

DEFINITION 2.14. (Occurrence sequence) Let S = (N,

M0) be a system, letM1, . . . , Mn, for some natural number
n, be markings ofN = (P, T, F), and lett0, t1, . . . , tn−1
be transitions inT . Sequences = M0t0M1 . . . tn−1Mn is an

occurrence sequence ofS iff ∀i, 0 ≤ i < n : Mi
ti

−→ Mi +1.

An occurrence sequence of a system projected onto transi-
tions yields a so-calledfiring sequence.

Consider again P/T netN of Figure 1. Assuming
initial marking [c4 , c5 , c8], the set of firing sequences
equals {process , process redo , process done ,

process done archive }. Note that the sets of firing and
occurrence sequences are prefix-closed, i.e., every prefix of
a firing (occurrence) sequence is also a firing (occurrence)
sequence.

THE COMPUTERJOURNAL, Vol. ??, No. ??, ????

6 H. VERBEEK, T. BASTEN AND W. VAN DER AALST

FIGURE 6. S-components of netN

2.2.3. Occurrence graph
The set of occurrence sequences of a system can be embed-
ded into a graph. Every occurrence sequence corresponds to
some path in that graph and vice versa.

NOTATION 2.2. (Reachability) Let N = (P, T, F) be
a P/T net. MarkingM1 is reachable from markingM0, de-
notedM0 −→ M1, iff system(N, M0) has an occurrence
sequence ending inM1.

In systemS of Figure 2, marking [c4 , c5 , c8] is reachable
from the initial marking [i], while from [c4 , c5 , c8] both
[c4 , c5] and [o] are reachable.

DEFINITION 2.15. (Occurrence graph) Let S = ((P, T,

F), M0) be a system; letH ⊆ B(P) be a set of markings,
let A ⊆ (H × T × H) be a set ofT-labeled arcs, and let
G = (H, A) be a graph which satisfies the following re-
quirements:

(i). H = {M ∈ B(P)|M0 −→ M};

(ii). A = {(M, t, M1) ∈ (H × T × H)|M
t

−→ M1}.

Graph G is called the occurrence (or reachability) graph
(OG) of S.

The OG of systemS of Figure 2 is given in Figure 7.
The OG embeds precisely all occurrence sequences of the

system. The construction of this graph is straightforward,
although termination is not guaranteed, because it might
be infinite. For example, the OG of systemS of Figure 3
has infinitely many nodes. In this system, firing the tran-
sitions register send rec dont archive short-
circuit over and over again, leads to infinitely many
markings [i , c8 n], for arbitraryn > 0. After one firing of
these transitions, there is one token inc8 , after two firings
there are two, and so on. There is no limit to the number of
tokens inc8 . Placec8 is said to beunbounded. As a result,
the number of markings in the OG is infinite.

FIGURE 7. The OG of systemS

2.2.4. Coverability graph
A solution to cope with unbounded places is the notion of a
so-called coverability graph. A coverability graph is a finite
variant of an OG. However, we have to pay a price: First, we
must allow markings to be infinite to deal with unbounded
behavior. Second, a P/T system may have a number of pos-
sible coverability graphs, whereas it always has one unique
OG.

An extended bag over some alphabetA is a function from
A to the natural numbers plusω (denoting infinity). The set
of all extended bags overA is denotedBω(A). All opera-
tions on bags can be defined for extended bags in a straight-
forward way. An extended bagM ∈ Bω(P) is called an
extendedmarking of a P/T net(P, T, F). The set of ex-
tended markings can be partitioned into a set offinite mark-
ings B(P) and a set ofinfinitemarkingsBω(P) \ B(P).

A coverability graph of a system is a variant of the OG,
where paths in the OG with infinitely many different (fi-
nite) markings are represented by a finite number of infinite
markings. An infinite marking is introduced in a coverabil-
ity graph if we encounter a markingM1 on an occurrence
sequence that has a smaller markingM0 as one of its pre-
decessors: The places inM1 − M0 are unbounded and are
marked withω. It is known that a coverability graph is al-
ways finite ([33], p. 70).

DEFINITION 2.16. (Coverability graph) Let S = ((P, T,

F), M0) be a system, letH ⊆ Bω(P) be a set of extended
markings, letA ⊆ (H × T × H) be a set ofT-labeled arcs,
and letG = (H, A) be a graph which can be constructed as
follows:

(i). Initially, H = {M0} andA = ∅.
(ii). Take an M from H and at from T such thatM
enablest and such that noM1 exists with(M, t, M1) ∈

A. Let M2 = M−•t+t•. Add M3 to H and(M, t, M3)

to A, where for everyp ∈ P:

THE COMPUTERJOURNAL, Vol. ??, No. ??, ????

DIAGNOSING WORKFLOW PROCESSES USINGWOFLAN 7

(a) M3(p) = ω, if there is a nodeM1 in H such that
M1 ≤ M2, M1(p) < M2(p), and there is a (di-
rected) path fromM1 to M in G;

(b) M3(p) = M2(p), otherwise.

Repeat this step until no new arcs can be added.

G is called a coverability graph (CG) ofS.

The result of this algorithm may vary depending on the order
in which markings are considered in the second step (see
[33] for more details). Nevertheless, a CG of a system can
be used to analyze the behavior of the system. The short-
circuited netS of Figure 3 has a unique CG which is shown
in Figure 8.

Given a system and a CG of this system, every occurrence
sequence of the system corresponds to a path in the CG.
The converse is not necessarily true: There may be paths in
the CG that do not correspond to any occurrence sequence.
However, a path containing only finite markings does corre-
spond to some occurrence sequence. This conforms to the
fact that the CG is identical to the OG if the former has no
infinite markings. The theoretical worst-case complexity of
generating a CG is non-primitive recursive space, although
for small to medium sized systems (up to 100 transitions)
generating a CG is often feasible.

In [21], Finkel introduces the notion of aminimal CG
(MCG) of a P/T system. An MCG of a system with infi-
nite OG is usually much smaller than a CG of the system.
Another advantage is that the MCG of a system is unique.
However, the MCG of a system with finite OG may differ
from that OG. It is beyond the scope of this paper to go into
more detail.

2.2.5. Behavioral properties
Behavioral properties of a P/T net are those properties that
depend on the marking of the net. Thus, these properties
are defined on systems. In the remainder, we do not go into
detail about the precise complexities of the algorithms to de-
termine behavioral properties (see [19] for more informa-
tion). For our purposes, it suffices to know that the theo-
retical complexity of computing behavioral properties is of-
ten much worse than the complexity of computing structural
properties.

DEFINITION 2.17. (Dead transition) A transitiont ∈ T
of a system((P, T, F), M0) is deadiff there is no marking
reachable fromM0 enablingt .

A transition is live iff it can always fire again.

DEFINITION 2.18. (Liveness) A transitiont ∈ T of a sys-
tem S = ((P, T, F), M0) is live iff ∀M ∈ B(P), M0 −→

M : ∃M1 ∈ B(P), M −→ M1 : M1 enablest . SystemS is
live iff all transitions are live.

SystemS of Figure 2 is not live: For instance, no transition
firings are possible in reachable marking [o] (see Figure 7).
The short-circuited systemS of Figure 3 is also not live: No
transition firings are possible in reachable marking [c4 , c5]
(see Figure 8).

A system isboundediff it has no unbounded places. An
equivalent definition for boundedness is to require that the
number of reachable markings, or the system’s OG, is finite.
A system is called safe iff all places in any reachable mark-
ing contain at most one token.

DEFINITION 2.19. (Boundedness, safeness) A system
((P, T, F), M0) is bounded iff∀M ∈ B(P), M0 −→ M :
∀M1 ∈ B(P), M −→ M1 : ¬(M < M1). A system
((P, T, F), M0) is safe iff∀M ∈ B(P), M0 −→ M : ∀p ∈

P : M(p) ≤ 1.

Note that, for a bounded system, the CG-generation algo-
rithm of Definition 2.16 yields the OG of the system.

SystemS of Figure 2 is bounded and safe. The latter
is straightforward to see in its OG: In each marking, every
place occurs at most once. However, the short-circuited sys-
temS of Figure 3 is unbounded, which follows directly from
the fact that there are infinite markings in the CG of Figure 8.

3. WORKFLOW MANAGEMENT

In the last decade,workflow management systemshave be-
come a popular tool to support the logistics of business pro-
cesses in banks, insurance companies, and governmental in-
stitutions [2, 23, 26, 28, 29, 38, 39]. Before, there were no
generic tools to support workflow management. As a result,
parts of the business process were hard-coded in the applica-
tions. For example, an application to support taskX triggers
another application to support taskY. This means that one
application knows about the existence of another applica-
tion. This is undesirable, because every time the underlying
business process is changed, applications need to be modi-
fied. Moreover, similar constructs need to be implemented in
several applications and it is not possible to monitor and con-
trol the entire workflow. Therefore, several software vendors
recognized the need for workflow management systems. A
workflow management system is a generic software tool that
allows for the definition, execution, registration, and control
of business processes orworkflows. At the moment, many
vendors are offering a workflow management system. This
shows that the software industry recognizes the potential of
workflow management tools.

As indicated in the introduction (see also [2, 10, 18]), P/T
nets are a good starting point for a solid foundation of work-
flow management. We use P/T nets to specify the partial
ordering of tasks in a workflow. Based on a P/T-net repre-
sentation of the workflow process, we tackle the problem of
verification.

3.1. Workflow processes

The fundamental property of a workflow process is that it
is case-based. This means that every piece of work is ex-
ecuted for a specificcase, also called aworkflow instance.
Examples of cases are an insurance claim, a tax declaration,
a customer complaint, a mortgage, an order, or a request for
information. Thus, handling an insurance claim, a tax dec-
laration, or a customer complaint are typical examples of

THE COMPUTERJOURNAL, Vol. ??, No. ??, ????

8 H. VERBEEK, T. BASTEN AND W. VAN DER AALST

FIGURE 8. The CG for the short-circuited systemS

workflow processes. Cases are often generated by an exter-
nal customer. However, it is also possible that a case is gen-
erated by another department within the same organization
(internal customer). A typical example of a process that is
not case-based, and hence not a workflow process, is a pro-
duction process such as the assembly of bicycles. The task
of putting a tire on a wheel is (generally) independent of the
specific bicycle for which the wheel will be used. Note that
the production of bicycles to order, i.e., procurement, pro-
duction, and assembly are driven by individual orders, can
be considered as a workflow process.

The goal of workflow management is to handle cases as
efficient and effective as possible. A workflow process is
designed to handle large numbers of similar cases. Handling
one customer complaint usually does not differ much from
handling another customer complaint. The basis of a work-
flow process is theworkflow process definition. This process
definition specifies whichtasksneed to be executed in what
order. Alternative terms for workflow process definition are:
‘procedure’, ‘workflow schema’, ‘flow diagram’, and ‘rout-
ing definition’. Tasks are ordered by specifying for each task
theconditionsthat need to be fulfilled before it may be ex-
ecuted. In addition, it is specified which conditions are ful-
filled by executing a specific task. Thus, a partial ordering of
tasks is obtained. In a workflow process definition, standard
routing elements are used to describe sequential, alternative,
parallel, and iterative routing thus specifying the appropri-
ate route of a case. The workflow management coalition
(WfMC) has standardized a few basic building blocks for
constructing workflow process definitions [29]. A so-called
OR-split is used to specify a choice between several alter-
natives; anOR-joinspecifies that several alternatives in the
workflow process definition come together. AnAND-split
and anAND-join can be used to specify the beginning and
the end of parallel branches in the workflow process defini-

tion. The routing decisions in OR-splits are often based on
data such as the age of a customer, the department responsi-
ble, or the contents of a letter from the customer.

Many cases can be handled by following the same work-
flow process definition. As a result, the same task has to
be executed for many cases. A task that needs to be exe-
cuted for a specific case is called awork item. An example
of a work item is the order to execute task ‘send refund form
to customer’ for case ‘complaint of customer Baker’. Most
work items need aresourcein order to be executed. A re-
source is either a machine (e.g., a printer or a fax) or a per-
son (participant, worker, or employee). Besides a resource,
a work item often needs atrigger. A trigger specifies who
or what initiates the execution of a work item. Often, the
trigger for a work item is the resource that must execute the
work item. Other common triggers are external triggers and
time triggers. An example of an external trigger is an incom-
ing phone call of a customer; an example of a time trigger is
the expiration of a deadline. A work item that is being ex-
ecuted is called anactivity. If we take a photograph of the
state of a workflow, we see cases, work items, and activities.
Work items link cases and tasks. Activities link cases, tasks,
triggers, and resources.

A thorough investigation of the business processes in a
company that results in a complete set of efficient and ef-
fective workflow processes is the basis of the successful in-
troduction of a workflow system. Formal (qualitative and
quantitative) verification can be a useful aid in obtaining the
desired effectiveness and efficiency.

3.2. Workflow perspectives and abstraction

In the previous subsection, we introduced the workflow con-
cepts used in the remainder of this paper. Workflow man-
agement has many aspects and typically involves many dis-
ciplines. The verification tool presented in this paper fo-

THE COMPUTERJOURNAL, Vol. ??, No. ??, ????

DIAGNOSING WORKFLOW PROCESSES USINGWOFLAN 9

cuses on the control-flow perspective (i.e., workflow process
definitions) and abstracts from other perspectives. This sub-
section motivates why it is reasonable to restrict the analy-
sis focus to a single perspective. Therefore, we start by in-
troducing the perspectives commonly identified in workflow
literature [26].

3.2.1. Perspectives
The primary task of a workflow management system is to
enact case-driven business processes by joining several per-
spectives. The following perspectives are relevant for work-
flow modeling and workflow execution: (1)control-flow(or
process) perspective, (2)resource(or organization) perspec-
tive, (3)data(or information) perspective, (4)task(or func-
tion) perspective, (5)operation(or application) perspective.
(These perspectives are similar to the ones given in [26].)

In the control-flow perspective,workflow process defini-
tionsare defined to specify which tasks need to be executed
and in what order (i.e., the routing or control flow). The
concepts relevant for this perspective (task, condition, and
AND/OR-split/join) have been introduced in Section 3.1.

In the resource perspective, the organizational structure
and the population are specified. Resources, ranging from
humans to devices, form the organizational population and
are mapped onto resource classes. In office environments,
where workflow management systems are typically used, the
resources are mainly human. However, because workflow
management is not restricted to offices, we prefer the term
resource. To facilitate the allocation of work items to re-
sources, resources are grouped into classes. Aresource class
is a group of resources with similar characteristics. There
may be many resources in the same class and a resource may
be a member of multiple resource classes. If a resource class
is based on the capabilities (i.e., functional requirements) of
its members, it is called arole. If the classification is based
on the structure of the organization, such a resource class is
called anorganizational unit(e.g., team, branch, or depart-
ment). The resource classification describes the structure of
the organization.

The data perspective deals withcontrol and production
data. Control data are data introduced solely for workflow
management purposes. Control data are often used for rout-
ing decisions in OR-splits. Production data are information
objects (e.g., documents, forms, and tables) whose existence
does not depend on workflow management.

The task perspective describes the content of the process
steps, i.e., it describes the characteristics of each task. A task
is a logical unit of work with characteristics such as the set of
operations that need to be performed, description, expected
duration, due-date, priority, trigger (i.e., time, resource, or
external trigger), and required resources classes (i.e., roles
and organizational units).

In the operational perspective, the elementary actions are
described. Note that one task may involve several opera-
tions. These operations are often executed using applica-
tions ranging from a text editor to custom-built applications
for performing complex calculations. Typically, these appli-

cations create, read, or modify control and production data
in the data perspective.

This paper addresses the problem of qualitative workflow
verification. That is, we focus on properties of a logical
nature (i.e., the soundness property introduced in Section
1) and not on performance issues (quantitative verification).
For the purpose of qualitative verification, we only consider
the control-flow perspective of a workflow. In the remain-
der of this subsection, we discuss a number of abstractions
motivating why this simplification is reasonable.

3.2.2. Abstraction from resources
Detailed knowledge of the allocation of resources to work
items, the duration of activities, and the timing characteris-
tics of triggers are a crucial factor when analyzing the per-
formance of a workflow. However, for qualitative verifica-
tion, it is only relevant whether certain execution paths are
possible or not. It is important to note that the allocation of
resources can only restrict the routing of cases, i.e., it does
not enable execution paths that are excluded in the control-
flow perspective. Since resource allocation can only exclude
execution paths, for qualitative verification, it suffices to fo-
cus on potential deadlocks resulting from the unavailability
of resources. In the next few paragraphs, we argue that dead-
locks resulting from restrictions imposed by resource alloca-
tion are generally absent, thus motivating why it is reason-
able to abstract from resources.

A potential, resource-inflicted deadlock could arise (1)
when multiple tasks try to allocate multiple resources at the
same time, or (2) when there are tasks imposing such de-
manding constraints that no resource qualifies.

The first type of deadlock often occurs in flexible man-
ufacturing systems where both space and tools are needed
to complete operations thus potentially resulting inlocking
problems [41]. However, given today’s workflow technol-
ogy, such deadlocks cannot occur in a workflow manage-
ment system: At any time, there is only one resource work-
ing on a task which is being executed for a specific case. In
today’s workflow management systems, it is not possible to
specify that several resources are collaborating in executing
a task. Note that even if multiple persons are contributing
to the execution of one activity, e.g., writing a report for a
given case, only one person is assigned to that activity from
the perspective of the workflow management system: This
is the person that selected the corresponding work item from
the in-basket (i.e., the electronic worktray). Therefore, from
the viewpoint of qualitative verification, it is reasonable to
abstract from these locking problems. (Nevertheless, if in
the future collaborative features are explicitly supported by
workflow management systems, then these problems should
be taken into account.)

The second type of deadlock occurs when there is no suit-
able resource to execute a task for a given case, e.g., there is
not a single resource within a resource class. Generally, such
problems can be avoided quite easily by checking whether
all resource allocations yield non-empty sets of qualified re-
sources. However, there may be some subtle errors resulting

THE COMPUTERJOURNAL, Vol. ??, No. ??, ????

10 H. VERBEEK, T. BASTEN AND W. VAN DER AALST

from case management (a subset of tasks for a given case
is required to be executed by the same resource) and func-
tion separation (two tasks are not to be executed by the same
resource to avoid security violations). For example, task 1
should be executed by the same person as task 2 and task 2
should be executed by the same person as task 3. However,
task 3 should not be executed by the person who executed
task 1. Clearly, there is no person qualified to execute task
3. Such problems highly depend on the workflow manage-
ment system being used and are fairly independent of the
routing structure. Therefore, in our approach of workflow-
product-independent verification we abstract from this type
of resource-driven deadlocks.

3.2.3. Abstraction from data and triggers
Recall that the data perspective deals with both control and
production data. We abstract from production data because
these are outside the scope of the workflow management sys-
tem. These data can be changed at any time without notify-
ing the workflow management system. In fact, their exis-
tence does not even depend upon the workflow application
and they may be shared among different workflow processes,
e.g., the bill-of-material in manufacturing is shared by pro-
duction, procurement, sales, and quality-control processes.

We partly abstract from control data. In contrast to pro-
duction data, the control data used by the workflow manage-
ment system for routing cases are managed by the workflow
management system. However, some of these data are set
or updated by humans or applications. For example, a de-
cision is made by a manager based on intuition or a case is
classified based on a complex calculation involving produc-
tion data. Clearly, the behavior of a human or a complex
application cannot be modeled completely. Therefore, some
abstraction is needed when verifying a given workflow. The
abstraction used in this paper is the following. Since control
data are only used for the routing of a case, we incorporate
the routing decisions but not the actual data. For example,
the decision to accept or to reject an insurance claim is taken
into account, but not the actual data where this decision is
based on. Therefore, we consider each choice to be a non-
deterministic one. Moreover, we assume a fair behavior with
respect to these choices and exclude conspiracies [12].

We also abstract from triggers, because a workflow man-
agement system cannot control the occurrence of triggers.
As for choices, we only assume fairness with respect to the
occurrence of triggers: An enabled task cannot be blocked
forever (or infinitely often) because the corresponding trig-
ger is never received.

The fairness assumptions on choices and triggers are rea-
sonable: Without these assumptions any iteration or trigger
would create a potential livelock or deadlock.

There are other reasons for abstracting from data and trig-
gers. If we are able to prove soundness (i.e., the correctness
criterion introduced in Section 1) for the process definition
after abstraction, it will also hold for the situation where the
routing of cases is based on control data or the occurrence of
triggers (under the fairness assumptions mentioned before).

If the logical correctness of the workflow depends on mutual
dependencies between control data, the invariance of certain
control data, or the occurrence of a specific trigger, it is not
possible to prove soundness. However, one might argue that
such a workflow is poorly designed. Last but not least, we
abstract from data and triggers because it allows us to use
classical Petri nets (i.e., P/T nets) rather than high-level Petri
nets. From an analysis point of view, this is preferable be-
cause of the availability of efficient algorithms and powerful
analysis tools.

3.2.4. Abstraction from task content and operations
As a final abstraction, we consider tasks to be atomic ab-
stracting from the duration of tasks and the execution of op-
erations inside tasks. The workflow management system can
only launch applications or trigger people and monitor the
results. It cannot control the actual execution of the task.
Therefore, from the viewpoint of qualitative verification, it
is reasonable to consider tasks as atomic entities.

Note that we do not explicitly consider transactional
workflows [22]. There are several reasons for this. First
of all, most workflow management systems (in particular
the commercial ones) do not support transactional features
in the workflow modeling language. Second, as is shown
in [10], the various transactional dependencies can easily be
modeled in terms of Petri nets. Therefore, we can straight-
forwardly extend the approach in this paper to transactional
workflows.

3.3. Verification approach

In the previous subsection, it has been shown that for the
purpose of qualitative verification it is reasonable to abstract
from resources, data, triggers, the content of tasks, and oper-
ations and to focus on the control-flow perspective. In fact, it
suffices to consider the control flow of one case in isolation.
The only way cases interact directly, is via the competition
for resources and the sharing of production data. (Note that
control data are strictly separated.) Therefore, if we abstract
from resources and production data, it suffices to consider
one case in isolation. The competition between cases for re-
sources is only relevant for performance analysis.

The principal goal of the approach presented in this pa-
per is to verify the correctness of a workflow specified in
someworkflow management system, i.e., the approach is
not tailored towards aspecificworkflow management sys-
tem. Despite the efforts of the Workflow Management
Coalition (WfMC, [29]), there is no consensus on the lan-
guage for specifying workflows. The format proposed by the
WfMC for exchanging workflow process definitions, i.e., In-
terface 1: Workflow Process Definition Language (WPDL),
is only partially supported by the existing systems. (Typi-
cally, workflow management systems are unable to import
and handle all constructs.) Moreover, WPDL has no for-
mal semantics which means that it is impossible to reason
about the correctness of a given workflow process defini-
tion. Therefore, we propose to directly translate a workflow
process definition specified in some workflow management

THE COMPUTERJOURNAL, Vol. ??, No. ??, ????

DIAGNOSING WORKFLOW PROCESSES USINGWOFLAN 11

system to a Petri net, applying the abstraction discussed in
Section 3.2. The resulting P/T net should of course be con-
sistent with the (formal or informal) semantics of the work-
flow process definition as defined by the workflow manage-
ment system being used.

The P/T net in Figure 1 models a typical workflow pro-
cess, namely the processing of complaints. Assume that the
initial marking is [i], thus obtaining the system of Figure
2. Marking [i] corresponds to the fact that a new com-
plaint has been received. First, this complaint is registered
(register). Taskregister is an example of an AND-
split. Upon completion of this task, in parallel, a form is
sent (send) to the complainant and the complaint is eval-
uated to determine whether it needs to be processed (do)
or not (dont). The two transitionsdo anddont together
form an OR-split. The two transitions model a single task
in the real workflow which might be called something like
‘evaluate’. If the form that is sent to the complainant is re-
ceived in time (rec), the complaint can be processed. If
it is not received in time (timeout), the form cannot be
used for the processing of the complaint. After the com-
plaint has been processed (process), a check is made to
determine whether it has been processed correctly (done)
or not (redo) (another OR-split). If not, it needs to be pro-
cessed again. Placec7 is an example of an OR-join: Two
alternative process branches are joined. In the end, the com-
plaint is archived (archive). Transitionarchive is an
example of an AND-join.

We see that the P/T-net representation of a workflow pro-
cess definition is straightforward: Tasks are represented by
transitionsand conditions byplaces. Two special places are
added, one to indicate that a new case has been created, place
i , and another to indicate that a case has been completed,
placeo. It is clear that standard building blocks such as the
AND-split, AND-join, OR-split, and OR-join (see [29, 47])
can be modeled by P/T nets.

To illustrate the spectrum of languages used to specify
workflow processes and their mapping onto P/T nets, we
present two workflow process definitions (one using COSA
and one using Staffware) corresponding to the P/T net shown
in Figure 1.

Figure 9 shows the workflow process designed using
CONE (COSA Network Editor). CONE is the design tool of
the workflow management system COSA [42]. Since COSA
is based on Petri nets, it is easy to see that the workflow spec-
ification corresponds to the P/T net shown in Figure 1. Note
that the transitionsdo anddont in Figure 1 correspond to
one task calledevaluate in Figure 9, as explained above.
This task is an OR-split which sets a variable nameddo .
Based on this variable, either the arc fromevaluate to c4
is activated or the arc fromevaluate to c7 is activated.
The arc conditions shown in Figure 9 are evaluated at run-
time and determine whether a token is produced forc4 or
c7 . Similar remarks hold for the task namedcheck . By
using a set of simple translation rules, any workflow process
definition designed using COSA can be translated to a P/T
net. Note that during the translation one abstracts from data,
i.e., the four arc conditions shown in Figure 9 are translated

FIGURE 9. The COSA specification of the process of Figure 1

to two non-deterministic choices (as in Figure 1).
Figure 10 shows the same workflow process specified us-

ing the Graphical Workflow Designer (GWD) of Staffware
[43]. The behavior of the specification shown in Figure 10
corresponds to the P/T net shown in Figure 1. Nevertheless,
the diagram is quite different. Staffware tasks, called steps
in Staffware, have OR-join/AND-split semantics. There-
fore, explicit building blocks need to be added to synchro-
nize (AND-join) and select (OR-split). A wait step, which
is represented by a sand timer, is used to synchronize paral-
lel flows. Conditions, represented by diamonds, correspond
to binary choices. Moreover, Staffware does not have the
concept of places. In the example of Figure 1, places are,
among other things, used for OR-joins. To emulate OR-joins
in the Staffware model corresponding to the P/T net of Fig-
ure 1, three so-called complex routers (which can be inter-
preted as automatic steps) have been added:join , done ,
anddo . These three routers need to be added to join alter-
native flows. The traffic light in Figure 10 shows the begin-
ning of the workflow process and the stop sign shows the
end. Note that the timeout is modeled explicitly in Figure 10
and is attached to taskrec . If rec is not executed within
a given period, then tasktimeout is triggered. Using the
translation described in [9], one can automatically translate
a Staffware process definition to a Petri net. It should be
noted that the translation of [9] applied to the workflow pro-
cess shown in Figure 10 results in a P/T net that is different
from the one shown in Figure 1: The resulting P/T net is
considerably larger because the translation is generic. For
example, the automatic stepsjoin , done , anddo shown
in Figure 10 are not present in Figure 1 but will be present
as transitions in the result of the translation of [9]. Neverthe-
less, the behavior of the Staffware model shown in Figure 10
matches the behavior of the P/T net shown in Figure 1.

Figures 9 and 10 illustrate the differences between work-
flow modeling languages used by today’s workflow manage-

THE COMPUTERJOURNAL, Vol. ??, No. ??, ????

12 H. VERBEEK, T. BASTEN AND W. VAN DER AALST

FIGURE 10. The Staffware specification of the process of Figure 1

ment systems. Both designs model the process correspond-
ing to the Petri net shown in Figure 1. In the remainder,
it is shown that this workflow process is incorrect, e.g., the
workflow will deadlock if a redo is needed. As a result, both
COSA and Staffware may deadlock if the workflow is exe-
cuted. This example is no exception: In the current genera-
tion of workflow management systems, there are hardly any
verification capabilities. Therefore, it is relevant to develop
tools which can detect anomalies in workflow designs. In-
stead of building a specific workflow verification tool for ev-
ery workflow management system, we propose the approach
illustrated by Figure 11.

FIGURE 11. The approach supported by Woflan

As Figure 11 shows, there is a specifictranslatorfor each
workflow management system. Such a translator translates a
workflow process definition into a P/T net. During the trans-
lation, the abstraction discussed in the previous subsection is
used to extract the information required for qualitative verifi-
cation. It is important to note that the workflow verification

tool is not used to edit the workflow process definition. If
the verification tool detects errors, then the diagnostics pro-
vided by the verification tool are used to correct the errors
using the design tools of the workflow management system
itself. As Figure 11 shows, the process of correcting the er-
rors is iterative: The workflow process definition constructed
using the workflow management system is translated and an-
alyzed using the verification tool. Then, the diagnostics are
used to correct (if necessary) the process definition using the
workflow management system. This procedure is repeated
until all errors have been repaired. Note that the approach
illustrated in Figure 11 stands or falls with the assumption
that the diagnostics are of high-quality and workflow-system
independent. Since most workflow management systems
model workflows in terms of a graph structure connecting
tasks, it is possible to make the diagnostics relatively system
independent. For example, the verification tool can present
a list of tasks which cannot be executed or show execution
sequences in terms of tasks which lead to a deadlock. These
diagnostics can be interpreted in the context of any workflow
management system. To improve the feedback to the work-
flow modeler, it is possible to use the diagnostics to highlight
the errors directly in the design tools of workflow manage-
ment systems. Note that the latter requires extensions of the
workflow management system itself.

4. WORKFLOW NETS

In this section, we introduce the class ofworkflow nets(WF
nets) being the subclass of P/T nets used for modeling work-
flow process definitions as originally introduced in [1]. In
addition, we formalize the soundness property introduced in
Section 1 in terms of WF nets. We also briefly consider the
subclass of free-choice WF nets. Finally, we present tech-
niques for analyzing whether or not a given WF net is sound.

The soundness property is the least requirement that a WF
net must satisfy in order to model a correct workflow process
definition. As explained, a WF net is an abstraction of the
actual workflow process, i.e., only the control-flow perspec-
tive is considered. We do not propose WF nets as a com-

THE COMPUTERJOURNAL, Vol. ??, No. ??, ????

DIAGNOSING WORKFLOW PROCESSES USINGWOFLAN 13

plete modeling language. They are merely introduced for
the purpose of (qualitative) verification. When importing a
workflow process definition from some workflow tool, our
verification tool Woflan distills the aspects it needs from the
workflow process definition and translates this information
to a WF net.

4.1. Structural restrictions

Not every P/T net corresponds to a proper workflow process
definition. A P/T net modeling a workflow must satisfy sev-
eral structural properties.

First, we want a P/T-net model of a workflow process to
have a well-defined beginning and end. Therefore, we re-
quire that such a P/T-net model has one place indicating the
condition that a case has been created and one place indicat-
ing that a case has been completed. In the example of Figure
1, these places are calledi ando, but they also could have
been calledstart andfinish . From now on, we assume
that i (in) ando (out) identify these places. There can be no
tasks that fulfill the condition corresponding toi : The work-
flow cannot generate its own cases. Also, there can be no
tasks for which the condition corresponding too has to be
fulfilled: Once a P/T-net model of a workflow signals that a
case has been completed, no more tasks should be executed
for this case.

Second, observe that there is not much use in having a task
that can never be executed or in having a task from which a
case cannot be completed. Thus, we want to exclude such
tasks. In terms of the structure of a workflow net, this means
that it must satisfy at least the following requirement: For
every transitiont in a workflow net, there must be a directed
path fromi to t and a directed path fromt to o. In P/T-net
terms, this conforms to strongly connectedness (see Defini-
tion 2.5) under the assumption that there is a directed path
from o to i . This assumption can be fulfilled if we short-
circuit the net as illustrated in Figure 3.

DEFINITION 4.1. (Workflow net) A P/T netN = (P, T,

F) is a workflow net (WF net) iff

(i). i ∈ P ∧ •i = ∅,
(ii). o ∈ P ∧ o• = ∅, and
(iii). the short-circuited P/T net(P, T ∪ {t}, F ∪ {(o, t),
(t, i)}), denotedN, is strongly connected, wheret 6∈ T .

The example P/T netN of Figure 1 satisfies all three condi-
tions, using placei as input placei ando as output placeo.
Thus, it is a WF net.

4.2. Behavioral restrictions

Considering the behavioral correctness of a workflow, we
are, as explained Section 3.3, interested in the behavior of
a single case. Assuming a WF netN = (P, T, F), it is an
obvious choice to have [i] as the initial marking, because it
corresponds to the creation of a new case. So,S = (N, [i])
is the WF system corresponding toN that we are interested
in.

The behavioral restrictions we impose on a WF system in
its initial state can be derived from the soundness require-
ment introduced in Section 1. Recapitulating, a workflow
process must always have the option to complete, comple-
tion must always be proper, and every task should contribute
to at least one possible execution of the workflow. In a WF
net, completion of a case is signaled by a token in the spe-
cial placeo. Thus, the completion option means that it must
always be possible to put a token ino. Proper completion
means that, as soon as a token is put ino, all other places
must be empty. The last requirement strengthens the third
structural requirement of Definition 4.1. It simply means
that a WF system may not have any dead transitions (see
Definition 2.17).

DEFINITION 4.2. (Soundness) A WF netN = (P, T, F)

is sound iff

(i). ∀M ∈ B(P), [i] −→ M : ∃M1 ∈ B(P), M −→

M1 : M1 ≥ [o] (option to complete),
(ii). ∀M ∈ B(P), [i] −→ M : M ≥ [o] ⇒ M = [o]
(proper completion), and

(iii). no transition t ∈ T is dead in(N, [i]) (no dead
tasks).

Soundness is originally defined in [1], where it says that it
should always be possible to complete the case properly (op-
tion to complete properly). Our definition is slightly differ-
ent, but it is not difficult to prove that they are equivalent.

Soundness of a WF netN can, for example, be determined
from a CG of the WF system(N, [i]). If we take a look at
our WF systemS in Figure 2 and its OG in Figure 7 (which is
also the unique CG ofS), we see thatN is not sound because
the first two restrictions are not satisfied:

(i). In [c4 , c5], there is no option to complete;
(ii). in [c8 , o], we have improper completion.

The third restriction is satisfied, because for every transition
we have at least one arc labeled with it in the CG.

In [1], it has been shown that soundness of a WF net
corresponds to liveness (see Definition 2.18) and bounded-
ness (see Definition 2.19) of the short-circuited WF sys-
tem. Recall that, for a WF netN, the short-circuited net
(P, T = T ∪ {t}, F = F ∪ {(o, t), (t, i)}) with t 6∈ T is
denotedN.

THEOREM 4.1. (Soundness vs. liveness and bounded-
ness) A WF net N = (P, T, F) is sound iff the short-
circuited WF system(N, [i]) is live and bounded.

Proof. See [1].

From the CG in Figure 8, we conclude that the short-
circuited WF systemS of Figure 3 is not bounded and not
live. It is not bounded, because we have infinite markings
in the CG; it is not live, because, for instance, marking
[c4 , c5] has no outgoing arcs. Hence, the WF netNof Fig-
ure 1 is not sound, which conforms to our earlier conclusion.

THE COMPUTERJOURNAL, Vol. ??, No. ??, ????

14 H. VERBEEK, T. BASTEN AND W. VAN DER AALST

4.3. Free-choice WF nets

The class of free-choice WF nets (see Definition 2.8) is an
interesting one for two reasons. First, it appears that many
workflow management systems allow only workflow process
definitions that result in free-choice WF nets. Most of the
workflow management systems available at the moment ab-
stract from states between tasks, i.e., states are not repre-
sented explicitly. Such workflow management systems use
the AND-split, AND-join, OR-split, and OR-join as stan-
dard building blocks to specify workflow procedures. Be-
cause these systems abstract from states, every choice is
madeinsidean OR-split building block. If we model such an
OR-split in terms of a WF net, the OR-split corresponds to
a number of transitions sharing the same set of input places.
Thus, it appears that for these workflow management sys-
tems a workflow procedure always corresponds to a free-
choice WF net. Only a few workflow management systems
(e.g., COSA, INCOME, LEU, and MOBILE) allow arbitrary
non-free-choice constructs. Second, for a free-choice WF
net, it can be decided in polynomial time whether or not the
net is sound, because it is possible to verify in polynomial
time whether the corresponding short-circuited WF system
is live and bounded [16].

Given these two facts, one could envision a verification
tool that focuses on free-choice WF nets. However, for
Woflan, we decided differently. One of the main require-
ments for Woflan mentioned in the introduction is that it is
workflow-product independent. Allowing non-free-choice
WF nets means that Woflan can support a wider range of
(future) workflow management systems. Furthermore, stan-
dard routing constructs, such as parallelism, sequential rout-
ing, conditional routing, and iteration, can be modeled with-
out violating the free-choice property. However, sometimes,
complex routing constructs cannot be modeled with free-
choice WF nets. For example, Staffware is a workflow man-
agement system that abstracts from states (see also Section
3.3) but it supports one (rarely used) construct that can only
be translated to a non-free-choice construct in the corre-
sponding WF net (see [9], for more details). In other occa-
sions, non-free-choice constructs yield more concise models
than the corresponding free-choice ones. A second require-
ment for Woflan mentioned in the introduction is that it must
provide to-the-point diagnostic information in case of de-
sign errors. Unfortunately, efficient algorithms for verifying
soundness are not necessarily a good basis for meaningful
diagnostic information in case a WF net is not sound.

4.4. Analyzing WF nets

Theorem 4.1 is an interesting result, because it shows that
for the analysis of WF nets we can focus on boundedness
and liveness of short-circuited WF systems. Boundedness
and liveness have been studied extensively in the Petri-net
literature. Existing results can be tuned to the analysis of
WF nets. In the remainder of this section, we present results
that form the foundation of Woflan, emphasizing results that
are useful for providing meaningful diagnostic information
in case of errors in a WF net.

4.4.1. Structural techniques
In Section 2.2.1, a number of structural techniques for ana-
lyzing P/T nets have been introduced. Despite the fact that
Woflan is not restricted to free-choice WF nets, the free-
choice property does play a role in diagnosing WF nets.
Also, PT- and TP-handles, S-components and S-coverability,
and (place-)invariants all play an important role in Woflan.
The interpretation of non-free-choice constructs, PT/TP-
handles, and S-components in the workflow domain is ex-
plained in more detail in the next section. In this subsection,
we present results relating structural techniques to soundness
of WF nets.

THEOREM 4.2. (Sound and free-choice vs. S-coverable)
Let N be a sound, free-choice WF net. The short-circuited
WF netN is S-coverable.

Proof. This follows directly from Theorem 4.1 and the fact
that a net which is free-choice, live, and bounded must be
S-coverable ([16]).

In the analysis of WF nets, this theorem can be used as fol-
lows. If N is a free-choice WF net such thatN is not S-
coverable, thenN cannot be sound. Places that are not part
of any S-component are a potential source of the error. For
example, the WF netN of Figure 1 is free-choice, butN of
Figure 3 is not S-coverable, as explained in Section 2.2.1.
Placec8 is not part of an S-component. Thus, netN is not
sound, as we have concluded earlier.

DEFINITION 4.3. (Well-structuredness) A WF net N is
well-structured iffN is well-handled, i.e., the short-circuited
net has no PT-handles and TP-handles (see Definition 2.7).

THEOREM 4.3. (Sound and well-structured vs. S-cover-
able) Let N be a sound, well-structured WF net. The short-
circuited WF netN is S-coverable.

Proof. See [4].

Theorem 4.3 can be used in the analysis of WF nets in a sim-
ilar way as Theorem 4.2 can be used. Theorem 4.3 does not
provide useful information for our running example, because
short-circuited WF netNof Figure 3 is not well-structured.

As a side remark, note that for a given well-structured
WF net, it can be decided in polynomial time whether or
not it is sound. (See [4]; the proof uses Theorem 4.1 and the
fact that short-circuited WF nets without PT-handles and TP-
handles are elementary extended non-self controlling [11].)
Also note that the classes of free-choice WF nets and well-
structured WF nets are incomparable. That is, there are free-
choice nets that are not well-structured and vice versa.

S-coverability of a short-circuited WF net is a suffi-
cient (but not necessary) condition for safeness and, hence,
boundedness of the corresponding system.

THEOREM 4.4. (S-coverability vs. boundedness) Let N
be a WF net and let the short-circuited WF netN be S-
coverable. The short-circuited WF system(N, [i]) is safe
and bounded.

THE COMPUTERJOURNAL, Vol. ??, No. ??, ????

DIAGNOSING WORKFLOW PROCESSES USINGWOFLAN 15

Proof. It follows from Definition 2.11 that the number of to-
kens in any reachable marking of(N, [i]) in an S-component
of N is constant. Because we initially have one token (ini),
the number of tokens in any S-component is either zero or
one. Therefore, the number of tokens in any place in any S-
component is always either zero or one. Because all places
in N are contained in some S-component,(N, [i]) is safe
and thus bounded.

Note that a consequence of Theorem 4.4 is that both sound
free-choice WF nets and sound well-structured WF nets cor-
respond to safe WF systems.

Considering again our running example, we have already
seen thatN of Figure 3 is not S-coverable and that system
(N, [i]) is not bounded. Since placec8 is not part of an S-
component, again the diagnostic information points to place
c8 as a possible error: Itmight be unsafe or unbounded.
(We, of course, already know thatc8 is unbounded.)

It is also well-known that place-invariants with only
non-negative weights, the so-calledsemi-positiveplace-
invariants, can be used to formulate a sufficient condition
for boundedness. A place occurring with a positive weight
in a semi-positive place-invariant is said to becoveredby
that invariant.

THEOREM 4.5. (semi-positive place-invariants vs.
boundedness) Let N be a WF net. If every place of
N is covered by a semi-positive place-invariant of the
short-circuited netN, then the short-circuited WF system
(N, [i]) is bounded.

Proof. It follows immediately from Theorem 2.31 of [16].

Places not covered by a semi-positive place-invariant of a
short-circuited WF net might be indications of an error. In
the running example, placec8 is the only place not covered
by a semi-positive place-invariant ofN.

4.4.2. Liveness and boundedness vs. soundness
In this paragraph, we investigate the relation between the
soundness of a WF net and the liveness and boundedness of
the corresponding short-circuited WF system in some more
detail.

As the following result shows, an unbounded place in a
short-circuited WF system may be a sign of improper com-
pletion.

THEOREM 4.6. (Improper completion vs. unbounded-
ness) Let N be a WF net that can complete improperly.
Then, the short-circuited WF system(N, [i]) has unbounded
places.

Proof. It follows from the assumption and the definition of
proper completion (Definition 4.2) that there exists a non-
empty markingM ∈ B(P) such that [i] −→ M + [o] in
N. Then, [i] −→ M + [o] in N and, because of the short-
circuiting transitiont , [i] −→ M + [i] in N. We conclude
that all places inM are unbounded in(N, [i]).

In the OG of Figure 7, we see that WF netN of Figure 1
may complete improperly, because marking [c8 ,o] is reach-
able. The CG of Figure 8 shows that system (N, [i]) has
unbounded placec8 .

Non-live transitions in a short-circuited WF system are a
potential sign that a WF net does not satisfy the completion
option.

THEOREM 4.7. (Option to complete vs. liveness) Let
N = (P, T, F) be a WF net that does not satisfy the com-
pletion option. Then, the short-circuited WF system(N, [i])
has non-live transitions.

Proof. Suppose(N, [i]) has only live transitions. Then, the
short-circuiting transitiont is live, i.e., for all M ∈ B(P)

with [i] −→ M , there exists anM1 ∈ B(P) with M −→

M1 such that•t ≤ M1. Since•t = {o}, we immediately
conclude thatN has the option to complete.

Let us return to WF netN of Figure 1 once more. The CG
of S=(N, [i]) in Figure 7 has a deadlock marking, namely
[c4 ,c5]; thus, N does not satisfy the completion option.
Since the CG ofS=(N, [i]) in Figure 8 has the same dead-
lock marking, all transitions ofS are non-live. Although this
observation is consistent with Theorem 4.7, it does unfortu-
nately not provide any useful diagnostic information on WF
netN.

Part of the soundness requirement on a WF net is the ab-
sence of dead transitions in the corresponding WF system. A
dead transition in a WF system corresponds to a task in the
workflow that can never be executed. Non-live transitions in
the short-circuited WF system, in particular dead transitions,
might be a sign of dead transitions in the non-short-circuited
WF system. The question is how dead transitions in a WF
systemS = (N, [i]) and the short-circuited WF systemSre-
late to each other. Observe that any occurrence sequence of
S is also an occurrence sequence ofS, but that the converse
is not necessarily true. Thus, a transition that is dead inS is
also dead inS, but a transition that is dead inSmight not be
dead in the short-circuited systemS. However, under the as-
sumption of boundedness ofS, a transition that is dead inS
is also dead inS.

THEOREM 4.8. (Dead transitions in bounded short-
circuited WF systems) Let S = (N, [i]) with N = (P, T, F)

be a WF system such that the short-circuited systemS =

(N, [i]) is bounded. Transitiont ∈ T is dead inS iff it is
dead inS.

Proof. The result follows immediately from the observation
that, under the boundedness assumption, either the OGs ofS
andSare identical (in case marking [o] is not reachable inS)
or the OG ofS extends the OG ofS with the arc([o], t, [i])
(in case [o]is reachable).

4.4.3. Behavioral error sequences
Structural errors in a P/T net modeling a workflow, i.e., vi-
olations of the requirements of Definition 4.1, are generally
easy to find and to correct. Behavioral errors, i.e., violations
of Definition 4.2, are more difficult to locate and to correct.

THE COMPUTERJOURNAL, Vol. ??, No. ??, ????

16 H. VERBEEK, T. BASTEN AND W. VAN DER AALST

The results in Section 4.4.2 show that the sets of unbounded
places in a short-circuited WF net, as well as the lists of
non-live and dead transitions may provide useful informa-
tion for diagnosing behavioral errors. Unbounded places,
non-live transitions, and dead transitions all point to differ-
ent types of behavioral errors in a WF net. However, experi-
ence with verification of workflow processes has shown that
this information is not always sufficient for finding the exact
cause of an error. In particular, it might be difficult to diag-
nose violations of requirements (i) (option to complete) and
(ii) (proper completion) of Definition 4.2. To overcome this
problem, we introduce so-called behavioral error sequences.
The idea for these sequences is relatively simple: We want
to find firing sequences of minimal length such thatevery
continuation of that sequence leads to an error. Such a firing
sequence is required to be minimal in the sense that no pre-
fix has the property that every continuation leads to an error.
Thus, one can think of behavioral error sequences asscenar-
ios that capture the essence of errors made in the workflow
design. Depending on the kind of error one is interested in,
different types of behavioral error sequences can be help-
ful for diagnosing the design. In the next two paragraphs,
we introduce two types of behavioral error sequences called
non-live sequencesandunbounded sequencesthat are par-
ticularly useful for diagnosing liveness-related (requirement
(i) of Definition 4.2, option to complete) and boundedness-
related (requirement (ii) of Definition 4.2, proper comple-
tion) behavioral errors, respectively.

4.4.4. Non-live sequences
Intuitively, a non-live sequence is a firing sequence of a
workflow system of minimal length such that completion
is no longer possible (i.e., it is no longer possible to reach
a marking with a token in the special placeo). By now,
it is clear that the completion-option requirement of a WF
net is strongly related to the liveness of the corresponding
short-circuited system. Liveness analysis is only feasible
for bounded systems. Thus, we assume a WF systemS =

(N, [i]) such that the short-circuited systemS = (N, [i]) is
bounded. We also assume the absence of dead transitions in
S (or equivalently inS; see Theorem 4.8). In the next sec-
tion, it is explained in more detail how these assumptions
are enforced in the diagnosis process of Woflan. The precise
definition of non-live sequences is based on the following
theorem.

THEOREM 4.9. (Liveness of bounded short-circuited WF
systems) Let S = ((P, T, F), [i]) be a WF system with-
out dead transitions such that the short-circuited systemS
is bounded. Then,S is live iff ∀M ∈ B(P), [i] −→ M :
M −→ [o].

Proof. The implication from left to right follows in a
straightforward way from Definition 4.2 (Soundness) and
Theorem 4.1 (Soundness vs. liveness and boundedness).
The other implication follows directly from Definitions 2.17
(Dead transitions) and 2.18 (Liveness).

Based on this theorem, we define a non-live sequence as a

firing sequence of WF systemSof minimal length that ends
in a marking from which it is no longer possible to reach
[o]. Non-live sequences can be computed from the OG ofS.
Note that the OG ofS is finite, becauseS and hence alsoS
is bounded. In terms of the OG ofS, a (non-empty) non-live
sequence is a firing sequence corresponding to a path in the
OG that starts in marking [i] and ends in a markingM

(i). from which there is no path to [o] and
(ii). whose immediate predecessorM1 on the path has a path

to [o].

Apparently, the transition leading from markingM1 to mark-
ing M removes the option to complete. To determine which
markings in the OG can act asM and M1, we partition the
markings into three parts:

(i). red markings, from which there is no path to [o],
(ii). green markings, from which all paths lead to [o], and
(iii). yellow marking, from which some but not all paths

lead to [o].

Only a red marking can possibly act asM , whereas only
a yellow marking can possibly act asM1. All we need to
do now is to find arcs in the OG which connect a yellow
marking to a red marking. The label of such an arc gives us
the name of the transition whose firing removes the option
to complete. Any path from the initial marking [i] to M in
the OG corresponds to a non-live sequence.

The definition of non-live sequences can be formalized as
follows. Note that the definition does not require the absence
of dead transitions in the WF system under consideration.
Let M1 H⇒ M denote that there exists a path in the OG
from nodeM1 to nodeM .

DEFINITION 4.4. (OG partitions for non-liveness) Let
N = (P, T, F) be a WF net such that its WF system(N, [i])
is bounded. LetG = (H, A) be the OG of(N, [i]). We
partition H into three parts:

(i). HR = {M ∈ H | ¬(M H⇒ [o])},
(ii). HG = {M ∈ H | ¬∃MR ∈ HR : M H⇒ MR} and
(iii). HY = H \ (HG ∪ HR).

Remarks:

• If there are no red markings, there can be no yellow
markings:HR = ∅ implies HY = ∅.

• If there are no green markings, there can be no yellow
markings:HG = ∅ implies HY = ∅.

• If there is no way to complete properly, then all mark-
ings are red: [o] 6∈ H implies H = HR.

• If there is a way to complete properly, then the target
marking is green (becauseo• = ∅): [o] ∈ H implies
[o] ∈ HG.

DEFINITION 4.5. (Non-live sequences) Let (N, [i]) be a
bounded WF system with OGG = (H, A). Let HR andHY

be defined as in Definition 4.4. If [i] ∈ HR, then the oc-
currence sequence [i] is called non-live. An occurrence se-
quence [i]t0M1 . . . tn−2Mn−1tn−1Mn, for some positive nat-
ural numbern, with all markings distinct is called non-live

THE COMPUTERJOURNAL, Vol. ??, No. ??, ????

DIAGNOSING WORKFLOW PROCESSES USINGWOFLAN 17

iff Mn ∈ HR and Mn−1 ∈ HY. A firing sequence of a WF
system is called non-live iff it is derived from a non-live oc-
currence sequence.

The most valuable information in a non-live sequence is
the combination of its last two markings(Mn−1 ∈ HY and
Mn ∈ HR) and its last transition (tn−1). The only interest
we have in the sequence’s prefix ([i]t0M1 . . . tn−2) is that it
gives us a path which leads to the last-but-one marking. Note
that we have excluded firing sequences containing cycles (by
requiring that all markings in a non-live sequence must be
distinct); cycles do not provide any additional useful infor-
mation. Also note that it is possible that several non-live
sequences have the same suffixMn−1tn−1Mn.

THEOREM 4.10. (Non-live sequences vs. liveness) Let S
be a WF system without dead transitions such that the short-
circuited systemS is bounded. Then,S is live iff S has no
non-live sequences.

Proof. The theorem follows immediately from Theorem 4.9
(Liveness of bounded short-circuited WF systems) and Def-
inition 4.5 (Non-live sequences).

Note that, based on Theorem 4.1, Theorem 4.10 can alter-
natively be formulated as follows. IfS = (N, [i]) is a WF
system without dead transitions such that the short-circuited
systemS is bounded, thenN is sound iffS has no non-live
sequences.

FIGURE 12. WF netN1

As an example, consider the WF netN1 of Figure 12. It
is a variant of WF netN of Figure 1 with an extra arc from
placec8 to transitionarchive . The OG ofS1=(N1, [i])
is shown in Figure 13. The meaning of the thick arcs is ex-
plained in the next section. Clearly,S1 has no dead tran-
sitions. Since the OG ofS1=(N1, [i]) is simply the graph
in Figure 13 extended with the arc ([o], shortcircuit ,
[i]), whereshortcircuit is the short-circuiting transi-
tion, we see thatS1 is bounded. Figure 13 also shows the
partitioning of the OG ofS1 according to Definition 4.4. We

FIGURE 13. The OG ofS1 partitioned for non-live sequences

can deduce, among others, the following five non-live se-
quences:

(i). register send timeout ,
(ii). register send dont timeout ,
(iii). register send rec do ,
(iv). register send do , and
(v). register do .

SinceS1 has non-live sequences, we can deduce from The-
orem 4.10 thatS1 is not live, which means thatN1 is not
sound. It is also possible to arrive at this conclusion by in-
vestigating the OG ofS1. Since it contains deadlock mark-
ing [c4 ,c5], it follows that all transitions ofS1 are non-live.
Unfortunately, the information that all transitions are non-
live is not sufficiently specific to be useful. By examining
the above five non-live sequences, we can obtain more de-
tailed information. Note that non-live sequence (ii) provides
almost the same information as sequence (i). Together, they
show that the combinationsend andtimeout is the pos-
sible cause of an error and thatdont is not important. From
sequence (i), we conclude that, whatever happens, placec8
does not get a token. As a result, transitionsprocess and
archive cannot fire. The sequences (iii), (iv), and (v) pro-
vide the information that firing transitiondo always results
in an error. We may conclude that the cycle to whichdo
leads might cause a problem. For now, we do not go into
details about possible solutions to correct the errors.

4.4.5. Unbounded sequences
Intuitively, an unbounded sequence is a firing sequence of a
WF system of minimal length such that every continuation
implies a violation of the proper-completion requirement of
Definition 4.2. Such a violation can have two causes. The
first one is the most straightforward one. Clearly, proper
completion is violated if a reachable marking is strictly
greater than the marking [o] that signals proper completion.
The second cause is more implicit. If a WF system is un-
bounded, then the proper-completion requirement is also vi-

THE COMPUTERJOURNAL, Vol. ??, No. ??, ????

18 H. VERBEEK, T. BASTEN AND W. VAN DER AALST

olated. To see this, consider a WF systemS = (N, [i])
with two reachable markingsM andM1 such thatM < M1
(which by Definition 2.19 means thatS is unbounded). As-
suming that proper completion is possible fromM , i.e.,
M −→ [o], we may deduce thatM1 −→ [o] + M1 − M
which is strictly greater than [o]. Thus, assuming that com-
pletion is possible at all, unboundedness of a WF system
implies a violation of the proper-completion requirement.

As we have seen, the proper-completion requirement of
a WF net is strongly related to the boundedness of the cor-
responding short-circuited system. The following theorem
confirms this observation. It forms the basis for formalizing
unbounded sequences.

THEOREM 4.11. (Boundedness of short-circuited WF
systems) Let S = ((P, T, F), [i]) be a WF system. Sys-
temS = ((P, T, F), [i]) is bounded iff systemS is bounded
and, for all markingsM ∈ B(P) reachable from [i] in S,
¬(M > [o]).

Proof. To prove the theorem, we show thatS is unbounded
iff S is unbounded or there is a markingM ∈ B(P) reach-
able from [i] in S such thatM > [o]. Recall Defini-
tion 2.19 (Boundedness). The implication from right to
left is straightforward (see also the proof of Theorem 4.6).
The other implication is more involved. Assume thats =

M0t1M1 . . . tnMn, for some natural numbern, is an occur-
rence sequence ofS such thatM0 = [i] and such that there
exists ak < n with Mk < Mn. Distinguish two cases. First,
assume that the short-circuiting transitiont is not an element
of {t1, . . . , tn}. In this case,s is also an occurrence sequence
of S, which means thatS is unbounded. Second, assume
that t is an element of{t1, . . . , tn}. Without loss of general-
ity, we may assume thats is minimal in the following sense:
First, all markingsM0, . . . , Mn are different; second, there
are no natural numbersk and l with k < l < n such that
Mk < Ml . The first assumption means thats contains no cy-
cles; the second assumption means thats contains no strict
prefix from which unboundedness can be derived. The crux
of the proof is thatt must betn. Suppose thatt equalstk,
with k < n. Since•t = {o} and t• = {i }, Mk−1 ≥ [o]
and eitherMk = [i] = M0 or Mk > [i] = M0. In both
cases, the minimality ofs is violated. Thus,t equalstn. It
follows from the definition oft ands that Mn > [i] and that
the occurrence sequenceM0t1M1 . . . tn−1Mn−1 is an occur-
rence sequence ofSsuch thatMn−1 > [o].

Unbounded sequences can be computed from a coverability
graph of a WF systemS (see Section 2.2.4). Assuming we
have a CG ofS, an unbounded sequence is a firing sequence
of S of minimal length which inevitably leads either to an
infinite marking in the CG or to a marking greater than [o]
in that CG. The above theorem means that such a sequence
corresponds to a sequence ofS that inevitably leads to an
infinite marking when the CG ofS is extended to a CG ofS.

To compute unbounded sequences, we partition a given
CG of S in a way similar to the partitioning of the OG for
computing non-live sequences given in Definition 4.4:

(i). The green markings are those markings from which

infinite markings or markings greater than [o] are not
reachable;

(ii). the red markings are those markings from which infi-
nite markings or markings greater than [o] are unavoid-
able, i.e., those markings from which no green marking
is reachable;

(iii). the yellow markings are those markings from which in-
finite markings or markings greater than [o] are reach-
able but avoidable.

DEFINITION 4.6. (CG partitions for unboundedness) Let
N = (P, T, F) be a WF net, letG = (H, A) be a CG of WF
system(N, [i]), and letHω

= H \ B(P) ∪ {M ∈ B(P) |

M > [o]} be the set of markings inH that are infinite or
greater than [o]. We partitionH into three parts:

(i). Hω
G = {M ∈ H |¬∃M1 ∈ Hω : M H⇒ M1},

(ii). Hω
R = {M ∈ H |¬∃M1 ∈ Hω

G : M H⇒ M1} and
(iii). Hω

Y = H \ (Hω
G ∪ Hω

R).

Remarks:

• If there are no red markings, there can be no yellow
markings:Hω

R = ∅ implies Hω
Y = ∅.

• If there are no green markings, there can be no yellow
markings:Hω

G = ∅ implies Hω
Y = ∅.

Given the above partitioning of a CG of a WF system, we
can define its unbounded sequences.

DEFINITION 4.7. (Unbounded sequences) Let (N, [i])
be a WF system with CG(H, A). Let Hω

R and Hω
Y be

defined as in Definition 4.6. If [i] ∈ Hω
R, then the oc-

currence sequence [i] is called unbounded. An occurrence
sequence [i]t0M1 . . . tn−2Mn−1tn−1Mn, for some positive
natural numbern, with all markings distinct is called un-
bounded iffMn ∈ Hω

R andMn−1 ∈ Hω
Y . A firing sequence

of a WF system is called unbounded iff it is derived from an
unbounded occurrence sequence.

THEOREM 4.12. (Unbounded sequences vs. bounded-
ness) A short-circuited WF systemS is bounded iffS has
no unbounded sequences.

Proof. The theorem follows immediately from Theorem
4.11 (Boundedness of short-circuited WF systems) and Def-
inition 4.7 (Unbounded sequences).

Unbounded sequences have been defined on the basis of a
CG of a WF system. However, CGs of WF systems can be-
come very large, even to the extent that the computation of
unbounded sequences may become intractable. A simple ob-
servation alleviates the problem of large CGs: Infinite mark-
ings in a CG have only infinite successors. For determining
unbounded sequences, it is not necessary to consider succes-
sors of infinite markings, because they are guaranteed to be
red. This observation leads to the notion of arestricted CG
(RCG) of a system. LetS = ((P, T, F), M0) be some P/T
system. An RCG ofS is constructed via the algorithm of
Definition 2.16 with one important difference, namely that
we restrict the markingM in step (ii) to be finite. As an
example, compare the CG of the short-circuited system of

THE COMPUTERJOURNAL, Vol. ??, No. ??, ????

DIAGNOSING WORKFLOW PROCESSES USINGWOFLAN 19

Figure 3 depicted in Figure 8 with the RCG of Figure 14.
For this simple example, the RCG is approximately half the
size of the CG. Note that if a system is bounded the RCG-
generation algorithm and the CG-generation algorithm both
yield the OG of the system.

FIGURE 14. The RCG of the short-circuited example net

It is straightforward to see that an RCG can be used to
compute the unbounded sequences of a WF system. Con-
sider the partitioning of a CG given in Definition 4.6. Since
infinite markings are always red, it is clear that successors of
infinite markings are also red. Therefore, the part of a CG
that is omitted in an RCG is not used when constructing un-
bounded sequences. This means that unbounded sequences
can be computed by applying the partitioning of Definition
4.6 to an RCG.

The idea to restrict a CG of a system to an RCG is similar
to one of the ideas behind the notion of an MCG (minimal
CG) of [21]. In general, an RCG of a system is still larger
than its MCG. Unfortunately, the MCG of a WF system is
not suitable for computing unbounded sequences. For more
details, the interested reader is referred to [21].

Figure 15 shows the partitioned RCG of the example sys-
tem S of Figure 2. Note that this RCG is the OG ofS, be-
causeS is bounded.S has among others the following un-
bounded sequences:

(i). register send rec dont and
(ii). register send dont rec .

These two sequences show that firing the combination of
rec and dont inevitably leads to unboundedness of the
short-circuited system. The reason is thatrec puts a to-
ken in placec8 , whereas firingdont removes the option to
remove this token via transitionprocess .

5. WOFLAN

This section describesWoflan (WOrkFLow ANalyzer, see
http://www.tm.tue.nl/it/woflan) version 2.1. Woflan is a tool

FIGURE 15. The RCG partitioned for unboundedness

that analyzes workflow process definitions specified in terms
of Petri nets. It has been designed to verify process defi-
nitions that are downloaded from a workflow management
system, as explained in Section 3.3. As indicated in the in-
troduction, there is a clear need for such a verification tool.

Based on some of the results presented in the previous sec-
tion, the development of the tool Woflan started at the end of
1996 and the first version was released in 1997 [8]. Basi-
cally, Woflan takes a workflow process definition imported
from some workflow product, translates it into a P/T net, and
tells whether or not the net is a sound WF net. Furthermore,
using some standard P/T net-analysis techniques as well as
those tailored to WF nets presented in the previous section,
the tool provides diagnostic information about the net in case
it is not a sound WF net. Woflan implements a predefined di-
agnosis process illustrated in Figure 16. The diagnosis pro-
cess is in fact a workflow process modeled in Protos [31]. In
the next subsection, the diagnosis process of Figure 16 is ex-
plained in detail. In Section 5.2, the P/T net of Figure 1 is
analyzed by means of Woflan. Version 2.1 of Woflan extends
version 1.0 as described in [8] with some new analysis tech-
niques of which the technique of behavioral error sequences
is the most important one, with a predefined, detailed diag-
nosis process that uses a new, workflow-oriented nomencla-
ture, and with an import facility for COSA, Staffware, ME-
TEOR, and Protos. A brief overview of the material of this
section was presented at the 2000 International Conference
on Application and Theory of Petri nets [45].

5.1. Diagnosis process

In Sections 2 and 4, we have seen a wide range of analysis
techniques for P/T nets in general and WF nets in particu-
lar. The goal is to apply these techniques in the analysis of
workflow processes in a logical and meaningful order, and
to distill useful diagnostic information from the analysis re-
sults in case of errors in the workflow. The diagnosis process

THE COMPUTERJOURNAL, Vol. ??, No. ??, ????

20 H. VERBEEK, T. BASTEN AND W. VAN DER AALST

FIGURE 16. Diagnosis process, modeled using Protos

THE COMPUTERJOURNAL, Vol. ??, No. ??, ????

DIAGNOSING WORKFLOW PROCESSES USINGWOFLAN 21

implemented in Woflan, version 2.1, achieves this goal. Fig-
ure 16 illustrates the process. As mentioned, the process is
in fact a workflow itself modeled in Protos. The rectangles
are the basic tasks in the process, where special symbols are
used for the initial and the final task (Steps 1 and 14). The
circles are similar to places in P/T nets. They are only in-
cluded at some relevant points in the workflow (as explained
below). Steps 2 through 8 and 10 through 12 are OR-splits
and Step 14 is an OR-join. Analyzing the Protos model of
Figure 16 in Woflan yields that it corresponds to a sound WF
net.

The basis for the diagnosis process in Figure 16 is Theo-
rem 4.1 (Soundness vs. liveness and boundedness). That is,
the diagnosis process aims at establishing the soundness of
a WF net by showing that the corresponding short-circuited
system is live and bounded. As mentioned earlier, liveness
analysis is only feasible for bounded systems. Thus, we have
decided to center the diagnosis process around the following
three milestones. The naming of the milestones is chosen in
such a way that it fits with standard workflow terminology.

Workflow Process Definition (WPD) Does the imported
process definition correspond to a WF net?

Proper WPD Is the short-circuited system corresponding
to the WF net bounded?

Sound WPD Is the (bounded) short-circuited system cor-
responding to the WF net live (and thus the WF net
sound)?

The order in which analysis techniques are applied in the di-
agnosis process is based on two criteria, namely efficiency of
the technique and usefulness of the diagnostic information.
Since structural analysis techniques are (usually) computa-
tionally much more efficient than behavioral ones, we see
that structural analysis techniques are used as much as pos-
sible in the diagnosis process before switching to behavioral
techniques.

5.1.1. Step 1: Start of diagnosis
The diagnosis process is started by importing a process def-
inition from some workflow tool. In this step, the process
definition is translated to a P/T-net representation, applying
the abstractions discussed in Section 3.2.

5.1.2. Step 2: Workflow process definition?
In this step, it is verified whether the first milestone is sat-
isfied. The first milestone is included to guarantee that the
process definition that is being imported from some work-
flow tool corresponds to a WF net. Woflan simply checks
whether all the requirements of Definition 4.1 are satisfied
(one place must correspond to a point of creation, one place
must correspond to a point of completion, and all nodes must
be related to both places). If the milestone is not satisfied,
the diagnosis process ends and the workflow designer must
make a correction to the process definition. In this case,
Woflan provides diagnostic information such as, for exam-
ple, the list of tasks that are not connected to the point of
creation and/or the point of completion.

5.1.3. Step 3: Thread of control cover?
From a workflow point of view, we would like to see a case
as a set of parallelthreads of control: Each such a thread
specifies that certain tasks have to be executed in a cer-
tain (sequential) order to get a certain piece of work com-
pleted. In the running example of Figure 1, we have two
such threads:

(i). The first thread handles the piece of work associated
with the complaint form: After registration, first, the
form has to be sent to the complainant. Second, it is
either received back or a timeout occurs. Finally, the
returned form or the fact that it was not returned in time
is archived.

(ii). The second thread handles the piece of work associated
with the complaint itself: After registration, first, the
complaint has to be evaluated. Second, depending on
the evaluation (do or dont), it may be processed fol-
lowed by a check. Third, depending on the result of
the check (done or redo), it may be processed again.
Finally, it is archived.

The idea of threads is reflected by the S-components in the
short-circuited WF net: Every S-component in that short-
circuited net corresponds to a logical piece of work in the
workflow. (See, for example, Figure 6 that shows the two
S-components for the running example.) Recall that an S-
component is a strongly connected state machine which is
embedded in a P/T net (see Definition 2.11). For each S-
component in a P/T system, the total number of tokens in its
places is always constant. From the strongly connectedness
of S-components and the structure of WF nets, it follows that
an S-component in a short-circuited sound WF net always
contains the short-circuiting transitiont and the two special
placesi ando. Assuming the initial marking [i], every place
in an S-component is safe and bounded, and the system cor-
responding to a short-circuited WF net that is S-coverable is
safe and thus bounded (see also Theorem 4.4). In addition,
sincei is an element of all S-components in an S-coverable
net, every S-component contains exactly one token in every
marking reachable from [i]. This observation conforms to
the intuitive notion of threads of control.

It appears that any WF net should satisfy the requirement
that its short-circuited net is S-coverable. A place that does
not belong to a thread of control is a suspicious place, be-
cause it cannot be related to a logical piece of work. Al-
though it is possible to construct a sound WF net with a
short-circuited net that is not S-coverable, the places that
are not S-coverable in sound WF nets typically do not re-
strict transitions from being enabled and are thus superflu-
ous. Note that S-coverability is not a sufficient requirement:
It is possible to construct an unsound WF net with an S-
coverable short-circuited net.

The diagnostic information that Woflan provides is the list
of S-components of the short-circuited WF net, as well as a
list of places not contained in any of these S-components.
This information can generally be computed efficiently. If
there are no uncovered places, the second milestone of the
diagnosis process (Proper WPD) has been achieved (see

THE COMPUTERJOURNAL, Vol. ??, No. ??, ????

22 H. VERBEEK, T. BASTEN AND W. VAN DER AALST

FIGURE 17. A non-free-choice cluster (confusion)

Theorem 4.4), which means that we can continue with live-
ness analysis (see Figure 16).

5.1.4. Step 4: Confusions and mismatches?
At this point, we know that our workflow process defini-
tion is not covered by threads of control; in Petri-net ter-
minology, the short-circuited WF system is not S-coverable.
Based on Theorems 4.2 and 4.3, we may conclude that the
WF net under consideration shouldnot be free-choice or
well-structured. If it is free-choice or well-structured, we
know that it cannot be sound. It is indeed possible to have a
sound WF-net that is neither free-choice nor well-structured.
For some more advanced routing constructs, non-free-choice
nets and/or non-well-structured nets are inevitable. Notwith-
standing these observations, in many practical workflows,
non-free-choiceness or non-well-structuredness are signs of
design errors, as explained in some more detail below.

5.1.4.1. Confusions The diagnostic information that
Woflan provides on the free-choice property is the set of so-
calledconfusions. A confusion is a non-free-choice cluster,
where a cluster is a connected component of a net that re-
mains after all arcs from transitions to places are removed
from the net. A cluster is non-free-choice iff it does not sat-
isfy the free-choice property of Definition 2.8. An example
of a non-free-choice cluster is shown in Figure 17.

Two transitions that do not satisfy the free-choice prop-
erty have different presets that are not disjoint. In a work-
flow context, this means that two tasks share some but not
all preconditions. Usually, tasks that share a precondition
start alternative branches: They form an OR-split. Also, a
task that has multiple preconditions (note that at least one of
the transitions has multiple preconditions) usually ends a set
of parallel branches: It is an AND-join. A non-free-choice
cluster is therefore often a mixture of an OR-split with an
AND-join (see Figure 17). The OR-split is troubled by such
an AND-join, because one alternative may be enabled while
the other is not. The AND-join is troubled by the OR-split,
because a fulfilled parallel branch may get unfulfilled be-
fore the AND-join is enabled. If possible, the OR-split and
AND-join must be separated. The routing of a case should
be independent of the order in which tasks are executed.

As explained in Section 4.3, most of the workflow man-
agement systems available at the moment abstract from

FIGURE 18. AND/OR mismatches

states between tasks which means that process definitions
imported from these workflow systems yield, in principle,
free-choice WF nets. Clearly, the search for confusions is
only meaningful for workflow management systems that al-
low non-free-choice constructs.

5.1.4.2. MismatchesA good workflow design is charac-
terized by a balance between AND/OR-splits and AND/OR-
joins. Clearly, two parallel flows initiated by an AND-split
should not be joined by an OR-join. Two alternative flows
created via an OR-split should not be synchronized by an
AND-join. From a workflow point of view, the situations as
depicted in Figure 18 are suspicious.

In the leftmost situation, an AND-split is terminated by
an OR-join. Tasks of a case are executed in parallel, but
fulfilling one branch implies that both branches are fulfilled.
The condition corresponding to placeP can even be fulfilled
twice. In a workflow, such a condition is often an error. In
P/T-net terminology, this means that usually all places of a
WF net should be safe. Note that this kind of error may lead
to unboundedness of the short-circuited system and hence to
unsoundness.

In the rightmost situation, an OR-split is terminated by an
AND-join. One of the alternative tasks will be executed for
the case. However, the task corresponding to transitionT
synchronizes both branches and needs both its preconditions
to be fulfilled; it will never be executed. Note that this kind
of error may lead to a non-live short-circuited system and
hence to unsoundness.

Both situations depicted in Figure 18 describe a so-called
non-well-handled pair: A transition-place or place-transition
pair with two disjoint paths leading from one to the other.
The leftmost situation describes a TP-handle, the rightmost
a PT-handle (see Definition 2.6). Recall from Definition 4.3
that a WF net is well-structured iff the short-circuited net
is well-handled (see Definition 2.7). Although a non-well-
handled pair in the short-circuited net is often a sign of po-
tential errors, a WF net that is not well-structured can still be
sound.

The diagnostic information that Woflan provides is a list
of all non-well-handled pairs in the short-circuited net; usu-
ally, the subset of non-well-handled pairs fully embedded in
the non-short-circuited net (i.e., both paths between the two
nodes of the pair do not contain the short-circuiting tran-
sition) provides the most useful information, because they
often correspond to the undesirable AND-OR and OR-AND
mismatches discussed above.

THE COMPUTERJOURNAL, Vol. ??, No. ??, ????

DIAGNOSING WORKFLOW PROCESSES USINGWOFLAN 23

At this point in the diagnosis method, there are several possi-
bilities. Quite often, the combination of a number of places
not covered by a thread of control (Step 3) and information
on confusions plus AND-OR / OR-AND mismatches reveals
one or more errors in the process definition. (Note that, theo-
retically, the workflow process definition may still be sound.)
Thus, the workflow designer might decide to end the diagno-
sis process, to correct the process definition in the workflow
tool being used to design the workflow, and to restart the
diagnosis process on the new process definition (the Quit-
option of Step 4 in Figure 16). In other occasions, the de-
signer may decide to continue the diagnosis process, even if
it is already known that the workflow process definition can-
not be sound (based on Theorems 4.2 and 4.3, as explained
above).

5.1.5. Step 5: Uniform invariant cover?
A uniform invariant is a (semi-positive) place-invariant with
only weights zero and one. Uniform invariants of a WF
net can in general be computed efficiently, although it re-
quires theoretically in the worst-case exponential space.
Such place-invariants can provide useful information con-
cerning the proper-completion property of a WF net. As
mentioned before, the net of Figure 1 has a place-invariant
i +c1 +c3 +c5 +o. Because we know that initially there
is one token in placei and upon completion there is one to-
ken in o, we conclude from this invariant thatc1 , c3 , and
c5 are empty upon completion. Furthermore, we can deduce
from Theorem 4.5 (semi-positive place-invariants vs. bound-
edness) that a short-circuited WF system is bounded if all
places are covered by uniform invariants. A place that is not
covered by a uniform invariantmightbe unsafe or even un-
bounded. From a workflow point of view, this means that a
condition might be fulfilled more than once at a single point
in time, which is often undesirable. Note that this check is
less discriminating than the check for S-coverability (Step
3): Every S-component corresponds to a uniform invariant.
Thus, every place belonging to an S-component is covered
by a uniform invariant. However, a place that does not be-
long to any S-component might still be covered by a uniform
invariant.

The diagnostic information that Woflan provides in this
step is the set of uniform invariants of the short-circuited WF
net as well as the places that are not covered by these invari-
ants. If all places are covered, the Proper-WPD milestone
has been achieved.

5.1.6. Step 6: Weighted invariant cover?
Another structural technique for deciding boundedness of
the short-circuited WF net is simply the check whether all
places in the net are covered by some semi-positive place-
invariant (thus allowing weights greater than one when com-
pared to the previous step). Semi-positive place-invariants
are simply calledweightedinvariants in Woflan. Clearly,
this check is less discriminating than the check performed in
the previous step. Places that are not covered by a weighted
invariant might be unbounded. From a workflow point of

view, this means that a conditionmight be fulfilled an arbi-
trary number of times.

The diagnostic information that Woflan provides in this
step is (a representation of) the set of weighted invariants of
the short-circuited WF net as well as the places that are not
covered by these invariants. If all places are covered, the
Proper-WPD milestone has been achieved.

5.1.7. Step 7: No improper conditions?
At this point in the diagnosis process, we have indications
that some places of the short-circuited systemmight be un-
bounded. In Woflan, unbounded places are referred to as
improper conditions. An improper condition in the short-
circuited system always indicates a soundness error (re-
lated to improper completion; see also Sections 4.4.2 and
4.4.5). To determine improper conditions, Woflan com-
putes the MCG (Minimal Coverability Graph [21]) of the
short-circuited system. This computation can be time and
space consuming, but it turns out that computing the MCG
is feasible for most practical workflows (up to several hun-
dreds of tasks). (Particularly for workflows corresponding to
boundedshort-circuited WF systems the computation does
not take very long.)

The diagnostic information provided by Woflan consists
of the set of improper conditions. If this set is empty, the
Proper-WPD milestone has been achieved.

5.1.8. Step 8: No substates?
A substate of a system is a reachable markingM such that
there is another reachable markingM1 with M < M1. It is
not difficult to see that aboundedshort-circuited WF sys-
tem with substates cannot be live. AssumeM is a substate
of such a system withM1 a marking reachable from the ini-
tial marking such thatM < M1. (Note thatM1 cannot be
reachable fromM , because this would contradict the bound-
edness of the system (see Definition 2.19).) It is impossible
to reach marking [o] from substateM , because otherwise
we could reach [o] + M1 − M from M1 which by Theorem
4.11 (Boundedness of short-circuited WF systems) contra-
dicts the boundedness assumption. Since the short-circuiting
transition haso as its only precondition, this transition can-
not be live, which implies that also the short-circuited system
cannot be live. The MCG algorithm that is used for com-
puting improper conditions in the previous step allows the
easy detection of substates (see [21]). The current version
of Woflan provides a warning if a bounded short-circuited
system has substates; it does not provide any detailed in-
formation about substates because this information is rather
technical.

5.1.9. Step 9: Improper scenarios!
If the set of improper conditions in Step 7 of the diagno-
sis process is not empty, we know that the short-circuited
WF system is unbounded. In case the set of improper con-
ditions provides insufficient information for diagnosing the
error(s), Woflan offers the workflow designer the possibil-
ity to compute the unbounded sequences of the WF system,

THE COMPUTERJOURNAL, Vol. ??, No. ??, ????

24 H. VERBEEK, T. BASTEN AND W. VAN DER AALST

called improper scenarios in Woflan.
As explained in Section 4.4.5, unbounded sequences are

computed by constructing and partitioning an RCG of the
WF system. Recall that it is not possible to use the MCG for
this purpose (see [21]). It is not difficult to see that sequences
that are

• permutations of the same set of transitions and
• end with the same transition

all provide the same diagnostic information. Thus, it suf-
fices to consider only a single sequence of such a set. In
order to minimize the set of improper scenarios presented
to the workflow designer, Woflan computes a spanning tree
of the RCG. A spanning tree of a graph is a connected sub-
graph in the form of a tree that contains all the nodes. The
tree-constraint means that between every two nodes there is
exactly one undirected path. A spanning tree of an RCG can
be constructed in a straightforward way during the construc-
tion of the RCG. In the RCG of Figure 15, for example, the
thick arcs denote a spanning tree. If Woflan is applied to
our running example, it computes precisely the partitioned
RCG of Figure 15 with the visualized spanning tree. Using
this tree, it presents the two unbounded sequences given in
Section 4.4.5 for this example.

Since at this point in the diagnosis process we know that
the short-circuited system is unbounded and, hence, that the
Proper-WPD milestone cannot be achieved, the workflow
designer must make a correction to the workflow process
definition and restart the diagnosis process with this cor-
rected process definition.

5.1.10. Step 10: No dead tasks?
At some point during the diagnosis, the Proper-WPD mile-
stone has been achieved, possibly after one or more correc-
tions to the original process definition have been made. It
remains to establish the third milestone of the diagnosis pro-
cess. Recall that this part of the process is aimed at analyzing
the liveness of the short-circuited WF system.

Using the MCG of the short-circuited WF system, Woflan
provides the set of dead transitions of this system. Re-
call that Theorem 4.8 (Dead transitions in bounded short-
circuited WF systems) implies that this set is precisely the
set of dead transitions of the non-short-circuited system.
These transitions correspond to dead tasks in the workflow
process. Note that the MCG might already be available from
Step 7 (No improper conditions?) of the diagnosis process;
if this is not the case the MCG is computed at this point. If
the WF system has dead tasks, the workflow designer must
correct the error(s) and restart the diagnosis process with the
new process definition.

5.1.11. Step 11: No non-live tasks?
At this point in the diagnosis process, we know that the
short-circuited WF system is bounded and that it does not
have any dead transitions. Woflan computes the OG of the
short-circuited system to determine the set of non-live tasks,
which it presents to the workflow designer. If all tasks are

live, the diagnosis process is complete and successful: It has
been shown that the short-circuited WF system is bounded
and live which by Theorem 4.1 implies that the underlying
WF net is sound.

5.1.12. Step 12: Non-live tasks!
At this point in the diagnosis process, we know that the
short-circuited WF system is bounded, that it does not have
any dead transitions, but that it is not live. Also in this case
Woflan computes the set of non-live tasks via the OG of the
short-circuited system.

5.1.13. Step 13: Locking scenarios!
If the result of Step 11 or Step 12 indicates that there are non-
live transitions, but if this information is not sufficient for
diagnosing the error(s), Woflan provides the option to com-
pute the non-live sequences of the WF system. In Woflan,
non-live sequences are referred to as locking scenarios (be-
cause they generally lead to livelocks and/or deadlocks in
the workflow process). The set of locking scenarios is com-
puted from the OG of the WF system (see Section 4.4.4) and
minimized via a spanning tree of the OG. As in Step 9 (Im-
proper scenarios!) of the process, the reason for minimizing
the set of scenarios presented to the workflow designer is
that non-live sequences being permutations of the same set
of transitions and ending with the same transition provide
the same diagnostic information.

5.1.14. Step 14: End of diagnosis
The diagnosis process ends with one of three possible con-
clusions, namely that the imported process definition does
not correspond to a WF net, that it does correspond to a WF
net but is not sound, or that it corresponds to a sound WF net.
In case of errors, the process definition must be corrected in
the workflow tool being used (see Section 3.3, Figure 11),
after which the diagnosis process has to be restarted.

5.2. Diagnosing the example net

In this subsection, we diagnose the example workflow pro-
cess illustrated in Figure 1 in Woflan. Following the ap-
proach explained in Section 3.3, Figure 11, we used Protos
as the front-end workflow tool for designing and correcting
the process definition (Protos can be used as the design tool
for, e.g., COSA, Flower, and ECHO). As an alternative, we
could also have chosen CONE, the design tool of COSA.
Both tools support a modeling language that is sufficiently
expressive for modeling arbitrary P/T nets.

Figure 19 shows a Protos model of the example workflow
process. Note that we have modeled the two choices in the
process via tasksevaluate andcheck , as explained in
Section 3.3. Figure 20 shows a number of Woflan dialogs
for the various steps of the diagnosis process of Figure 16.

The upper dialog in Figure 20 shows the information pro-
vided by Woflan when importing our Protos process def-
inition. (Protos definitions are imported via the COSA
import facility, which clarifies the title of the dialog win-
dow.) Using this dialog the workflow designer can preview

THE COMPUTERJOURNAL, Vol. ??, No. ??, ????

DIAGNOSING WORKFLOW PROCESSES USINGWOFLAN 25

FIGURE 19. The Protos specification of the process of Figure 1

the P/T net resulting from the conversion before it is ana-
lyzed. In this case, the information is a straightforward list
of conditions and tasks. Note that Woflan reports a task
namedcheck 0. As explained, Woflan splits choices into
a number of tasks corresponding to the possible outcomes
of a choice. In this case, Woflan splits taskcheck into
check 0 andcheck 1, and taskevaluate into eval-
uate 0 and evaluate 1. These four new tasks corre-
spond to tasksdone , redo , dont , anddo of Figure 1, re-
spectively. The information provided by Woflan during the
conversion may vary depending on the workflow tool be-
ing used. If Staffware is used, for example, some errors in
the process definition may already be detected during the
conversion. The reason is that Staffware uses a proprietary
modeling language of which the mapping to WF nets is non-
trivial (see [9]). In the next section, we briefly return to this
point when discussing the Staffware case study.

The second dialog in Figure 20 is the Workflow-Process-
Definition dialog that corresponds to Step 2 of the diagnosis
process of Figure 16. It clearly shows that the net is a work-
flow process definition (i.e., a WF net).

The third dialog corresponds to Step 3 (Thread of con-
trol cover?) of the diagnosis process. It lists two threads of
control, corresponding to the two S-components shown in
Figure 6, and one condition that is not covered, namely con-
dition c8 . This information indicates that there might be a
problem withc8 ; it may be improper (unbounded).

Because not all conditions are covered by threads of con-
trol, the diagnosis process continues with Step 4 (Confusions
and mismatches?). The corresponding dialog is also shown
in Figure 20. This dialog shows that our example net is un-
sound: Either conditionc8 needs to be covered by a thread
of control or a confusion needs to be introduced somewhere.

It may be worthwhile to consider the mismatches at this
point. Woflan indicates that the short-circuited net has four
OR-AND mismatches and five AND-OR mismatches. One
of the OR-AND mismatches is fully embedded in the non-
short-circuited net and corresponds to the PT-handle shown
in Figure 4; Woflan marks this OR-AND mismatch with the
label ‘local’. Two of the AND-OR mismatches are local to
the non-short-circuited net and correspond to the TP-handles

of Figure 5. Unfortunately, in this example, it is not straight-
forward to derive any useful information from these mis-
matches other than the already known fact that conditionc8
is probably the cause of the unsoundness.

Steps 5 and 6 of the diagnosis process that compute uni-
form and weighted invariants, respectively, do not provide
any additional information. In both cases, it turns out that
conditionc8 is uncovered.

Step 7 (No improper conditions?) provides us with the
definite information that conditionc8 is improper. Step
9 (Improper scenarios!) yields two improper scenarios, as
shown in the dialog in Figure 20. Both scenarios result in
the marking [c5 , c7 , c8]. (Recall thatevaluate 0 cor-
responds to transitiondont of Figure 1. Executing task
archive at that point results in marking [c8 , o], which
corresponds to improper completion.

At this point in the diagnosis, we have to make a correc-
tion. Clearly, the diagnostic information obtained so far sug-
gests that transitionarchive must remove a token from
c8 . We correct the process definition in our modeling tool
Protos (see Figure 11) by adding an arc between condition
c8 and taskarchive . The resulting process definition is
not shown, but it corresponds to the WF net of Figure 12
(assuming the appropriate renamings as explained above).

We restart the diagnosis process on the new process def-
inition. In Steps 1 through 6, Woflan provides the follow-
ing diagnostic information. The process definition is still
not covered by threads of control or invariants; in all cases,
conditionc8 is still uncovered. However, the process defi-
nition is also not free-choice and not well-structured. Thus,
it might still be sound. Step 7 (No improper conditions?)
shows that the process definition is proper. Thus, our correc-
tion in the first iteration of the diagnosis process has been an
improvement.

It turns out that the process definition has no substates and
no dead tasks (Steps 8 and 10 of the diagnosis process; Step
9 is skipped in this iteration). However, Woflan reports in
Step 11 that all tasks are non-live (in the short-circuited sys-
tem). At this point, we know that the process definition is
not sound. Unfortunately, the information is not sufficiently
specific for diagnosing the error(s). Thus, we let Woflan
compute the locking scenarios of the process definition (Step
13). Woflan reports the five scenarios already presented (as
non-live sequences) in Section 4.4.4. From the discussion
in that section, we may conclude that the execution of task
timeout is the probable cause of an error and that also
the cycle consisting of tasksprocess andcheck (option
redo) is very likely the cause of a problem. A closer look
at the workflow process definition reveals that there are in-
deed two problems. First, the execution of tasktimeout
does not mark conditionc8 , which means that taskspro-
cess andarchive cannot be executed aftertimeout is
executed. To correct this error, we add an arc fromtime-
out to c8 . Second, the cycle consisting of tasksprocess
andcheck can only be executed once, becausec8 is only
an input condition (and not an output condition) of the cy-
cle. We correct this error by adding an arc fromprocess
to c8 .

THE COMPUTERJOURNAL, Vol. ??, No. ??, ????

26 H. VERBEEK, T. BASTEN AND W. VAN DER AALST

FIGURE 20. Example diagnosis, dialogs

THE COMPUTERJOURNAL, Vol. ??, No. ??, ????

DIAGNOSING WORKFLOW PROCESSES USINGWOFLAN 27

FIGURE 21. A sound version of the example process definition

After adding the two arcs mentioned above in our Pro-
tos model, the process definition looks as in Figure 21. A
third iteration of the diagnosis process shows that the pro-
cess definition is sound. (The iteration goes via Steps 1, 2,
3, 10, 11, and 14, which is the shortest path through the di-
agnosis process.) Note that the process definition of Figure
21 is not free-choice (cf. tasksprocess andarchive).
Consequently, this process definition is only feasible when
using workflows tools as Protos or COSA. Staffware, for ex-
ample, does not allow the non-free-choice construct in the
process definition. It is important to note that corrections to
process definitions may depend on the workflow system at
hand. When we would have used Staffware for designing
our workflow process, we would have had to think of an-
other way to correct the errors. (It is an interesting exercise
to come up with a free-choice variant of the process defini-
tion of Figure 21.)

6. CASE STUDIES

To evaluate the applicability of Woflan, we performed two
case studies, one focusing on the usefulness of all the steps
in the diagnosis process of Figure 16 supported by Woflan
and another one testing the applicability of Woflan and the
approach of Figure 11 on a workflow process developed in a
real-world context.

For testing the usefulness of the steps of the diagnosis pro-
cess of Figure 16, we used seventeen Protos models of the
workflow process of a travel agency at a university. These
seventeen models were chosen from the work of twenty
groups of students that designed Protos models from an in-
formal description of the workflow process, as part of an
assignment for a course on workflow management. There
are two reasons why this case study is particularly useful
for evaluating the diagnosis process of Woflan. First, Protos
supports P/T nets as a modeling language. Consequently,
all steps in the diagnosis process of Woflan may in princi-
ple provide useful information concerning possible errors in
workflow process definitions designed in Protos. Second,
the assignment was set up in such a way that the students had
to use a wide variety of routing constructs in their models.
By evaluating seventeen models of this workflow process, it

is almost guaranteed that these models also contain a wide
variety of errors.

For testing our approach to workflow verification on a
real-world example, we cooperated with Staffware Benelux.
We set up an experiment where a workflow designer of
Staffware Benelux introduced a number of non-trivial errors
in a large workflow that was known to be correct. We were
not familiar with the workflow process. Also, the type of
errors was not known to us and neither did we know the to-
tal number of errors. The reason for choosing Staffware, in-
stead of for example COSA, is that Staffware supports a pro-
prietary modeling language of which the mapping onto P/T
nets is non-trivial. Thus, this case study is a real test of the
approach illustrated in Figure 11, in particular of the inter-
pretation of the diagnostic information provided by Woflan
in the Staffware model.

In the remainder of this section, we discuss the results of
both case studies in some detail.

6.1. Protos case

The input for this case study consisted of workflow process
definitions developed by 42 industrial-engineering students
of the courseWorkflow Management & Groupware(1R420;
Eindhoven University of Technology) and 15 computing-
science students of the courseWorkflow Management: Mod-
els, Methods, and Tools(25756; University of Karlsruhe).
These students formed 20 groups which independently de-
signed Protos [31] models of the workflow in a travel agency.
Fourteen of these groups consisted of students from the
Eindhoven University of Technology; the other six consisted
of students of the University of Karlsruhe.

From the Eindhoven collection of models, we selected
eleven reasonably looking solutions; three models were so
poor that analyzing them by means of Woflan was not very
meaningful. From the Karlsruhe collection, all models were
selected. The number of tasks and other building blocks of
the models ranged from 54 to 89. These numbers show that
the case study was performed on workflow models of more
than reasonable size. A snapshot of a(n unsound) Protos
model of the travel-agency workflow is shown in Figure 22.

The groups of Eindhoven consisted of industrial engi-
neers, which had only a little prior experience in modeling
and no background in formal verification. Verification of
workflows was only a minor topic of the courseWorkflow
Management & Groupware(1R420) and the students did not
practice with Woflan. Although the groups were told to sim-
ulate the workflow process by hand (play thetoken game)
to test their model, not one of them was able to produce a
sound model.

In contrast to the groups of Eindhoven, the groups taking
the courseWorkflow Management: Models, Methods, and
Tools(25756) in Karlsruhe consisted of computing-science
engineers, which did have a background in modeling and
verification. Furthermore, the importance of making a cor-
rect workflow was emphasized and analysis techniques for
P/T nets and WF nets were treated in the course. In addition,
they practiced with a prior version of Woflan on small ex-

THE COMPUTERJOURNAL, Vol. ??, No. ??, ????

28 H. VERBEEK, T. BASTEN AND W. VAN DER AALST

FIGURE 22. A snapshot of a Protos model of the travel-agency workflow

amples. However, none of the groups used Woflan to check
their solution to the assignment. In the end, the Karlsruhe
groups delivered better models than the Eindhoven groups.
Of the seventeen models we analyzed with Woflan, five ap-
peared to be sound, all from Karlsruhe groups.

Table 1 shows an overview of our efforts to diagnose the
seventeen workflow models. It contains the following infor-
mation:

• The number of iterations with Woflan needed to pro-
duce a sound workflow process definition.

• Diagnostic information (see below for more details).
• The estimated time it took us to produce a sound work-

flow process definition.

The case study was performed on a Pentium 200 PC with
128 Mb of RAM running Windows NT 4.0.

The numbers in the column of Table 1 containing diagnos-
tic information refer to the corresponding steps of the diag-
nosis process of Figure 16. An entry implies that, based on
the information provided in that step, a correction was made
in the model being diagnosed. In case a correction was made

in Step 4, it is specified whether this correction was based on
a confusion or on a mismatch. The entries are simply given
in increasing order; the corrections are not necessarily made
in that order. For example, when diagnosing the model of
group 3, four corrections based on Step 4 were made in the
initial model, one correction based on Step 13 was made in
the second model, and one correction based on Step 3 was
made in the third model.

The information in Table 1 shows that Steps 3 (Threads
of control cover?), 4 (Confusions and mismatches?), 7 (No
improper conditions?), 9 (Improper scenarios!), 10 (No dead
tasks?), and 13 (Locking scenarios!) of the diagnosis process
of Figure 16 are all used to make one or more corrections.
In particular Steps 3, 4, 9, and 13 are used quite often. To
us, this does not come as a surprise because the diagnostic
information provided in these steps has a clear interpretation
in the workflow domain.

Of course, it is also interesting to see which steps are not
used. All Protos models considered in the case study cor-
responded to workflow process definitions. Consequently,
no corrections were made in Step 2 of the diagnosis pro-

THE COMPUTERJOURNAL, Vol. ??, No. ??, ????

DIAGNOSING WORKFLOW PROCESSES USINGWOFLAN 29

Group Iterations Diagnosis Time(min) University
1 2 4 (mism) 5 Eindhoven
2 9 4 (mism: 4×), 7 (3×), 9, 13 (2×) 90 Eindhoven
3 4 3, 4 (mism: 4×), 13 30 Eindhoven
4 8 3, 4 (mism: 12×), 13 75 Eindhoven
5 3 3, 4 (conf: 1×; mism: 6×) 30 Eindhoven
6 3 3 (3×) 30 Eindhoven
7 7 3 (2×), 4 (conf: 1×; mism: 8×), 9 60 Eindhoven
8 3 3 (2×) 20 Eindhoven
9 2 4 (mism: 4×) 20 Eindhoven
10 2 3 5 Eindhoven
11 7 3 (2×), 4 (conf: 2×), 9 (3×), 10 50 Eindhoven
12 1 sound < 5 Karlsruhe
13 1 sound < 5 Karlsruhe
14 2 13 5 Karlsruhe
15 1 sound < 5 Karlsruhe
16 1 sound < 5 Karlsruhe
17 1 sound < 5 Karlsruhe

TABLE 1. Overview of the results of the travel-agency case study

cess. However, this step is essential in the process because
the WPD milestone guarantees that the remainder of the di-
agnosis process is meaningful. The information in Table 1
furthermore shows that Steps 5, 6, 8, 11, and 12 were not
used to make corrections. However, in one occasion (Group
11; final model), Step 5 (Uniform invariant cover?) showed
that the process definition was proper; interestingly, that pro-
cess definition was not covered by threads of controls, which
is usually the case. Step 11 (No non-live tasks?) is simply
required in the diagnosis process for showing soundness of
a workflow process definition. Nevertheless, the results of
the case study show that a list of non-live tasks is generally
not sufficient for diagnosing an error; in all relevant cases,
locking scenarios (Step 13) were computed to obtain more
detailed information. Further experience with Woflan might
point out that Steps 11 and 13 can be integrated. For simi-
lar reasons, also Step 12, which is simply a variant of Step
11, might be integrated with Step 13. This leaves Steps 6
(Weighted invariant cover?) and 8 (No substates?). These
steps are usually only relevant if the process definition is
non-safe (see Definition 2.19). In practice, this is rarely true.
However, both steps might turn out to be useful in these rare
occasions and, furthermore, come almost for free after Steps
5 and 7, respectively.

Besides the above observations about the usefulness of the
steps in the diagnosis process of Woflan, two other interest-
ing observation can be made. In the informal description of
the travel-agency workflow process, a distinction was made
between private trips and business trips. At several points in
the process, the execution of certain tasks or the order of ex-
ecution depended on this distinction. Consequently, a work-
flow process definition of the travel-agency process almost
always contains a number of choices (OR-splits) that must
be kept consistent. In several models used for the case study,
this consistency was not enforced by the workflow process
definition. The type of a trip is a typical example of a piece
of control data (see Section 3.2.1). As mentioned in Sec-
tion 3.2.3, in our opinion, one should avoid situations where

the logical correctness of a process definition depends on the
invariance of a piece of control data. Fortunately, the diag-
nostic information provided by Woflan made it straightfor-
ward to correct these models enforcing the consistency via
the process definition.

Another interesting observation is that the industrial-
engineering students of Eindhoven did not produce a single
correct workflow, whereas the computing-science students
of Karlsruhe handed in only one flawed model, which was
straightforward to correct. In our opinion, the different back-
ground of the students causes this discrepancy. Industrial-
engineering students have little background in modeling and
verification; computing-science students are trained in both
skills. Many designers of workflow processes in practice
have also little experience in formal verification. Woflan can
be a useful aid in designing correct workflow processes that
helps to prevent a lot of problems caused by the implemen-
tation of erroneous workflow processes.

Summarizing the results of the travel-agency case study,
Woflan proved to be useful for diagnosing and correcting all
the seventeen models in reasonable time and with reason-
able effort. The results indicate that the diagnosis process
of Figure 16 is appropriate for verifying complex workflow
processes.

6.2. Staffware case

As explained in the introduction to this section, we set up
an experiment in cooperation with Staffware Benelux to test
our approach on a real-world workflow process. The start-
ing point of the case study was a complex process of 114
tasks and other building blocks (wait steps, complex routers,
etc.), developed by Staffware Benelux using Staffware 2000
[43]. The model contained a number of errors that were not
known to us in advance, but that were known to Staffware
Benelux. We diagnosed the Staffware model with Woflan
2.1, corrected the Staffware model, and discussed our diag-
nosis results with Staffware Benelux. It turned out that we

THE COMPUTERJOURNAL, Vol. ??, No. ??, ????

30 H. VERBEEK, T. BASTEN AND W. VAN DER AALST

FIGURE 23. A snapshot of the Staffware process definition

found six out of seven errors in the process definition. An-
other positive result is that the corrections we made proved
to be the appropriate ones. The error that we did not find
was lost in the conversion from Staffware to Woflan. As
already mentioned, the mapping from Staffware models to
P/T nets is non-trivial. Apparently, the error was lost in the
abstraction (see Section 3.2) applied during the conversion.
However, in our discussion with Staffware Benelux after the
completion of the case study, it turned out that there is a
straightforward check that can be incorporated in the con-
version process to detect the type of error that we missed. In
the remainder of this subsection, we discuss the conversion
of Staffware models to P/T nets and the results of the case
study in some more detail. Figure 23 shows a snapshot of
the (unsound) Staffware model.

6.2.1. Conversion
Two important aspects of the Staffware modeling language
play a role when converting Staffware models to P/T nets
and, in particular, to WF nets. The first one has already been
mentioned before. The Staffware modeling language ab-
stracts from states in a workflow process. The second one is

that Staffware models do not necessarily have a single point
of exit. Staffware models may diverge in several indepen-
dent branches. A Staffware case is completed if all branches
are completed. These two aspects have consequences for the
application of Woflan to Staffware models.

To start with the second aspect, the problem is to map
the notion of completion used in Staffware onto our notion
of completion. In [9], a solution to this problem is given.
Essentially, the approach of [9] means that a standard P/T-
net construction is used to detect the completion of all the
branches in the Staffware model. The most important conse-
quence of this construction is that the resulting P/T net is al-
ways bounded and almost always a WF net.2 Consequently,
the first milestone of the diagnosis process discussed in Sec-
tion 5.1 is almost always satisfied by a Staffware model and
the second one is always satisfied, possibly hiding some

2The translation proposed in [9] results in a P/T net which may have
multiple arcs between pairs of nodes. However, multiple arcs can only oc-
cur in the special completion-detection construct. Furthermore, the results
presented in this paper extend in a straightforward way to P/T nets allowing
multiple arcs between pairs of nodes and also Woflan can cope with such
nets.

THE COMPUTERJOURNAL, Vol. ??, No. ??, ????

DIAGNOSING WORKFLOW PROCESSES USINGWOFLAN 31

errors related to the structure of the process (WPD mile-
stone) or to improper completion (Proper WPD milestone).
As already mentioned before, a consequence of the first as-
pect mentioned above is that a WF net corresponding to a
Staffware model is, in principle, free-choice. However, as
already mentioned, Staffware allows one particular construct
that cannot be mapped onto a corresponding free-choice P/T-
net construct. Furthermore, the construct for detecting suc-
cessful completion is generally not free-choice.

It may be clear that the above observations have impli-
cations for the diagnosis process supported by Woflan. In
particular, we have to be careful with the interpretation of
the diagnostic information provided by Woflan.

Step 1 (Start of diagnosis) During the conversion from
Staffware to Woflan, diagnostic information on the
structure of the process is generated. In the current ver-
sion of the conversion, this information focuses on the
connectedness of the model.

Step 2 (Workflow process definition?) As already men-
tioned, the P/T net resulting from the conversion is al-
most always a WF net. In some rare occasions, this may
not be true; in such a case, the information provided by
Woflan can be used to correct the error.

Step 3 (Threads of control cover?) The abovementioned
construction for detecting completion introduced dur-
ing the conversion implies that the WF net is generally
not covered by threads of control. However, the diag-
nostic information provided by Woflan in this step can
still be useful.

Step 4 (Confusions and mismatches?) Most likely, the WF
net resulting from a Staffware model has only one con-
fusion, which is the result of the construction for de-
tecting completion. Also many of the mismatches in
the net are often caused by this special construction.
Mismatches that are inherent in the original Staffware
model are identified by Woflan and may, of course, still
provide useful information.

Step 5 (Uniform invariant cover?) The conversion is such
that the WF net is generally not covered by uniform
invariants.

Step 6 (Weighted invariant cover?) The completion-de-
tection construction guarantees that the WF net is cov-
ered by weighted invariants. (For this reason, the
Proper-WPD milestone is always satisfied.)

Steps 7, 8, 9, and 12These steps are always skipped (be-
cause of the outcomes in the earlier steps).

Steps 10, 11, 13, and 14These steps are unaffected.

At a first glance, the above list might seem to contradict our
claim that Woflan is workflow-tool independent. However,
note that the tool itself has not been changed in order to
make it useful for analyzing Staffware models. The only
programming effort was put into the conversion program.

Iterations Diagnosis Time(min)
3 1, 4 (mism: 3×), 13 (2×) 90

TABLE 2. The results of the Staffware case study

Furthermore, some items in the above list are just simpli-
fications of the diagnosis process of Figure 16 that are not
visible to users of Woflan; some other items explain how cer-
tain diagnostic information should be interpreted in terms of
Staffware models. One could even argue that, despite the
large differences between Staffware models and WF nets, a
surprisingly large part of the diagnosis process and the pro-
vided diagnostic information is still relevant.

6.2.2. Diagnosis
In this paragraph, we discuss the actual diagnosis of the
Staffware model used for this case study. Table 2 summa-
rizes the results. The case study was performed on a Pen-
tium III 500 PC with 256 Mb of RAM running Windows NT
4.0.

Three iterations were needed for the diagnosis, taking in
total about one and a half hour. Given the size of the work-
flow process and the fact that we were not familiar with the
process, in our opinion, this effort is reasonable. In the first
two iterations, we found and corrected six (out of seven) er-
rors; the third iteration showed that the model resulting from
the first two iterations was sound.

During the first iteration, one error was detected during
the conversion (Step 1: Start of diagnosis). A small part of
the process definition was not connected to the main part.
Furthermore, three structural errors were found and cor-
rected via mismatches reported in Step 4 (Confusions and
mismatches). An OR-join had to be replaced by an AND-
join and two arcs had to be removed. The first error is visi-
ble in Figure 23: The complex router labeledP6, which acts
as an AND-split, is (partly) complemented by the router la-
beledORJOIN, acting as an OR-join. The latter should be
replaced by a wait step, which acts as an AND-join.

In the second iteration, we did not find any more struc-
tural errors, but we did find two behavioral ones. The lock-
ing scenarios of Step 13 of the diagnosis process clearly in-
dicated that the process contained two erroneous OR-splits.
Both are visible in Figure 23. The first one is the choice
(the diamond) just before the task labeled9 Aanmaken
Routepl.MP7 . If the choice has a negative result, the
branch terminates. In this particular case, this implies an
error because furtheron the synchronization via the wait step
following complex routerPWwill fail. (This mistake might
seem obvious given the three visually similar constructs also
shown in the snapshot; however, recall that the total work-
flow consists of over 100 building blocks which makes it
much harder to find the mistake simply via visual inspec-
tion.) The second erroneous OR-split is the step labeled10
Vullen NCP MP3 . Note that this step is visually identi-
cal (!) to the step labeled8 Vullen C7 NCP MP10 and
two of the other steps shown in the snapshot. However, the
scenarios reported by Woflan indicate that it is not. The erro-

THE COMPUTERJOURNAL, Vol. ??, No. ??, ????

32 H. VERBEEK, T. BASTEN AND W. VAN DER AALST

neous step is disabled (withdrawn in Staffware terminology)
in case of a timeout, thus causing a synchronization error
furtheron. The timeouts associated with step8 Vullen
C7 NCP MP10and the other similar steps do not disable
the corresponding steps, but simply generate some kind of
warning message.

The two errors found in the second iteration were straight-
forward to correct yielding a workflow process definition
that was proved sound in a third iteration.

As already mentioned, we only found six out of seven
errors in the original Staffware model, despite the fact that
Woflan reports that the model resulting after the corrections
described above is sound. The one error Woflan fails to di-
agnose is lost in the conversion. It concerns a type of error
that may occur in the timeout construct of Staffware. As ex-
plained in Section 3, it is inherent to our approach that some
errors are lost in the abstractions we apply, particularly if
these errors are not or not closely related to the routing of
cases. However, in this particular case, it is possible to incor-
porate a simple check in the conversion process to filter out
this specific type of error. In fact, further experience might
show that also other types of errors can be filtered out during
the conversion of process definitions for use with Woflan. It
is even possible that (some of) the conversion programs cou-
pling Woflan with the various workflow products evolve into
workflow-tool-specific extensions of Woflan for diagnosing
errors that are specific for that particular workflow tool.

Summarizing, the main conclusion of this case study is
that Woflan can be a useful aid for detecting and correct-
ing errors in Staffware process definitions. The results sup-
port our belief that workflow-tool-independent verification
as visualized in Figure 11 is feasible. Further experience
is needed to optimize the interface between Staffware and
Woflan.

7. RELATED WORK

Petri nets have been proposed for modeling workflow pro-
cess definitions long before the term “workflow manage-
ment” was coined and workflow management systems be-
came readily available. An example is the work on Informa-
tion Control Nets [17, 18], a variant of classical Petri nets,
originally developed in the late seventies. For the reader in-
terested in the application of Petri nets to workflow manage-
ment, we refer to the two most recent workshops on work-
flow management held in conjunction with the annual In-
ternational Conference on Application and Theory of Petri
Nets [14, 6] and an elaborate paper on workflow modeling
using Petri nets [2]. Only a few papers in the literature focus
on the verification of workflow process definitions. In [24],
some verification issues have been examined and the com-
plexity of selected correctness issues has been identified, but
no concrete verification procedures have been suggested. In
[1], [4], and [10], concrete verification procedures based on
Petri nets have been proposed. Woflan builds upon the tech-
niques presented in [1, 4]. The technique presented in [10]
has been developed for checking the consistency of trans-
actional workflows including temporal constraints. How-

ever, the technique is restricted to acyclic workflows and
only gives necessary conditions (i.e., not sufficient condi-
tions) for consistency. In [37], a reduction technique has
been proposed. This reduction technique uses a correctness
criterion which corresponds to soundness and the class of
workflow processes considered are in essence acyclic free-
choice P/T nets. Some work on the compositional verifica-
tion of workflows, using well-known Petri-net results such
as the refinement rules in [44], can be found in [4, 5, 46].

As far as we know, only one other tool has been devel-
oped for verifying workflows:FlowMake[36]. FlowMake is
a tool based on the reduction technique described in [37] and
can interface with the IBM MQSeries Workflow product.
FlowMake can only handle acyclic workflows and provides
fewer diagnostics than Woflan: Only the reduced workflow
graph is shown.

The work presented in this paper builds on previous re-
search reported by the authors [1, 4, 8, 45]. The main con-
tribution of this paper is a complete description of the latest
version of Woflan, the diagnosis process it supports, and the
techniques it is based on. The concept, computation, and
application of behavioral error sequences have not been ad-
dressed in previous publications. Moreover, the experimen-
tal results have not been presented before.

8. CONCLUSIONS AND FUTURE WORK

Workflow-management technology is rapidly gaining popu-
larity in the support of business processes. A thorough anal-
ysis of workflow processes before their actual implementa-
tion is necessary to guarantee effectiveness and efficiency.
To guide a workflow designer in finding and correcting er-
rors in a workflow process, we developed a diagnosis pro-
cess and the accompanying tool Woflan, both based on Petri-
net techniques. We have evaluated Woflan, version 2.1, in
two case studies: one involving seventeen models of a fairly
complex workflow designed by students in Protos [31] and
one involving a large real-world workflow process designed
in Staffware [43]. A novel analysis technique of behavioral
error sequences proved to be a useful aid in diagnosing the
workflows. The results are encouraging. They show that
the diagnosis process supported by Woflan is useful and that
our approach to workflow-product-independent verification
of workflow processes is feasible. Nevertheless, we would
like to evaluate Woflan and its analysis techniques in other
experiments, in order to further optimize the diagnosis pro-
cess.

We are also working on extending the set of workflow
tools Woflan can interface with. The current version of
Woflan (version 2.1) can import workflow process defini-
tions from COSA, Staffware, METEOR, and Protos. On pa-
per, we have also designed translations from BaanERP/DEM
(BaaN), SAP/Workflow (SAP AG), and ARIS (IDS Prof.
Scheer) to Woflan. The Dynamic Enterprise Modeler (DEM)
of BaanERP is based on a subclass of Petri nets, which
means that the translation is straightforward. SAP/Workflow
and ARIS are both based on event-driven process chains. A
translation of event-driven process chains to WF nets is de-

THE COMPUTERJOURNAL, Vol. ??, No. ??, ????

DIAGNOSING WORKFLOW PROCESSES USINGWOFLAN 33

scribed in [3]. In the future, we plan to build the correspond-
ing interfaces.

Furthermore, we are looking into visualizing Woflan’s
output in a graphical way. The current interface is entirely
textual. There are several ways for displaying the diagnos-
tics in a graphical manner: either via diagrams shown di-
rectly by Woflan, via dedicated tools such as VIPtool [15],
or via an interface in the workflow tool used to design the
workflow process. The last option is clearly preferable from
the viewpoint of interpreting the diagnostic information pro-
vided by Woflan in terms of the original workflow process
definition. However, it also means that the workflow tool it-
self has to be extended. Any of the first two options might
be a reasonable compromise between the amount of effort
needed for realizing visual diagnostic information and ease
of interpretation by workflow designers.

A direction for future research is the use of the
inheritance-preserving transformation rules presented in [5]
for incremental design and verification of workflows. Start-
ing from a correct workflow template [30] or an already ver-
ified existing workflow process definition, these rules allow
for safe extensions which preserve the soundness property.
Correctness by design is obviously preferable over the ap-
proach where correctness is verified only after the design of
the complete workflow has been completed.

As a final remark, note that Woflan can be helpful in the
design and verification of correct workflow process defini-
tions. However, this does not mean that the entire workflow
is correct. It is still possible that errors are made in the imple-
mentation of the workflow process or that the process suffers
bottlenecks in the performance due to a poor allocation of
resources. To prevent such kinds of errors, other techniques
are needed to complement Woflan.

ACKNOWLEDGEMENTS

The authors whish to thank Geert-Jan Houben, Marc
Voorhoeve, Jaap van der Woude, and the anonymous refer-
ees for their useful comments. Furthermore, we are obliged
to Edmar Kok of Staffware Benelux for providing us with
the Staffware case and helping us out with it.

REFERENCES

[1] W.M.P. van der Aalst. Verification of Workflow Nets. In
P. Aźema and G. Balbo, editors,Application and Theory of
Petri Nets 1997, Proceedings, volume 1248 ofLecture Notes
in Computer Science, pages 407–426, Toulouse, France, June
1997. Springer, Berlin, Germany, 1997.

[2] W.M.P. van der Aalst. The Application of Petri Nets to Work-
flow Management. The Journal of Circuits, Systems and
Computers, 8(1):21–66, 1998.

[3] W.M.P. van der Aalst. Formalization and Verification of
Event-driven Process Chains.Information and Software
Technology, 41(10):639–650, 1999.

[4] W.M.P. van der Aalst. Workflow Verification: Finding
Control-Flow Errors using Petri-net-based Techniques. In
Van der Aalst et al. [7], pages 161–183.

[5] W.M.P. van der Aalst and T. Basten. Inheritance of Work-
flows: An Approach to Tackling Problems Related to Change.

To appear in Theoretical Computer Science.
[6] W.M.P. van der Aalst, G. De Michelis, and C.A. Ellis, editors.

Workflow Management: Net-based Concepts, Models, Tech-
niques, and Tools (WFM’98), Proceedings, Lisbon, Portugal,
June 1998. Eindhoven University of Technology, Eindhoven,
The Netherlands, Computing Science Report 98/7, 1998.

[7] W.M.P. van der Aalst, J. Desel, and A. Oberweis, editors.
Business Process Management: Models, Techniques, and Em-
pirical Studies, volume 1806 ofLecture Notes in Computer
Science. Springer, Berlin, Germany, 2000.

[8] W.M.P. van der Aalst, D. Hauschildt, and H.M.W. Verbeek.
A Petri-net-based Tool to Analyze Workflows. In B. Farwer,
D. Moldt, and M.O. Stehr, editors,Petri Nets in System En-
gineering (PNSE’97), Proceedings, pages 78–90, Hamburg,
Germany, September 1997. University of Hamburg, FBI-HH-
B-205/97, 1997.

[9] W.M.P. van der Aalst and A.H.M. ter Hofstede. Verification
of Workflow Task Structures: A Petri-net-based Approach.
Information Systems, 25(1):43–69, 2000.

[10] N.R. Adam, V. Atluri, and W.K. Huang. Modeling and Anal-
ysis of Workflows using Petri Nets.Journal of Intelligent
Information Systems, 10(2):131–158, March 1998.

[11] K. Barkaoui, J.M. Couvreur, and C. Dutheillet. On liveness in
Extended Non Self-Controlling Nets. In G. De Michelis and
M. Diaz, editors,Application and Theory of Petri Nets 1995,
Proceedings, volume 935 ofLecture Notes in Computer Sci-
ence, pages 25–44, Torino, Italy, June 1995. Springer, Berlin,
Germany, 1995.

[12] E. Best. Fairness and Conspiracies.Information Processing
Letters, 18:215–220, 1984.

[13] F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Workflow Evo-
lution. Data and Knowledge Engineering, 24(3):211–238,
1998.

[14] G. De Michelis, C. Ellis, and G. Memmi, editors.Proceed-
ings of the Second Workshop on Computer-Supported Coop-
erative Work, Petri nets and Related Formalisms, Zaragoza,
Spain, June 1994.

[15] J. Desel. Validation of Information Systems by Analyzing
Partially Ordered Petri Net Processes. Technical report 375,
AIFB, University of Karlsruhe, Karlsruhe, Germany, 1998.

[16] J. Desel and J. Esparza.Free Choice Petri Nets, volume 40
of Cambridge Tracts in Theoretical Computer Science. Cam-
bridge University Press, Cambridge, UK, 1995.

[17] C.A. Ellis. Information Control Nets: A Mathematical Model
of Office Information Flow. InProceedings of the Conference
on Simulation, Measurement and Modeling of Computer Sys-
tems, pages 225–240, Boulder, Colorado, USA, 1979. ACM
Press.

[18] C.A. Ellis and G.J. Nutt. Modelling and Enactment of Work-
flow Systems. In M. Ajmone Marsan, editor,Application and
Theory of Petri Nets 1993, Proceedings, volume 691 ofLec-
ture Notes in Computer Science, pages 1–16, Chicago, Illi-
nois, June 1993. Springer, Berlin, Germany, 1993.

[19] J. Esparza and M. Nielsen. Decidability Issues for Petri Nets
- A Survey. Journal of Information Processing and Cybernet-
ics, 30(3):143–160, 1994.

[20] J. Esparza and M. Silva. Circuits, Handles, Bridges and Nets.
In G. Rozenberg, editor,Advances in Petri Nets 1990, volume
483 of Lecture Notes in Computer Science, pages 210–242.
Springer, Berlin, Germany, 1990.

[21] A. Finkel. The Minimal Coverability Graph for Petri Nets.
In G. Rozenberg, editor,Advances in Petri Nets 1993, volume

THE COMPUTERJOURNAL, Vol. ??, No. ??, ????

34 H. VERBEEK, T. BASTEN AND W. VAN DER AALST

674 of Lecture Notes in Computer Science, pages 210–243.
Springer, Berlin, Germany, 1993.

[22] D. Georgakopoulos, M. Hornick, and A. Sheth. An Overview
of Workflow Management: From Process Modeling to Work-
flow Automation Infrastructure. Distributed and Parallel
Databases, 3(2):119–153, 1995.

[23] K. Hayes and K. Lavery. Workflow Management Software:
The Business Opportunity. Technical report, Ovum Ltd, Lon-
don, UK, 1991.

[24] A.H.M. ter Hofstede, M.E. Orlowska, and J. Rajapakse. Ver-
ification Problems in Conceptual Workflow Specifications.
Data and Knowledge Engineering, 24(3):239–256, 1998.

[25] R.R.A. Issa and R.F. Cox. Using Process Modeling and
Workflow Integration to gain (ISO 9000) Certification in Con-
struction. InCIB W89 Beijing International Conference on
Construction, Modernization, and Education, Beijing, China,
1996.

[26] S. Jablonski and C. Bussler.Workflow Management: Mod-
eling Concepts, Architecture, and Implementation. Interna-
tional Thomson Computer Press, London, UK, 1996.

[27] M. Klein, C. Dellarocas, and A. Bernstein, editors.
Towards Adaptive Workflow Systems, CSCW-98 Work-
shop, Proceedings, Seattle, Washington, November 1998.
http://ccs.mit.edu/klein/cscw98/.

[28] T.M. Koulopoulos. The Workflow Imperative. Van Nostrand
Reinhold, New York, USA, 1995.

[29] P. Lawrence, editor. Workflow Handbook 1997, Workflow
Management Coalition. John Wiley and Sons, New York,
USA, 1997.

[30] T.W. Malone, K. Crowston, J. Lee, B. Pentland et al. Tools
for Inventing Organizations: Toward a Handbook for Orga-
nizational Processes.Management Science, 45(3):425–443,
1999.

[31] Pallas Athena.Protos User Manual. Pallas Athena BV, Plas-
molen, The Netherlands, 1997.

[32] M. Reichert and P. Dadam. ADEPTflex: Supporting Dy-
namic Changes of Workflows without Losing Control.Jour-
nal of Intelligent Information Systems, 10(2):93–129, 1998.

[33] W. Reisig. Petri Nets: An Introduction, volume 4 ofEATCS
Monographs on Theoretical Computer Science. Springer,
Berlin, Germany, 1985.

[34] W. Reisig and G. Rozenberg, editors.Lectures on Petri Nets
I: Basic Models, volume 1491 ofLecture Notes in Computer
Science. Advances in Petri Nets. Springer, Berlin, Germany,
1998.

[35] W. Reisig and G. Rozenberg, editors.Lectures on Petri Nets
II: Applications, volume 1492 ofLecture Notes in Computer
Science. Advances in Petri Nets. Springer, Berlin, Germany,
1998.

[36] W. Sadiq and M.E. Orlowska. FlowMake Product Informa-
tion, Distributed Systems Technology Centre, Queensland,
Australia. http://www.dstc.edu.au/Research/Projects/Flow-
Make/productinfo/index.html.

[37] W. Sadiq and M.E. Orlowska. Applying Graph Reduction
Techniques for Identifying Structural Conflicts in Process
Models. In M. Jarke and A. Oberweis, editors,Advanced In-
formation Systems Engineering, 11th. International Confer-
ence, CAiSE’99, Proceedings, volume 1626 ofLecture Notes
in Computer Science, pages 195–209, Heidelberg, Germany,
June 1999. Springer, Berlin, Germany, 1999.

[38] T. Scḧal. Workflow Management for Process Organisa-
tions, volume 1096 ofLecture Notes in Computer Science.
Springer, Berlin, Germany, 1996.

[39] A. Sheth. From Contemporary Workflow Process Automa-
tion to Adaptive and Dynamic Work Activity Coordination
and Collaboration. In R. Wagner, editor,Database and
Expert Systems Applications, 8th. International Workshop,
DEXA’97, Proceedings, pages 24–27, Toulouse, France,
September 1997. IEEE Computer Society Press, Los Alami-
tos, California, USA, 1997.

[40] A. Sheth, K. Kochut, and J. Miller. Large Scale Distributed
Information Systems (LSDIS) laboratory, METEOR project
page. http://lsdis.cs.uga.edu/proj/meteor/meteor.html.

[41] M. Silva and R. Valette. Petri Nets and Flexible Manufactur-
ing. In G. Rozenberg, editor,Advances in Petri Nets 1989,
volume 424 ofLecture Notes in Computer Science, pages
274–417. Springer, Berlin, Germany, 1990.

[42] Software-Ley. COSA 2.0 User Manual. Software-Ley
GmbH, Pullheim, Germany, 1998.

[43] Staffware. Staffware GWD Procedure Definer’s Guide, Ver-
sion 8, Issue 2. Staffware Plc, Berkshire, UK, 1999.

[44] R. Valette. Analysis of Petri Nets by Stepwise Refine-
ments.Journal of Computer and System Sciences, 18(1):35–
46, 1979.

[45] H.M.W. Verbeek and W.M.P. van der Aalst. Woflan 2.0: A
Petri-Net-Based Workflow Diagnosis Tool. In M. Nielsen
and D. Simpson, editors,Application and Theory of Petri Nets
2000, Proceedings, volume 1825 ofLecture Notes in Com-
puter Science, pages 475–484, Aarhus, Denmark, June 2000.
Springer, Berlin, Germany, 2000.

[46] M. Voorhoeve. Compositional Modeling and Verification of
Workflow Processes. In Van der Aalst et al. [7], pages 184–
200.

[47] WFMC. Workflow Management Coalition Terminology and
Glossary (WFMC-TC-1011). Technical report, Workflow
Management Coalition, Brussels, Belgium, 1996.

[48] M. Wolf and U. Reimer, editors.Practical Aspects of Knowl-
edge Management (PAKM’96), 1st. International Confer-
ence, Workshop on Adaptive Workflow, Proceedings, Basel,
Switzerland, October 1996.

THE COMPUTERJOURNAL, Vol. ??, No. ??, ????

