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Abstract
In process discovery, the goal is to find, for a given event log, the model describing the underlying
process. While process models can be represented in a variety of ways, Petri nets form a theoretically
well-explored description language. A Petri net describes the underlying process well if it allows for
all relevant behavior (fitness) and, at the same time, restricts other process executions not contained
in the event log (precision). A process discovery algorithm aiming to balance these often conflicting
requirements is the eST-Miner. To this end, the approach employs a user-definable parameter which
indicates a lower bound for the fraction of behavior in the event log that each place in the Petri net
must be able to replay. As the eST-Miner is restricted to uniquely labeled transitions, i.e., it does not
return silent or duplicate transitions, there are inputs where precision is decreased for the purpose of
guaranteeing minimal fitness. An example is the situation where part of the process is optional and
can be skipped, which is usually modeled by using a silent transition. Being constraint to uniquely
labeled transitions, the eST-Miner models such behavior using a place with a loop. On the one hand this
correctly allows to skip the looping behavior (maintains fitness), on the other hand precision is decreased
drastically by allowing the behavior to be repeated arbitrarily often. Thus, the models returned by the
eST-Miner often contain imprecise substructures, most prominently, ”flower-like” places (places with
one-loops). In this paper, we aim to replace such places by more meaningful and precise submodels that
include silent transitions, while preserving desirable structures existing in the input uniquely labeled
Petri net. We describe an approach to distill the behavior related to a specific, imprecise place from the
event log such that the resulting log projection can be used to discover and insert a more precise Petri
net. Furthermore, extensions of the approach to more complex imprecise structures are discussed.
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1. Introduction and Related Work

Today’s organizations collect increasing amounts of data corresponding to processes they handle,
so-called event data. Every event corresponds to the execution of an activity within the run of
an instance of the process. From such event data one can extract an event log, which groups the
events into cases, i.e., the sequences of activities sequentially recorded for one process instance.
While additional data attributes may be stored for events, they are not considered in this work.
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An area that provides methods for gaining insights and extract information and value from
such data is the field of process mining, which connects data mining and process science.
The sub-field of process discovery applies discovery algorithms to an event log to find a

process model that describes the relations of the occurrences of activities. Such relations include
conditionality, concurrency or choice between activities in a process and are reflected in the
behavior of the event log. A good process model can help to better understand and subsequently
improve the process, e.g., by reducing inefficiencies or detecting quality issues. An ideal
discovery algorithm returns a process model for an input event log that represents all process
executions in the event log (fitness) while not allowing for behavior not contained in the event
log (precision), is easy to understand (simplicity) and, finally, is likely to also include future
process executions similar to the examples given in the event log, i.e., is not overfitting the log
(generalization). For real-life event logs, these goals are usually in conflict with each other and
it is impossible to perfectly satisfy all of them simultaneously.

The discovery algorithm eST-Miner (efficient Statespace Traversal-Miner) [1] aims to balance
the different quality dimensions. It can provide fitness guarantees, includes options to filter
infrequent behavior and is able to discover Petri nets that include complex control-flow struc-
tures, like long-term dependencies (non-free choice constructs) between activities in a process,
enabling increased precision compared to algorithms that are limited to the discovery of basic
structures. This approach can achieve high fitness and precision for event logs that can be
represented by the class of uniquely labeled Petri nets. However, many processes require silent
or duplicate transition labels to be fully described. In such cases, the eST-Miner discovers less
precise process models in comparison to algorithms that return non-uniquely labeled Petri nets.
In this work, we aim to remedy this issue by introducing a framework that combines the

eST-Miner’s ability to discover complex control-flows with the added expressiveness of silent
transitions. Based on a uniquely labeled Petri net discovered by the eST-Miner, the goal of
the framework is to introduce silent transitions to improve precision while preserving fitness.
The approach first identifies imprecise structures in the given Petri net and computes the
corresponding parts of the event log. Based on each sublog, it discovers a new, non-uniquely
labeled Petri net and replaces the imprecise structure with this model without impacting the
behavior expressed by the surrounding parts of the model.
A technique for the computation of the sublog and for the replacement of the imprecise

structure are both presented in this paper. Considering the identification of imprecise structures,
in this work, we focus on easily detectable candidate imprecise structures such as loops.
The proposed framework is related to ideas presented in the field of incremental process

discovery techniques. In particular, the work in [2] is the most similar to our approach. The
authors propose an architecture that incrementally discovers process models on individual logs
and merges them into an existing process model. However, while their approach incrementally
adds new traces to the seen behavior, our framework considers the complete event log from
the beginning and refines on sublogs. Another approach related to our work is presented in
[3]. They introduce a repair technique to insert process models into existing process models
to increase fitness. To this end, they first identify the location of deviations in a given process
model for a given log. Based on this information, a log is constructed to discover a process model
that can be inserted at the identified location. A major difference to the approach proposed
in this work is that we do not intend to extend the behavior of the given accepting Petri net



but rather to reduce it. The repair approach presented in [4] also aims to increase precision
of a given net by constraining behavior that is not in the input log. However, their approach
addresses a different reason for impreciseness: they use region-theory to add missing non-local
constraints, while we focus on repairing imprecise structures caused by the inability to model
optional behavior by adding silent transitions.
In this work we focus on Petri nets discovered by the eST-Miner. However, the ideas and

concepts can be extended to Petri nets produced by other approaches. In particular, approaches
rooted in region theory [5, 6, 7, 8] often exclude silent transition labels and therefore may
synergize well with the presented approach.
The framework described in this paper was inspired by a master thesis [9]. Here, we refine

the approach while focusing on the eST-Miner and include a detailed evaluation.
The remainder of this work is structured as follows. In Section 2, we present the mathematical

notations and concepts used in this work. Section 3 introduces the eST-Miner. Section 4 presents
the approach to obtain a more precise process model by replacing imprecise structures. Section
5 applies the approach presented on real-life logs. In Section 6, we conclude this paper and give
an outlook for future work.

2. Basic Notations, Event Logs and Process Models

We use of the following definitions and notations: A set, e.g. {𝑎, 𝑏, 𝑐, 𝑑}, contains every element
once, while a multiset can contain an element more than once, e.g. [𝑎, 𝑏, 𝑎, 𝑎, 𝑏, 𝑐] = [𝑎3, 𝑏2, 𝑐].
Set union, intersection and difference are defined as usual. By ℙ(𝑋) we refer to the power set of
the set 𝑋, and 𝕄(𝑋) is the set of all multisets over the set 𝑋. In contrast to sets and multisets, a
sequence is ordered. It can contain an element more than once, e.g., ⟨𝑎, 𝑎, 𝑏, 𝑎, 𝑏, 𝑏⟩. We denote
the number of elements of a set, multiset or sequence 𝑋 as |𝑋 |. A projection of a sequence
𝜎 ∈ 𝑋 ∗ on a subset of activities 𝑌 ⊆ 𝑋 is denoted by 𝜎↾𝑌. For example, ⟨𝑎, 𝑏, 𝑎, 𝑐, 𝑏⟩↾{𝑎,𝑐} = ⟨𝑎, 𝑎, 𝑐⟩.
Further, we uplift all functions that are applicable to single elements of a sequence to be
applicable to the full sequence, i.e., for a function 𝑓 ∶ 𝑋 → 𝑌 and a sequence ⟨𝑥1, 𝑥2, … , 𝑥𝑛⟩ we
write 𝑓 (⟨𝑥1, 𝑥2, … , 𝑥𝑛⟩) = ⟨𝑓 (𝑥1), 𝑓 (𝑥2), … , 𝑓 (𝑥𝑛)⟩. By 𝒜 we denote the universe of all possible
activities (e.g., actions or operations). A trace is a finite sequence where each element is an
activity from the universe of activities 𝒜. The universe of such traces is denoted by 𝒯. A log
𝐿 ∈ 𝕄(𝒯 ) is a multiset of traces. We aim to represent the behavior described by an event log
using a Petri net with transitions labeled according to the activities in the event log. A sequence
of transitions fired describes a trace corresponding to the sequence of the transition labels. A
so-called silent transition is labeled with the silent activity label 𝜏 and adds no activity to a trace.

Definition 2.1 (Labeled Petri Net) We define a labeled Petri net as a quintuple𝑁 = (𝑃, 𝑇, 𝐹, 𝐴, 𝑙)
where 𝑃 is a finite set of places, 𝑇 is a finite set of transitions such that 𝑃∩𝑇 = ∅, 𝐹 ⊆ (𝑃×𝑇)∪(𝑇×𝑃)
is a set of directed arcs, 𝐴 ⊆ 𝒜with 𝜏 ∉ 𝐴 is a set of non-silent activity labels, and 𝑙 ∶ 𝑇 → 𝐴 ∪{𝜏}
is a labeling function assigning to each transition a (possibly silent) activity label.

We define the preset and postset of places and transitions as usual, i.e., given a Petri net
𝑁 = (𝑃, 𝑇, 𝐹, 𝐴, 𝑙) and a place or transition 𝑥 ∈ 𝑃∪𝑇, the preset of 𝑥 is •𝑥 = {𝑥𝑖𝑛 ∈ 𝑃∪𝑇 ∣ (𝑥𝑖𝑛, 𝑥) ∈ 𝐹}
and the postset of 𝑥 is 𝑥• = {𝑥𝑜𝑢𝑡 ∈ 𝑃 ∪ 𝑇 ∣ (𝑥, 𝑥𝑜𝑢𝑡) ∈ 𝐹}. The current state of a labeled Petri net is



described by its marking. A marking is a mapping function 𝑀∶ 𝑃 → ℕ0 for a set of places 𝑃
and describes the number of tokens that each place holds. An accepting Petri net is a labeled
Petri net having an initial marking and a final marking, which we use to define its behavior.

Definition 2.2 (Accepting Petri Net) An accepting Petri net is defined as a triplet 𝑆𝑁 =
(𝑁,𝑀i, 𝑀f), where 𝑁 = (𝑃, 𝑇, 𝐹, 𝐴, 𝑙) is a labeled Petri net and 𝑀i∶ 𝑃 → ℕ0 an initial marking
and 𝑀f∶ 𝑃 → ℕ0 a final marking.

The behavior of an accepting Petri net is based on the firing rule for transitions. A transition 𝑡
is enabled, if all ingoing places in •𝑡 hold at least one token in the current marking 𝑀, i.e., if
∀𝑝∈•𝑡 ∶ 𝑀(𝑝) ≥ 1 holds. An enabled transition can fire, consuming a token from each place
in it’s preset and producing a token in each place in its postset. Thus, firing a transition 𝑡
changes the current marking 𝑀 to marking 𝑀′, denoted as 𝑀 [𝑡⟩ 𝑀′, where for 𝑀′ it holds that
𝑀′(𝑝) = 𝑀(𝑝) − 1, if 𝑝 ∈ (•𝑡\𝑡•) or 𝑀(𝑝) + 1, if 𝑝 ∈ (𝑡•\•𝑡) or 𝑀(𝑝) otherwise. The behavior of
an accepting Petri net is given by the set of its valid firing sequences, which are sequences of
transitions that can be fired conclusively to lead from the initial marking to the final marking.

Definition 2.3 (Valid Firing Sequences) Let 𝑆𝑁 = (𝑁,𝑀i, 𝑀f) with 𝑁 = (𝑃, 𝑇, 𝐹, 𝐴, 𝑙) be an
accepting Petri net and let 𝜔 = ⟨𝑡1, 𝑡2, … , 𝑡𝑛⟩ with 𝜔 ∈ 𝑇 ∗ be a sequence of transitions. We call
𝜔 a firing sequence in 𝑆𝑁 from marking 𝑀0 if we have 𝑀0[𝑡1⟩𝑀1[𝑡2⟩𝑀2…𝑀𝑛−1[𝑡𝑛⟩𝑀𝑛. This is
denoted as 𝑀0 [𝜔⟩𝑀𝑛. We call 𝜔 a valid firing sequence in 𝑆𝑁 if 𝑀0 = 𝑀i and 𝑀𝑛 = 𝑀f.

The non-silent transition labels of a valid firing sequence describe a trace that can be replayed
using this firing sequence.

Definition 2.4 (Replayable Traces) Consider an accepting Petri net 𝑆𝑁 = (𝑁,𝑀i, 𝑀f)with𝑁 =
(𝑃, 𝑇, 𝐹, 𝐴, 𝑙) and a trace 𝜎 ∈ 𝐴∗. We say that 𝜎 is replayable on 𝑆𝑁 if and only if there exists a
valid firing sequence 𝜔 = ⟨𝑡1, 𝑡2, … , 𝑡𝑛⟩ such that the projection of 𝜔 on its non-silent transition
labels equals 𝜎, i.e., 𝜎𝜔 = ⟨𝑙(𝑡1), 𝑙(𝑡2), … , 𝑙(𝑡𝑛)⟩↾𝐴 = 𝜎.

The approach presented in this paper aims to improve a given accepting Petri net 𝑆𝑁 based
on an event log 𝐿, such that fitness is preserved while precision is ideally increased. Various
metrics have been introduced for measuring or approximating fitness and precision with
different advantages and disadvantages. In this work, we abstract from concrete metrics as we
are interested only in the relation between these quality aspects when comparing two accepting
Petri nets 𝑆𝑁 and 𝑆𝑁 ′. To this end, we compare the traces replayable by both nets.

Definition 2.5 (Comparing Fitness and Precision)Consider an event log 𝐿 and two accepting
Petri nets 𝑆𝑁 and 𝑆𝑁 ′. 𝑆𝑁 ′ is at least as fitting as 𝑆𝑁, if every trace 𝜎 ∈ 𝐿 replayable on 𝑆𝑁 is
also replayable on 𝑆𝑁 ′. 𝑆𝑁 ′ is at least as precise as 𝑆𝑁, if every trace 𝜎 ∈ 𝒯 replayable on 𝑆𝑁 ′

is also replayable on 𝑆𝑁. 𝑆𝑁 ′ is more precise than 𝑆𝑁, if additionally a trace 𝜎 ′ ∈ 𝒯 \𝐿 exists
that is replayable on 𝑆𝑁 but not replayable on 𝑆𝑁 ′.

3. Introducing the eST-Miner

Several variants and extensions of the eST-Miner have been proposed in the past years [1, 10].
In the following, we briefly introduce the variant used as the basis of this work. For further
details, we refer the interested reader to the respective papers.



As input, the algorithm takes a log 𝐿 and returns an accepting Petri net as output. Inspired
by language-based regions, the basic strategy of the approach is to begin with a Petri net whose
transition labels correspond exactly to the activities used in the given log. From the finite set
of unmarked, intermediate candidate places, the subset of all fitting places is computed and
inserted by connecting them to their uniquely labeled ingoing and outgoing transitions. Such
places are uniquely identifiable by their sets of ingoing and outgoing transitions, thus there are
|ℙ(𝐴) × ℙ(𝐴)| candidate places. The eST-Miner is able to filter infrequent behavior by deeming a
place to be fitting even if it does not allow for replaying the complete event log. However, in this
paper, we require it to accept places as fitting only if all traces in the event log are replayable
(feasible places). Places are evaluated using token-based replay. To avoid replaying the log on
all candidate places (exponential in the number of activities), it organizes the potential places as
a set of trees. When traversing these trees, their special structure allows to cut off subtrees, and
thus candidates, based on the replay result of their parent [1]. This greatly increases efficiency,
while still guaranteeing that all fitting places are found.

To facilitate further computations and human readability, implicit places are identified and
removed [11, 12, 13]. A place is implicit if its removal does not increase the behavior of the
accepting Petri net. Implicit places can be detected based on the structure of the accepting Petri
net as proposed for the first eST-Miner variant [1], or by using the faster replay-based implicit
place removal strategy introduced in [14].
We emphasize the following details since they become relevant in the context of this work.

Note that the eST-Miner adds designated start and designated end activities to the input event
log, which are reflected by correspondingly labeled start and end transitions. A source place,
marked in the initial marking, is added as the preset of the start transition, and a sink place,
marked in the final marking, forms the postset of the final transition. In the context of this
work, we relabel the start and end transitions of each model discovered using the eST-Miner as
silent transitions. Furthermore, the eST-Miner variant used here is restricted to only discover
accepting Petri nets that have perfect fitness for the input log, i.e., all log traces are replayable.
Thus, with the start and end transitions relabeled to be silent, the input log without added
artificial start and end activities has perfect fitness on the discovered net.
As an example, consider the accepting Petri net 𝑆𝑁𝑎 shown in Figure 1a discovered on the

log 𝐿𝑎 = [⟨𝑎, 𝑐⟩, ⟨𝑏, 𝑑⟩, ⟨𝑎, 𝑒, 𝑐, 𝑓⟩, ⟨𝑏, 𝑒, 𝑑, 𝑓⟩] using the eST-Miner. 𝑆𝑁𝑎 illustrates the discovery
of complex control-flow structures and is perfectly fitting and precise with respect to 𝐿 as
it does not replay any trace not in 𝐿. Nevertheless, undesired places which are decreasing
readability are inserted due to the limitation of the eST-Miner to not use silent transitions for
the representation of skippable behavior such as the activities 𝑒 and 𝑓 being skippable.

Consider 𝐿𝑏 = [⟨𝑎, 𝑐⟩, ⟨𝑏, 𝑑⟩, ⟨𝑎, 𝑒, 𝑐⟩, ⟨𝑏, 𝑒, 𝑑⟩] as a similar log, for which the eST-Miner discovers
the accepting Petri net 𝑆𝑁𝑏 shown in Figure 1b. 𝑆𝑁𝑏 allows for arbitrarily many occurrences of
𝑒 between 𝑎 and 𝑐 or between 𝑏 and 𝑑 respectively. Such a looping structure, which allows for a
transition to be fired arbitrarily often (or not at all) and in arbitrary order, is commonly referred
to as a flower construct [15]. Such a place is usually undesired as inserting it marginally restricts
the behavior of the corresponding Petri net and does not reflect the input event log precisely.
Unfortunately, due to its inability to model optional behavior with the help of silent transitions,
the eST-Miner is often forced to resort to such structures. In the following section, we target
such imprecise accepting Petri nets and replace such loops with more precise structures.
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Figure 1: Introductory examples of accepting Petri nets discovered by the eST-Miner.

4. Identification and Replacement of Imprecise Structures

The eST-Miner frequently returns Petri nets that over-approximate optional behavior using
rather imprecise looping structures. Specifically, we refer to 𝑘-loops as candidate imprecise
structures.

Definition 4.1 (𝑘-Loops) Let 𝑁 = (𝑃, 𝑇, 𝐹, 𝐴, 𝑙) be a Petri net that contains a sequence of unique
nodes ⟨𝑛1, 𝑛2, … , 𝑛𝑙⟩ ∈ (𝑃 ∪ 𝑇)∗ of length 𝑙, which are forming a directed cycle from and to a
place 𝑝 ∈ 𝑃, i.e., 𝑝 ∈ (•𝑛1 ∪ 𝑛𝑙•) ∧ ∀𝑖∈[1,𝑙−1]∶ 𝑛𝑖 ∈ •𝑛𝑖+1 and ∀𝑖,𝑗∈[1,𝑙]∶ 𝑛𝑖 = 𝑛𝑗 ⇒ 𝑖 = 𝑗 holds. We
refer to such a sequence as a 𝑘-loop of the place 𝑝, where 𝑘 denotes the number of transitions in
the node sequence.

Given an accepting Petri net, the so-called Projection Discovery with the eST-Miner presented
in the following replaces a place that has one-looping transitions with a more precise accepting
Petri net while preserving fitness, i.e., all traces from the input log remain replayable. Replayable
behavior outside of the event log is never increased, with the goal being to reduce it.

Projection Discovery with the eST-Miner

compute the place projection log L↾𝑝

Place Projection

𝐿, 𝑝 (compare Sec�on 4.1)
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Figure 2: High-level overview of the proposed algorithmic framework. The newly introduced place
projection (represented as a blue box) is proposed in Section 4.1.

The overall algorithmic framework is outlined in Figure 2. Initially, a log 𝐿 and an accepting
Petri net 𝑆𝑁 with perfect fitness on this log are given. The projection discovery starts with the
procedure detailed in Section 4.1, for each safe place 𝑝 with uniquely labeled and non-silent



one-loops we compute a place projection log representing the behavior of the place with respect
to the input log and one-looping transitions. Notably, this projected log will contain the empty
trace in case the looping transitions reflect optional behavior. Based on the place projection log,
we use the eST-Miner to discover a new subnet 𝑆𝑁𝑝 and insert it into 𝑆𝑁 replacing 𝑝 and its
one-looping transitions. The replacement technique is detailed in Section 4.2. Note, that the
projection discovery can be applied recursively to the discovered subnets until no improvement
can be found. Further, we enable the eST-Miner to discover a more precise model by removing
all occurrences of the empty trace from the projected event log before starting the discovery.
If such traces indeed exist, then we add a silent transition to the discovered 𝑆𝑁𝑝, making the
complete net skippable.

Our input of the projection discovery can be refined by pre-processing 𝑆𝑁 such that 𝑘-loops
are considered or such that better results are obtained by using a place partitioning technique.
For a 𝑘-loop contained in 𝑆𝑁, we merge all places in the 𝑘-loop into a single place as detailed in
Section 4.3. This reduces the 𝑘-loops to one-loops. Place partitioning splits 𝑝 into a set of places
to be handled individually and to find more meaningful logs, as detailed in Section 4.3.

Note that in our implementation and presented examples, we reduce silent transitions in the
final accepting Petri net while preserving its behavior [16] to improve readability.
The approach guarantees to preserve fitness and precision, as detailed in Section 4.4.

4.1. Projection of a Log on a Safe Place

As input, the place projection expects an accepting Petri net 𝑆𝑁 = (𝑁,𝑀i, 𝑀f) with 𝑁 =
(𝑃, 𝑇, 𝐹, 𝐴, 𝑙), a firing sequence 𝜔 on the accepting Petri net 𝑆𝑁 and a safe place 𝑝 ∈ 𝑃 that is
unmarked in𝑀i and𝑀f and that has a non-empty set of uniquely labeled, non-silent one-looping
transitions 𝑇⟲. As a result, the place projection of 𝜔 on 𝑝 returns a place projection log 𝐿𝑝
satisfying the following properties:

Property 1 𝐿𝑝 holds a trace for each non-extendable subsequence of 𝜔 for which 𝑝 holds a token
during firing of 𝜔 on 𝑆𝑁 and

Property 2 for all 𝑡 ∈ 𝑇⟲ fired while a token is contained in 𝑝, their label (if non-silent) is
appended to the same trace of 𝐿𝑝, and for no 𝑡′ ∉ 𝑇⟲ their label is added.

In the following, we give further explanation for a place projection log to satisfy the two
criteria. As we replace the place 𝑝 and its one-looping transitions 𝑇⟲ with an accepting Petri
net 𝑆𝑁𝑝 discovered on the log 𝐿𝑝 , we do not want to model behavior that is modeled by
other transitions (Property 2). Further, for our replacement technique, we expect the replacing
accepting Petri net 𝑆𝑁𝑝 to be able to reach its final marking from its initial marking when
sequentially firing the activities corresponding to the one-looping transitions contained in a
subsequence of 𝜔, for which 𝑝 is non-empty when firing 𝜔 on 𝑆𝑁 (Property 1, Property 2). As
our used discovery algorithm returns a perfectly fitting Petri net on its input log, we conclude
Property 1 and Property 2 to be strongly influential towards the behavior of an accepting Petri
net discovered on a place projection log. If both properties hold for a place projection function,
we expect an accepting Petri net discovered on the place projection log 𝐿𝑝 to cover the same
behavior from 𝜔 as the place 𝑝 to be replaced.
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(a) Accepting Petri net 𝑆𝑁1 discovered on the input
log 𝐿1 = [⟨𝑎, 𝑐⟩, ⟨𝑏, 𝑑⟩, ⟨𝑎, 𝑒, 𝑐⟩, ⟨𝑏, 𝑒, 𝑑⟩, ⟨𝑎, 𝑒, 𝑓 , 𝑐⟩,
⟨𝑏, 𝑒, 𝑓 , 𝑑⟩, ⟨𝑎, 𝑒, 𝑔, 𝑐⟩, ⟨𝑏, 𝑒, 𝑔, 𝑑⟩] using the eST-
Miner.
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(b) Accepting Petri net 𝑆𝑁𝑐 discovered on the
log 𝐿𝑐 = [⟨𝑎, 𝑐⟩, ⟨𝑎, 𝑒, 𝑓 , 𝑐⟩, ⟨𝑎, 𝑒, 𝑓 , 𝑔, 𝑐⟩, ⟨𝑏, 𝑑⟩,
⟨𝑏, 𝑒, 𝑓 , 𝑑⟩, ⟨𝑏, 𝑒, 𝑓 , 𝑔, 𝑑⟩] using the eST-Miner.

Figure 3: Example input Petri nets with a one- and two-looping place respectively.

To detect increments and decrements in the number of tokens of a place between two
subsequent markings, we introduce the token sequence of a place and a valid firing sequence as
a new concept.

Definition 4.2 (Token Sequence of a Place and a Valid Firing Sequence) Let
𝑆𝑁 = (𝑁,𝑀i, 𝑀f) with 𝑁 = (𝑃, 𝑇, 𝐹, 𝐴, 𝑙) be an accepting Petri net, 𝑝 ∈ 𝑃 be a place and
𝜔 = ⟨𝑡1, 𝑡2, … , 𝑡𝑛⟩ be a valid firing sequence in 𝑆𝑁. We define the sequence of token states
of 𝑝 and 𝜔 as the sequence 𝜑(𝑝, 𝜔) = ⟨𝑀i(𝑝),𝑀1(𝑝),𝑀2(𝑝), … ,𝑀𝑛−1(𝑝),𝑀f(𝑝)⟩, where
𝑀i [𝑡1⟩𝑀1 [𝑡2⟩𝑀2 [𝑡3⟩ … [𝑡𝑛−1⟩𝑀𝑛−1 [𝑡𝑛⟩𝑀f holds.

We use the concept of the token sequences to construct a projection function satisfying
Property 1 and Property 2 described above. Definition 4.3 gives the projection of a valid firing
sequence on a safe place as the multiset of all non-extendable subsequences for which 𝑝 is
non-empty during firing of 𝜔.

Definition 4.3 (Projection of a Valid Firing Sequence on a Safe Place) Let 𝑆𝑁 = (𝑁,𝑀i, 𝑀f)
be an accepting Petri net with 𝑁 = (𝑃, 𝑇, 𝐹, 𝐴, 𝑙), 𝑝 ∈ 𝑃 be a safe place in the Petri net where
𝑀i(𝑝) = 0 ∧ 𝑀f(𝑝) = 0 holds, 𝑇⟲ = •𝑝 ∩ 𝑝• ≠ ∅ the set of non-silent and uniquely labeled one-
looping transitions of the place 𝑝, i.e., ∀𝑡1,𝑡2∈𝑇⟲∶ 𝑙(𝑡1)≠𝜏∧𝑙(𝑡1)=𝑙(𝑡2)⇒𝑡1=𝑡2 , 𝜎𝜔 a trace, 𝜔 = ⟨𝑡1, 𝑡2, … , 𝑡𝑛⟩
a valid firing sequence of 𝑆𝑁 replaying 𝜎𝜔 and 𝜑(𝑝, 𝜔) = ⟨𝑐0, 𝑐1, 𝑐2, … , 𝑐𝑛⟩ a token sequence with
𝑛 ∈ ℕ. The projection 𝜔↾𝑝 of the firing sequence 𝜔 on the safe place 𝑝 is the multiset of sequences

𝜔↾𝑝 = [𝑙(⟨𝑡𝑖+1, 𝑡𝑖+2, … , 𝑡𝑗⟩↾𝑇⟲) ∣ 𝑖, 𝑗 ∈ [2, 𝑛 − 1] ∧ 𝑖 < 𝑗 ∧ 𝑐𝑖− = 0 ∧ 𝑐𝑗+1 = 0 ∧ ∀𝑘 ∈ [𝑖, 𝑗]∶ 𝑐𝑘 > 0].

In the context of this work, we expect the firing sequence of a trace to be non-ambiguous.
This holds trivially for the eST-Miner as it discovers uniquely labeled accepting Petri nets only.

We uplift the concept of the place projection to logs to obtain a place projection log 𝐿↾𝑝 by
considering the union of all projections of firing sequences on 𝑝 corresponding to each trace in
the log, i.e., 𝐿↾𝑝 = ⋃𝜎𝜔∈𝐿 𝜔↾𝑝 . In Table 1, examples of token sequences and place projections are
shown for 𝑝4 of the accepting Petri net 𝑆𝑁𝑐 shown in Figure 3b.
The next step in our framework is to discover an accepting Petri net 𝑆𝑁𝑝 = (𝑁𝑝 , 𝑀𝑖,𝑝 , 𝑀𝑓 ,𝑝)

with 𝑁𝑝 = (𝑃𝑝 , 𝑇𝑝 , 𝐹𝑝 , 𝐴𝑝 , 𝑙𝑝) on the projection log 𝐿↾𝑝 . Note that if the log contains the empty
trace, i.e., ⟨⟩ ∈ 𝐿↾𝑝 , that an empty trace stable eST-Miner used in this work then discovers



Table 1
Example for token sequences and place projections for the place 𝑝4 in 𝑆𝑁𝑐 shown in Figure 3b.

.

Input trace Firing sequence Token sequence for 𝑝4 Projected on 𝑝4
⟨𝑎, 𝑐⟩ ⟨𝑡1, 𝑡2, 𝑡4, 𝑡9⟩ ⟨0, 0, 1, 0, 0⟩ [⟨⟩]
⟨𝑎, 𝑒, 𝑓 , 𝑒, 𝑓 , 𝑔, 𝑐⟩ ⟨𝑡1, 𝑡2, 𝑡6, 𝑡7, 𝑡6, 𝑡7, 𝑡8, 𝑡4, 𝑡9⟩ ⟨0, 0, 1, 0, 1, 0, 1, 1, 0, 0⟩ [⟨⟩2, ⟨𝑔⟩]
⟨𝑏, 𝑔, 𝑒, 𝑓 , 𝑔, 𝑔, 𝑑⟩ ⟨𝑡1, 𝑡3, 𝑡8, 𝑡6, 𝑡7, 𝑡8, 𝑡8, 𝑡5, 𝑡9⟩ ⟨0, 0, 1, 1, 0, 1, 1, 1, 0, 0⟩ [⟨𝑔⟩, ⟨𝑔, 𝑔⟩]
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(a) Accepting Petri net 𝑆𝑁2 = (𝑁2, 𝑀𝑖,2, 𝑀𝑓 ,2) with
𝑁2 = (𝑃2, 𝑇2, 𝐹2, 𝐴2, 𝑙2) discovered on 𝐿2.
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(b) Accepting Petri net 𝑆𝑁3 = (𝑁3, 𝑀𝑖,3, 𝑀𝑓 ,3) with
𝑁3 = (𝑃3, 𝑇3, 𝐹3, 𝐴3, 𝑙3) discovered on 𝐿3.

Figure 4: Finding accepting Petri nets based on place projection logs.

an accepting Petri net on 𝐿↾𝑝\{⟨⟩} and inserts a skipping silent transition 𝑡𝜏, i.e., 𝑙(𝑡𝜏) = 𝜏 ∧
•𝑡𝜏 = {𝑝𝑖 ∈ 𝑃𝑝 ∣ 𝑀𝑖,𝑝(𝑝𝑖) > 0} ∧ 𝑡𝜏• = {𝑝𝑓 ∈ 𝑃𝑝 ∣ 𝑀𝑓 ,𝑝(𝑝𝑓) > 0}.
Considering our running example, we obtain the place projection log 𝐿2 = 𝐿1↾𝑝3 =

[⟨⟩2, ⟨𝑒⟩2, ⟨𝑒, 𝑓⟩2, ⟨𝑒, 𝑔⟩2]. We discover the accepting Petri net 𝑆𝑁2 shown in Figure 4a with the
empty trace stable eST-Miner on 𝐿2. Here, we apply the projection discovery recursively with the
place 𝑝2 in 𝑆𝑁2 and 𝐿2 as input. We obtain the place projection log 𝐿3 = 𝐿2↾𝑝′2 = [⟨⟩2, ⟨𝑓 ⟩2, ⟨𝑔⟩2]
and discover the accepting Petri net 𝑆𝑁3 shown in Figure 4b. Here, no further recursion is
applied. At this point, place replacement is applicable. Intuition on the replacement of a place
with an accepting Petri net and corresponding desired properties are given in the next section.

4.2. Replacing a Place with an Accepting Petri Net

In this section, we describe the replacement of a place 𝑝 with an accepting Petri net 𝑆𝑁𝑝 =
(𝑁𝑝 , 𝑀𝑖,𝑝 , 𝑀𝑓 ,𝑝) discovered on the place projection log 𝐿↾𝑝 . First, the place 𝑝 and all its one-
looping transitions 𝑇⟲ = •𝑝 ∩ 𝑝• are removed (Step 1). Further, we connect all other ingoing
(respectively outgoing) transitions of 𝑝 as ingoing (respectively outgoing) to each place that
holds a token in the initial marking 𝑀𝑖,𝑝 (Step 2) (respectively, final marking 𝑀𝑓 ,𝑝) (Step 3).
Lastly, we convey all restrictions that a transition 𝑡 ∈ 𝑇⟲ has to all inserted transitions that
share the label with the transition 𝑡 (Step 4).

Steps (1)-(3) aim to replace the place 𝑝 and its one-looping transitions 𝑇⟲ with the accepting
Petri net 𝑆𝑁𝑝 such that, with respect to the replay of all traces in the log, a token is produced in
all places marked by𝑀𝑖,𝑝 whenever a token was produced in 𝑝 and to consume a token from all
places marked by 𝑀𝑓 ,𝑝 whenever a token was consumed from 𝑝. Step (4) aims to convey all
restrictions on the former one-looping transitions that are not imposed by 𝑝 itself. We formalize
these replacement steps in Definition 4.4.

Definition 4.4 (Replacing a Place with an Accepting Petri Net) Let 𝑆𝑁 = (𝑁,𝑀i, 𝑀f)
with 𝑁 = (𝑃, 𝑇, 𝐹, 𝐴, 𝑙) be an accepting Petri net, 𝑝 ∈ 𝑃 a place with its one-looping transitions
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(b) Accepting Petri net 𝑆𝑁1,2,3, which is the result of
replacing the place 𝑝3 in 𝑆𝑁1 in Figure 3a with
the accepting Petri net 𝑆𝑁2,3 in Figure 5a.

Figure 5: Replacement of place projection places in Figure 3a and 4a with the accepting Petri nets in
Figures 4b and 5a respectively.

𝑇⟲ = •𝑝 ∩ 𝑝• ≠ ∅ to be replaced with the accepting Petri net 𝑆𝑁𝑝 = (𝑁𝑝 , 𝑀𝑖,𝑝 , 𝑀𝑓 ,𝑝) with
𝑁𝑝 = (𝑃𝑝 , 𝑇𝑝 , 𝐹𝑝 , 𝐴𝑝 , 𝑙𝑝). This results in an accepting Petri net 𝑆𝑁 ′ = (𝑁 ′, 𝑀′

i , 𝑀
′
f ) with 𝑁 ′ =

(𝑃 ′, 𝑇 ′, 𝐹 ′, 𝐴′, 𝑙′), where the following holds:

𝑃 ′ = (𝑃 ∪ 𝑃𝑝)\{𝑝} 𝐹 ′ = (𝐹 ∪ 𝐹𝑝)\(•𝑝 × {𝑝} ∪ {𝑝} × 𝑝•) ∪

𝑇 ′ = (𝑇 ∪ 𝑇𝑝)\𝑇⟲ {(𝑡𝑖, 𝑝𝑖) ∈ (•𝑝\𝑇⟲) × 𝑃𝑝 ∣ 𝑀𝑖,𝑝(𝑝𝑖) > 0} ∪

𝐴′ = 𝐴 {(𝑝𝑓, 𝑡𝑜) ∈ 𝑃𝑝 × (𝑝•\𝑇⟲) ∣ 𝑀𝑓 ,𝑝(𝑝𝑓) > 0} ∪

𝑀′
𝑖 = 𝑀𝑖, 𝑀′

𝑓 = 𝑀𝑓 ⋃
𝑡𝑙∈𝑡⟲

({(𝑝𝑖, 𝑡𝑟) ∈ (•𝑡𝑙\{𝑝}) × 𝑇𝑝 ∣ 𝑙(𝑡𝑙) = 𝑙𝑝(𝑡𝑟)} ∪

{(𝑡𝑟, 𝑝𝑜) ∈ 𝑇𝑝 × (𝑡𝑙•\{𝑝}) ∣ 𝑙(𝑡𝑙) = 𝑙𝑝(𝑡𝑟)}).

In the following we continue our example from Figure 3a and Figure 4. In Figure 5a, we show
the accepting Petri net 𝑆𝑁2,3 resulting from replacing 𝑝′2 in 𝑆𝑁2 with 𝑆𝑁3. Here, 𝐿2 can still
be replayed on 𝑆𝑁2,3 while precision is improved compared to 𝑆𝑁3. The accepting Petri net
𝑆𝑁1,2,3 shown in Figure 5b results from replacing 𝑝3 in 𝑆𝑁1 with 𝑆𝑁2,3. All traces occurring in
𝐿1 are replayable on 𝑆𝑁1,2,3 and no other. Thus, fitness is preserved and precision is improved
compared to 𝑆𝑁1.

In the following section we introduce pre-processing steps that can be applied optionally in
our framework to also consider 𝑘-loops as candidate imprecise structures and to improve the
quality of the results.

4.3. Pre-Processing of Accepting Petri Nets

In this section, we are going to discuss how to make place projection feasible for 𝑘-loops and
an approach on how to handle the case where we discover an accepting Petri net that does
not improve precision when being replaced. First, we have a look on the place projection on
𝑘-loops.

Place Projection on k-Loops So far, we limited our method to project a log on a single
place with one-looping transitions. Nevertheless, the eST-Miner and other discovery algorithms
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Figure 6: Resulting accepting Petri net of applying the framework to 𝐿𝑐 and 𝑆𝑁𝑐 shown in Figure 3b.

frequently return Petri nets that include 𝑘-loops. Therefore, we extend our approach to also
allow for the projection of a log on multiple places.
Consider a 𝑘-loop in an accepting Petri net 𝑆𝑁 = (𝑁,𝑀i, 𝑀f) with 𝑁 = (𝑃, 𝑇, 𝐹, 𝐴, 𝑙) that

contains a set of places 𝑃⟲ ⊆ 𝑃. Combining all places into a single place 𝑝, where •𝑝 = ⋃𝑝′∈𝑃⟲ •𝑝′

and 𝑝• = ⋃𝑝′∈𝑃⟲ 𝑝′• holds, does not restrict the behavior of the accepting Petri net 𝑆𝑁. Further,
the framework is applicable as the combined place has a non-empty set of one-looping transitions.
An example of this approach is given for 𝑆𝑁𝑐 discovered on 𝐿𝑐 from our example shown in
Figure 3b. Here, we merge 𝑝4 and 𝑝7 into a single place resulting in an accepting Petri net
equivalent to 𝑆𝑁1 shown in Figure 3a. The result of the projection discovery on 𝑆𝑁1 with 𝐿𝑐 is
shown in Figure 6.
In the following, we present that splitting a place into several places and partitioning the

one-looping transitions can be applied to improve precision when the discovered accepting
Petri net 𝑆𝑁𝑝 does not improve precision.

Partitioning of One-Looping Transitions Let 𝑆𝑁 = (𝑁,𝑀i, 𝑀f) with 𝑁 = (𝑃, 𝑇, 𝐹, 𝐴, 𝑙) be
an accepting Petri net and let 𝑝 ∈ 𝑝 be a place with one-looping transitions 𝑇⟲ = •𝑝 ∩ 𝑝• ≠ ∅.
Splitting the place 𝑝 into a set of parallel places 𝑃⟲, where⋃𝑝′∈𝑃⟲ •𝑝′∩𝑝′• = 𝑇⟲∧∀𝑝′∈𝑃⟲ ∶ •𝑝′ =
•𝑝 ∧ 𝑝′• = 𝑝• holds, does not decrease fitness. The place projection log for each place 𝑝′ ∈ 𝑃⟲ is
different from the place projection log for the place 𝑝. Thus, we conclude different accepting
Petri nets to be discovered which we can insert. Therefore, we can apply this technique when
our framework does not further improve precision. Heuristic strategies for partitioning the
transitions are explored in [9] but out of scope of this work.
In the following section we formalize the guarantees on fitness and precision preservation

and sketch the corresponding proofs.

4.4. Guarantees of the Framework

In this section, we give a more detailed view on the guarantees provided by our framework.
The framework guarantees to preserve fitness and precision as formalized in Theorem 4.1 and
Theorem 4.2.

Theorem 4.1 (Preservation of Fitness) Let 𝐿 be an event log and let 𝑆𝑁 = (𝑁,𝑀i, 𝑀f) with
𝑁 = (𝑃, 𝑇, 𝐹, 𝐴, 𝑙) be an accepting Petri net on which each trace 𝜎 ∈ 𝐿 has a unique valid firing
sequence 𝜔. Further, let 𝑝 ∈ 𝑃 be a safe place that has a set of uniquely labeled non-silent one-
looping transitions 𝑇⟲ = •𝑝∩𝑝• ≠ ∅with ∀𝑡1,𝑡2∈𝑇⟲ ∶ 𝑙(𝑡1) ≠ 𝜏 ∧𝑙(𝑡1) = 𝑙(𝑡2) ⇒ 𝑡1 = 𝑡2 that does not a



hold a token in the initial or final marking, i.e.,𝑀i(𝑝) = 𝑀f(𝑝) = 0. Let 𝑆𝑁 ′ = (𝑁 ′, 𝑀′
𝑖 , 𝑀

′
𝑓) with

𝑁 ′ = (𝑃 ′, 𝑇 ′, 𝐹 ′, 𝐴′, 𝑙′) be the accepting Petri net obtained by applying the projection discovery.
For such an accepting Petri net 𝑆𝑁 ′, it holds that all traces 𝜎 ∈ 𝐿 have a valid firing sequence 𝜔′

and therefore fitness to be preserved.

Proof. For any 𝜎 ∈ 𝐿 that has a valid firing sequence 𝜔 = ⟨𝑡1, 𝑡2, … , 𝑡𝑛⟩ on 𝑆𝑁, we conclude a
valid firing sequence 𝜔′ = ⟨𝑡′1, 𝑡′2, … , 𝑡′𝑚⟩ to exist on 𝑆𝑁 ′ where 𝑛, 𝑚 ∈ ℕ and which replays 𝜎 on
𝑆𝑁 ′. Recall, that for the place projection to be unambiguous and for our replacement technique
to be applicable, we expect each trace to be replayed by the same firing sequence throughout
the whole framework. We consider the token sequence 𝜑(𝑝, 𝜔) = ⟨𝑐0, 𝑐1, … , 𝑐𝑛⟩. If every token
state is equal to zero, we conclude the firing sequence 𝜔′ to be equal to 𝜔 as the replacement
technique does not influence the token movement and the transitions fired.

Next, we consider a token sequence where a value is non-zero. We are interested in the first
non-extendable subsequence ⟨𝑐𝑘, 𝑐𝑘+1, … , 𝑐𝑗⟩where ∀𝑖∈[𝑘,𝑗]∶ 𝑐𝑖 = 1with 𝑗 ∈ [2, 𝑛] and 𝑘 ∈ [1, 𝑗−1].
Consider the prefix 𝜔𝑎𝜔𝑏 of 𝜔, with 𝜔𝑎 = ⟨𝑡1, 𝑡2, … 𝑡𝑘⟩ and 𝜔𝑏 = ⟨𝑡𝑘+1, 𝑡𝑘+2, … , 𝑡𝑗−1⟩. Since 𝜔𝑎

does not consume a token from 𝑝, we conclude it to be exceptionable on 𝑆𝑁 ′ and 𝜔′ to start
with 𝜔𝑎. Considering the sequence 𝜔𝑏 = ⟨𝑡𝑘+1, 𝑡𝑘+2, … , 𝑡𝑗−1⟩, we distinguish for each transition
whether its in the set of shared transitions 𝑇\𝑇⟲ (1) or in the set 𝑇⟲ (2).

In Case (1), we know that such a transition 𝑡1 ∈ 𝑇\𝑇⟲ is neither ingoing nor outgoing to 𝑝 as
𝑡1 reproduces a non-zero token state and as it is not a one-looping transition of 𝑝. Therefore, all
ingoing places of 𝑡 are in 𝑃. Thus, we conclude such a transition to be fired as well in 𝜔′ when
fired in 𝜔. We conclude the transition to be enabled in 𝜔′ considering Property (4) of Definition
4.4 if each preceding transition in 𝜔𝑏 has a transition with the same labeling being added to 𝜔′.

The same arguing holds in Case (2) for all ingoing places of a transition 𝑡′ ∈ 𝑇⟲. Nevertheless,
we cannot add 𝑡′ directly to 𝜔′ as it is replaced in 𝑆𝑁 ′ and as a transition with the same
label has other ingoing places than 𝑝. If we consider 𝜔𝑏 to only contain transitions in 𝑇⟲, i.e.,
𝜔𝑐 = 𝜔𝑏↾𝑇⟲ , we identify this firing sequence to be considered for the place projection according
to Definition 4.3. Therefore, we conclude that for each 𝑡′ a transition with the same label exists
and is enabled in 𝑆𝑁 ′. Further, according to Definition 4.4, we preserve exiting transitions of 𝑝
being correspondingly enabled in 𝑆𝑁 ′ as we connect outgoing non-looping transitions with the
places containing a token in the final marking of the replacing subnet. Similarly, according to
Definition 4.4, we preserve the transitions corresponding to the one-looping transitions to be
enabled accordingly as we connect the places containing a token in the initial marking of the
replacing subnet as outgoing places to all ingoing transitions of 𝑝.

We can continue our argument on the alternating subsequences of all-zero and all-one token
sequences for 𝑝 following. Considering those arguments, we conclude for each 𝜔 replaying 𝜎
on 𝑆𝑁 that a corresponding 𝜔′ on 𝑆𝑁 ′ also replaying 𝜎 exists. Thus, we conclude fitness being
preserved. □

Theorem 4.2 (Preservation of Precision) Let 𝐿 be an event log and let 𝑆𝑁 = (𝑁,𝑀i, 𝑀f)
with 𝑁 = (𝑃, 𝑇, 𝐹, 𝐴, 𝑙) be an accepting Petri net on which each trace 𝜎 ∈ 𝐿 has a unique valid
firing sequence 𝜔. Further, let 𝑝 ∈ 𝑃 be a safe place that has a set of uniquely labeled non-silent
one-looping transitions 𝑇⟲ = •𝑝 ∩ 𝑝• ≠ ∅ with ∀𝑡1,𝑡2∈𝑇⟲ ∶ 𝑙(𝑡1) ≠ 𝜏 ∧ 𝑙(𝑡1) = 𝑙(𝑡2) ⇒ 𝑡1 = 𝑡2 that does
not a hold a token in the initial or final marking, i.e.,𝑀i(𝑝) = 𝑀f(𝑝) = 0. Let 𝑆𝑁 ′ = (𝑁 ′, 𝑀′

𝑖 , 𝑀
′
𝑓)



Table 2
Overview of the filtered real-life logs used for evaluation.

Log Activities Trace Variants Source

Road Traffic Fines Management
(with appeal only) [RTFM+] 11 189 [17]

Road Traffic Fines Management
(without appeal only) [RTFM-] 6 42 [17]

Sepsis (Filtered) [Sepsis] 9 803 [18]
BPI Challenge Log 2017 -

Offer Log [BPI17] 8 16 [19]

with 𝑁 ′ = (𝑃 ′, 𝑇 ′, 𝐹 ′, 𝐴′, 𝑙′) be the accepting Petri net obtained by projection discovery. For such
an accepting Petri net 𝑆𝑁 ′, it holds that any traces 𝜎 that is replayable in 𝑆𝑁 ′ is also replayable
by 𝑆𝑁 ′. This implies, that the proposed method does not increase the behavior of the model, i.e.,
preserves precision.

Proof. We consider the set of places 𝑃𝑎 that only occur in 𝑆𝑁 ′, i.e., 𝑃𝑎 = 𝑃 ′\𝑃. According to
Definition 4.3, we can conclude that it is possible to merge all places 𝑃𝑎 into a single place 𝑝𝑚
resulting in an accepting Petri net 𝑆𝑁𝑚, i.e., •𝑝𝑚 = ⋃𝑝′∈𝑃𝑎 •𝑝

′ ∧ 𝑝𝑚• = ⋃𝑝′∈𝑃𝑎 𝑝
′• holds. Such

a modification does not reduce behavior. Considering Definition 4.3, Definition 4.4 and the
qualities of the eST-Miner that we apply to the place projection logs, we can directly conclude
such an accepting Petri net 𝑆𝑁𝑚 to be equal to 𝑆𝑁, i.e., 𝑆𝑁𝑚 = 𝑆𝑁 holds. Thus, every trace
replayable on 𝑆𝑁 ′ is replayable on 𝑆𝑁 and therefore precision preserved. □

In the following, we apply our framework to real-life event logs to evaluate its capacities.

5. Application to Real-Life Event Logs

In this section, we apply the framework presented in Figure 2 to one artificial event log and three
real-life event logs. First, there is the ’Road Traffic Fine Management’ log [17] which contains
the log of an information system managing road traffic fines. In order to find more meaningful
Petri nets, we split the log into two logs RTFM+ and RTFM-, based on the presence of the appeal
attribute of a trace. The second log used is the ’Sepsis’ log [18] describing the pathway of a
patient with a sepsis through a hospital. We filtered this log for the nine most frequent activities.
The third log is a subset of the BPI Challenge log of 2017 [19] which describes a loan application
process of a Dutch financial institution that is filtered for all accepted application offers. We
provide an overview of the main properties of the logs in Table 2.
For each of the four logs, we give accepting Petri nets discovered by the eST-Miner and

discovered by our framework each. Comparing both the input and the result of our framework,
wewant to show that precision improveswhile fitness is preserved. However, existing automated
precision metrics fail to show the improvement of precision numerically as they are negatively
impacted in our framework when silent transitions are added. Therefore, we show that the
application of our framework is reducing the possible behavior. The resulting accepting Petri



Table 3
Accepting Petri nets discovered by the eST-Miner and our framework on the evaluation logs. The models
can be accessed invidually online. (Click here: Link to GitLab instance)

Log eST-Model Projection Model

RTFM+

Send for Credit Collection

Notify Result Appeal to Offender

Add penalty
Insert Fine Notification

Appeal to Judge

Payment

Receive Result Appeal from Prefecture

Send Appeal to Prefecture

Send Fine

Create Fine

Insert Date Appeal to Prefecture

■

●
Appeal to Judge

■

Notify Result Appeal to Offender

Receive Result Appeal from Prefecture

Add penalty

Send Appeal to Prefecture

Insert Date Appeal to Prefecture

Insert Fine Notification

Payment

Send Fine

Create Fine

Send for Credit Collection

●

RTFM-
Insert Fine Notification Send Fine

PaymentSend for Credit Collection

Create Fine

■
Add penalty

●

Add penalty

■

Payment

Insert Fine Notification

Send for Credit Collection

Send Fine

Create Fine●

Sepsis

ER Sepsis Triage

IV Liquid

IV Antibiotics

CRP

ER Triage

Leucocytes

LacticAcid

ER Registration

■

Admission NC

●
IV AntibioticsER Sepsis Triage

IV Liquid

■

ER Triage

LacticAcid

CRP

Admission NC

Leucocytes

ER Registration●

BPI17

O_Accepted

O_Create Offer

O_Cancelled

O_Returned

O_Refused

O_Created

■

O_Sent (online only)

O_Sent (mail and online)

●

O_Returned

O_Create Offer

O_Sent (online only)

O_Refused

O_Created ■

O_Cancelled

O_Sent (mail and online)

O_Accepted

●

nets are shown in Table 3. The different colors in the accepting Petri nets discovered by our
framework each represent a projection place replacement.
Our framework is implemented in ProM as the so-called ProjectionMiner plugin. For the

application of the eST-Miner within our framework, we limited the maximal search depth of the
candidate tree to a depth of six as experience has shown that most interesting places are covered
already even though we do not traverse the full candidate tree. This limits each place discovered
to contain in sum at most six arcs ingoing and outgoing. In our evaluation, we applied the full
framework except for the 𝑘-loop merge. As there is currently no heuristic implemented for the
partitioning of one-looping transitions, it is applied manually. Nevertheless, the framework is
able to discover the models on the RTFM-, Sepsis and BPI17 event log without user guidance.
As a result, for all accepting Petri nets discovered by our framework that are shown in

Table 3, we can conclude their one-looping transitions to be meaningful as they model activities
that appear repeatedly in traces of the original log. Further, our evaluation shows that our
framework extends the eST-Miner to find more meaningful constructs than flower models. In
the investigated examples, precision is improved for all inputs while fitness is preserved. In
conclusion, there are real-life event logs and artificial logs that our framework can be applied to
and where our framework extends the eST-Miner to achieve higher precision by adequately
modeling optional behavior without hampering its ability to discover complex control-flow
structures or reducing fitness.



6. Conclusion and Future Work

In this paper, we introduced a framework which uses place projection techniques to replace
imprecise loop-structures in eST-Miner models, stemming from the algorithm’s inability to
discover silent transitions, with more precise subnets suitably modeling optional behavior. In
addition to the projection and replacement methods we have extended the approach to loops of
arbitrary length and considered a partitioning technique for one-looping transitions. As proven,
the framework guarantees to preserve fitness and precision. As expected, for our investigated
example logs we identify precision to be improved. In particular, our application to real-life
event logs has shown that our framework is capable of finding accepting Petri nets containing
silent transitions with the eST-Miner that are more precise than those discovered using the
standard eST-Miner.

We conclude our framework to be a promising step towards improving discovery algorithms
unable to return silent transitions, e.g. many region-based approaches, and towards the en-
hancement of process models containing flower structures. Nevertheless, further research has
to be done. In [9], we introduced a first approach for the non-trivial problem of projecting on
unsafe places. Unfortunately, such projections are non-unique and heuristics to choose the best
are yet to be developed. Further research on models with duplicate transition labels is of interest,
as they may have more than one valid firing sequence for a trace and thus also may have a
non-unique place projection log. As indicated before, tailored approaches for the partitioning
of on one-looping transitions are missing and may further improve results. Finally, our current
approach is limited to perfectly fitting logs and an extension to also cover non-perfectly fitting
logs is worthwhile.
Any of these ideas can be taken as starting point for further research. Nevertheless, the

concept of place projection is promising as it is not limited to eST-Miner models only and
as it thus extends our view on process discovery and process enhancement. Moreover, our
introduced techniques extend the general toolset of incremental process discovery. Notably, it
already significantly extends the capabilities of the eST-Miner to make it more applicable to
real-life logs.
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