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Abstract
The Alpha algorithm was the first process discovery algorithm that was able to discover process models
with concurrency based on incomplete event data while still providing formal guarantees. However,
as was stated in the original paper, practical applicability is limited when dealing with exceptional
behavior and processes that cannot be described as a structured workflow net without short loops. This
paper presents the Alpha+++ algorithm that overcomes many of these limitations, making the algorithm
competitive with more recent process mining approaches. The different steps provide insights into the
practical challenges of learning process models with concurrency, choices, sequences, loops, and skipping
from event data. The approach was implemented in ProM and tested on various publicly available,
real-life event logs.
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1. Introduction

The original Alpha algorithm was developed over twenty years ago [1, 2]. The goal of the
algorithm was to show the challenges related to discovering process models with concurrency
from example traces. It was formally proven that, a process modeled as a structuredworkflow net
without short loops, can be rediscovered from an event log that is directly-follows complete [2].
Despite this remarkable theoretical result, the Alpha algorithm has limited practical relevance
for two main reasons:

• The original algorithm did not attempt to filter out infrequent behavior. Since exceptional
behavior is not separated from frequent behavior, it is generally impossible to uncover
structure from real-life event logs.

• The original algorithm assumed that the process can be modeled as a free-choice Petri
net with unique visible activity labels. Most real-life processes can not be modeled as a
structured workflow net without short loops and unique visible labels.

These limitations were already acknowledged in the papers proposing the algorithm, e.g., the
focus of [2] was on showing the theoretical limits of process discovery based on directly-follows
complete event logs. Many of the later process discovery approaches use these insights. Various

Algorithms and Theories for the Analysis of Event Data (ATAED’23), 2023, Portugal



extensions of the Alpha algorithm have been proposed, e.g., [3] extends the core algorithm to
deal with long-term dependencies, and [4] extends the core algorithm to deal with invisible
activities (e.g., skipping). Region-based process-discovery approaches provide formal guarantees.
State-based regions were introduced by Ehrenfeucht and Rozenberg [5] in 1989 and generalized
by Cortadella et al. [6]. In [7], it is shown how these state-based regions can be applied to
process mining by first creating a log-based automaton using different abstractions. In [8, 9],
refinements are proposed to tailor state-based regions toward process discovery. Language-
based regions work directly on traces without creating an automaton first; see, for example, the
approaches presented in [10, 11, 12].
Variants of the Alpha algorithm and the region-based approaches have problems dealing

with infrequent behavior and are rarely used in practice. The region-based approaches are also
infeasible for larger models and logs. Approaches such as the eST-Miner [13] and the different
variants of the inductive miner [14, 15] aim to provide formal guarantees but can also handle
infrequent behavior. Variants of the inductive miner have also been implemented in various
commercial systems (e.g., Celonis). The so-called split-miner uses a combination of approaches
to balance recall and precision [16].
The goal of this paper is to go back to the original ideas used by the Alpha algorithm and

make the algorithm work in practical settings. The result is the Alpha+++ algorithm, which, not
only extends the core algorithm, but also removes problematic noisy activities, adds invisible
activities, repairs loops, and post-processes the resulting Petri net. The approach uses a broad
combination of novel ideas, making the Alpha algorithm competitive when compared with
the state-of-the-art. The ideas incorporated in the Alpha+++ algorithm may also be used in
combination with other approaches (e.g., identifying problematic activities and introducing
artificially created invisible activities).

The remainder of this paper is organized as follows. Section 2 introduces event logs, directly-
follows graphs, and the original Alpha algorithm. Section 3 describes the Alpha+++ algorithm.
The algorithm has been implemented in ProM (cf. Section 4) and evaluated using various event
logs (cf. Section 5). Section 6 concludes the paper.

2. Preliminaries

2.1. Event Logs

Process mining starts from event data. An event may have many different attributes. However,
here we focus on discovering the control flow and assume that each event has a case attribute,
an activity attribute, and a timestamp attribute. We only use the timestamps to order events
related to the same case. Therefore, each case can be described as a sequence of activities, also
called trace. An event log is a multiset of traces, as different cases can exhibit the same trace.

Definition 1 (Event Log). Uact is the universe of activity names. A trace 𝜎 = ⟨𝑎1, 𝑎2, … ,
𝑎𝑛⟩ ∈ Uact

∗ is a sequence of activities. An event log 𝐿 ∈ B(Uact
∗) is a multiset of traces.

For example, 𝐿1 = [⟨𝑎, 𝑏, 𝑐, 𝑑⟩400, ⟨𝑎, 𝑏, 𝑑⟩250, ⟨𝑑, 𝑎, 𝑏, 𝑐⟩4, ⟨𝑑, 𝑎, 𝑏⟩2] is an event log con-
taining 656 cases with 4 different variants. Variant ⟨𝑎, 𝑏, 𝑐, 𝑑⟩ is the most frequent one, i.e.,
𝐿1(⟨𝑎, 𝑏, 𝑐, 𝑑⟩) = 400.



Wewrite actMult(𝐿) = [ 𝜎(𝑖) ∣ 𝜎 ∈ 𝐿 ∧ 1 ≤ 𝑖 ≤ |𝜎| ] for the multiset of activities in an event
log 𝐿 and 𝑎𝑐𝑡(𝐿) = {𝑎 ∣ 𝑎 ∈ actMult(𝐿)} for the set of activities.

2.2. Directly-Follows Graphs

A Directly-Follows Graph (DFG) is a graph showing how often one activity is followed by another.
A DFG consists of the activities as nodes and has an arc from an activity 𝑎 ∈ Uact to an activity
𝑏 ∈ Uact if 𝑎 is directly followed by 𝑏. Two special nodes, corresponding to a start and an end
node, are added additionally.

Definition 2 (Directly-Follows Graph). A Directly-Follows Graph (DFG) is a pair 𝐺 =
(𝐴, 𝐺=⇒), where 𝐴 ⊆ Uact is a set of activities and 𝐺=⇒ ∈ B((𝐴 × 𝐴) ∪ ({▶} × 𝐴) ∪ (𝐴 ×
{■}) ∪ ({▶} × {■})) is a multiset of arcs. ▶ is the start node and ■ is the end node.

Note that a DFG has arc weights. Hence, 𝐺=⇒ is a multiset, where 𝐺=⇒(𝑎, 𝑏) denotes how often
𝑎 is followed by 𝑏. We write 𝑎 𝐺=⇒ 𝑏 if and only if 𝐺=⇒(𝑎, 𝑏) > 0 holds. Similarly, we say that
𝑎 𝐺=⇒

≥𝑡
𝑏 holds if and only if 𝐺=⇒(𝑎, 𝑏) ≥ 𝑡.

The construction of a DFG from an event log is straightforward.

Definition 3 (Constructing DFGs from Event Logs). Let 𝐿 ∈ B(Uact
∗) be an event log. We

can construct a DFG discdfg(𝐿) = (𝐴, 𝐿=⇒) based on the directly-follows relations of event
log 𝐿, with the set of activities 𝐴 = {𝑎 ∈ 𝜎 ∣ 𝜎 ∈ 𝐿} and the multiset of arcs 𝐿=⇒ =
[(𝜎𝑖, 𝜎𝑖+1) ∣ 𝜎 ∈ 𝐿′ ∧ 1 ≤ 𝑖 < |𝜎|] , where 𝐿′ = [⟨▶⟩ ⋅ 𝜎 ⋅ ⟨■⟩ ∣ 𝜎 ∈ 𝐿] denotes the event log
where artificial start and end activities have been added.

Given an event log 𝐿, we can construct a DFG discdfg(𝐿) = (𝐴, 𝐿=⇒), and in the context of 𝐿
refer to the directly-follows relations in 𝐿 represented by 𝐿=⇒ directly.

2.3. Petri Nets

We would like to discover process models which can represent more complex control-flow
structures, like choices, loops, and concurrency. Therefore, we use labeled Petri nets as a target
format for process discovery. The reader is assumed to be familiar with the Petri net basics.

Definition 4 (Labeled Petri Net). A labeled Petri net is a tuple 𝑁 = (𝑃 , 𝑇 , 𝐹 , 𝑙) with a set of
places 𝑃, a set of transitions 𝑇 (where 𝑇 ∩ 𝑃 = ∅), a flow relation 𝐹 ⊆ (𝑃 × 𝑇 ) ∪ (𝑇 × 𝑃), and
a labeling function 𝑙 ∈ 𝑇 ↛ Uact . We write 𝑙(𝑡) = 𝜏 if 𝑡 ∈ 𝑇 ∖ dom(𝑙) (i.e., 𝑡 is a silent transition
that cannot be observed).

A marking is represented by a multiset of places 𝑀 ∈ B(𝑃 ). For a node 𝑥 ∈ 𝑃 ∪ 𝑇, we
define the preset of 𝑥 as •𝑥 = {𝑦 ∈ 𝑃 ∪ 𝑇 ∣ (𝑦, 𝑥) ∈ 𝐹} and the postset of 𝑥 as 𝑥• = {𝑦 ∈
𝑃 ∪ 𝑇 ∣ (𝑥, 𝑦) ∈ 𝐹}. We focus on so-called accepting Petri nets, i.e., Petri nets with a defined
initial and final state.



Definition 5 (Accepting Petri Net). An accepting Petri net is a triplet AN = (𝑁, 𝑀init , 𝑀final)
where 𝑁 = (𝑃 , 𝑇 , 𝐹 , 𝑙) is a labeled Petri net, 𝑀init ∈ B(𝑃 ) is the initial marking, and 𝑀final ∈
B(𝑃 ) is the final marking. UAN is the set of accepting Petri nets.

The language defined by an accepting Petri net is then simply given by the set of traces
corresponding to all firing sequences that start in the initial marking 𝑀𝑖𝑛𝑖𝑡 and end in the final
marking 𝑀𝑓𝑖𝑛𝑎𝑙. A firing sequence leading from 𝑀𝑖𝑛𝑖𝑡 to 𝑀𝑓𝑖𝑛𝑎𝑙 is converted into a trace, i.e.,
a sequence of activities. Note that transitions that fire are mapped onto the corresponding
activities. If a transition 𝑡 is silent (i.e., 𝑙(𝑡) = 𝜏), no corresponding activity is created when
firing 𝑡. Hence, the language of an accepting Petri net is a set of traces.

2.4. Alpha Algorithm

A process discovery algorithm aims to discover a model from event data such that the language
of the model best characterizes the example behavior seen in the event log.

Definition 6 (Process Discovery Algorithm). A process discovery algorithm is a function
disc ∈ B(Uact

∗) → UAN , i.e., based on a multiset of traces, an accepting Petri net is discovered.

The classical Alpha process discovery algorithm was introduced in [2]. To be able to better
explain the extensions presented in this paper, we split the description into three main parts.
From an input event log 𝐿, place candidates are constructed based on the directly-follows
relations of the log. The resulting set of place candidates is pruned to remove dominated
candidates. Finally, the discovered Petri net is constructed.

Candidate Building

Cnd = {(𝐴, 𝐵) ∣ ∅ ⊊ 𝐴, 𝐵 ⊆ 𝑎𝑐𝑡(𝐿) ∧ ∀𝑎∈𝐴∀𝑏∈𝐵(𝑎 𝐿=⇒ 𝑏)

∧ ∀𝑎,𝑎′∈𝐴(𝑎 𝐿=⧸⇒ 𝑎′) ∧ ∀𝑏,𝑏′∈𝐵(𝑏 𝐿=⧸⇒ 𝑏′)}

Candidate Pruning

Sel = {(𝐴1, 𝐴2) ∈ Cnd ∣ ∀(𝐴′
1,𝐴′

2)∈Cnd ((𝐴1 ⊆ 𝐴′
1 ∧ 𝐴2 ⊆ 𝐴′

2)
⇒ (𝐴1, 𝐴2) = (𝐴′

1, 𝐴′
2))}

Petri Net Construction Let 𝑃 𝑁 = ((𝑃 , 𝑇 , 𝐹 , 𝑙), 𝑀𝑖𝑛𝑖𝑡, 𝑀𝑓𝑖𝑛𝑎𝑙), where:
• 𝑃 = {𝑝(𝐴,𝐵) ∣ (𝐴, 𝐵) ∈ Sel} ∪ {𝑖𝑊, 𝑜𝑊}
• 𝑇 = {𝑡𝑎 ∣ 𝑎 ∈ 𝑎𝑐𝑡(𝐿)}
• 𝐹 = {(𝑡𝑎, 𝑝(𝐴,𝐵)) ∣ (𝐴, 𝐵) ∈ Sel ∧ 𝑎 ∈ 𝐴} ∪ {(𝑝(𝐴,𝐵), 𝑡𝑏) ∣ (𝐴, 𝐵) ∈ Sel ∧ 𝑏 ∈

𝐵} ∪ {(𝑖𝑊, 𝑡𝑠) ∣ ∃𝜎 ⟨𝑠⟩ ⋅ 𝜎 ∈ 𝐿} ∪ {(𝑡𝑒, 𝑜𝑊) ∣ ∃𝜎 𝜎 ⋅ ⟨𝑒⟩ ∈ 𝐿}
• 𝑙 = {(𝑡𝑎, 𝑎) ∣ 𝑎 ∈ 𝑎𝑐𝑡(𝐿)}
• 𝑀𝑖𝑛𝑖𝑡 = [𝑖𝑊]
• 𝑀𝑓𝑖𝑛𝑎𝑙 = [𝑜𝑊]



3. Alpha+++

In this section, we introduce the Alpha+++ process discovery algorithm based on the classical
Alpha algorithm. Through certain pre-processing steps on the event log and a corresponding
DFG, as well as fitness-based place filtering, this algorithm is especially well suited for real-life
event logs.

The input for this process discovery algorithm is an event log 𝐿. In particular, only ordered
traces of activities with corresponding frequencies are required. For the main steps of the
algorithm, a DFG based on the event log 𝐿 is used exclusively. Traces of the event log are only
used for replay to remove unfitting place candidates. For simplicity, we assume that the traces
of 𝐿 already include artificial start and end activities, in particular, we assume {▶, ■} ⊆ 𝑎𝑐𝑡(𝐿).
We introduce the steps of the algorithm in the following order:

1. Determine Activities, where the set of activities used throughout the algorithm is deter-
mined. Problematic activities are removed from the event log and artificial activities are
added, resulting in a repaired event log 𝐿̂.

2. Create an Advising DFG, where an advising DFG is constructed based on the DFG corre-
sponding to the repaired log 𝐿̂, retaining only some of the original DFG edges.

3. Candidate Building, where a set of place candidates is built based on the directly-follows
relation of the activities.

4. Candidate Pruning, where through efficient multistep filtering unfit or undesirable place
candidates are discarded.

5. Petri Net Construction, where a Petri net is constructed based on the activities of the event
log, the added artificial activities and the remaining place candidates.

6. Post-Processing Petri Net, where the repaired event log is replayed on the Petri net to
remove problematic places.

3.1. Determine Activities

First, we determine the set of activities used in the later steps. Initially, starting with the set of
activities occurring in the log, we first remove problematic activities that can cause issues with
discovering place candidates later on. Next, we also add artificial activities to allow discovery
of place candidates for certain loop and skip constructs.

3.1.1. Removing Problematic Activities

Problematic activities can significantly alter the directly-follows relations of an event log, which
are used in the later steps to identify place candidates. In the most extreme case, if a problematic
activity randomly occurs between any other two activities in all traces, all the directly-follows
information between two other activities would be lost.
We select a subset A𝐿 ⊆ 𝑎𝑐𝑡(𝐿) of activities to keep and remove the other problematic

activities 𝑎𝑐𝑡(𝐿)∖A𝐿. There are many possible approaches to identifying problematic activities,



Figure 1: Two event logs (traces shown on the left) and their DFGs. In the first event log (𝐿⟲) the
directly-follows relation between ▶ and 𝑎 is the same as between 𝑐 and 𝑎. This causes issues, as the
corresponding place candidates all have very low fitness. The added artificial activity 𝜏 inserted between
the looped sequence ⟨𝑎, 𝑏, 𝑐⟩ solves this problem, as the problematic directly-follows relation between 𝑐
and 𝑎 is replaced.

such as calculating a problem-score per activity and considering all values above a certain
threshold as problematic. For instance, for a very simple problem-score, the fraction of directly-
follows relation involving an activity which are parallel, i.e., also occur in the opposite direction,
could be considered. This would, for example, allow to correctly identify the problem in the
aforementioned extreme case.

3.1.2. Adding Artificial Activities

Discovering Petri net constructs involving silent transitions is a non-trivial task for a DFG-based
algorithm. Additionally, in later steps, we want to use traces from the log to assess the fitness
of place candidates. Silent activities make calculating fitness scores significantly harder, as then
token-based replay is no longer sufficient and computationally expensive alignments have to
be computed. As a solution, we propose adding artificial activities to traces. They are not part
of the activity set of the event log and are only used to find and evaluate place candidates. In
the final discovered Petri net, these artificial activities are then translated as silent transitions.
This allows discovering Petri nets with silent transitions, while still retaining the advantages of
token-based replay fitness evaluation during the algorithm steps. We add artificial activities for
two types of constructs: Loops and Skips.

Adding artificial activities for loops is necessary, as the directly-follows relation between an
end activity and a start activity of a loop can cause the discovery of problematic places. For
example, consider the event log 𝐿⟲ = [⟨𝑎, 𝑏, 𝑐, 𝑑⟩, ⟨𝑎, 𝑏, 𝑐, 𝑎, 𝑏, 𝑐, 𝑑⟩]. Clearly, this event log
can be nicely expressed by a Petri net containing a loop construct, which allows repeating the
activities 𝑎, 𝑏, 𝑐. However, the directly-follows relation 𝑐 𝐿⟲==⇒ 𝑎 prevents discovering this loop
accurately, as shown in Figure 1.
We detect loop constructs based on the directly-follows relations of the input event log 𝐿.

For a given threshold 𝑑 ∈ R+, we can define the set of detected loops:



Definition 7 (Detected Loops). Let loops be the function that maps an event log to the set of
detected loop start and end activities.

loops(𝐿) = {(𝑏, 𝑎) ∈ 𝑎𝑐𝑡(𝐿) × 𝑎𝑐𝑡(𝐿) ∣ ∃(𝑥1,…,𝑥𝑘)∈𝑎𝑐𝑡(𝐿)∗,𝑖∈{1,…,𝑘}(𝑥𝑖 = 𝑎
∧ ∀𝑖∈{1,…,𝑘−1}(𝑥𝑖

𝐿==⇒
≥𝑑

𝑥𝑖+1)

∧ 𝑥𝑘
𝐿==⇒

≥𝑑
𝑏 ∧ 𝑏 𝐿==⇒

≥𝑑
𝑎)}

The parameter 𝑑 determines the minimal DFG edge weight to consider when looking for loops.
For example, with a threshold 𝑑=1 and the event log 𝐿⟲, we can calculate loops(𝐿⟲) = {(𝑐, 𝑎)}.
As loop constructs can make a process model very imprecise, we do not want to falsely detect
loop behavior from rather infrequent directly-follows relations. For convenience, we can also
consider threshold values 𝑑 relative to the mean directly-follows weight.
For each detected loop endpoint pair (𝑏, 𝑎) ∈ loops(𝐿), we want to add an artificial activity

loop𝑏,𝑎 ∉ 𝑎𝑐𝑡(𝐿). We write A𝑙𝑜𝑜𝑝 = {loop𝑏,𝑎 ∣ (𝑏, 𝑎) ∈ loops(𝐿)} to denote the set of added
artificial loop activities. Additionally, we define a transformation function which transforms a
trace 𝜎 ∈ 𝐿 to a trace 𝜎′ ∈ (A𝐿 ∪ A𝑙𝑜𝑜𝑝)∗.

Definition 8 (Loop Repair Function). Let repair
⟲
be the function that transforms a trace 𝜎

into a repaired trace with added artificial loop activities.

repair
⟲

(𝜎, 𝐿) =
⎧{
⎨{⎩

⟨𝑏, loop𝑏,𝑎, 𝑎⟩ ⋅ repair
⟲

(𝜎′, 𝐿) if ∃(𝑏,𝑎)∈loops(𝐿)𝜎 = ⟨𝑏, 𝑎⟩ ⋅ 𝜎′

⟨⟩ if 𝜎 = ⟨⟩
⟨𝑥⟩ ⋅ repair

⟲
(𝜎′, 𝐿) otherwise,with 𝜎 = ⟨𝑥⟩ ⋅ 𝜎′

This function will be later used to transform the input event log 𝐿 into a repaired event log, in
which artificial activities have been added to relevant traces.

Next, we describe how artificial activities can assist in correctly discovering activity Skips, as
shown in Figure 2.

For a directly-follows-weight threshold 𝑑 ∈ R+, the detected skips for event log 𝐿 are defined
by the following function, which provides the set of activities that have been detected as being
“skippable” after an activity 𝑎 ∈ (A𝐿 ∪ A𝑙𝑜𝑜𝑝).

skips(𝑎, 𝐿) = {𝑏 ∈ 𝑎𝑐𝑡(𝐿) ∣ 𝑎 𝐿=⇒ 𝑏 ∧ 𝑎 𝐿=⧸⇒ 𝑎 ∧ 𝑏 𝐿=⧸⇒
≥𝑑

𝑎 ∧ 𝑏 𝐿=⧸⇒
≥𝑑

𝑏 ∧ 𝑎, 𝑏 ∉ {▶, ■}

∧ ∅ ⊊ {𝑥 ∈ 𝑎𝑐𝑡(𝐿) ∣ 𝑏 𝐿==⇒
≥𝑑

𝑥} ⊆ {𝑥 ∈ 𝑎𝑐𝑡(𝐿) ∣ 𝑎 𝐿==⇒
≥𝑑

𝑥}}

If 𝐵 ∈ skips(𝑎, 𝐿) we assume that all activities 𝑏 ∈ 𝐵 are optional steps after 𝑎. To allow
appropriate model discovery in the rest of the algorithm, the log is repaired using a new
artificial activity 𝑠𝑘𝑖𝑝𝑎,𝐵 ∉ 𝑎𝑐𝑡(𝐿). The set of all artificial skip activities is denoted by A𝑠𝑘𝑖𝑝.
This artificial skip activity is inserted everywhere in a trace 𝜎 of 𝐿, where activity 𝑎 is not
directly followed by an activity 𝑏 ∈ 𝐵 in 𝜎 (i.e., 𝑏 was skipped). For that, we define the following



Figure 2: Two event logs and their DFGs showcasing the motivation for repairing implicit skips. The
directly-follows relation between 𝑎 and 𝑑 would suggest considering place candidates with poor fitness.
The second log, where an artificial activity 𝜏 is inserted where 𝑏 and 𝑐 are skipped, mitigates this problem
by replacing the directly-follows relation between 𝑎 and 𝑑.

transformation function:

repair𝜏(𝜎, 𝐿) =

⎧{{
⎨{{
⎩

⟨⟩ if 𝜎 = ⟨⟩
⟨𝑥⟩ ⋅ repair𝜏(𝜎′, 𝐿) if 𝜎 = ⟨𝑥⟩ ⋅ 𝜎′ ∧ skips(𝑥, 𝐿) = ∅
⟨𝑎, skipa,B⟩ ⋅ repair𝜏(⟨𝑥⟩ ⋅ 𝜎′, 𝐿) if 𝜎 = ⟨𝑎, 𝑥⟩ ⋅ 𝜎′ ∧ 𝑥 ∉ skips(𝑎, 𝐿)
⟨𝑎, 𝑥⟩ ⋅ repair𝜏(𝜎′, 𝐿) if 𝜎 = ⟨𝑎, 𝑥⟩ ⋅ 𝜎′ ∧ 𝑥 ∈ skips(𝑎, 𝐿)

We can now construct a repaired event log 𝐿̂ from the input event log 𝐿 based on the pre-
viously identified set of detected loops loops(𝐿) and skips skips(𝐿). For that, we use their
corresponding artificial activity set A𝑙𝑜𝑜𝑝 and A𝑠𝑘𝑖𝑝 as well as their corresponding trace trans-
formation functions repair

⟲
and repair𝜏 to transform the input event log 𝐿 into a repaired

event log 𝐿̂. Note that 𝑎𝑐𝑡(𝐿̂) = (A𝐿 ⊍ A𝑙𝑜𝑜𝑝 ⊍ A𝑠𝑘𝑖𝑝).

𝐿̂ = [repair𝜏 (repair
⟲

(𝜎, 𝐿↾A𝐿), 𝐿↾A𝐿) ∣ 𝜎 ∈ 𝐿↾A𝐿]

3.2. Create an Advising DFG

Next, we extract a pruned DFG from the repaired event log 𝐿̂, which ignores infrequent directly-
follows relations. This DFG is used as guidance using the following algorithm steps. Note
that this step does not modify the repaired event log: The output of this step is a pruned DFG
containing the activities 𝑎𝑐𝑡(𝐿̂) as nodes. Edges between activities 𝑎 and 𝑏 are retained if their
weight corresponds to at least 1% of the sum of the weights of all incoming edges to 𝑏 or 1% of
the sum of all outgoing edges from 𝑎. The value of 1% was determined as a good cutoff through
experimentation. In addition, edges with weights below an absolute threshold value 𝑛 ∈ N0
are also removed.

For the repaired event log 𝐿̂ and a given DFG-weight threshold 𝑛 ∈ N0, we define the advising
DFG (abbreviated as aDFG) as follows:



minW (𝑎, 𝑏) = 0.01 ⋅ min{ ∑
𝑐∈𝑎𝑐𝑡(𝐿̂)

𝐿̂=⇒(𝑐, 𝑏), ∑
𝑐∈𝑎𝑐𝑡(𝐿̂)

𝐿̂=⇒(𝑎, 𝑐)}

aDFG = (𝑎𝑐𝑡(𝐿̂), [(𝑎, 𝑏) ∈ 𝑎𝑐𝑡(𝐿̂)2∣ 𝐿̂=⇒(𝑎, 𝑏) ≥ max {𝑛,minW (𝑎, 𝑏)}])

3.3. Candidate Building

With the repaired event log and the aDFG, we can continue with building place candidates. Place
candidates are composed of two sets of activities: The first set corresponds to the transitions
that should add a token to this place in a Petri net. The second set corresponds to transitions
that should remove a token from this place.
The set of all place candidates is given by:

Cnd0 = {(𝐴1, 𝐴2) ∣ 𝐴1, 𝐴2 ⊆ 𝑎𝑐𝑡(𝐿̂) ∧ ∀𝑎1∈𝐴1
∀𝑎2∈𝐴2

(𝑎1
aDFG==⇒ 𝑎2)

∧ ∀𝑎1∈𝐴1
∀𝑎2∈𝐴1∖𝐴2

(𝑎1
aDFG=⧸⇒ 𝑎2)

∧ ∀𝑎1∈𝐴2∖𝐴1
∀𝑎2∈𝐴2

(𝑎1
aDFG=⧸⇒ 𝑎2)

∧ ∃𝑎1∈𝐴1∖𝐴2
∃𝑎2∈𝐴2∖𝐴1

(𝑎2
aDFG=⧸⇒ 𝑎1)}

3.4. Candidate Pruning

The set of place candidates Cnd0 includes many unfit places, which would produce process
models with very low fitness. Furthermore, some place candidates might be dominated by others
(e.g., the place candidate ({𝑎}, {𝑓}) is dominated by the candidate ({𝑎, 𝑏}, {𝑒, 𝑓})). Pruning
the set of place candidates requires an efficient approach, as the number of place candidates
can easily grow huge. We propose a three-step pruning approach. First, place candidates are
filtered purely based on activity counts. If the difference in frequency of the input and output
activity set is relatively large, the place candidate is rather unfit. This condition can be checked
very efficiently. Next, the local fitness of the place candidate is calculated based on local trace
replay. Local trace replay takes the order of the activities in the traces into account, and thus
can detect even more unfit place candidates. Finally, to remove dominated place candidates, we
retain only maximal place candidates.

3.4.1. Balance-based Pruning:

For the balance-based pruning, we consider the number of activity occurrences in the log 𝐿̂
using actMult(𝐿̂). For a set of activities, 𝐴 ⊆ 𝑎𝑐𝑡(𝐿̂) we can then sum the frequencies together
as count(𝐿̂, 𝐴) = ∑𝑎∈𝐴 actMult(𝐿̂)(𝑎). Based on that, we define the balance of a candidate
(𝐴1, 𝐴2):

balance(𝐿̂, 𝐴1, 𝐴2) = |count(𝐿̂, 𝐴1) − count(𝐿̂, 𝐴2)|
max{count(𝐿̂, 𝐴1), count(𝐿̂, 𝐴2)}



The balance of a candidate is between 0 and 1. Higher values are an indication that the place
candidate is unfit. Based on a balance threshold 𝑏 ∈ [0, 1], candidates with a higher balance
value than 𝑏 can be filtered out:

Cnd1 = {(𝐴1, 𝐴2) ∈ Cnd0 ∣ balance(𝐿̂, 𝐴1, 𝐴2) ≤ 𝑏}

3.4.2. Fitness-based Pruning:

Let fit(𝜎, (𝐴1, 𝐴2), 𝑘) be defined as follows:

fit(𝜎, (𝐴1, 𝐴2), 𝑘) =

⎧
{
{
{
{
⎨
{
{
{
{
⎩

1 if 𝜎 = ⟨⟩, 𝑘 = 0
0 if 𝜎 = ⟨⟩, 𝑘 ≠ 0
0 if 𝜎 = ⟨𝑎⟩ ⋅ 𝜎′, 𝑘 = 0, 𝑎 ∉ 𝐴1, 𝑎 ∈ 𝐴2

fit(𝜎′, (𝐴1, 𝐴2), 𝑘 + 1) if 𝜎 = ⟨𝑎⟩ ⋅ 𝜎′, 𝑎 ∈ 𝐴1, 𝑎 ∉ 𝐴2

fit(𝜎′, (𝐴1, 𝐴2), 𝑘 − 1) if 𝜎 = ⟨𝑎⟩ ⋅ 𝜎′, 𝑘 ≥ 1, 𝑎 ∉ 𝐴1, 𝑎 ∈ 𝐴2

fit(𝜎′, (𝐴1, 𝐴2), 𝑘) if 𝜎 = ⟨𝑎⟩ ⋅ 𝜎′, (𝑎 ∈ 𝐴1 ∩ 𝐴2 ∨ 𝑎 ∉ 𝐴1 ∪ 𝐴2)

Note that fit(𝜎, (𝐴1, 𝐴2), 0) = 1 if the place candidate (𝐴1, 𝐴2) fits the trace; otherwise it
takes the value 0.
The traces relevant for a place candidate (𝐴1, 𝐴2) are defined by the following function:

rel(𝐴1, 𝐴2) = [𝜎 = ⟨𝑎1, … , 𝑎𝑛⟩ ∈ 𝐿̂ ∣ ∃𝑖∈{1,…,𝑛}(𝑎𝑖 ∈ 𝐴1 ∨ 𝑎𝑖 ∈ 𝐴2)]

We consider traces relevant for a place candidate, if they contain at least one activity that is in
the set of outgoing or ingoing activities of that place candidate. For a single activity, we use the
notation rel(𝑎) ∶= rel({𝑎}, ∅) to denote the traces containing that activity.

We write fit(𝜎, (𝐴1, 𝐴2)) ≔ fit(𝜎, (𝐴1, 𝐴2), 0) and

fit(𝐿̂, (𝐴1, 𝐴2)) ≔ ∑
𝜎∈rel(𝐴1,𝐴2)

fit(𝜎, (𝐴1, 𝐴2))

for ease of notation.
For a given local candidate fitness threshold 𝑡 ∈ [0, 1], the candidates remaining after the

local fitness replay pruning are then given as:

mfit(𝐴1, 𝐴2) = min{
∑𝜎∈rel(𝑎) fit(𝜎, (𝐴1, 𝐴2))

|rel(𝑎)|
∣ 𝑎 ∈ 𝐴1 ∪ 𝐴2}

Cnd2 = {(𝐴1, 𝐴2) ∈ Cnd1 ∣ fit(𝐿̂, (𝐴1, 𝐴2))
|rel(𝐴1, 𝐴2)|

≥ 𝑡 ∧ mfit(𝐴1, 𝐴2) ≥ 𝑡}

3.4.3. Maximal Candidate Selection:

Finally, as the last candidate pruning step, all dominated place candidates are removed, just like
in the original Alpha algorithm.

Sel = {(𝐴1, 𝐴2) ∈ Cnd2 ∣ ∀(𝐴′
1,𝐴′

2)∈Cnd2
((𝐴1 ⊆ 𝐴′

1 ∧ 𝐴2 ⊆ 𝐴′
2)

⇒ (𝐴1, 𝐴2) = (𝐴′
1, 𝐴′

2))}



3.5. Petri Net Construction

Based on the remaining place candidates, an accepting Petri net is constructed as the tuple
((𝑃 , 𝑇 , 𝐹 , 𝑙), 𝑀𝑖𝑛𝑖𝑡, 𝑀𝑓𝑖𝑛𝑎𝑙), where

• 𝑃 = {𝑝(𝐴1,𝐴2) ∣ (𝐴1, 𝐴2) ∈ Sel}

• 𝑇 = {𝑡𝑎 ∣ 𝑎 ∈ 𝑎𝑐𝑡(𝐿̂) ∖ {▶, ■}}

• 𝐹 = {(𝑡𝑎, 𝑝(𝐴1,𝐴2)) ∣ (𝐴1, 𝐴2) ∈ Sel ∧ 𝑎 ∈ 𝐴1 ∖ {▶, ■}} ∪ {(𝑝(𝐴1,𝐴2), 𝑡𝑎) ∣ (𝐴1, 𝐴2) ∈
Sel ∧ 𝑎 ∈ 𝐴2 ∖ {▶, ■}}

• 𝑙 = {(𝑡𝑎, 𝑎) ∣ 𝑎 ∈ A𝐿} ∪ {(𝑡𝑎, 𝜏) ∣ 𝑎 ∈ (A𝑙𝑜𝑜𝑝 ∪ A𝑠𝑘𝑖𝑝}

• 𝑀𝑖𝑛𝑖𝑡 = [ 𝑝(𝐴1,𝐴2) ∈ 𝑃 ∣ ▶ ∈ 𝐴1 ]

• 𝑀𝑓𝑖𝑛𝑎𝑙 = [ 𝑝(𝐴1,𝐴2) ∈ 𝑃 ∣ ■ ∈ 𝐴2 ]

are the components defined using the results of the previous steps.

3.6. Post-Processing Petri Net

Let replay(𝑝, 𝑃 𝑁, 𝜎) be the replay function, which takes the value 1 exactly when the place 𝑝
of the Petri net 𝑃 𝑁 can replay trace 𝜎 (i.e., there is no missing or remaining token in 𝑝 at any
time when replaying 𝜎 on 𝑃 𝑁).
For a given local place replay fitness threshold 𝑟 ∈ [0, 1], we can then define the result of

the post-process replay as ((𝑃 ′, 𝑇 , 𝐹 ′, 𝑙), 𝑀 ′
𝑖𝑛𝑖𝑡, 𝑀 ′

𝑓𝑖𝑛𝑎𝑙), where the set of updated places 𝑃 ′

is given by:

𝑃 ′ = {𝑝(𝐴1,𝐴2) ∣ (𝐴1, 𝐴2) ∈ Sel ∧
∑𝜎∈𝑟𝑒𝑙(𝐴1,𝐴2) replay(𝑝, 𝑃 𝑁, 𝜎)

|𝑟𝑒𝑙(𝐴1, 𝐴2)|
≥ 𝑟}

The flow relation and initial and final markings are also updated correspondingly:

• 𝐹 ′ = {(𝑖, 𝑜) ∈ 𝐹 ∣ 𝑖 ∈ 𝑃 ′ ∧ 𝑜 ∈ 𝑃 ′}

• 𝑀 ′
𝑖𝑛𝑖𝑡 = [ 𝑝 ∈ 𝑀𝑖𝑛𝑖𝑡 ∣ 𝑝 ∈ 𝑃 ′ ]

• 𝑀 ′
𝑓𝑖𝑛𝑎𝑙 = [ 𝑝 ∈ 𝑀𝑓𝑖𝑛𝑎𝑙 ∣ 𝑝 ∈ 𝑃 ′ ]

The final accepting Petri net discovered is ((𝑃 ′, 𝑇 , 𝐹 ′, 𝑙), 𝑀 ′
𝑖𝑛𝑖𝑡, 𝑀 ′

𝑓𝑖𝑛𝑎𝑙).

4. Implementation

We implemented the Alpha+++ algorithm as a ProM1 plugin (Java) and also created a Python
implementation2 for large-scale evaluation on a variety of real-life event logs. The ProM plugin

1https://promtools.org/
2https://github.com/aarkue/alpha-revisit-python



Table 1
Overview of the event logs used for evaluation. We used a random sample of 3000 cases from the
BPI Challenge 2019 log for computational reasons, as it allowed for alignment-based evaluation of the
discovered models.

Event Log #Events #Activities #Traces #Variants Reference
RTFM 561,470 11 150,370 231 [17]
Sepsis 15,214 16 1,050 846 [18]
BPI Challenge 2019
(Sample of 3000 Cases)

18,972 34 3,000 470 [19]

BPI Challenge 2020
(Request for Payment)

36,796 19 6,886 89 [20]

BPI Challenge 2020
(Domestic Declaration)

56,437 17 10,500 99 [21]

(AlphaRevisitExperiments) can be installed in ProMNightly versions and can be used in standard
mode to simply discover a Petri net or in interactive mode to experiment with different algorithm
step options and view additional information (e.g., how many place candidates were pruned in
which step). In both versions, the Alpha+++ preset can be selected out of the preset list on the
top. The parameters used throughout the algorithm steps can then be changed. Additionally,
the different algorithm steps can be swapped with alternatives or skipped, allowing for further
experimentation.

5. Evaluation

To evaluate the proposed Alpha+++ algorithm (𝛼+++), we discovered Petri nets for five real-life
event logs, shown in Table 1. For comparison, we also discovered models using the Inductive
Miner Infrequent (IMf) and the standard Alpha algorithm (𝛼). We subsequently calculated
alignment-based fitness, precision and F1-scores using PM4Py3.
For IMf, we evaluated four models per event log using noise thresholds of 0.1, 0.2, 0.3 and

0.4. For 𝛼, we used four variant filtering approaches upfront: Either only selecting the 10 most
common variants or the 𝑛 most common variants to cover at least 10%, 50% or 80% of traces.
For 𝛼+++, we chose artificial activity thresholds of 2 and 4 (relative to the mean directly-follows
weight) for the log repair steps. Here, a lower threshold value causes more artificial activities to
be added. For each artificial activity threshold, we selected five combinations of the balance
𝑏, local candidate fitness 𝑡 and local place replay fitness 𝑟 thresholds. Note, that for 𝑡 and 𝑟 a
value closer to 1 and for 𝑏 a value closer to 0 is more restrictive. We did not apply problematic
activities filtering.
The evaluation results are shown in Table 2. Overall, the fitness and F1-scores of 𝛼+++ are

competitive compared to the IMf. 8 of the 20 models discovered with 𝛼 are not easy sound (i.e.,
no final marking is reachable), and thus no alignment scores could be computed. The remaining
12 models exhibit rather low fitness for some logs but very high precision across the board,
significantly boosting the corresponding F1-values. Although our approach does not guarantee

3https://pm4py.fit.fraunhofer.de/ (Version 2.6.1)



easy soundness, all 50 Petri nets discovered with 𝛼+++ are easy sound and allow computation
of alignments. There are notable differences across the different event logs: 𝛼+++ performs
significantly worse compared to the IMf on the Sepsis log in terms of F1-score, caused by lower
precision scores, as the models discovered with 𝛼+++ seem to be underfitting. On the two BPI
Challenge 2020 logs, 𝛼+++ outperforms the IMf in most configurations, often also exhibiting
better fitness and precision scores simultaneously.

The influence of the parameters of 𝛼+++ is mostly as expected: More restrictive 𝑏, 𝑡, 𝑟 values
improve the fitness of the models while decreasing the precision.

Manual inspection of the discovered models reveals that the models discovered with 𝛼+++ are
mostly rather simple and often consist of several disconnected model fragments. Furthermore,
multiple models exhibit redundant structures involving silent transitions (e.g., a place with
one labeled transition as preset and one silent transition as postset). Such constructs could be
removed by further post-processing of the Petri net. For further details, a comprehensive list
of the discovered models, as well as simplicity and generalization results, we refer interested
readers to the extended report version of this paper at [22].

6. Conclusion

In this paper, we revisited the Alpha algorithm to overcome its limitations, focusing on real-life
event logs. For that, we presented the Alpha+++ algorithm which, like the Alpha algorithm,
primarily uses directly-follows relations to discover Petri nets. Alpha+++ pre-processes event
logs by adding artificial activities for potential loop or skip constructs. This allows discovering
silent transitions while still assessing the fitness of places by easily computable token-based
replay instead of expensive alignment computations. Subsequently, place candidates are gener-
ated based on a pruned DFG. A multistep candidate filtering approach efficiently removes place
candidates with low fitness, configurable through parameters. We implemented the Alpha+++
algorithm both as a ProM plugin and in Python. The ProM plugin is available in ProM nightly
builds and also features an interactive mode to allow experimenting with different algorithm
steps and parameters. We evaluated the Alpha+++ on five real-life event logs and compared
the results to the classical Alpha algorithm and the widely adapted Inductive Miner Infrequent.
Overall, the results indicate that the Alpha+++ algorithm is competitive in terms of fitness and
precision. In general, the different step parameter configurations tested reliably determine the
trade-off between fitness and precision.
Further research should include further evaluation of the algorithm. For that, additional

performance metrics like simplicity or generality could be included and also compared to other
process discovery algorithms. It is particularly interesting to see if there are any patterns re-
garding algorithm parameters, event log properties, and model performance. Such observations
could enable automatic parameter selection based on the log, and thus simplify Alpha+++ to a
well-performing one-in-all algorithm. Additionally, a more comprehensive qualitative analysis
of the discovered models is needed. Furthermore, the assumptions and effects of the algorithm
steps should be studied, e.g., using artificial event logs with relevant control structures. Further
research could also explore if any theoretical guarantees, such as easy-soundness, are attainable,
e.g., using more sophisticated post-processing of the discovered Petri net.



Ta
bl
e
2:
Ev

al
ua
tio

n
Re

su
lts

In
du

ct
iv
e
M
in
er

In
fr
eq

ue
nt

A
lp
ha

A
lg
or
it
hm

A
lp
ha

++
+
A
lg
or
it
hm

N
oi
se

T
hr
es
ho

ld
Va

ri
an
tF

ilt
er
in
g

Ar
tifi

ci
al

A
ct
iv
ity

Th
re
sh
ol
d
of

2.
0

Ar
tifi

ci
al

A
ct
iv
ity

Th
re
sh
ol
d
of

4.
0

0.
1

0.
2

0.
3

0.
4

To
p1
0

10
%

50
%

80
%

𝑏=
0.

5
𝑡=

0.
5

𝑟=
0.

5

𝑏=
0.

3
𝑡=

0.
7

𝑟=
0.

6

𝑏=
0.

2
𝑡=

0.
8

𝑟=
0.

7

𝑏=
0.

2
𝑡=

0.
8

𝑟=
0.

8

𝑏=
0.

1
𝑡=

0.
9

𝑟=
0.

9

𝑏=
0.

5
𝑡=

0.
5

𝑟=
0.

5

𝑏=
0.

3
𝑡=

0.
7

𝑟=
0.

6

𝑏=
0.

2
𝑡=

0.
8

𝑟=
0.

7

𝑏=
0.

2
𝑡=

0.
8

𝑟=
0.

8

𝑏=
0.

1
𝑡=

0.
9

𝑟=
0.

9
R
T
FM

Fi
tn
es
s

0.
98
71

0.
90
94

0.
90
91

0.
76
57

0.
67
11

0.
67
31

0.
87
69

0.
87
69

0.
78
80

0.
94
12

0.
99
35

0.
99
35

0.
99
98

0.
91
60

0.
99
25

0.
99
35

0.
99
35

0.
99
98

Pr
ec
is
io
n

0.
62
18

0.
67
05

0.
79
59

0.
99
29

0.
67
97

1.
00
00

1.
00
00

1.
00
00

0.
52
23

0.
36
77

0.
30
82

0.
30
82

0.
30
86

0.
40
56

0.
31
27

0.
30
82

0.
30
82

0.
30
86

F1
Sc
or
e

0.
76
30

0.
77
19

0.
84
87

0.
86
46

0.
67
54

0.
80
46

0.
93
44

0.
93
44

0.
62
82

0.
52
89

0.
47
05

0.
47
05

0.
47
16

0.
56
22

0.
47
56

0.
47
05

0.
47
05

0.
47
16

Se
ps

is
C
as
es

Fi
tn
es
s

0.
93
82

0.
90
75

0.
84
21

0.
81
08

0.
63
78

–
–

–
0.
91
83

0.
93
62

0.
98
28

0.
99
65

0.
99
65

0.
92
75

0.
96
36

0.
99
48

0.
99
48

1.
00
00

Pr
ec
is
io
n

0.
60
49

0.
61
58

0.
62
98

0.
72
85

0.
99
16

–
–

–
0.
37
58

0.
29
22

0.
31
52

0.
26
33

0.
26
33

0.
28
55

0.
29
23

0.
29
23

0.
29
23

0.
28
05

F1
Sc
or
e

0.
73
56

0.
73
37

0.
72
06

0.
76
75

0.
77
63

–
–

–
0.
53
34

0.
44
54

0.
47
73

0.
41
66

0.
41
66

0.
43
65

0.
44
85

0.
45
18

0.
45
18

0.
43
81

B
PI

C
ha

ll
en

ge
20

19
(S
am

pl
e
of

30
00

C
as
es
)

Fi
tn
es
s

0.
99
06

0.
99
38

0.
95
36

0.
91
77

0.
62
82

0.
74
62

–
0.
32
05

0.
94
22

0.
94
31

0.
95
06

0.
95
06

1.
00
00

0.
94
22

0.
94
33

0.
96
02

0.
96
02

1.
00
00

Pr
ec
is
io
n

0.
20
86

0.
23
79

0.
23
83

0.
25
28

0.
99
86

1.
00
00

–
0.
99
64

0.
33
95

0.
31
80

0.
24
16

0.
24
16

0.
19
68

0.
37
48

0.
34
87

0.
25
01

0.
25
01

0.
19
68

F1
Sc
or
e

0.
34
46

0.
38
39

0.
38
13

0.
39
64

0.
77
12

0.
85
47

–
0.
48
50

0.
49
92

0.
47
57

0.
38
52

0.
38
52

0.
32
88

0.
53
63

0.
50
92

0.
39
68

0.
39
68

0.
32
88

B
PI

C
ha

ll
en

ge
20

20
(R

eq
ue

st
s
fo
r
Pa

ym
en

t)
Fi
tn
es
s

0.
94
76

0.
90
51

0.
90
51

0.
90
51

–
0.
86
78

0.
83
80

–
0.
91
79

0.
94
38

0.
94
38

0.
94
38

0.
95
95

0.
91
79

0.
94
38

0.
94
38

0.
94
38

0.
95
95

Pr
ec
is
io
n

0.
31
73

0.
27
04

0.
27
04

0.
27
04

–
1.
00
00

1.
00
00

–
0.
54
15

0.
44
51

0.
44
51

0.
44
51

0.
35
00

0.
54
15

0.
44
51

0.
44
51

0.
44
51

0.
35
00

F1
Sc
or
e

0.
47
54

0.
41
64

0.
41
64

0.
41
64

–
0.
92
92

0.
91
19

–
0.
68
12

0.
60
49

0.
60
49

0.
60
49

0.
51
29

0.
68
12

0.
60
49

0.
60
49

0.
60
49

0.
51
29

B
PI

C
ha

ll
en

ge
20

20
(D

om
es
ti
c
D
ec
la
ra
ti
on

)
Fi
tn
es
s

0.
94
99

0.
93
02

0.
93
02

0.
93
02

–
0.
89
06

0.
85
49

–
0.
90
29

0.
92
65

0.
93
08

0.
93
08

0.
94
93

0.
91
43

0.
91
43

0.
94
61

0.
94
61

0.
94
77

Pr
ec
is
io
n

0.
40
56

0.
24
69

0.
24
69

0.
24
69

–
1.
00
00

1.
00
00

–
0.
90
94

0.
72
06

0.
71
92

0.
71
92

0.
48
97

0.
67
95

0.
67
95

0.
47
80

0.
47
80

0.
47
80

F1
Sc
or
e

0.
56
85

0.
39
02

0.
39
02

0.
39
02

–
0.
94
21

0.
92
18

–
0.
90
61

0.
81
07

0.
81
14

0.
81
14

0.
64
61

0.
77
96

0.
77
96

0.
63
51

0.
63
51

0.
63
54



References

[1] W.M.P. van der Aalst, B.F. van Dongen, Discovering Workflow Performance Models from
Timed Logs, in: Y. Han, S. Tai, D. Wikarski (Eds.), International Conference on Engineering
and Deployment of Cooperative Information Systems (EDCIS 2002), Vol. 2480 of Lecture
Notes in Computer Science, Springer-Verlag, Berlin, 2002, pp. 45–63.

[2] W.M.P. van der Aalst, A.J.M.M. Weijters, L. Maruster, Workflow Mining: Discovering
Process Models from Event Logs, IEEE Transactions on Knowledge and Data Engineering
16 (9) (2004) 1128–1142.

[3] L.Wen,W.M.P. van der Aalst, J. Wang, J. Sun, Mining ProcessModels with Non-Free-Choice
Constructs, Data Mining and Knowledge Discovery 15 (2) (2007) 145–180.

[4] L. Wen, J. Wang, W.M.P. van der Aalst, B. Huang, J. Sun, Mining Process Models with
Prime Invisible Tasks, Data and Knowledge Engineering 69 (10) (2010) 999–1021.

[5] A. Ehrenfeucht, G. Rozenberg, Partial (Set) 2-Structures - Part 1 and Part 2, Acta Informatica
27 (4) (1989) 315–368.

[6] J. Cortadella, M. Kishinevsky, L. Lavagno, A. Yakovlev, Deriving Petri Nets from Finite
Transition Systems, IEEE Transactions on Computers 47 (8) (1998) 859–882.

[7] W.M.P. van der Aalst, V. Rubin, H.M.W. Verbeek, B.F. van Dongen, E. Kindler, C.W. Günther,
Process Mining: A Two-Step Approach to Balance Between Underfitting and Overfitting,
Software and Systems Modeling 9 (1) (2010) 87–111.

[8] J. Carmona, J. Cortadella, M. Kishinevsky, A Region-Based Algorithm for Discovering Petri
Nets from Event Logs, in: Business Process Management (BPM 2008), 2008, pp. 358–373.

[9] M. Solé, J. Carmona, Process Mining from a Basis of State Regions, in: J. Lilius, W. Penczek
(Eds.), Applications and Theory of Petri Nets 2010, Vol. 6128 of Lecture Notes in Computer
Science, Springer-Verlag, Berlin, 2010, pp. 226–245.

[10] R. Bergenthum, J. Desel, R. Lorenz, S. Mauser, Process Mining Based on Regions of Lan-
guages, in: G. Alonso, P. Dadam, M. Rosemann (Eds.), International Conference on Busi-
ness Process Management (BPM 2007), Vol. 4714 of Lecture Notes in Computer Science,
Springer-Verlag, Berlin, 2007, pp. 375–383.

[11] J.M.E.M. van der Werf, B.F. van Dongen, C.A.J. Hurkens, A. Serebrenik, Process Discovery
using Integer Linear Programming, Fundamenta Informaticae 94 (2010) 387–412.

[12] S.J. van Zelst, B.F. van Dongen, W.M.P. van der Aalst, H.M.W Verbeek, Discovering Work-
flow Nets Using Integer Linear Programming, Computing 100 (5) (2018) 529–556.

[13] L.L. Mannel, W.M.P. van der Aalst, Discovering Process Models with Long-Term Dependen-
cies While Providing Guarantees and Handling Infrequent Behavior, in: L. Bernardinello,
L. Petrucci (Eds.), Application and Theory of Petri Nets and Concurrency (Petri Nets 2022),
Vol. 13288 of Lecture Notes in Computer Science, 2022, pp. 303–324.

[14] S.J.J. Leemans, D. Fahland, W.M.P. van der Aalst, Discovering Block-Structured Process
Models from Event Logs Containing Infrequent Behaviour, in: N. Lohmann, M. Song,
P. Wohed (Eds.), Business Process Management Workshops, International Workshop on
Business Process Intelligence (BPI 2013), Vol. 171 of Lecture Notes in Business Information
Processing, Springer-Verlag, Berlin, 2014, pp. 66–78.

[15] S.J.J. Leemans, D. Fahland, W.M.P. van der Aalst, Scalable Process Discovery and Confor-
mance Checking, Software and Systems Modeling 17 (2) (2018) 599–631. doi:10.1007/



s10270-016-0545-x.
[16] A. Augusto, R. Conforti, M. Marlon, M. La Rosa, A. Polyvyanyy, Split Miner: Automated

Discovery of Accurate and Simple Business Process Models from Event Logs, Knowledge
Information Systems 59 (2) (2019) 251–284.

[17] M. de Leoni, F.Mannhardt, Road Traffic Fine Management Process, https://data.4tu.nl/
articles/dataset/Road_Traffic_Fine_Management_Process/12683249 (2015). doi:10.4121/
uuid:270fd440-1057-4fb9-89a9-b699b47990f5.

[18] F. Mannhardt, Sepsis Cases - Event Log, https://data.4tu.nl/articles/
dataset/Sepsis_Cases_-_Event_Log/12707639 (2016). doi:10.4121/uuid:
915d2bfb-7e84-49ad-a286-dc35f063a460.

[19] B. van Dongen, BPI Challenge 2019, https://data.4tu.nl/articles/dataset/BPI_Challenge_
2019/12715853 (2019). doi:10.4121/uuid:d06aff4b-79f0-45e6-8ec8-e19730c248f1.

[20] B. van Dongen, BPI Challenge 2020: Request For Payment, https://data.4tu.nl/articles/
dataset/BPI_Challenge_2020_Request_For_Payment/12706886 (2020). doi:10.4121/uuid:
895b26fb-6f25-46eb-9e48-0dca26fcd030.

[21] B. van Dongen, BPI Challenge 2020: Domestic Declarations, https://data.4tu.nl/articles/
dataset/BPI_Challenge_2020_Domestic_Declarations/12692543 (2020). doi:10.4121/
uuid:3f422315-ed9d-4882-891f-e180b5b4feb5.

[22] A. Küsters, W.M.P. van der Aalst, Revisiting the Alpha Algorithm To Enable Real-Life
Process Discovery Applications – Extended Report (2023). arXiv:2305.17767.


