
Progress in Artificial Intelligence
https://doi.org/10.1007/s13748-022-00281-7

REGULAR PAPER

Action-oriented process mining: bridging the gap between insights
and actions

Gyunam Park1 ·Wil M. P. van der Aalst1

Received: 13 March 2021 / Accepted: 25 March 2022
© The Author(s) 2022

Abstract
As business environments become more dynamic and complex, it becomes indispensable for organizations to objectively
analyze business processes, monitor the existing and potential operational frictions, and take proactive actions to mitigate
risks and improve performances. Process mining provides techniques to extract insightful knowledge of business processes
from event data collected during the execution of the processes. Besides, various approaches have been suggested to support the
real-time (predictive) monitoring of the process-related problems. However, the link between the insights from the continuous
monitoring and the concrete management actions for the actual process improvement is missing. Action-oriented process
mining aims at connecting the knowledge extracted from event data to actions. In this work, we propose a general framework
for action-oriented process mining covering the continuous monitoring of operational processes and the automated execution
of management actions. Based on the framework, we suggest a cube-based action engine where actions are generated by
analyzing monitoring results in a multi-dimensional way. The framework is implemented as a ProM plug-in and evaluated
by conducting experiments on both artificial and real-life information systems.

Keywords Action-oriented process mining · Continuous operational management · Turning events into actions · Continuous
process improvement

1 Introduction

In [1], the term “business process hygiene” was coined. In
the same manner that individuals do regular check-ups to
find potential health issues before they become serious prob-
lems, organizations should objectively analyze key processes
to identify existing and potential problems and improve per-
formance and productivity.

Indeed, many efforts have been made to ensure the over-
all health of organizations by redesigning business processes
[2]. Process redesign often entails a comprehensive and
extensive analysis of business processes and requires funda-
mental changes to the process. Despite the efforts to prevent
inefficiencies in design-time, many operational frictions still
arise in the execution of the business process, making a vari-

B Gyunam Park
gnpark@pads.rwth-aachen.de

Wil M. P. van der Aalst
wvdaalst@pads.rwth-aachen.de

1 Department of Computer Science, Process and Data Science
Group (PADS), RWTH Aachen University, Aachen, Germany

ety of exceptions. For instance, an order-to-cash process,
which is standardizedwith known best practices, often shows
thousands of variants in the real-life execution, generating
various problems in organizations.

In order to dealwith the unanticipated operational frictions
that may arise during the execution of business processes, it
is imperative to manage business processes in a continuous
manner. To this end, business managers need to contin-
uously identify problems, monitor the occurrence of the
problems, and take proactive actions to deal with possible
risks to the business process. This continuous manage-
ment of business processes enables to deal with relevant
operational frictions that may happen in the dynamically
changing environments in a responsive and proactive man-
ner.

Process mining has provided many useful techniques to
support the continuous management of business processes.
First, process discovery, conformance checking, and process
enhancement have enabled the business managers to identify
problems by making the business processes transparent [3].
Moreover, process monitoring techniques have effectively
detected and predicted problems in an online manner [4–6].

123

Progress in Artificial Intelligence

However, the selection of actions to address such prob-
lems is still unstructured and ad-hoc, i.e., the “action part” is
still missing and outside the scope of today’s process min-
ing tools. Indeed, for the actual process improvement, it is
necessary to turn the insights from process mining diagnos-
tics to management actions. For instance, when a bottleneck
emerges or is forecasted to arise, business managers should
take actions, such as alerting responsible employees, bypass-
ing the activity, and assigning more resources, alongside the
detection and prediction of it.

Action-oriented process mining aims at addressing such
problems by systematically combining process mining
results and domain knowledge, and also automating man-
agement actions to improve business processes. Figure 1
presents the overview of the action-oriented process mining.
Process mining techniques for diagnostics (cf. Sect. 2.1) are
used to extract process knowledge from event data. The con-
straint monitor analyzes a continuous stream of event data
and evaluates a set of constraints designed using the process
knowledge combined with domain knowledge. As a result,
it generates constraint instances describing the monitoring
results. Note that events in event data have temporal relation-
ships and constraints over the event data often entail temporal
nature. Thus, they cannot be monitored using techniques for
automated data quality verification [7] with non-temporal
declarative constraints. Next, the action engine analyzes the
constraint instances and produces action instances describing
needed actions to deal with the existing and potential threats
to the business processes. The action instances are automati-
cally triggered in the underlying information system to make
changes in system configurations, or generate alerts through
its messaging systems.

In this paper, we provide following contributions:

– We propose a general framework for action-oriented pro-
cess mining to support the continuous monitoring of
operational processes and the automated execution of
actions by extending our earlier work presented in [8].

– We instantiate the action engine of the framework using
constraint cubes that stores the continuous stream of
constraint instances and analyzes it to produce relevant
actions.

– We have implemented the cube-based action engine as a
ProM plug-in.

– We have evaluated the effectiveness of the framework
based both on artificial and real-life information systems.

The remainder is organized as follows. We present the
related work in Sect. 2. Next, we explain the background
covering amotivating example, basic notation, and event data
in Sect. 3. Afterward, we present the general framework for
action-oriented processmining and the constraint cube-based

instantiation of the action engine in Sects. 4 and 5. Section
6 presents the implementation of the framework and exper-
iments both in artificial and real-life information systems.
In Sect. 8, we discuss the implications and limitations and
conclude the paper.

2 Related work

In this section, we first introduce process mining tech-
niques to provide diagnostics used for the identification of
improvement points. Afterward, we present techniques for
the operational support, showing the missing gap between
insights from the detection and prediction of problems and
actual actions to improve business processes. Finally, we
demonstrate the need for a systematic approach to support
continuous process improvement.

2.1 Process mining diagnostics

Action-oriented process mining begins by defining improve-
ment points in business processes based on process knowl-
edge. Process mining provides techniques to extract process-
centric insights from event data collected by information
systems during the execution of business processes.

The three main categories of process mining diagnos-
tics include process discovery, conformance checking, and
process enhancement. First, process discovery is to automat-
ically derive a process model from the event log recorded
from the execution of business processes [9]. The resulting
process model captures the control-flow relations between
activities observed in the event log.

Second, conformance checking evaluates to what degree
the execution of a process conforms with the reference
process model or the discovered process model [10]. It
allows business analysts to identify non-conforming process
instances and analyze their behaviors that lead to the non-
conformity.

Third, process enhancement is to enrich the processmodel
with additional information to enable performance analysis
[3]. By using timestamps, one can extend it with time-related
measures (e.g., service time, throughput time, and waiting
time) and analyze the bottlenecks in business processes. For
instance, a performance spectrum plots each process step per
case over time, allowing to analyze non-stationarity of per-
formance and synchronization of different cases over time
[11]. Focusing on the organizational perspective of business
processes, social network analysis provides insights into the
relationship among such as handover of works, subcontract-
ing, and working together [3]. In addition, organizational
mining analyzes the roles in organizations that execute a
similar set of activities [12]. Furthermore, root cause anal-
ysis enables to find in-depth explanations of risk incidents.

123

Progress in Artificial Intelligence

Fig. 1 The objective of
action-oriented process mining:
continuous process
improvement

In [13], the root-cause of long throughput times of process
instances is analyzed by focusing on the effect of workloads.

2.2 Operational support

Instead of providing process-centric insights by analyz-
ing historical data, operational support aims at influencing
current operational processes to improve the process by ana-
lyzing current event data. In [3], three core activities of
operational support are described, i.e., detect, predict, and
recommend. First, detect activity analyzes deviating behav-
iors by running process instances. Conformance checking
is the enabling technology for this activity. For monitoring
purposes, the conformance checking techniques are lifted to
runtime. For instance, van Zelst et al. [4] propose to compute
prefix-alignments to detect deviant behaviors. Burattin et al.
[14] suggest a generic framework to compute conformance
indicators based on behavioral patterns.

Some approaches exploit Complex Event Processing
(CEP) with the abstractions of models such as direct or even-
tual successions. Weidlich et al. [15] propose a method to
derive event queries from behavioral profiles that serve as
abstractions of the process model. The event queries are
monitored using the CEP engine. Awad et al. [16] suggest
a technique to derive anti-patterns based on a predefined
generic set of patterns regarding business processes. The pat-
terns describe the rules in terms of the occurrence of tasks,
their ordering, and resource assignments.ACEPenginemon-
itors them and detects violations of the rules.

In order to verify properties at runtime, Linear Tempo-
ral Logic (LTL) is deployed as a declarative language for
describing the properties [17]. For monitoring purposes,
more possible truth-value states are defined such as temporar-
ily satisfied, temporarily violated, permanently satisfied, or
permanently violated. Maggi et al. [5] suggest a monitoring
technique based on LTL and colored automata. The global
automaton represents the conjunction of all the imposed
constraints represented by the local automata. It enables to
identify the possible conflicts among different constraints.

In several approaches, rules are represented as graphical
notations such as Petri net. In [6], the constraints are for-
malized into Petri-net patterns. The patterns are aligned with
event logs to evaluate whether the execution of business pro-
cesses comply with them. In [18], the Petri-net patterns for

cloud-based business processes are suggested for certifying
compliant cloud-based processes.

Some approaches analyze deviating behaviors of process
instances without the user-defined compliance rules given.
Bezerra et al. [19] propose a technique to detect the structural
deviations in business processes by discovering infrequent
process instances in the process. Ghionna et al. [20] com-
pute clusters of process instances using the pattern measures
and find deviations by identifying clusters with small sizes.
Replacing the time-consuming process of finding clusters, Li
et al. [21] suggest a framework to identify deviating process
instances based on the profiles that encode the characteristics
of normal process instances.

Second, predict activity aims to provide timely informa-
tion to mitigate risks and improve business processes by
predicting what will happen to individual cases and where
bottlenecks are likely to develop [22]. Polato et al. [23]
predict the remaining time of running process instances
using support vector regression methods. Senderovich et
al. [24] extracts intra- and inter-case features to consider
dynamics among different process instances and predict the
remaining time using linear regression, random forests, and
XGBoost approaches. di Francescomarino et al. [25] suggest
a clustering-based approach to predict outcomes of running
process instances bymapping them into clusters and estimate
the probabilities of possible outcomes. Teinemaa et al. [26]
present a predictive process monitoring framework combin-
ing text mining with classification techniques to deal with
both structured and unstructured data.

In addition, next event prediction is also actively studied.
In [27], Hidden Markov Models (HMM) are used to predict
the next process steps. Lakshmanan et al. [28] build a deci-
sion tree on each activity in the process model to compute
the transition probabilities and use a Markov chain model
to predict the next step in business processes. Breuker et al.
[29] utilize a Probabilistic Finite Automaton (PFA) based on
Bayesian regularization, providing the comprehensibility of
the predictive model. In [30], a rule-based approach is pro-
posed to predict the next events, which encodes event log
properties using a window-based encoding technique.

Recent breakthroughs in deep neural networks have
enabled the extensive development of predictive business
process monitoring techniques [31]. For instance, Long
Short-Term Memory networks (LSTMs) have been adopted
to predict the next event, remaining time, and outcome of

123

Progress in Artificial Intelligence

process instances in business processes [32]. In [33], the
occurrences of activities and their timestamps are encoded
using one-hot encoding, and LSTMs are applied to predict
the next event and timestamp. Mehdiyev et al. [34] extends
the previous deep learning approaches by providing an archi-
tecture composed of unsupervised stacked autoencoders and
supervisedfine-tuningwith n-gram features leveragedby fea-
ture hashing.

Moreover, several approaches are proposed to explainwhy
a predictive model reports the predictions, facilitating the
adoption of the model in practice. For instance, Galanti et
al. provide explanations of the predictions using the game
theory of Shapley Values [35].

Third, recommend activity provides the guidance to
achieve the goal of business processes (e.g., minimizing flow
time and resource usage). In [36], the resource allocation is
proactively optimized with the risk predictions of running
instances. A prescriptive alarm system [37] generates alarms
for the process instances that are predicted to be problem-
atic with the aid of a cost model to capture the trade-off
between different interventions. Weinzierl et al. [38] suggest
a method to recommend the next best actions by analyzing
the next most likely activities in terms of key performance
indicators.

Compared to the extensive literature that supports detect
and predict activities, little attention has been paid on rec-
ommend activity. The decisions for the corrective actions
to improve business processes are left to the subjective
judgment of process participants. However, this subjective
judgment rather than objective facts result in undesired out-
comes. Dees et al. [39] show that interventions may lead
to unanticipated results, demonstrating the importance of
making effective decisions on interventions along with accu-
rate detection and prediction. Moreover, de Leoni et al. [40]
reports the effectiveness of purely objective, unbiased recom-
mendations in improving key performance indicators. This
triggers the need for amore systematic approach that supports
the decision on effective actions and automates interventions
by quickly changing, evaluating, and experimenting with the
interventions.

2.3 Action-oriented process mining

A commercial process mining tool, Celonis Action Engine
[41], is a representative effort to achieve the goal of action-
oriented processmining, i.e., turning diagnostics into actions.
It generates signals by analyzing the event data and executes
the actions corresponding to these signals to the source sys-
tem. However, it does not provide a systematic approach to
transform the process-centric diagnostics into needed man-
agement actions, rather generating actions in an ad-hoc
manner. In this work, we provide the systematic approach to
convert the insights from process diagnostics to automated

corrective actions by presenting a general framework for the
action-oriented process mining and its realization using con-
straint cubes.

Recently, a digital twin interfacemodel has been proposed
to realize digital twins of an organization using action-
oriented process mining [42]. The interface model, on the
one hand, represents the current state of a business process
including currently processed objects and diagnostics (e.g.,
bottlenecks) of the process. On the other hand, it describes
possible configurations of the process, called valves. Using
the interface model, a process expert can design constraints
by analyzing the current state of the underlying process and
define actions to manage the violation of the constraints.
Based on the constraints and actions, the process is contin-
uously monitored and necessary actions are automatically
executed to the underlying information system.

3 Background

In this section, we introduce a motivating example that is
used as a running example to explain the major components
of the framework for action-oriented process mining. Also,
we present basic preliminary material covering the notion of
the time window, time moment, and event stream.

3.1 Motivating example

Suppose we are operation managers in an e-commerce com-
pany like Amazon. In the order handling process of the
company, four main object types (i.e., order, item, package,
and route) exist as shown in Fig. 2a.

In this work, we do not assume a single case notion as
in traditional process mining. Instead, using the principles
of object-centric process mining [43], we consider multiple
object types and interacting processes. It is indispensable for
acquiring precise diagnostics and deploying the framework
at the enterprise level wheremultiple processeswith different
object types interact with each other.

As operation managers, we analyze the event data using
different process mining techniques. As an example, we dis-
covered the process model shown in Fig. 2b where the arcs
with different colors correspond to different object types.
For instance, the green arc represents the order that includes
activities such as place order, send invoice, and receive pay-
ment. After placing an order, the relevant items of the order
undergo check availability, pick item, and pack items, creat-
ing packages of the items.

Based on the discovered process model, we observe that
fail delivery occurs redundantly, decreasing customer sat-
isfaction and increasing the cost for deliveries. For the
continuous management of this problem, we define a con-
straint C1 as follows:

123

Progress in Artificial Intelligence

Fig. 2 Data model and the discovered process model of the order han-
dling process. The discovered process model describes the occurrence
of fail delivery

– C1: there must be no “fail delivery” for any package.

Afterward, we put it into the repository of constraints and
let the constraint monitor evaluate if any item violates or is
predicted to violate the constraint every morning (e.g., at 9
a.m.).

We consider that it is highly problematic that the same
package fails to be delivered more than twice, and in case
this situation happens, it is most efficient to ask customers to
provide alternativemethods to ensure the successful delivery.
Thus, we analyze the monitoring results every morning and
take the following action to mitigate the risk:

– A1: if a package is failed to be delivered more than twice,
send a message to the customer to ask for alternative
methods to delivery (e.g., deliver to a neighbor and select
a pick-up store).

This example shows how the insights from process dis-
covery (i.e., the occurrence of fail delivery) transform into

mitigating actions (i.e., finding an alternative method for
deliveries). The proposed framework supports this process of
insights turned into actions by continuously monitoring the
violations and automatically generating proactive actions.

3.2 Basic notation

Let X denote an arbitrary set. P(X) denotes the power set
of X , i.e., P(X)={X ′|X ′ ⊆ X}. We let B={true, f alse}
denote the set of Boolean values.

A directed acyclic graph is a graph with directed edges in
which there are no cycles, i.e., dag=(N , R) where N is a
set of nodes N and R ⊆ N × N is a binary relation on N
that specifies a directed edge from a node n ∈ N to another
one m ∈ N if (n,m) ∈ R. The transitive closure R+ of the
relation R is irreflexive, i.e., (n, n) /∈ R+ for any n ∈ N .

Let Utime be the universe of timestamps. A time window
tw=(ts, te) ∈ Utime×Utime is a pair of timestamps such that
ts ≤ te. Given a time window tw=(ts, te), πstart (tw)=ts
and πend(tw)=te. Utw denotes the set of all possible time
windows.

A time moment tm=(t, tw) ∈ Utime × Utw is a pair of a
timestamp t and a time window tw such that t ≥ πend(tw).
Given tm=(t, tw), we indicate πt (tm)=t and πtw(tm)=tw.
Suppose time moment tm1=(03-01-2022 09:00, (03-01-2022 09:00,

03-01-2022 09:00)). In monitoring purposes, it indicates to mon-
itor events in time window (03-01-2022 09:00,03-01-2022 09:00) at
03-01-2022 09:00. We let Utm denote the set of all possible time
moments.

3.3 Event data

Real-life processes often have multiple candidate identi-
fiers, as shown in Sect. 3.1. To enable precise analysis and
enterprise-wide adoption of the proposed framework, we use
amore realistic event data notionwheremultiple case notions
(e.g., order, item, etc.) may coexist. Each event may refer to
different objects from different object classes. Note that a
conventional event log is a special case of this event data
notion; hence one can use the proposed framework with the
conventional event logs.

Recently, the OCEL standard1 has been proposed to sup-
port such event data notion. In the following, we formulate
a conceptual abstraction of it and use the abstraction to for-
mally define the proposed framework in Sect. 4.

Definition 3.1 (Universes)Wedefine the followinguniverses
to be used in this paper:

– Uei is the universe of event identifiers
– Uproc is the universe of process identifiers,

1 http://ocel-standard.org.

123

Progress in Artificial Intelligence

Table 1 A fragment of event data where each line corresponds to an event

Event
identifier

Process
identifier

Activity name Resource
name

Timestamp Objects involved Attribute

Order Item Package Route Type

. .

199210 OH Place order Merlin 02-01-2022 09:55 {o7} {i8, i9} ∅ ∅ Silver

199211 OH Check availability Laure 02-01-2022 10:15 {o7} {i8} ∅ ∅
199212 OH Pick item Bowie 02-01-2022 11:55 {o7} {i8} ∅ ∅
199213 OH Load package Adams 02-01-2022 17:55 ∅ {i3, i4} {p2} ∅
199214 OH Fail delivery Adams 02-01-2022 17:55 ∅ {i3, i4} {p2} ∅
199215 OH Unload package Adams 02-01-2022 17:55 ∅ {i3, i4} {p2} ∅
199216 OH Load package Schuster 02-01-2022 21:55 ∅ {i5, i6} {p3} ∅
199217 OH Place order System 03-01-2022 09:15 {o8} {i10} ∅ ∅ Gold

199218 OH Pack items James 03-01-2022 15:05 {o7} {i8, i9} {p8} ∅
. .

– Uact is the universe of activities,
– Ures is the universe of resources,
– Uoc is the universe of object classes,
– Uoi is the universe of object identifiers,
– Uomap=Uoc � P(Uoi) is the universe of object map-
pingswhere, for omap ∈ Uomap, we defineomap(oc)=∅
if oc /∈ dom(omap),

– Uattr be the universe of attribute names,
– Uval the universe of attribute values,
– Uvmap=Uattr � Uval is the universe of value mappings
where, for vmap ∈ Uvmap, we define vmap(attr)= ⊥
if attr /∈ dom(vmap).

– Uevent=Uei × Uproc × Uact × Ures × Utime × Uomap ×
Uvmap is the universe of events.

We assume these universes are pairwise disjoint, e.g., Uei ∩
Uproc=∅.

Each row in Table 1 shows an event of the order han-
dling process introduced in Sect. 3.1. Given an event
e=(ei, proc, act, res, time, omap, vmap)∈Uevent , πei (e)
=ei, πproc(e)=proc, πact (e)=act, πres(e)=res, πtime(e)
=time, πomap(e)=omap, and πvmap(e)=vmap. Let e199214
be the first event depicted in Table 1. πei (e199214)=199214,
πproc(e199214)=OH, πact (e199214)=fail delivery, πres

(e199214)=Adams, πtime(e199214)=02-01-2022 17:55, πomap

(e199214)(I tem)={i3, i4}, and πomap(e199214)(Package)=
{p2}.

We adopt the notion of online event stream-based process
mining, in which the data are assumed to be an infinite col-
lection of unique events. An event stream is a collection of
unique events that are ordered by time.

Definition 3.2 (Event stream) An event stream S is a (pos-
sibly infinite) set of events, i.e., S ⊆ Uevent such that

∀e1,e2∈S πei (e1)=πei (e2) �⇒ e1=e2. We let Ustream

denote the set of all possible event streams.

4 A general framework for action-oriented
process mining

In this section, we introduce a general framework for action-
oriented process mining. Figure 3 explains the overview of
the proposed framework. It is mainly composed of two com-
ponents. Firstly, the constraint monitor converts an event
stream into a constraint instance stream by evaluating a set of
constraints entailing constraint formula to explain what/how
and time moments to specify when. Each constraint instance
describes the (non) violation of a constraint. Second, the
action engine transforms the constraint instance stream into
an action instance stream by assessing the necessity of man-
agement actions and generating action instances. Each action
instance depicts a transaction/workflow to be executed by the
information system to mitigate the risks caused by the viola-
tions.

In the following, we explain the components with formal
definitions and examples.

4.1 Constraint monitor

A constraint monitor analyzes an event stream to evaluate
(non) violations of constraints. Each (non) violation of a con-
straint occurs in a certain context.

Definition 4.1 (Context) A context ctx ∈ P(Uproc) ×
P(Uact) × P(Ures) × Uomap × Uvmap is a tuple of a set
of process identifiers Proc, a set of activities Act , a set of
resources Res, an object mapping omap, and a value map-
ping vmap. Uctx is the set of all possible contexts.

123

Progress in Artificial Intelligence

Fig. 3 Overview of the general framework for action-oriented process
mining

For instance, C1 in Sect. 3.1 could be violated by package
p2, which contains item i3 and i4 in the processOH to which
Adams execute the activity fail delivery. ctx1 describes
the context, i.e., ctx1=({OH}, { f ail delivery}, {Adams},
omap1, vmap1), where omap1(Package)={p2} and
omap1(I tem)={i3, i4}.

Given a context ctx=(Proc, Act, Res, omap, vmap) ∈
Uctx , πproc(ctx)=Proc, πact (ctx)=Act, πres(ctx)=Res,
πomap(ctx)=omap, and πvmap(ctx)=vmap. For instance,
πproc(ctx1)={OH}, πact (ctx1)={fail delivery}, πres(ctx1)
={Adams}, πomap(ctx1)=omap1, and, πvmap(ctx1)=
vmap1.

The constraint formula evaluates if violations occur in
a specific context by analyzing the events in a given event
stream that are relevant to a given time window.

Definition 4.2 (Constraint formula) We define Uoutc=
{OK , NOK } to be theuniverse of outcomes. c f ∈ (Ustream×
Utw) → P(Uctx × Uoutc) is a constraint formula. Uc f

denotes the set of all possible constraint formulas.

Suppose c f1 is instantiated to evaluate the constraint
described in C1 of the motivating example. Given the event
stream S that contains events listed in Table 1 and time win-
dow tw1=(02-01-2022 09:00, 03-01-2022 09:00), it evaluates if any
package in the time window undergoes fail delivery. Since
there exists fail delivery for package p2, (ctx1, NOK) ∈
c f1(S, tw1).

In this paper, we do not assume specific approaches to
instantiate the constraint formula. As presented in Sect. 2.2,
several approaches are proposed in the field of process min-
ing to implement constraint formula, including conformance
checking techniques [4], Linear Temporal Logic [5], and
rule-driven approaches based on Petri-net patterns [6].

Furthermore, predictive process monitoring techniques
can be deployed to instantiate predictive constraint for-
mulas. Such constraint formulas evaluate if violations will
occur in a certain context by analyzing the events in a
given event stream with a given time window. Suppose
c f2 is a predictive constraint formula instantiated to pre-
dict the violation of the constraint described in C1 of
the motivating example, and it predicts that the package
loaded late in the evening fails. Given the event stream
S that contains events listed in Table 1 and time win-
dow tw1=(02-01-2022 09:00, 03-01-2022 09:00), (ctx2, NOK) ∈
c f2(S, tw1), where ctx2=({OH}, { f aildelivery}, {},
omap1, vmap1),whereomap1(Package)={p3} andomap1
(I tem)={i5, i6}, since p3 is loaded late in the evening at
21:55.

A constraint consists of a constraint formula and a set of
time moments, where the former explains what to monitor,
and the latter specifies when to monitor.

Definition 4.3 (Constraint) A constraint c=(c f , T M) ∈
Uc f ×P(Utm) is a pair of a constraint formula c f and a set of
time moments T M . Uc is the set of all possible constraints.

Suppose c1=(c f1, T M1) where (03-01-2022 09:00, (02-01-2022
09:00, 03-01-2022 09:00)) ∈ T M1. For instance, we evaluate c f1 at
03-01-2022 09:00 with the events related to timewindow (02-01-2022
09:00,03-01-2022 09:00).

A constraint instance specifies when and whether a viola-
tion happens in a certain context by a constraint formula. A
constraint instance stream is a collection of unique constraint
instances.

Definition 4.4 (Constraint instance stream) A constraint
instance ci ∈ Uc f ×Uctx ×Utime ×Uoutc is a tuple of a con-
straint formula c f , a context ctx , a timestamp t ime, and an
outcome outc. We let Uci be the set of all possible constraint
instances. A constraint instance stream C I S is a (possibly
infinite) set of constraint instances, i.e., C I S ⊆ Uci . Ucis

denotes the set of all possible constraint instance streams.

For instance, a constraint instance ci1=(c f1, ctx1, 03-01-

2022 09:00, NOK) denotes that c f1 is violated at 03-01-2022 09:00

in context ctx1.
Based on Definition 3-6, we define a constraint monitor.

As shown in Fig. 4, it transforms an event stream into a
constraint instance stream. Parameterized with a set of con-
straints, it evaluates the constraint formula in each constraint
according to the corresponding set of timemoments and gen-
erates constraint instances.

123

Progress in Artificial Intelligence

Fig. 4 Constraint monitor cmC , where C = (c1, c2, . . .), transforms
an event stream into a constraint instance stream

Definition 4.5 (Constraint monitor) Let C ⊆ Uc be a
set of constraints to be used for monitoring. cmC ∈
Ustream → Ucis is the constraint monitor such that,
for any S ∈ Ustream , cmC (S)={(c f , ctx, time, outc) ∈
Uci |∃T M,tm (c f , T M) ∈ C ∧ tm ∈ T M ∧ time=πt (tm) ∧
(ctx, outc) ∈ c f (S, πtw(tm))}.

Note that the definition of a constraint monitor is
abstracted in a way that we are able to analyze future events.
In reality, it analyzes only the historical events from an event
stream and outputs the constraint instance stream relevant to
them.

4.2 Action engine

The action engine aims at producing an action instance
stream describing transactions/workflows that source infor-
mation systems need to execute to mitigate the risk incurred
by the constraint violations.

Definition 4.6 (Transaction) LetUop be the universe of oper-
ations that are executed by information systems (e.g., send
messages). A transaction tr=(op, vmap) ∈ Uop × Uvmap is
a pair of an operation op and a parameter mapping vmap.
Utr ⊆ Uop × Uvmap denotes the set of all possible transac-
tions.

For instance, the action description A1 in Sect. 3.1 rep-
resents a transaction, tr1=(send-a-message,vmap′) where
vmap′(recipient)=customer and vmap′(message)=
“Select an alternative method for the delivery.”.

Note that an operation may involve multiple fine-grained
operations (i.e., child operations). For instance, notifying the
sales department may include sending e-mails to all staff,
transferring alert signals to responsible staff, etc. We call the
transaction with such composite operations as workflows.

Given a constraint instance stream and a time window,
the action formula produces required transactions by analyz-

ing the constraint instances in the constraint instance stream,
which are relevant to the time window.

Definition 4.7 (Action formula) An action formula a f ∈
(Ucis × Utw) → P(Utr) is a function that maps a constraint
instance stream and timewindow to a set of transactions.Ua f

is the set of all possible action formulas.

Assume a f1 to assess the condition that is specified by the
action description A1 in Sect. 3.1, and to produce the corre-
sponding transaction, i.e., sending a message to a customer.
Given constraint instance stream C I S and time window
tw1=(02-01-2022 09:00,03-01-2022 09:00), it assesses if there exist
more than two constraint instances whose outcomes are
NOK in the time window. If so, tr1=(send-a-message,
vmap′) ∈ a f (C I S, tw1).

The implementation of action formulas relies on the
domain knowledge of process experts. As shown in the moti-
vating example, it is the domain knowledge to ensure that
sending a message to a customer is to reduce delivery fail-
ures. However, the root-cause analysis of violations could
help domain experts to provide useful insights on effective
management actions. For instance, if the root-cause of a vio-
lation (e.g., failed delivery) is provided (e.g., the delivery
time is too late), a domain expert can design an action for-
mula to produce the transaction to change the delivery time to
a earlier time. In case that a violation is predicted, the recent
development of explainable prediction models can be used
to analyze the predicted violation.

An action consists of action formula and a set of time
moments. The action formula specifies which transactions to
generate in which conditions, and the set of time moments
indicates when to assess the conditions and to generate trans-
actions.

Definition 4.8 (Action) An action a=(a f , T M) ∈ Ua f ×
P(Utm) is a pair of an action formula a f and a set of time
moments T M . Ua denotes the set of all possible actions.

Suppose a1=(a f1, T M1) where (03-01-2022 09:00, (02-01-2022
09:00, 03-01-2022 09:00)) ∈ T M1. We implement a f1 at 03-01-2022

09:00 with the constraint instances related to time window (02-
01-2022 09:00,03-01-2022 09:00).

An action instance indicateswhen andwhich transaction is
required. An action instance stream is a collection of unique
action instances.

Definition 4.9 (Action instance stream) An action instance
ai=(a f , tr , t ime) ∈ Ua f × Utr × Utime is a tuple of an
action formula a f , a transaction tr , and a timestamp time.
We let Uai be the set of all possible action instances. An
action instance stream AI S is a (possibly infinite) set of
action instances, i.e., AI S ⊆ Uai . Uais denotes the set of
all possible action instance streams.

123

Progress in Artificial Intelligence

For instance, an action instance ai1=(a f1, tr1, 03-01-2022

09:00) denotes that the transaction tr1 needs to be executed at
03-01-2022 09:00 according to a f1.

Based on Definition 8–11, we define an action engine. As
shown inFig. 5, it transforms a constraint instance stream into
a action instance stream. Being parameterized with a set of
actions, it evaluates the action formula in each action to assess
the necessities of transactions according to the corresponding
set of time moments and produces action instances.

Definition 4.10 (Action engine) Let A ⊆ Ua be a set of
actions used by the action engine. aeA ∈ Ucis → Uais

is the action engine such that, for any C I S ∈ Ucis ,
aeA(C I S)={(a f , tr , time) ∈ Uai |∃T M,tm (a f , T M) ∈ A∧
tm ∈ T M ∧ t ime=πt (tm) ∧ tr ∈ a f (C I S, πtw(tm))}.

We abstract that the action engine is able to assess
future constraint instances. In fact, it analyzes the histori-
cal constraint instance stream and produces transactions that
mitigate risks caused by the past constraint violations.

Conceptually, the action engine can be extended to incor-
porate action recommender systems. An action recommender
system recommend ∈ Uais → Uais evaluates candidate
action instances to provide efficient action instances. One
can implement the recommender system by ranking candi-
date action instances and filtering ones with higher ranks.
Moreover, it can be implemented such that it resolves con-
flicting action instances (e.g., arranging ameeting of a patient
in a doctor’s office and simultaneously routing the patient to
a blood test) by modifying the action instances (e.g., post-
poning the arrangement of the meeting until the blood test is
completed).

5 Cube-based action engine

A constraint instance indicates when a violation does (not)
happen in a specific context in terms of a constraint (cf. Def-

Fig. 5 Action engine aeA, where A = (a1, a2, . . .), transforms a con-
straint instance stream into an action instance stream

Fig. 6 Examples of structuring a constraint instance stream into con-
straint cubes and conducting multi-dimensional analysis on constraint
instances

inition 4.4). It is essential to comprehensively analyze these
different aspects (i.e., constraint, context, and time) and gen-
erate needed actions. Moreover, it is crucial to aggregate
constraint instances in a meaningful abstraction level (e.g.,
violations by an order during a week) to produce appropriate
actions.

Cube-based action engine realizes these requirements by uti-
lizing constraint cube and OLAP operations defined over
the cube. Figure 6 describes examples of constructing con-
straint cubes froma constraint instance streamandgenerating
actions by analyzing the constraint instances belonging to
each cell of the cube. Each cell is characterized by differ-
ent aspects of the constraint instance in a proper abstraction
level. For instance, each cell in Fig. 6a contains constraint
instances of respective orders (i.e., context aspect) and indi-
vidual constraints (i.e., constraint aspect) in aweek level (i.e.,
time aspect). By analyzing the constraint instances in each
cell, the action engine generates actions such as setting higher
priority for the corresponding order.

By using OLAP operations, such as slice, dice, roll-up,
and drill-down, we can analyze the constraint instances using
different selections and granularities. By rolling-up from
individual orders to entire order in the context dimension
and from week to month in the time dimension, we can ana-
lyze the constraint instances relating any orders in a specific
month per constraint, as depicted in Fig. 6b. This may result
in actions such as decreasing themaximumcapacity of orders
in the process.

123

Progress in Artificial Intelligence

Fig. 7 Core components of a cube-based action engine: (1) constraint
cube and (2) multi-dimensional analysis

Figure 7 describes core components of a cube-based action
engine, i.e., 1) constraint cube and 2)multi-dimensional anal-
ysis. First, it entails building blocks and functionalities of
constraint cubes. The cube structure provides a basic scheme
upon which a variety of views can be defined. Each view
is materialized to enable a multi-dimensional analysis of
constraint instances in appropriate abstraction levels. OLAP
operations support the flexible conversion between different
views. Second, cube-based action formulas, configured with
a view on the constraint cube structure, produce transactions
by analyzing the constraint instances in a materialized con-
straint cube.

In the following, we explain the components of a cube-
based action engine with formal definitions and examples.

5.1 Constraint cube

5.1.1 Building blocks and functionalities

In a constraint cube, we model three aspects of constraint
instances (i.e., constraint, context, and time) into dimen-
sions. Each dimension has different abstraction levels (i.e.,
elements) and the relationship between elements (i.e., hierar-
chy). As shown in Fig. 8a, the time dimension, representing
the time aspect of the constraint instance, may consist of
elements such as date, month, quarter, year, season, and
week. For constraint instance ci ∈ Uci , the date element
indicates the date of πtime(ci). The elements have hierarchy,

e.g., from date to month and frommonth to quarter. Each ele-
ment involves the set of possible values. For instance, month
element can have values in {. . . , 01.2021, 02.2021, . . . }. We
define dimension formally as follows:

Definition 5.1 (Dimension) A dimension is a pair dim=((E,

H), vsmap) where

– (E, H) is a directed acyclic graph with nodes E ⊆ Uattr

and a set of directed edges H ⊆ E × E , and
– vsmap ⊆ E → P(Uval) is a function defining the set of
possible values for each element.

Udim denotes the set of all possible dimensions. Given
dim=((E, H , vsmap)) ∈ Udim , Edim and Hdim denote the
set of elements andhierarchies of the dimension, respectively.

For instance, the time dimension depicted in Fig. 8a
is defined as follows: dimt=((Et , Ht), vsmapt) where
Et={date,month, quarter , year , season, week},Ht=
{(date,month), (month, quarter), . . . }, andvsmap(date)
={01.01..2021, 02.01.2021, . . . }.

A constraint cube structure is composed of constraint
dimension dimcst ∈ Udim , context dimension dimctx ∈
Udim , and time dimension dimt ∈ Udim , each of which rep-
resents the constraint, context, and time aspects of constraint
instances, respectively. Each dimension is independent of
each other, i.e., the dimensions do not have common ele-
ments.

Definition 5.2 (Constraint cube structure) A constraint cube
structure CCS = {dimcst , dimctx , dimt } ⊆ Udim such that
∀{dim1,dim2}⊆CCS Edim1 ∩ Edim2=∅. Eccs denotes the set of
all element defined over CCS, i.e., Eccs= ⋃

dim∈CCS Edim .

Depending on business processes and purposes, each
dimension has different elements, hierarchies, and possible
element values, thus resulting in a different constraint cube
structure.As an example,we realize the constraint cube struc-
ture based on the order handling process in Sect. 3.1, as
described in Fig. 8.

First, we assume that constraints are classified to cost,
time, and quality categories, according to their influences on
the process. For instance, C1—there must be no “fail deliv-
ery” for any package—has influences in the cost perspective,
thus belonging to cost category. In addition, depending on the
severity of the violation of the constraint, different levels are
given to each category, ranging from 1 to 5, e.g., C1 belongs
to cost-3, forming the sub-category element. Consequently,
dimcst=((Ecst , Hcst),vsmapcst)where Ecst={individual,
sub-category, category}, Hcst={(individual, sub-cate-
gory), (sub-category, category)}, and vsmapcst (cate-
gory)={cost, t ime, quali t y}.

123

Progress in Artificial Intelligence

Fig. 8 An example of
dimensions

The context dimension includes several useful entities
defined for the process. First, send-invoice-per-order indi-
cates the context where the send invoice activity is performed
for each order. The per-sales-activity denotes the context
where the activities related to sales occur such as place
order, send invoice, and receive payment. The per-activity
denotes the context of executing respective activities in the
process, while the per-order means the context of individual
orders. Finally, per-object includes order, item, etc. A hier-
archy among the elements is also described in Fig. 8, e.g.,
per-object is in higher hierarchy than per-order since orders
belong to the order object.

An element matching assigns element values to constraint
instances.

Definition 5.3 (Element matching) Let CCS be a constraint
cube structure and C I S ∈ Ucis be a constraint instance
stream. eme ∈ C I S → P(Uval) relates values of e ∈ Eccs to
constraint instances such that, for any ci ∈ C I S, eme(ci) ⊆
vsmap(e).

For instance, em per -order assigns values of per -order ∈
Edimctx to constraint instances, i.e., for any constraint
instance ci , em per -order (ci)=πomap(πctx (ci))(order).
Some element matchings may require additional functions.
For instance, emcategory assigns values of category ∈

dimcst to constraint instances, i.e., for any constraint instance
ci , emcategory(ci)=cat(πc f (ci))where cat is a function that
relates constraint formulas to their categories.

While conducting analysis using a constraint cube, its
structure remains the same, whereas its view changes to sup-
port the multi-dimensional analysis. A constraint cube view
determines which dimensions to select in which granular-
ity of elements with what values. For instance, one possible
view is to select the constraint dimension with the granular-
ity of individual, the context dimension with object, and time
dimension with month. It enables to analyze the constraint
instances for each constraint andobject type (e.g., order, item,
etc.) in each month.

Definition 5.4 (Constraint cube view) Let CCS be a con-
straint cube structure. A constraint cube view of CCS is a
tuple ccv=(Dsel , gran, sel) such that:

– Dsel ⊆ CCS are the selected dimensions,
– gran ∈ Dsel → Eccs is a function defining the granu-
larity for each selected dimensions, and

– sel ∈ Eccs → P(Uval) is a function selecting a set of
the values of the elements in each dimension such that,
for any e ∈ Eccs , sel(e) ⊆ vsmap(e).

123

Progress in Artificial Intelligence

The example view described above can be defined
as ccv1={Dsel , gran, sel} where Dsel={dimcst , dimctx ,

dimt }, gran(dimcst)=individual, gran(dimctx)=object ,
gran(dimt)=month, sel(individual)={const1, const2},
sel(object)={order}, and sel(month)={01.2021, 02.2021,
. . . , 12.2021}.

A constraint cube view constitutes a collection of cells.
Each cell is characterized by specific values for different
dimensions defined in the constraint cube view. When mate-
rialized with a constraint instance stream, each cell involves
the constraint instances associated with the values.

Definition 5.5 (Cell set) Let CCS be a constraint cube
structure and ccv=(Dsel={dim1, . . . , dimn}, gran, sel) be
a constraint cube view over CCS. CSccv=(EVdim1 × · · · ×
EVdimn) is a cell set of ccv, where for any dimi ∈ Dsel ,
EVdimi =gran(dimi)×sel(gran(dimi)) is a set of element-
value sets.

For instance, CSccv1={

((individual, const1), (object, order), (month, 01.2021)),

((individual, const2), (object, order), (month, 01.2021)),

((individual, const1), (object, order), (month, 02.2021)),

((individual, const2), (object, order), (month, 02.2021)),

. . . ,

((individual, const2), (object, order), (month, 12.2021))}

Next, we fill each cell in the cell set of the constraint cube
view with the constraint instances from a constraint instance
stream.

Definition 5.6 (Materialized constraint cube) Let a constraint
cube structure CCS and C I S ∈ Ucis a constraint instance
stream. Let ccv=(Dsel , gran, sel) be a constraint cube view
of CCS. The materialized constraint cube view of ccv on C I S
ismvccv,cis ∈ CSccv → P(C I S) such that, for any c ∈ CSccv ,
mvccv,cis(c)={ci ∈ C I S|∀dim∈Dsel∃v∈emgran(dim)(ci) (gran
(dim), v) ∈ c ∧ ∀e∈Eccs emgran(dim)(ci) ⊆ sel(e)}.

Each constraint instance belonging to a cell must corre-
spond to the (element, value) pair of the cell. For instance,
for a cell c={(individual, const1), (object, order), (month,

01.2021)} in cell set CSccv1 , only constraint instances related
to const1, order and 01.2021 are considered. In addition, the
resulting constraint instances must not be filtered out by the
constraint cube view.

Figure 9 describes an example of materializing constraint
cube view ccv1. Each cell in the materialized constraint cube
contains the constraint instances related to an individual con-
straint for the entire order in a month.

Fig. 9 An example of materialized constraint cubes

5.1.2 OLAP operation

Classical OLAP operations are defined for the constraint cube
to support multi-dimensional analysis on constraint instances.

5.1.2.1 Slice operation

This operation enables to select specific values of one dimen-
sion. For instance, one can select 01.2021 from the time
dimension by removing the dimension from constraint cube
view ccv1 and only considering the constraint instances in
01.2021.

Let CCS be a constraint cube structure and ccv=(Dsel ,

gran, sel) a view of CCS. Let dim=((E, H), vsmap) ∈
Dsel be a dimension. A filtering function f ilt ∈ (E →
P(Uval)) relates sets of values to the elements such that,
for any e ∈ E , f ilt(e) ⊆ vsmap(e). A slice operation
slicedim, f ilt selects specific values in dim using f ilt , i.e.,
slicedim, f ilt (ccv)=(D′

sel , sel
′, gran) such that

– D′
sel=Dsel \ {dim} is the new set of selected dimensions,

and
– sel ′ ∈ E → P(Uval) is the new selection function such

that

sel ′(e)=
{
f ilt(e) if e ∈ Edim

sel(e) if e ∈ (Eccs \ Edim)

123

Progress in Artificial Intelligence

5.1.2.2 Dice operation

This operation allows to select specific values of multiple
dimensions. For instance, one can select 01.2021 and 02.2021
for the time dimension and const1 for the constraint dimen-
sion from constraint cube view ccv1. Note that no dimensions
are removed, but the constraint instances that are related to
01.2021 or 01.2021 and const1 are considered.

Let f iltdim denote the filtering function defined over
dimension dim. We let FD denote the collection of filter-
ing functions defined over D={dim1, . . . , dimn} ⊆ Dsel ,
i.e., FD={ f iltdim1 , . . . , f iltdimn }. A dice operation diceD,FD

select specific values in dim ∈ D using the filtering function
f iltdim ∈ FD , i.e., diceD,FD (ccv)=(Dsel , sel ′, gran) such
that sel ′ ∈ Eccs → P(Upval) is the new selection function
such that, for any dim ∈ D,

sel ′(e)=
{
f ilt(e) if e ∈ Edim

sel(e) if e ∈ (Eccs \ Edim)

5.1.2.3 Roll-up and drill-down

These operations change the granularity of dimensions. roll-up
changes the granularity of a dimension to the higher hierarchy,
e.g., from date to month, whereas drill-down changes it to the
lower hierarchy, e.g., from month to date.

Given a constraint cube view ccv=(Dsel , gran, sel), a
granularity change function chgrdim,e changes the granu-
larity of dim=((E, H), vsmap) ∈ Dsel to e ∈ E , i.e.,
chgrdim,e(ccv)=(Dsel , gran′, sel) such that gran′(dim)=e
and, for any dim′ ∈ Dsel \ {dim}, gran′(dim′)=gran(dim′).
A roll-up operation rlupdim,e climbs up the hierarchy in
dim to e, i.e., rlupdim,e(ccv)=chgrdim,e(ccv) such that
∃e∈Edim (gran(dim), e) ∈ Hdim . A drill-down operation
drdowndim,e climbs down the hierarchy in dim to e, i.e.,
drdowndim,e(ccv)=chgrdim,e(ccv) such that ∃e∈Edim (e,
gran(dim)) ∈ Hdim .

5.2 Multi-dimensional analysis

In a cube-based action engine, cube-based action formulas pro-
duce transactions by conducting multi-dimensional analysis
using constraint cubes. The action formula consists of three
components: 1) constraint cube view to materialize constraint
cubes in appropriate abstraction levels, 2) assessment function
to evaluate the necessity of actions, and 3) transactionmapping
to assign transactions.

First, an assessment function analyzes the constraint
instances collected in a proper abstraction level to discover crit-
ical violations of constraints requiring management actions.
Different measures can be adopted for the analysis, such as
basic aggregation (e.g., sum and count) andmore sophisticated
measures (e.g., regression and classification).

Definition 5.7 (Assessment) An assessment function as ∈
P(Uci) → B relates Boolean values to sets of constraints

instances such that, for any C I ⊆ P(Uci), as(C I) = true
if an action is necessary, as(C I) = f alse otherwise.

Suppose that any order needs predefined management
actions if it violates a service level agreement more than
10 times in the last three days. An assessment function as1
assess the necessity of actions, i.e., for any relevant set of
constraints instances C I ⊆ Uci , as1(C I)=true if |{ci ∈
C I |πoutc(ci)=NOK }| > 10, f alse otherwise.

In case that the necessity for actions arises, a transaction
mapping relates management transactions to cells. If as1 is
evaluated to be true for the constraint instances belonging to
a cell, it produces the action of sending an email to the order
manager warning frequent violation of the service level agree-
ment by the corresponding order.

Definition 5.8 (Transaction mapping) Let ccv be a constraint
cube view and CS the cell set of ccv. A transaction mapping
tmap ∈ CS � Utr is a partial function that assigns transac-
tions to cells. We denote tmap(c)= ⊥ if c /∈ dom(tmap).

Given the constraint cube cell c1=((individual, const1),
(order , o1), (month, 01.2021)) ∈ CSccv1 , a transaction map-
ping tmap1 generates a transaction tr1 ∈ Utr as follows:
tmap1(c1)=tr1=(op, pmap) such that op is“send an email to
manager”, pmap(violation)=const1, and pmap(subject)=
o1, where violation, subject ∈ dom(pmap).

A cube-based action formula materializes the constraint
cube based on a constraint cube view, and analyze the neces-
sity of actions in each cell using an assessment function, and
produce corresponding actions using a transaction mapping.

Definition 5.9 (Cube-based action formula) Let C I S ∈ Ucis

be a constraint instance stream and CCS a constraint cube
structure that is compatible with C I S. A cube-based action
formula a fcube ∈ (Ucis × Utw) → P(Utr) consists of

– a constraint cube view ccv of CCS,
– an assessment as, and
– a transaction mapping tmap.

Given any constraint instance stream C I S ∈ Ucis and a time
window tw ∈ Utw, it computes the required transactions, i.e.,
a fcube(C I S, tw)={tmap(c)|c ∈ CSccv ∧ as(mvccv,cis(c))=
true}.

6 Evaluation

In this section, we first present the implementation of the
proposed framework using the cube-based action engine and
evaluate the effectiveness of the framework in improving busi-
ness processes by conducting experiments with an artificial
information system and a real-life SAP ERP system.

123

Progress in Artificial Intelligence

6.1 Implementation

The general framework is implemented as a plug-in of ProM,2

an open-source framework for the implementation of pro-
cess mining tools in a standardized environment. Our new
plug-in is available in a new package named ActionOrient-
edProcessMining in the nightly build of ProM. Moreover,
the technical manual of the plug-in is available at https://
github.com/gyunamister/ActionOrientedProcessMining. The
main input objects of our plug-in are an event stream, a con-
straint formula definition, and an action formula definition,
whereas the output is an action instance stream.

The input event stream is in a JSON-based Object-Centric
Event Log (OCEL)3 format [44], storing events alongwith their
related objects. Below is an example of the OCEL format rep-
resenting the event:

‘ ‘ocel : events ’ ’: {
‘‘199210’’: {
‘ ‘ocel : activity ’ ’: ‘ ‘place_order ’ ’ ,
‘ ‘ocel : timestamp’ ’: ‘‘2021−01−01 09:55:00.000+01:00’’,
‘ ‘ocel :omap’ ’: [
‘ ‘o7’ ’ ,
‘ ‘ i8 ’ ’ ,
‘ ‘ i9 ’ ’

] ,
‘ ‘ocel :vmap’ ’: {
‘ ‘resource ’ ’: ‘ ‘Louis’ ’ ,
‘ ‘process ’ ’: ‘ ‘OH’ ’ ,
‘ ‘type ’ ’: ‘ ‘Gold’ ’

}
},

}

The constraint formula and action formula are defined by
Constraint Formula Language (CFL) and Action Formula
Language (AFL), respectively. The CFL specifies an in-built
function of the plug-in and its required parameters, and the
AFL specifies the constraint cube view, assessment function,
and transaction mapping that compose the cube-based action
formula. For the syntax and examples of the CFL and AFL, we
refer readers to the tool manual4.

The output action instance stream is in an XML-based
Action Instance Stream (AIS) format2 storing action instances
describing the transactions that need to be applied by source
information systems. A dedicated gateway implemented in the
source system parses the resulting AIS file and translates it into
the system-readable transactions. Below is an example of an
action stored in AIS format:

<?xml version=‘‘1.0’’ encoding=‘‘UTF−8’’?>
<action−instance−stream>
<action−instance>
<action−formula>ask−alternatives </action−formula>
<operation>send−message</operation>

2 http://www.promtools.org.
3 http://ocel-standard.org.
4 https://github.com/gyunamister/ActionOrientedProcessMining.

<parameter−mapping>
<parameter name=‘‘customer’’>
<value>order</value>

</parameter>
</parameter−mapping>
<timestamp>09:55 01−01−2021</timestamp>

</action−instance>
. . .

</action−instance−stream>

The action-instance-stream tag corresponds to ais ∈ Uais . The
action-instance tag relates ai = (a f , (op, vmap), time) ∈ ais,
whereas action-formula , operation , parameter-mapping , and timestamp cor-
responds to a f , op, vmap, and time, respectively.

6.2 Experiments

In order to evaluate the effectiveness of the proposed frame-
work, we conduct experiments using the implementation.
Below are the research questions that we aim to answer in
the experiments:

– RQ1: Does the constraint monitor effectively detect viola-
tions?

– RQ2: Does the action engine effectively generate corre-
sponding transactions?

– RQ3: Does the application of the transactions improve
operational processes?

We conduct experiments using two business processes: one
that is supported by an artificial information system and the
other supported by real-life SAP systems. In the following, we
explain each of them.

6.2.1 Artificial information system

The information system used for the evaluation supports the
order handling process described in Sect. 2. There are 16 avail-
able resources in total at any point in time, and each of them
is responsible for multiple activities in the process. Orders are
randomly placed and queued for the resource allocation after
each activity. The resource is allocated according to theFirst-in
First-out rule.

6.2.1.1 Experimental design

We assume that, based on a service level agreement, an order
must be deliveredwithin 72 hours after its placement.However,
it has been reported that some orders violate the agreement,
generating additional costs. To deal with the delayed orders,
we can take several actions such as setting higher priorities for
the orders to assign resources earlier than normal cases and
sending notifications to the corresponding order manager to
promote the intensive care of the orders.

In this regard, we define a constraint formula formulating
that an ordermust be delivered in 72 hours (cfoh,1). Besides,we
formulate two action formulas: 1) setting a higher priority for
any order that violates c foh,1 in the last 24 hours (a foh,1) and

123

Progress in Artificial Intelligence

2) sending a warning message to a case manager for the order
that violates c foh,1 twice in the last 48 hours (a foh,2). The
former allows the delayed order to be allocated to resources
earlier than others in the system, reducing the waiting time for
its activities. The latter reduces the time taken for resources
to process the activities of the delayed order in the system,
decreasing the processing time of the order.

The information system continuously generates events and
updates an event stream. The constraint monitor analyzes
the event stream using c foh,1 every 24 hours and produces
constraint instances that are added to the constraint instance
stream. The action engine analyzes the constraint instance
stream using a foh,1 and a foh,2 every 24 hours in accordance
with the constraint monitor and generates necessary actions.
A dedicated gateway for the information system translates the
actions and apply them to the information system.

6.2.1.2 Experimental Results

Figure 10 reports the results related to RQ1 and RQ2. The fig-
ure shows the history of 40 orders by time, where the gray
box indicates the delivery time of each order (i.e., from the
placement of an order to its delivery) and the green oval arrow
denotes allowable delivery time (i.e., 72 hours). The red rect-
angle indicates the time when the violation of c foh,1 happens.
Any order whose delivery time is outside the green arrow is
detected by the constraint monitor every 24 hours.

For each delayed order, the higher priority is set in line
with its detection (a foh,1). Furthermore, the order with longer
delays are notified to the corresponding case manager (a foh,2).
For instance, o10 was placed at 66 and, according to the agree-
ment, was supposed to be delivered until 138. The constraint
monitoring at 144 detected the violation of the agreement by
o10 and higher priority was given to it. In the next monitoring
(i.e., after 24 hours), the order was still not completed, thus
requiring a notification to the case manager.

Fig. 10 The results of constraint monitor and action engine on 40
selected orders

Fig. 11 Number of total/violated orders for 30 days

Figure 11 reports the experimental result related to RQ3.
The figure shows the number of violated orders for 30 days.
The yellow line indicates the total number of orders by time.
The red line represents the number of violated orders when
the actions are not applied, whereas the green line indicates
the number of violations after the actions are applied to the
information system. The number of violated orders is always
lower when the actions are applied, validating the effectiveness
of executing the actions in improving the performances of the
business process.

6.2.2 SAP ERP system

The SAP Enterprise Resource Planning system (SAP ERP)
supports the business processes of organizations by incorpo-
rating the key business functions such as sales and distribu-
tion, financial accounting, supply chain management, human
resource management, etc. The order-to-cash (O2C) process is
one of the core business processes in the sales and distribution
supported by SAP ERP.

The O2C process deals with customer orders. Customers
send inquiries to the company and sales corresponding quota-
tions are sent to the customers in response. Sales managers
convert the sales quotations into sales orders if customers
accept the quotations. Next, corresponding deliveries are pre-
pared, and the warehouse staff pick up and pack the items for
the deliveries. After shipping the deliveries, invoices are pre-
pared and sent to customers. Finally, the payments are collected
and the invoices are cleared.

In this experiment, we utilize the SAP ERP system (SAP
ERPECC6.0) supporting theO2C process of Global Bike Inc.,
which is a multinational enterprise producing and distributing
bicycle products. The O2C process of the company consists
of multiple objects (called documents) such as inquiry, quota-
tion, order, item, delivery, shipment, and invoice. Employees
involved in the O2C process interact with the system to deal
with the orders from various customers. For instance, sales
staff places orders by inserting the order information such as
customers, sales organizations, sales divisions, materials, etc.,
into the system, as shown in Fig. 12. This, in turn, triggers

123

Progress in Artificial Intelligence

Fig. 12 A screenshot of SAP ERP ECC 6.0: placing order using trans-
action VA01

Fig. 13 Overview of the experimental design using a real-life SAPERP
system

transactions in the system (e.g., transaction code VA01 in SAP
ERP), thus supporting the business goals of the company.

6.2.2.1 Experimental Design

Figure 13 describes the overview of the experimental design
based on the simulation approach that incorporates ERP sys-
tems [45]. First,we simulate theO2Cprocess usingCPNTools5

and generate the automation log where each record clones the
behaviors of the employees in the company (e.g., Adams is
supposed to place an order at 3 p.m.). Based on the automa-
tion log,we automate the execution of transactional operational
transactions in the SAP ERP system. For instance, our automa-
tion tool directly executes VA01 at 3 p.m. on behalf of Adams
with necessary inputs such as customer information, materials,
quantity, etc.

As such, we continuously generate events in the SAP ERP
system and update the event stream. To scale the experiment,
we use the scaling factor in time when automating the transac-
tions. For instance, we automate the transactions of 30 days in
30 hours, by using the scaling factor of 24 (i.e., 1 hour in the

5 http://cpntools.org/.

experiment represents 24 hours in real-life business). Note that
we still maintain the relative time difference between different
transactions.

We analyze the event stream to identify improvement points
in the process using process mining diagnostics supported in
process mining tools such as PM4Py6 and ProM, and define
constraints and actions using CFL and AFL. The ProM plug-
in generates an action instance stream in AIS format and the
gateway for the SAP ERP system translates the management
transactions described in action instances and executes them
in the system.

Figure 14 shows the discovered process model of the O2C
process represented as an object-centric Petri net [46]. Note
that, for better representation, we only consider five objects
(i.e., inquiry, quotation, order, delivery, and invoice) in the pro-
cess and the one-to-one relationship between the objects.Based
on the discovered process model, we identify two problems
residing in the process. First, the conversion rate of quota-
tions to orders is low (P1). 36 percent of the quotations are
successfully converted to the orders, while 64 percent of the
quotations are ending without positive responses from the
customers. Second, we identify another problem that orders
from customers are frequently changed after their confirma-
tion, e.g., change price, change the quantity, etc., (P2). The
frequently changed orders tend to have higher throughput time,
i.e., frequent changes in orders are positively correlated to the
throughput time of the orders.

Based on the identified problems, we define two constraint
formulas, i.e., c fo2c,1 and c fo2c,2. First, c fo2c,1 formulates that
the inquiry from customersmust be responded to in 24 hours to
monitor late responses. It comes from the observation that the
response time from receiving inquiry to sending quotation has
a negative correlation to the likelihood of the acceptance of the
quotations, i.e., the longer the response time is, the lower the
likelihood is. Second, c fo2c,2 formulates that an order should
not be changed after the confirmation.

To deal with the constraint instances resulting from con-
straint formula c fo2c,1, we define two action formulas: 1)
alerting a sales manager whenever an inquiry with a long
response time is detected (a fo2c,1) and 2) adding a tempo-
rary resource to deal with the late response when the ratio
of late responses to normal responses is higher than 10 per-
cent (a fo2c,2). The former reduces the waiting time for sending
quotations to inquiries that are not responded for a long time.
The latter reduces the waiting time for sending quotations to
inquiries, in general, regardless of their response time.

To reduce the changes in orders, we define two action for-
mulas: 1) notifying customers that the changes in the order
after its confirmation may result in the delayed deliveries for
any order entailing changes (a fo2c,3) and 2) adding an activity
approval by a sales manager in the control flow of the pro-
cess before confirming orders to avoid the changes caused by
incorrect handling of orders if more than 20 changes occur
in the last 24 hours (a fo2c,4). The former reduces the number

6 https://pm4py.fit.fraunhofer.de/.

123

Progress in Artificial Intelligence

Fig. 14 An object-centric Petri net [46] describing the process model of the O2C process supported by SAP ERP system. The process has two
problems: (1) low conversion rate (P1) and (2) changes in orders after the confirmation (P2)

of unnecessary changes in an order by changing the behavior
of customers. The latter changes the occurrence of necessary
changes in an order by ensuring that all incorrect information
is corrected during the newly introduced activity.

The constraint monitor analyzes the event stream using
c fo2c,1 every 9 a.m., 12 p.m., and 3 p.m. and c fo2c,2 every
9 a.m., and produces constraint instances. The action engine
analyzes the constraint cube, materialized from the constraint
instance stream, using a fo2c,1 and a fo2c,2 every 9 a.m., 12 p.m.,
and 3 p.m. to generate necessary actions. Besides, it evaluates
a fo2c,3 anda fo2c,4 every 9 a.m.The generated actions are trans-
lated into SAP-executable transactions by a dedicated gateway
and executed by the SAP ERP system.

6.2.2.2 Experimental Results

Figure 15 describes the responses to 151 inquiries for
products—precision pipes—by multinational customers, to
which quotations were sent between 5.12.2020 and 7.12.2020.
Each row in the upper chart depicts the timeline of the response
to an inquiry (i.e., the leftmost part indicates the time when the
inquiry is received and the rightmost part is the time when the
quotation is sent). The gray cell represents the legal part of the
response (i.e., within 24 hours), whereas the rest indicates the
lateness (i.e., beyond 24 hours). The vertical line represents
the time when the constraint monitor evaluates constraint for-
mula c fo2c,1 and also the action engine evaluates action formula
a fo2c,1 and a fo2c,2.

The yellow square box indicates the time when the con-
straint instances with non-violated outcomes are produced,
whereas the red square box denotes the time when the vio-
lating constraint instances are generated. As indicated by the
monitoring vertical line and the (il)legal part of the responses,
the constraint monitor successfully produces (non) violating
constraint instances. For instance, on 5.12.2020 at 9 a.m., the
constraint monitor generates five violating constraint instances

ab-out the inquiries reported as late responses and 41 non-
violating constraint instances.

Fig. 15 The upper part of the chart describes 151 inquiries and the
evaluation results by the constraint monitor using c fo2c,1 and the actions
by the action engine using a fo2c,1. The chart on the lower side describes
the ratio of detected late responses and the generation of actions by the
action engine using a fo2c,2

123

Progress in Artificial Intelligence

The green dotted circle represents the execution of action
a fo2c,1, i.e., alerting the sales manager. For each occurrence
of the late response, the action was properly executed. For
instance, on 5.12.2020 at 9 a.m., for the five inquiries reported
for their late responses, alerting messages were sent to the cor-
responding salesmanager. The lower part of the chart describes
the ratio of late responses compared to legal responses. As
defined in a fo2c,2, we assign additional resources to handle
the late responses when the ratio is higher than 10 percent.
For instance, on 5.12.2020 at 9 a.m., the ratio was 12 percent,
thus an additional resource being dispatched to handle the late
responses.

Table 2 describes the mean, median, and standard deviation
of response times on each day before and after taking manage-
ment actions. The mean response time decreases after sending
alerts to sales managers and assigning more resources to han-
dle delayed responses. For instance, the mean response time
to the inquiries on 02. Dec. is 30.10 hours, whereas the mean
response time on 07. Dec. is 23.35 after taking the actions. In
addition, the standard deviation remarkably decreases after the
actions, showing the efficiency of the actions in handling the
inquiries taking a long time without mitigating measures. For
instance, the standard deviation of the response times on 04.
Dec. is 17.88, whereas the one on 07. Dec. is 1.25, representing
that the long-delayed responses are prevented by the actions.

Figure 16 depicts the 53 orders that had changes from 9
a.m., 8.12.2020 to 9 a.m., 10.12.2020. Each row (yellow line)
in the upper chart of the figure represents the lifecycle of each
order, and the red circle indicates the occurrence of the change
activity in the order. Note that the orders were under processing
for the three days and only change activities in the orders are
highlighted. The gray vertical lines represent the points in time
when the constraint monitor evaluates constraint c fo2c,2 and
the action engine produces the actions based on a fo2c,3 and
a fo2c,4.

The red square box represents the time when the constraint
instances violating c fo2c,2 are produced. For each detection of
the violation, a notification is sent to the customer (as shown
in the dotted green circle) to warn of the possible delay of the
order in case of frequent changes in the order. For instance,
on 8.12.2020 at 9 a.m., 23 notifications were sent to the cor-
responding customers. Since the frequency of the changes in
the last 24 hours at 9 a.m., 8.12.2020 is higher than 20, the
new activity, i.e., approve by a sales manager, is added to the
control flow of the process for the next 24 hours.

Before taking mitigating actions, 18 percent of all changed
orders entail multiple changes in their specification, thus gen-
erating delays in the delivery. After sending notifications to
customers and adding new activities in the control flow of the
business process, only four orders out of 53 orders reporting
changes (i.e., 7.5 percent) showedmultiple changes, validating
the effectiveness of the actions in preventing possible addi-
tional changes.

Table 2 Statistics of the response times (hours) to inquiries in each day
(before and after taking management actions)

Before After

02.Dec. 03.Dec. 04.Dec. Date 05.Dec. 06.Dec. 07.Dec.

30.10 27.05 30.36 Mean 24.48 23.88 23.35

34.00 29.00 27.00 Med. 23.00 23.00 23.00

13.93 14.89 17.88 Std. 2.73 3.53 1.25

7 Discussion

In this section, we explain academic and practical implications
of this work. Next, we discuss limitations and future work.

7.1 Implications

This paper suggests the starting point for a new branch of
research in process mining discipline. The action-oriented pro-
cessmining bridges the gap between the valuable insights from
processmining techniques and the neededmanagement actions
to improve business processes. The proposed general frame-

Fig. 16 The upper part of the chart describes 53 orders and the evalu-
ation results by the constraint monitor using c fo2c,2 and the actions by
the action engine using a fo2c,3. The chart on the lower side describes
the frequency of the changes in the last 24 hours and the generation of
actions by the action engine using a fo2c,4

123

Progress in Artificial Intelligence

work incorporates the traditional process mining techniques
for diagnostics and process monitoring and connects them to
the generation of proactive actions.

Our work has important implications in both academic and
practical standpoints. From an academic research standpoint,
this work provides the formal architecture upon which novel
techniques in business process monitoring can be deployed for
the ultimate goal of the process improvement. For instance,
techniques for predictive business process monitoring can be
deployed using the framework for the continuous monitoring
of the target business processes.Moreover, the proposed frame-
work provides the foundation for developing novel approaches
to generate proactive actions. In thiswork,we suggest the cube-
based action engine as an instantiation of the action engine.
New approaches can be developed to produce relevant man-
agement actions by analyzing the constraint instance stream
and deployed to the action engine to enable the continuous
management of business processes.

Furthermore, the constraint cube facilitates the development
of methods to analyze constraint instances. Each cell in the
constraint cube contains the constraint instances that contain
attributes (e.g., context). Alongwith the aggregationmeasures,
such as sum, count, and average, more advanced techniques
(e.g., statistical analysis and machine learning) can be applied
to findmeaningful patterns in the constraint instances, enabling
to generate more effective management actions.

Besides, in real-life business processes, it is common to
observe variations and changes in process behavior, i.e., con-
cept drifts [47]. For instance, due to Covid-19 pandemic,
organizations augment their business processes, resulting in
varying process behavior. In order to implement effective
techniques for action-oriented process mining, we need to
take such concept drifts into account. In particular, the def-
inition of constraints and actions should be adapted accord-
ingly such that they remain relevant in a specific situation.
To this end, opportunities exist for fellow scholars to con-
nect the detection, characterization, and explanation of con-
cept drifts in business processes [48–50] to the dynamic
and adaptive definition of constraints and actions. A possi-
ble direction is to deploy incremental learning and model
adaptation [51] to ensure that the definition of constraints
and actions are up-to-date with respect to evolving business
processes.

In terms of implications for practice, our proposed frame-
work allows practitioners to incorporate diverse monitoring
techniques in the organization into the constraint monitor
and maintain the monitoring results in the consistent format
of the constraint instance. The single source of monitoring
results is continuously analyzed and utilized to generate nec-
essary management actions. The framework also provides the
general structure based upon which practitioners can define
domain-specific definitions of management actions and their
continuous deployments. This continuous management of
business processes using the constraint monitor and action
engine enables them to maintain competitive advantages in

fast-evolving and dynamic business environments by continu-
ously improving the process.

7.2 Limitations and future work

This work has some limitations. Firstly, even though the pro-
posed framework was evaluated using the real-life information
system (i.e., SAP ERP system), it was not evaluated with the
real-life human resources in the organization. Indeed, it is
essential to evaluate the effects of actions in the real-life orga-
nization to take diverse influencing factors into account. For
instance, as described in [52], business processes are affected
by social factors such as organizational frictions. The action
of adding a new resource to a task, in principle, is expected to
increase the productivity of the task. However, considering the
possible organizational frictions of the action, it can also result
in negative impacts on productivity.

Second, the proposed framework does not provide a feed-
back mechanism. The actions produced from the action engine
may have undesired impacts on business processes or even
have conflicts among them. For instance, in a healthcare pro-
cess, two actions may coexist where one of them assigns a
patient to in-depth tests, whereas the other asks for a doctor
to provide immediate reports to the patient. To deal with this
conflict, a method to provide feedback on the possible conflicts
is required, e.g., using what-if analysis based on discrete event
simulation techniques to recommend valid actions, conducting
A/B testing to evaluate the efficiency of actions, and optimizing
the generation of actions using reinforcement learning. Next,
in this work, we do not provide the set of common and effective
actions in business processes for process improvement, rather
focusing on providing the framework to produce the actions
in an efficient manner with the given definitions of actions by
domain experts. The taxonomy of generic management actions
will help the elicitation of the available management actions
in different organizations, facilitating the adoption of the pro-
posed framework.

Finally, the proposed framework defines the outcome of the
constraint instances as a binary value, i.e., OK and NOK .
However, it is practically more relevant to have multiple dif-
ferent states of the outcome such as potentially violated and
potentially non-violated. It will enable a more abundant anal-
ysis of constraint instances, leading to the generation of more
effective management actions. Moreover, a constraint instance
may also include attributes such as priorities to promote the
efficient analysis. For instance, considering that the viola-
tion of the constraint with higher priority is more problematic
to business processes, one may define an action formula to
take the priority into account when analyzing the necessity of
actions.

As future work, we plan to validate the effectiveness of the
proposed framework by conducting case studies with real-life
organizations. The experiments with the real-life organiza-
tion will provide valuable insights to improve the framework
and facilitate the deployment of the framework to organiza-
tions. Another important direction of future work is to develop

123

Progress in Artificial Intelligence

a feedback mechanism to proactively evaluate the effects of
management actions and resolve conflicts among them. More-
over, it will empower the framework to be adaptive to dynamic
and complex business environments. We also plan to develop
action patterns that describe recurring problems in business
processes and effective actions to deal with them. The action
patterns are transformed into constraint formulas and action
formulas to support the continuous management of business
processes.

8 Conclusion

In this paper, we proposed the general framework for action-
oriented process mining, which continuously transforms pro-
cess diagnostics into proactive actions for process improve-
ment. It is mainly composed of two parts: the constraint
monitor and the action engine. The constraint monitor sup-
ports continuous monitoring of constraints, and the action
engine generates the necessary transactions to mitigate the
risks caused by the constraint violations. Also, we suggested
a concrete instantiation of the action engine using the con-
straint cube. The constraint cube stores a continuous stream of
constraint instances in a multi-dimensional structure, and the
cube-based action engine analyzes them at a proper abstraction
level to produce necessary actions.

The framework is implemented as a ProM plug-in and eval-
uated on an artificial information system and a real-life SAP
ERP system. The experiments show the effectiveness of our
proposed framework tomonitor business processes andprovide
timely corrective actions to improve the process by removing
existing and potential threats in the process and enhancing per-
formances.

Acknowledgements We thank the Alexander von Humboldt (AvH)
Stiftung for supporting our research.

Funding Open Access funding enabled and organized by Projekt
DEAL. This research is funded by the Alexander von Humboldt(AvH)
Stiftung.

Availability of data and material The proposed framework is imple-
mented as a plug-in of ProM, an open-source framework for the
implementation of process mining tools. It is available in a pack-
age named ActionOrientedProcessMining in the nightly build of
ProM. The usermanual is available via https://github.com/gyunamister/
ActionOrientedProcessMining/blob/master/README.md, along with
the simulated data used for the evaluation.

Declarations

Conflicts of interest The authors declare no conflict of interest.

Code availability The source code for the implementation is publicly
available both via the SVN repository (https://svn.win.tue.nl/repos/
prom/Packages/ActionOrientedProcessMining) and Github repository
(https://github.com/gyunamister/ActionOrientedProcessMining).

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. van der Aalst, W.M.P.: Academic View: Development of the
Process Mining Discipline, pp. 181–196. Springer International
Publishing, Cham (2020)

2. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamen-
tals of Business Process Management. Springer, Berlin (2018)

3. van derWil,M.P.:Aalst.Data Science inAction. In ProcessMining.
Springer, Heidelberg (2016)

4. van Zelst, S.J., Bolt, A., Hassani, M., van Dongen, B.F., van
der Aalst, W.M.P.: Online conformance checking: relating event
streams to process models using prefix-alignments. Int. J. Data
Sci. Anal. 8(3), 269–284 (2019)

5. Maggi, F.M., Montali, M.,Westergaard, M., van der Aalst, W.M.P.:
Monitoring business constraints with linear temporal logic: An
approachbasedon colored automata. In:Rinderle-Ma, S., Toumani,
F., Wolf, K. (eds.) Business Process Management, vol. 6896, pp.
132–147. Springer, Berlin (2011)

6. Ramezani, E., Fahland, D., van der Aalst, W.M.P.: Where did i
misbehave? Diagnostic information in compliance checking. In:
Hutchison, D., Kanade, T., et al. (eds.) Business Process Manage-
ment. volume 7481, pp. 262–278. Springer, Heidelberg (2012)

7. Schelter, S., Lange, D., Schmidt, P., Celikel, M., Biessmann, F.,
Grafberger, A.: Automating large-scale data quality verification.
Proc. VLDB Endow. 11(12), 1781–1794 (2018)

8. Park, G., van der Aalst, W.M.P.: A general framework for action-
oriented process mining. In: Adela D.R.O., Henrik, L., Flávia M.S.
(eds),BusinessProcessManagementWorkshops, vol. 397, pp. 206–
218. Springer International Publishing (2020)

9. Augusto, A., Conforti, R., Dumas, M., La Rosa, M., Maggi, F. M.,
Marrella,A., Soo,A.:Automated discovery of processmodels from
event logs: review and benchmark. arXiv:1705.02288 [cs] (2018)

10. Carmona, J., van Dongen, B., Solti, A., Matthias, W.: Relating
processes and models. Springer International Publishing, Confor-
mance Checking (2018)

11. Denisov, V., Fahland, D., van der Aalst, W.M.P.: Unbiased, fine-
grained description of processes performance from event data. In:
Mathias, W., Marco, M., Ingo, W. (eds) Business Process Manage-
ment, vol. 11080, pp. 139–157. Springer International Publishing
(2018)

12. Burattin, A., Sperduti, A., Veluscek,M.: Businessmodels enhance-
ment through discovery of roles. In: 2013 IEEE Symposium on
Computational Intelligence and Data Mining (CIDM), pp. 103–
110. IEEE (2013)

13. Suriadi, S., Ouyang, C., van der Aalst, W.M.P., ter Hofstede, A.H.:
Root cause analysis with enriched process logs. In: La Rosa, M.,
Soffer, P. (eds.) Business Process Management Workshops, vol.
132, pp. 174–186. Springer, Berlin (2013)

14. Burattin, A., vanZelst, S.J., Armas-Cervantes, A., Dongen, B. F.V.,
Carmona, J.: Online conformance checking using behavioural pat-

123

Progress in Artificial Intelligence

terns. In: Mathias, W., Marco, M., Ingo, W., Jan, B. (eds) Business
Process Management, vol. 11080, pp. 250–267. Springer Interna-
tional Publishing (2018)

15. Weidlich, M., Ziekow, H., Mendling, J., Günther, O., Weske, M.,
Desai, N.: Event-basedmonitoring of process execution violations.
In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) Business Process
Management. volume 6896, pp. 182–198. Springer, Berlin (2011)

16. Awad, A., Barnawi, A., Elgammal, A., Elshawi, R., Almalaise,
A., Sakr, S.: Runtime detection of business process compliance
violations: an approach based on anti patterns. In: Proceedings of
the 30th Annual ACM Symposium on Applied Computing, pp.
1203–1210. ACM (2015)

17. Maggi, F.M.,Westergaard, M., Montali, M., van der Aalst, W.M.P.:
Runtime verification of LTL-based declarative process models. In:
Khurshid, S., Sen, K. (eds.) Runtime Verification, vol. 7186, pp.
131–146. Springer, Berlin (2012)

18. Accorsi, R., Lowis, L., Sato, Y.: Automated certification for com-
pliant cloud-based business processes. Bus. Inf. Syst. Eng. 3(3),
145–154 (2011)

19. Bezerra, F., Wainer, J.: Algorithms for anomaly detection of traces
in logs of process aware information systems. Inf. Syst. 38(1), 33–
44 (2013)

20. Ghionna, L., Greco, G., Guzzo, A., Pontieri, L.: Outlier Detection
Techniques for Process Mining Applications. In: An, A., Matwin,
S., et al. (eds.) Foundations of Intelligent Systems. volume 4994,
pp. 150–159. Springer, Heidelberg (2008)

21. Li, G., van der Aalst,W.M.P.: A framework for detecting deviations
in complex event logs. Intell. Data Anal. 21(4), 759–779 (2017)

22. de Leoni, M., . van der Aalst, W.M.P.: A general process min-
ing framework for correlating, predicting and clustering dynamic
behavior based on event logs. Inf. Syst. 56, 235–257 (2016)

23. Polato,M., Sperduti, A., Burattin, A., de Leoni,M.: Time and activ-
ity sequence prediction of business process instances. Computing
100(9), 1005–1031 (2018)

24. Senderovich, A., Francescomarino, C.D., Maggi, F.M.: From
knowledge-driven to data-driven inter-case feature encoding in pre-
dictive process monitoring. Inf. Syst. 84, 255–264 (2019)

25. Francescomarino, C.D., Dumas, M., Maggi, F.M., Teinemaa, I.:
Clustering-based predictive process monitoring. IEEE Trans. Serv.
Comput. 12(6), 896–909 (2019)

26. Teinemaa, I., Dumas, M., Maggi, F.M., Francescomarino, C. D.:
Predictive business processmonitoringwith structured andunstruc-
tured data. In: Marcello, L.R., Peter, L., Oscar, P. (eds) Business
Process Management, vol. 9850, pp. 401–417. Springer Interna-
tional Publishing (2016)

27. Le, M., Nauck, D., Gabrys, B., Martin, T.: Sequential clustering
for event sequences and its impact on next process step predic-
tion. In: Anne, L., Olivier, S., Bernadette, B.-M., Ronald, R.Y.
(eds.) Information Processing and Management of Uncertainty in
Knowledge-Based Systems, vol. 442, pp. 168–178. Springer Inter-
national Publishing, Berlin (2014)

28. Lakshmanan, G.T., Shamsi, D., Doganata, Y.N., Unuvar, M., Kha-
laf, R.: A markov prediction model for data-driven semi-structured
business processes. Knowl. Inf. Syst. 42(1), 97–126 (2015)

29. Breuker, D., Matzner, M., Delfmann, P., Becker, J.: Comprehen-
sible predictive models for business processes. MIS Q. 40(4),
1009–1034 (2016)

30. Márquez-Chamorro, A.E., Resinas, M., Antonio, R.-C., Miguel,
T.: Run-time prediction of business process indicators using evo-
lutionary decision rules. Expert Syst. Appl. 87, 1–14 (2017)

31. Márquez-Chamorro, A.E., Resinas, M., Ruiz-Cortes, A.: Predic-
tive monitoring of business processes: a survey. IEEE Trans. Serv.
Comput. 11(6), 962–977 (2018)

32. Evermann, J., Rehse, J.-R., Fettke, P.: Predicting process behaviour
using deep learning. Decis. Supp. Syst. 100, 129–140 (2017)

33. Tax, N., Verenich, I., Rosa, M. L., Dumas, M.: Predictive busi-
ness process monitoring with LSTM neural networks. In: Eric, D.,
Klaus, P. (eds) Advanced Information Systems Engineering, vol.
10253, pp. 477–492. Springer International Publishing (2017)

34. Mehdiyev, N., Evermann, J., Fettke, P.: A novel business process
predictionmodel using a deep learningmethod. Bus. Inf. Syst. Eng.
62(2), 143–157 (2020)

35. Galanti, R., Coma-Puig, B., Leoni, M.D., Carmona, J., Navarin,
N.: Explainable predictive process monitoring. In: 2020 2nd Inter-
national Conference on Process Mining (ICPM), pp. 1–8. IEEE
(2020)

36. Conforti, R., de Leoni, M., La, R., Marcello, A., van der Aalst,
W.M.P., Hofstede, A.H.M.: A recommendation system for predict-
ing risks across multiple business process instances. Decis. Supp.
Syst. 69, 1–19 (2015)

37. Fahrenkrog-Petersen, S.A., Tax, N., Teinemaa, I., Dumas, M.,
Leoni, M.D., Maggi, F.M., Weidlich, M.: Fire now, fire
later: alarm-based systems for prescriptive process monitoring.
arXiv:1905.09568 [cs, stat] (2019)

38. Weinzierl, S., Dunzer, S., Zilker, S.,Matzner,M.: Prescriptive busi-
ness process monitoring for recommending next best actions. In:
Dirk, F., Chiara, G., Jörg, B., Marlon, D. (eds.) Business Process
Management Forum, pp. 193–209. Springer International Publish-
ing, Cham (2020)

39. Dees, M., de Leoni, M., van der Aalst, W.M.P., Reijers, H.A.:What
if process predictions are not followed by good recommendations?
In: Jan, B., Jan, M., Michael, R. (eds) Proceedings of the Industry
Forum at BPM 2019, vol. 2428, pp. 61–72. CEUR-WS.org (2019)

40. de Leoni, M., Dees, M., Reulink L.: Design and evaluation of
a process-aware recommender system based on prescriptive ana-
lytics. In: 2020 2nd International Conference on Process Mining
(ICPM), pp. 9–16 (2020)

41. Badakhshan, P., Bernhart, G., Geyer-Klingeberg, J., Nakladal, J.,
Schenk, S., Vogelgesang, T.: The action engine - turning pro-
cess insights into action. In: 2019 ICPM Demo Track, pp. 28–31,
Aachen, Germany (2019)

42. Park, G., van der Aalst, W.M.P.: Realizing a digital twin of an
organization using action-oriented process mining. In: 2021 3rd
International Conference on Process Mining (ICPM), pp. 104–111
(2021)

43. van der Aalst, W.M.P.: Object-centric process mining: dealing with
divergence and convergence in event data. In: Peter, C.Ö., Gwen,
S. (eds.) Software Engineering and Formal Methods, vol. 11724,
pp. 3–25. Springer International Publishing, Cham (2019)

44. Ghahfarokhi, A.F., Park, G., Berti, A., van der Aalst, W.M.P.: A
standard for object-centric event logs. In: Ladjel, B., Marlon, D.,
Panagiotis, K., Raimundas, M., Ahmed, A., Matthias, W., Mirjana,
I., Olaf, H. (eds.) New Trends in Database and Information Sys-
tems, pp. 169–175. Springer International Publishing,Cham (2021)

45. Park, G., van der Aalst, W.M.P.: Towards reliable business process
simulation: A framework to integrate erp systems. In: Adriano,
A., Asif, G., Selmin, N., Iris, R.-B., Rainer, S., Jelena, Z. (eds.)
Enterprise, Business-Process and Information Systems Modeling,
pp. 112–127. Springer International Publishing, Cham (2021)

46. van der Aalst, W.M.P.: Aalst and Alessandro Berti. Discovering
object-centric petri nets. Fundamenta Informaticae 175(1), 1–40
(2020)

47. Burattin, A.: Process Mining for Stream Data Sources, pp. 177–
204. Springer International Publishing, Cham (2015)

48. Carmona, J., Ricard,G.:Online techniques for dealingwith concept
drift in process mining. In: Jaakko, H., Frank, K., Allan, T. (eds.)
Adva. Intell. Data Anal. XI, pp. 90–102. Springer, Berlin (2012)

49. Omori, N.J., Tavares, G.M., Ceravolo, P., Barbon Jr, S.: Comparing
concept drift detection with process mining tools. In: Proceedings
of theXVBrazilian Symposiumon Information Systems, SBSI’19,
NewYork, NY, USA, 2019. Association for ComputingMachinery

123

Progress in Artificial Intelligence

50. Adams, J.N., van Zelst, S.J., Quack, L., Hausmann, K., van der
Aalst, W.M.P., Rose, T.: A framework for explainable concept drift
detection in process mining. In: Artem, P., Moe, T.W., Amy, V.L.,
Manfred, R. (eds.) Business Process Management, pp. 400–416.
Springer International Publishing, Cham (2021)

51. Maisenbacher, M., Weidlich, M.: Handling concept drift in predic-
tive process monitoring. In: 2017 IEEE International Conference
on Services Computing (SCC), pp. 1–8 (2017)

52. van der Aalst,W.M.P., Dustdar, S.: Processmining put into context.
IEEE Internet Comput. 16(1), 82–86 (2012)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

