Unblocking Inductive Miner

While Preserving Desirable Properties

Tsung—Hao Huang[0000—0002—3011—9999] and Wil M. P. van der
Aalst[0000_0002_0955_6940]

Process and Data Science (PADS), RWTH Aachen University, Aachen, Germany
{tsunghao.huang, wvdaalst}@pads.rwth-aachen.de

Abstract. Process discovery aims to discover models to explain the be-
haviors of information systems. The Inductive Miner (IM) discovery algo-
rithm is able to discover process models with desirable properties: free-
choiceness and soundness. Moreover, a family of variations makes IM
practical for real-life applications. Due to the advantages, IM is regarded
as the state of the art and has been implemented in commercial process
mining software. However, IM can only discover block-structured pro-
cess models that tend to have high fitness but low precision. To improve
the quality of process models discovered by IM while preserving desir-
able properties, we propose an approach that applies property-preserving
(free-choiceness and soundness) reduction/synthesis rules to iteratively
modify the process model. The experimental results show that the mod-
els discovered by our approach have a more flexible representation while
preserving desirable properties. Moreover, the model quality, as measured
by the Fl-score, is improved compared to the original models.

Keywords: Process Discovery - Free-choice Net - Synthesis Rules.

1 Introduction

Process mining provides a wide variety of techniques for stakeholders to gain
data-driven insights. To name just a few, process discovery, conformance check-
ing, performance analysis, predictive monitoring, and process enhancement are
examples that process mining can offer [I]. Process discovery aims to discover
process models that can reflect the behavior of information systems. As a pre-
requisite for many other techniques, process discovery plays an essential role in
a process mining project. Once a process model is discovered from the event log
(generated during the process execution in the corresponding information sys-
tems), the stakeholders can apply further process mining techniques to generate
insights for optimization.

Generally, a discovery algorithm is evaluated by analyzing the process models
it discovered. Four dimensions are usually considered: fitness, precision, gener-
alization, and simplicity [I]. Moreover, process models with properties such as
free-choiceness and soundness are preferable. On the one hand, a sound process

2 T. Huang and W. M. P. van der Aalst

model ensures the absence of apparent anomalies such as dead components (e.g.,
transitions that can never be executed) in a model [I]. On the other hand, a free-
choice process model has separated constructs for choice and synchronization.
Such constructs are naturally embedded in other widely-used and high-level no-
tations such as BPMN (split and join connectors). Consequently, it is straight-
forward to convert free-choice nets to other notations. Last but not least, an
abundance of analysis techniques from theory [12] are available for free-choice
models.

The state-of-the-art process discovery algorithm - the Inductive Miner (IM)
- can discover process models with the properties mentioned above by exploiting
the representation of process trees. By design, the converted Petri net from a
process tree is always sound and free-choice. However, a process tree has limited
expressive power as the resulting models can only be block-structured, i.e., pro-
cess models that can be separated into parts with a single entry and exit [20].
As a result, when applying IM to discover models with non-block structures, the
quality of the discovered models is often compromised. Specifically, the discov-
ered models usually have high fitness but low precision.

p2 t2 p3 t3 p4 p5 t4 p6

(a) A process model W,,; with non-block struc- (b) A model W;, discovered by the IMf (with
tures. The behaviors cannot be modeled by a default value 0.2 for the noise threshold) using
process tree without duplicate activity labels. the log generated by W,;.

Fig. 1: An example showing the problem when applying the Inductive Miner to discover
a process model with non-block structures. W;, allows much more behaviors (low
precision) that are not possible in Wy, as activity g is concurrent to many other
activities. At the same time, W;, introduces additional constraints that are not in
Wout, €.g., activity d can only be executed after activity e.

Fig. [I] shows an example that motivates the proposed approach. Fig. [Ta] is
a process model W,,; with non-block structures. In model W,,;, there are two
concurrent branches after activity a but at the same time, there exists a depen-
dency between them. Using one of the most used IM variants: Inductive Miner -
infrequent (IMf) to discover a process model from a log generated by W, the
discovered model would be W, in Fig. @ One can see that the behaviors of
the two models (W,,; and W,) are different. Using process trees as the internal
representations, no variations of IM can ever discover a model with the same
behavior expressed by W,,; without duplicate activities. Nevertheless, its scal-
ability and guarantees of desirable properties still make it an attractive option
for real-life applications.

To improve the quality of the models discovered by the IM while preserv-
ing desirable properties, we propose an approach to iteratively modify a model
discovered by the IM. Taking a log and the corresponding model (discovered by
IM) as input, the approach iteratively modifies the model by applying the reduc-

Unblocking Inductive Miner 3

tion/synthesis rules. Both reduction and synthesis rules are property-preserving
(free-choiceness and soundness). Experiments using publicly available real-life
event logs show that the quality (w.r.t. Fl-score) of the models discovered by IM
is indeed improved by our approach. Moreover, the modified models are always
sound and free-choice thanks to the property-preserving reduction rules [12J19].
The remainder of the paper is organized as follows. We review the related
work in Sec. [2] and define necessary concepts in Sec. [3] Sec. [4] introduces the
approach. Sec. [f] presents the experiment and Sec. [f] concludes the paper.

2 Related Work

A comprehensive overview of process discovery approaches can be found in [8/T5].
While various process discovery algorithms have been proposed, only a few en-
sure both soundness and free-choiceness. The Inductive Miner (IM) exploits
process trees to guarantee both properties. However, the resulting models are
confined to be block-structured. Using process trees to model a process with
non-block structures often results in process models with compromised quality.
Several approaches [TI9TT] can discover non-block structured models but cannot
ensure both properties.

Another group of approaches ensures the desirable properties by applying
synthesis rules from free-choice net theory [I2]. Dixit et al. [14] were among the
first to use synthesis rules for process discovery. The focus was on enabling the
interactive setting of process discovery, which requires constant feedback from
users with domain knowledge. Nevertheless, the ideal models often cannot be
discovered without going back and forth by a combination of reduction and
synthesis rules [14]. Furthermore, to recommend to the user the most prominent
modifications, the approach needs to evaluate all the possibilities. To address the
problems, [T9/T8] introduces the Synthesis Miner to automate the discovery by
introducing predefined patterns using synthesis rules and a search space pruning
mechanism.

A closely related field to our proposed approach is process model repair where
an existing process model is modified for the purpose of enhancement. Given an
existing model and a log containing the behaviors that cannot be replayed by
the model, an approach is proposed in [I6] to add behaviors to the model locally
such that the resulting model can incorporate all the behaviors in the log while
staying as similar as possible to the existing model. Instead of fixing all the
identified problems (misalignments) as in [I6], the approach in [22] prioritizes
the changes with the highest impact on fitness. The model repair approaches
mentioned so far [16/22] have a tendency toward fitness (being able to replay
all the traces) while ignoring other quality dimensions, which often leads to
over-generalized models. To avoid the over-generalization pitfall, an interactive
repair approach is proposed in [6], where users are expected to provide feedback
after viewing the visualization of the mismatches between the event log and the
process model. Nevertheless, all the approaches discussed above [I6l22]6] do not
guarantee sound and free-choice process models.

4 T. Huang and W. M. P. van der Aalst

3 Preliminaries

In this section, we introduce the concepts used throughout this paper. For some
set A, B(A) is the set of all multisets over A. For some multiset b € B(A),
b(a) denotes the number of times element a € A appears in b. For example, if
A ={x,y,2}, then b = [z,y5, 2] € B(A) is a multiset consisting of 15 elements.
b(z) = 8 as z appears eight times in b. 0 = (a1, a2,...,a,) € A* denotes a
sequence over A with length |o| = n. For 1 < i <|o|, (i) = a; denotes the i-th
element of o. For instance, o, = (z,y,x,2) € A*, |o5| =4, and 04(3) = z. () is
the empty sequence. Given two sequences o and ¢’, o - ¢’ is the concatenation,
e.g., (b) - {a,c) = (b,a,c).

Definition 1 (Sequence Projection). Let A be a set and X C A be a subset
of A. For 0 € A* and a € A, [x€ A*—=X* is a projection function defined
recursively with (1) ()Ix = () and (2)

{<a>'UFX, ifaeX

olx, otherwise

((a)-0)Ix =

For example, (a,b, a)[{s,c} = (a,a). Projection can also be applied to multisets
of sequences, e.g., [{a,b,)%, (a,b,b)%, (b, a, c)?] [{b,cr = [(b,)8, (b, b)°].

Definition 2 (Activities, Trace, and Log). U, is the universe of activities.
A trace o € U} is a sequence of activities. A log is a multiset of traces, i.e.,
L e BUy).

Definition 3 (Petri Net & Labeled Petri Net). A Petri net is a tuple
N = (P,T, F), where P is the set of places, T is the set of transitions, PNT = (),
F C(PxT)U(T x P) is the set of arcs. A labeled Petri net N = (P,T, F,l) is a
Petri net with a labeling function | € T -» U mapping transitions to activities.
For any x € PUT, ex = {y|(y,x) € F} denotes the set of input nodes and
xe = {y|(z,y) € F} denotes the set of output nodes.

Note that the labeling function could be partial. If a transition ¢t € T is not in
the domain of [, i.e., t ¢ dom(l), it has no label. In such a case, we also write
1(t) = 7 to indicate that the transition is silent or invisible. In the labeled Petri
net W, of Fig. transition t9 ¢ dom(l) so we say that t9 is a silent transition.
In this paper, we assume the visible transitions of a labeled Petri net have unique
labels, i.e., V¢, 1oeTAi(t1).(ta)edom) (U(t1) = U(t2) = t1 = t2).

Definition 4 (Free-choice Net). Let N = (P,T,F) be a Petri Net. N is a
free-choice net if for any t1,to € T : ot; = oty or ot N ety = (.

Observe that both nets in Fig. [I] are free-choice nets.

Definition 5 (Path, Elementary Path, Strongly Connected Petri net).
A path of a Petri net N = (P,T,F) is a non-empty sequence of nodes p =
(1,22, ..., Tp) such that (z;,x,41) € F for 1 <i < n. p is an elementary path if
x; #xj for1 <i<j<n.ForX,X"e PUT, elemPaths(X,X',N) C (PUT)*
is the set of all elementary paths from some r € X to some ' € X'. N is
strongly connected if for any two nodes x and y, there is a path from z to y.

Unblocking Inductive Miner 5

Definition 6 (Marking). Let N = (P,T,F) be a Petri Net. A marking M €
B(P) is a multiset of places. (N, M) is a marked Petri net.

A transition t is enabled in marking M if each of its input places has a token,
ie., VpcetM(p) > 0. Tokens are graphically represented as black dots. An en-
abled transition can fire. Firing a transition consumes a token from each of its
input places and produces a token for each output place. A transition is dead in
marking M if no reachable marking enables t.

Definition 7 (Workflow Net (WF-net)). Let N = (P, T, F,l) be a labeled
Petri net, Minit, Mfina € B(P) be the initial and final marking respectively. A
workflow net (WF-net) is a triplet (N, Minit, Mpna1) such that (1) there exists a
source place i € P : oi = () and a sink place 0 € P : 08 = (. (2) Mny = [i] and
Mpna = [0] (3) the net N' = (P, T',F',1) is strongly connected, where t' ¢ T,
T ={t'}UT and F' = F U (o,t') U (', 1).

In Fig. |Lb} Wiy, is a WF-net with M;,,;; = [pl] and Mgpe = [pl4]. An important
property of WF-net is soundness. Three properties [I] need to be held for a WF-
net to be sound (1) safeness: places cannot have multiple tokens in any reachable
marking (2) option to complete: it is always possible to reach the marking in
which only the sink place is marked (3) no dead transitions. Both W, and Wy,
in Fig. [1] fulfill the three properties.

Definition 8 (Reachable Markings & Complete Firing Sequences [2]).
Let W = (N, Minit, Mfina1) be a WF-net with N = (P,T,F,l) a labeled Petri
net. M[t)M’ denotes that t is enabled in marking M and the resulting marking
M’ of firing t is M’ = (M \ et) Ute. Let 0 € T* be a sequence of transitions.
Mo)M' denotes that there exists a set of marking My, Ma, ..., M1 such that
My, = M,M,+1 = M’', and M[o(:))M' for 1 < i < n, i.e., o is an enabled
firing sequence leading from M to M'. M’ is a reachable marking from M if
Joer=-Mo)M'. cfs(W) = {0 € T*|Mipnit|o) Mfinai} is the set of complete firing
sequences of the WF-net W, i.e., all enabled firing sequence leading from the
initial marking M, to the final marking Mgpq;.

For W, in Fig. o1 = (t1,12,t3,t5,17,t9,t4,t6,t10,t8) € cfs(W;,) is a com-
plete firing sequence. Firing a transition ¢ in a WF-net is equivalent to executing
an activity [(¢) if ¢ € dom(l). Applying the labeling function to a sequence,
we get the corresponding trace of the WF-net, e.g., i(01) = (a,b,c,e,g,d, f, h).
Note that, if a transition of a complete firing sequence has no label, it is simply
skipped in the corresponding trace.

Definition 9 (Traces of a WF-net |2]). Let W = (N, Minit, Mfinar) be a WE-
net. lang(W) = {l(0)|o € cfs(W)} is the set of traces possible in W. act®(W) =
{o(i)|o € lang(W) A1 < i <|o|} is the set of activities possible in W.

Definition 10 (Adding Artificial Start & End Activities [2]). »¢ U4 and
B¢ Uy are two special activities indicating the start and end of a trace. For any
logL € BUY), L=1[(»)-0-(M)|o € L]. Forany S CU},S = {(»)-c-(WM)|oc € S}.

6 T. Huang and W. M. P. van der Aalst

Definition 11 (Directly-Follows Relations of a Log and a WF-net [2]).
Let L € B(U}) be a log and W = (N, Mipit, Mpina) be a WF-net.

— act(L) = [a € o|o € L] is the multiset of activities in log L.

— df (L) = [(0(i),0(i41))|o € LAL <i < |o]] is the multiset of directly-follows
relations in the log.

— dfP(W) ={(o(i),0(i+1))|o e SA1<i<|o|} (where S = lang(W)) is the
set of possible directly-follows relations according to W.

Note that the special start and end activities have been added (Def. to
the traces in L and S. For a log L = [(b,)8, (b,a)%], the log after adding the
start/end activities would be L = [(», b, c,)8, (»,b,a, M)%] and the multiset of
directly-follows relations is df (L) = [(»,b)4, (b, ¢)3, (c,)8, (b,a)", (a, W)"].

4 Approach

In this section, we present the proposed approach. As shown in Fig. [2] the ap-
proach takes a log L and a WF-net W discovered by the IM as inputs. Internally,
the input WF-net is iteratively modified in order to produce a better model w.r.t.
Fl—scoreﬂ which is the harmonic mean of the fitness and precision measures.

(2) Remove the
corresponding nodes

p2 t2 p3 t3 p4 p5 t4 p6 p2 t2 p3 t3 p4 pS t4 p6

OO Ont9 A-{dPOnt10p13 8 p14 old
MR Sy 1ok ke
(a) OO O O
t1 p7 t5 p8 p9 t6 plo w pl t1 p7 t5 p8 p9 t6 plo w'
pl pl2
(1) Identify the transition (3) Add it back
to be removed to a better location

p2 t2 p3 t3 p4 p5 t4 p6
bO-{d)

(@b.ce.d,f.g.hy a b.c,
(a,e,b,c,d,f,g.1)"° (ae,
(a,e,b,c.f,d,g,h)*° (a,b,c,

p2 t2 p3 t3 p4 p5 t4 pb6
O O

O~{d>O\t10p13 t8 pl4a
GGy, Setoie
O-{fO

p9 t6 pl0

Win

pll t7 pl2

Fig. 2: An example showing a single iteration of our approach.

The general procedure of each iteration is to (1) identify the transition to
be removed, (2) remove the corresponding nodes (transitions and possibly also

precision- fitness
precision+ fitness "’

1 We use the following formula for the Fl-score: 2 -

Unblocking Inductive Miner 7

places) from the WF-net, and (3) add it back to a better location w.r.t. F1-score.
In the following subsections, we introduce each step more precisely. We use the
following log L¢ and the corresponding WF-net W;,, (in Fig. discovered by
the IM and as the running example.

Ly = [{a,b,c,d,e, f,g,h)'° (a,b,e,c,d, f,g,h)°, (a,b,e,c, f,g,d, h)1",
{a,b,e,c, f,d,g,h)1° (a,b,c,e,d, f,g,h)*°, (a,b,c, e, f,d, g, h)1",
(a,e,b,c,d, f,g,h)0 {(a,e,b,c, f,g,d,h)°, (a,e b, c, f,d, g, h)°,

<a’b7c7e7f7g’d’ h>10}

4.1 Identification of the transition to be removed

In each iteration, we start by identifying the transition to be removed. We com-
pare the directly-follows relations from the input log L and WF-net W to identify
the target transition. The basic idea is to find the activity a* with the most dif-
ferent directly-follows relations in L and W. Subsequently, the corresponding
transition ¢* can be identified using the activity label a*.

As noise or infrequent behaviors can pose additional challenges for process
discovery algorithms, we filter out the infrequent behaviors in the set of directly-
follows relations to make the proposed approach noise-tolerant.

Definition 12 (Filtered Directly-Follows Relations [20]). Let L € B(U})
be a log and a € act(L) U {»,W}.

— mazOut(a, L) = maz({df (L)(a,b)|(a,b) € df (L)}) is the weight of the most
frequent directly-follows relations with activity a being the preceding activity.

A (L,w) = {@yl(@.y) € dF(D) A (df(L)(z,y) > mazOut(w, L) x w)}
is the set of filtered direclty-follows relations with 0 < w < 1 as the noise
threshold.

One can think of this as filtering the edges on the corresponding Directly-Follows
Graph (DFG). For every activity a, the outgoing edges are filtered out if they
occur less than w times the most frequent outgoing edges of a. The default value
for w is 0.2 [20]. Next, we define the pre- and post-set of activity in a log and a
model based on the (filtered) directly-follows relations. Then, the similarity score
of an activity is defined based on the differences of its (filtered) directly-follows
relations in the log and the model.

Definition 13 (Preset, Postset, and Similarity Score). Let L € B(U}) be
a log, a € U} be an activity, and W = (N, Minit, Mfina) be a WE-net.

— pre(a, L,w) = {b|(b,a) € dff(L,w)} is the set of activities that activity a
directly-follows according to the filtered directly-follows relations dff (L,w).

— post(a, L,w) = {bl(a,b) € dff (L,w)}. is the set of activities that directly-
follow activity a according to the filtered directly-follows relations dff (L,w).

— preb(a, W) = {b|(b,a) € df*(W)} is the set of activities that activity a
directly-follows in the traces possible according to W.

8 T. Huang and W. M. P. van der Aalst

— post®(a, W) = {b|(a,b) € df*(W)} is the set of activities that directly-follow
activity a in the traces possible according to W.

o _ 1 |pre(a,Lw)npre®(a,W)| | 1 _ |post(a,L,w)Npost®(a,W)| -
szm(a, VV’L’W) =3 X |pre(a,L,w)Upre?(a,W)| + 2 X |post(a,L,w)Upost?(a,W)| is the

similarity score of the activity a based on the difference of its directly-follows
relations in L and W.

— simMin(W, L,w) = {a € A|Vpeasim(a,W,L,w) < sim(b,W,L,w)} (where

A = act(L)Nact®(W)) is the set of activities with the lowest similarity
score.

With DFGs, Fig. 3| shows the ﬁlterecﬂ directly-follows relations of the running
example, log Ly (Fig. and model W;, (Fig. . Taking activity h as an
example, pre(h, L,,0.2) = {d, g}, pre®(h, W;,,) = {d, f, g}, and post(h, Ls,0.2) =
post®(h, W;,) = {B}. Hence, the similarity score is sim(h, Wy, Ls) = % X % +
3 x 1 = 3. The function simMin(Wi,, Ls,0.2) = {g} calculates the similarity
score of all the activities and returns the one(s)ﬂ with the lowest score, which is
activity ¢ in this case. One can also observe that from the two DFGs in Fig. [3]
as ¢ is concurrent to all the other activities except for a and h in W;,, which

results in very different directly-follows relations in the two graphs.

b= e[4]
NAXT

s
Sxiiya

(a) The DFG showing the directly-follows re- (b) The DFG showing the directly-follows re-
lations of L. lations of W;,.

Fig. 3: Two directly-follows graphs (DFGs) showing the directly-follows relations of
the running example, log Ls and model W,

Once we get the target activity a*, the next step is to remove the corre-
sponding transition ¢t* from the WF-net. As has been seen in Fig. |2| for our
running example, a* = g and t* = 7.

4.2 Removal of the corresponding nodes

Since we are only interested in the WF-nets with desirable properties: soundness
and free-choiceness, we need to ensure the removal of the corresponding transi-
tion t* from the WF-net can keep the properties. Additionally, we would like
to make sure that the language of the resulting WF-net W' is the same as the
original WF-net W if we only consider the activities that exist in both nets, i.e.,

lang(W)! gerpwry = lang(W') (see Def. [1] and @

2 Note that none of the directly-follows relations are filtered out using the default
noise threshold for our running example L, as most of the relations are frequent.

3 There can be multiple activities with the same lowest similarity score. In such a case,
we randomly choose one from the set.

Unblocking Inductive Miner 9

4

o (2

(‘/ T O@

X=TOry=1

ifx =1
else:z =x

Fig. 4: Behavior preserving reduction rules based on [4J21].

To achieve all the conditions mentioned above, a straightforward and naive
approach is to relabel t* to silent transition 7. However, such a naive solution
would potentially leave a lot of silent transitions in the final WF-net. There-
fore, after relabeling t* to be silent, we apply the behavior-preserving reduction
rules [4] based on Murata [21] to remove the redundant silent transitions. Fig.
shows the reduction rules that are used in this paper.

P2 © p3 B pd ps 4 p6 Relabel the P2 © p3 B pd ps 4 p6
O (dPO\t10 p t8 p14 target transition
“ O tosilentt @,
p9 t6 pl0 pl

10 p13 t8 pld

t1 p7 t5 p8 p9 t6 plo

pll t7 pl2
Remove redundant
silent transitions

p2 t2 p3 t3 p4 pS t4 pé p2 t2 p3 t3 p4 t4 p6

Remove
implicit places

p9 t6 pl0

pl tl p7 t5 p8 p9 t6 plo

W' =Wy

U
pl2

Fig. 5: Applying the reduction step to the running example.

The reduction rules are able to preserve soundness and behaviors but not
necessarily free-choiceness. The rule of question is the third one in Fig. [For
example, let the transition labeled by x be t. Imagine there exists a transition ¢’
with the same input place as t, i.e., ot' = ot. After the reduction, the free-choice
property can be violated. The reason is that the transition labeled by z and
transition ¢’ should have the same set of input places (by Def. [4) but this may
not be the case. Thus, we check the free-choice property of the resulting net and
only accept the change if it is also a free-choice net.

Removing the silent transitions using the rules specified above can also leave
redundant (also called implicit) places in the resulting net. As implicit places
have been well-studied and a formal definition is out of the scope, we refer
to [I0/I7] for more details. In general, a place is implicit if removing it does
not change the behavior of the net. As shown in Fig. [5] place p12 is an implicit
place obtained after removing the redundant silent transitions. Implicit places are
often not desirable as they can increase the computational complexity of analysis
algorithms. Moreover, simplicity and readability are crucial criteria for a process
model. Having redundant places in a process model impairs its simplicity. Thus,

10 T. Huang and W. M. P. van der Aalst

the implicit places are removed at the end of the removal step by applying the
technique specified in [I0]. We denote the resulting net after the removal step as
W'. For our running example, W/ = W/ . as shown in Fig.

wmn?

4.3 Relocation

In the last step of the iteration, we try to find a better location on the WF-net
W' w.r.t. Fl-score to add a transition (hereafter denoted as t*) labeled by a*. In
general, the suitable location to add t* should be located between the transitions
labeled by the preceding and following (in terms of the causal relations) activities
of activity a*. Thus, we use the causal relationship among activities in the log
to identify the preceding and following activities. In the following, we formally
define a few log properties to illustrate the idea.

Definition 14 (Log Properties [19]). Let L € B(U3}) be a log and a,b € Ua
be two activities.
df (L) () —df (L)(ba) g 4
— caus(a,b,L) = dgfL()LS‘l(}f7)b'§df(L)(b’a)+l . is the strength of causal re-
(L) (ab)+1 fa=b

lation (a,b).

— AV(a,L) = {apre € Ua|caus(apre,a,L) > 0} is the set of a’s preceding
activities with a strength of the causal relationship that is at least 6.

- AgOl(a, L) = {ajo € Ualcaus(a, a0, L) > 0} is the set of a’s following
activities with a strength of the causal relationship that is at least 6.

For the running example, we would like to find the preceding and following
activities for activity a™ = ¢ by applying the last two functions in Def. Using
the default threshold value for 6 (0.9) [19], we get the set of preceding activities
as AD(g, Ly) = {f} and the set of following activities as A} (g, Ls) = {h}.
Afterward, we consider every node on the elementary path (Def. [5]) between the
sets of preceding and following activities as the suitable location. As shown in
Fig.[6] the suitable location would be {t6, p10, t8}.

w' w"
p2 t2 p3 t3 p4 pS t4 p6 p2 t2 p3 t3 p4 p5 t4 p6

OO O\ v AO(dPO_t8_ p14
o h}-O
OxB) O-(e>O O-(f g
pl tl p7 t5 p8 p9 it6 pl0 pl t1 p7 t5 p8 p9 t6 pl5 t9 plo

Fig. 6: Adding a transition labeled by activity g back to the WF-net.

Same to the removal step, we also want the resulting net W’ of the reloca-
tion step to be free-choice and sound after adding transition t* to the suitable
location. Accordingly, we apply the patterns defined in [I9] to modify the WEF-
net W’ from the removal step. The patterns (including skipping and looping,
etc.) are defined based on the synthesis rules introduced in the free-choice net
theory [12]. Following the synthesis rules ensures that the two properties can be
preserved [I3I19]. For the formal definitions of the patterns and rules, we refer
to [12U19).

Unblocking Inductive Miner 11

Applying the patterns results in a set of candidates (WF-nets). The candi-
dates are then evaluated based on the alignment-based precision [5] and fitness [3]
scores. After that, the candidate with the highest F1-score is selected for the next
iteration. As shown in Fig. @ W' is the resulting WF-net after adding transi-
tion ¢*. The loop continues until no further improvements are made w.r.t. the
F1-score for three consecutive iterations, which can be set by the users as well.

5 Evaluation

In this section, we evaluate our approach and discuss the experimental results.
The approach is implementedEI in Python using PM4P

5.1 Experimental Setup

For the experiment, we would like to compare the quality of the WF-nets before
and after using our approach. The inputs are an event log L and the correspond-
ing WF-net W discovered by the Inductive Miner. We apply the most widely used
IM variation: Inductive Miner-Infrequent (IMf). Two publicly available real-life
event logs are used, which are BP12017E| and Road Traffic Fine Management[]
(hereafter traffic) respectively. Using the event prefixes, BPI2017 is split into
two sub-logs, BPI2017A and BPI20170. For each log, we apply IMf using six
different values (0.0, 0.1, 0.2, 0.3, 0.4, and 0.5) for the noise filter threshold and
choose two models with the highest Fl-scores. In total, we have six different
model-log pairs that will be used as input for our approach.

5.2 Results

Table [I] shows the results of the experiment. The left-hand side of the table
records the quality of the input models w.r.t. precision, fitness, and F1-score
while the right-hand side of the table records the same for the output models
after using our approach.

Table 1: Results showing the changes in model quality before/after using our approach.

before after
IMf-filter|model-id |precision|fitness|F1-score| model-id|precision |fitness|F 1-score

0.2 1 0.936 [0.999| 0.967 7 0.936 [0.999| 0.967

BPI2017A 0.4 2 0.999 |0.948 | 0.973 8 0.996 |0.960| 0.978
0.2 3 0.907 [0.997| 0.945 9 0.956 |0.997| 0.998

BPI20170 0.5 4 1.000 |0.957| 0.978 10 1.000 [0.989| 0.995
traffic 0.2 5 0.555 [0.958 | 0.703 11 0.734 10.961| 0.832
0.4 6 0.752]0.862| 0.803 12 0.901 |0.865| 0.883

Except for model 1 (whose resulting model (model 7) is essentially the same),
the Fl-scores of all other models increase. Moreover, almost all of the output

4 https://git.rwth-aachen.de/tsunghao.huang/unblockIM

® https://pmdpy.fit.fraunhofer.de/

5 https://doi.org/10.4121 /uuid:3926db30-f712-4394-aebc-75976070e91f
7 https://doi.org/10.4121 /uuid:270fd440-1057-4fb9-89a9-b699bATIV0ES

12 T. Huang and W. M. P. van der Aalst

models show improvements in both precision and fitness. The only exception
appears in models 2 and 8, where there is a trade-off between precision and
fitness for a better Fl-score. One can observe that the quality of the output
models depends on the input model. For the same log, our approach produces a
different model depending on the existing model. Such a dependency is expected
as the applications of reduction/synthesis rules depend on the existing structure
of the original model [I3|T9].

0_Sent O_Accepted
(online only)

0_Sent O_Returned
(mail and online)
O_Refused

(a) Before (model-id:3): activity f (O_ Accepted) does not have to follow activity e (O_ Returned).
However, the behaviors in the log suggest such a restriction.

O_Sent
(online only)

O_Create Offer O_Created

O_Refused
f

O_Accepted

O_Returned
(mail and online)

(b) After (model-id:9): activity f (O_ Accepted) can only be preceded by activity e (O_ Returned).
Also, activities ¢, d, and e can now be directly followed by activity i.

Before (model-id: 3) Log (BP120170) After (model-id: 8)

a|lblc|d|e|[f|g|h]|i albjc|d|e|[f|g|h]i a|blc|d|e[f[g|h]|i
al#|>|#[#|#|# | #[#|4# al#|>|# | #|# | # | #|#|# al#|>|# | #[#|#|#[#|#
b <|#|>|>|#|#|#|#|# b|<|[#[>[>|#|[#|>|>|# b <|[#[>|>|#|#|#|#|#
cl#|[<[#[|H#|>|>|>[>|# cl#|<|#|H#|>|H|[>[>]> cl#|<|#H|[H#[>|H]|>[>]>
dl#|<|#|#|>]|>]|>|>]|# d|#|<|#|#|>|#]>]|>]> d#|<|[#[#H|>|#[>]|>]>
e|#|#H|[<|[<|H|[>[>]|>|# e|#|#H|<[<|H[>|>]|>]> e|#|[H#|<|[<[H#H|>]|>]|>]>
fle#[#|<|<|<|[#|#|#]|> fl# | # | #[# | <|[#|#|#]|> fl#|# | #[#|<|#|#|#|>
glH|H#|[<|<|<|[H#H|H#H|H|> gl#|<|<|<|<|[#|#|#]|> gl#|#|<|<|[<|#|#|#]|>
h|#|#[<|<|<|#|[#|#]|> h|#|<[<[<|[<|[#|#|#]|> h|#[#[<|[<|<|#|#|#]|>
i #(# |8 #[#]<|<|<|# i ##H|<|<|<|<|<[<|H# i ##<|<[<|<|<[<|#

(c) The footprint matrices of the BPI20170 log and the before/after models (id: 3 and 8). The
number of different cells is reduced from 14 to 4. The different four cells stem from the fact that it
is possible in the log to skip activity ¢ or d to directly execute g or h after activity b.

Fig. 7: A comparison of the before/after models for the BP120170 log.

In addition to the aggregated measurements in Tab. [T} we would like to com-
pare the structures and behaviors of the models before/after using our approach.
Fig. [7| and [8| show the comparisons between the before/after models. Addition-
ally, the corresponding footprint matricesEl are shown in Fig. and Using
the footprint matrix of the log as the ground truth, we highlight the cells of

8 The cells in the matrix represent the relations between the corresponding two activi-
ties. For two activities z,y € B(U%), © > y means that z is directly followed by y but
not the other way round. x#y represents that the two activities never follow each
other while z||y means z and y both directly follows each other. For more details
and a formal definition of the footprint matrix, we refer to [23].

Unblocking Inductive Miner 13

Send Insert Fine

Notification
C

Notify Result Appeal
to Offender

Insert Date Appeal

Receive Result Appeal
from Prefecture

Appeal to Judge

Send for Credit Collection

Send Appeal to Prefecture

(a) Before (model-id:6)

Receive Result Appeal
Insert Date Appeal from Prefecture
to Prefecture

Insert Fine
Notification

Send Appeal to
Prefecture

Add Penalty

Notify Result Appeal
to Offender

Send for Credit
Collection

Payment

(b) After (model-id:12): The modified model has quite some changes except for a few activities such
as the start and end activities. First, activity b (Send Fine) is placed as the start of two parallel
branches. Also, the activities related to "Prefecture" (d,h,k) are now placed closely together as one
of the branches after activity b. The self-loop behavior of activity e (Payment) is not captured by
both models. We assume there is a trade-off between precision and fitness here as allowing self-loop
for activity e would probably increase fitness slightly but decrease precision significantly.

Before (model-id: 6) Log (traffic) After (model-id: 12)
a|blc|d|e|[f|g|h|ij[k]|! alb|c|d|e|f[g|h|i]j|k][! alb|c|d|e|[f|g|h|i]j[k]|!
al|#|>[#H[>|>|>[>|>|#|#|#|# a|#[>|#|>[>[#|> |# |4 |88 |H a|#|[>|#|#|>|#|[# |8 |8 |#|#|#
bl<|#[>[#|[1|#|#][||[#[#|#]|# bl <[# >[I #IILII[#]#]|#]> bl<|#[>|>[ll|>[>|#|#[#|#|#
cl#|<[#[#|[1|>|#][1I[#[#|#]# cl#|<[#[IIII>|>[II[#]#]|># cl#(<|#|LI[II>1#[1I[#[#]I#
di<|#|#[#|[||[#[[|II[#]>]>]# A <P {# T > O > | [d s < # > P> | >
e [<ULLPLLP UL # P> (> e [< WL > O > e < R # > (>
fl<(#|<|#|lI[#][<[lI|>]<]|<]|> ARSI EA IRk fla|<|<[LIILL{#[<[II]>]>]1I]>
g <[# | # I > #]I # 1] # g [<< [P ILUT # > L > | [g <V # LTI > [# 1L # [#]1]]#
< L #] > L # > s < L # L] >
i(# | # 88 <|[<|#]|lI[#]|8]8]> i#|# | <|<|<|<]|ll|#]|<|<]|> i #[#|# <|<[#|II|#[<]|II[>
A< > LI #T]] # Pl A > [# > |G < # > [#)1 >
K|t <DL > I # L] # | # ko < D > [s> | ks < L # >
| [#|# 88 <|<|#]|<[<|#|#8|# | [#<|#[<|<|#[<|<[<|<|<|# | ## 8 <|<|<|#]|<[<]|<|<|#

(c) The footprint matrices of the traffic log and the before/after models (id:6 and 12). In total, the
number of different cells is reduced from 47 to 39. For most of the activities, the differences either
decrease or at least remain except for activities b,g, and h.

Fig. 8: A comparison of the before/after models for the traffic log.

the matrices from the WF-nets in red to indicate differences and in green to
represent consensuses.

After using our approach, one can see in Fig. and Fig. that the dif-
ferences in the footprint matrix are considerably reduced. Also, the resulting
models have a more flexible representation (non-block structures) as shown in

Fig. [7b] and Fig. Bbl

14 T. Huang and W. M. P. van der Aalst

6 Conclusion and Future Work

In this paper, we present an approach that aims to improve the quality of pro-
cess models discovered by the state-of-the-art Inductive Miner (IM) algorithm
while retaining desirable properties, such as free-choiceness and soundness. Our
approach iteratively modifies the model by removing problematic transitions
(using reduction rules) and adding them back (using synthesis rules) to a bet-
ter location on the model based on Fl-score. By applying rules developed from
free-choice net theory [12], we ensure that any modification to the net preserves
these desirable properties. Moreover, our approach results in a process model
that is not restricted to block-structured, allowing for a more flexible represen-
tation and potentially higher quality. We implemented the approach in Python
and evaluated it using real-life event logs, with experimental results demonstrat-
ing improved quality (measured by F1l-score) compared to models discovered by
IM alone. Additionally, several resulting process models exhibit non-block struc-
tured behaviors, and the directly-follows behaviors of the resulting models are
more in line with those from the corresponding log.

There are several possible directions for future work. As the evaluation is
limited to two real-life event logs, the restricted experiment post a potential
threat to the validity of the approach. Moreover, the experimental results show
that it is possible to produce a model without any changes. An open question is
whether the approach can improve quality in general. Thus, we plan to conduct a
more comprehensive evaluation with more real-life event logs and compare it with
existing works. The extended experiment can help to further understand when
and how well the approach works. Another direction is to take the similarity
between the existing and the modified models into consideration so that the
resulting model stays as close as possible to the original one.

Acknowledgements. We thank the Alexander von Humboldt (AvH) Stiftung
for supporting our research.

References

1. van der Aalst, W.M.P.: Process Mining - Data Science in Action, Second Edition.
Springer (2016)

2. van der Aalst, W.M.P.: Discovering directly-follows complete Petri nets from event
data. In: A Journey from Process Algebra via Timed Automata to Model Learning.
Lecture Notes in Computer Science, vol. 13560, pp. 539-558. Springer (2022)

3. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on
process models for conformance checking and performance analysis. WIREs Data
Mining Knowl. Discov. 2(2), 182-192 (2012)

4. van der Aalst, W.M.P., Dumas, M., Ouyang, C., Rozinat, A., Verbeek, H.M.W.:
Choreography conformance checking: An approach based on BPEL and petri nets.
In: The Role of Business Processes in Service Oriented Architectures. Dagstuhl
Seminar Proceedings, vol. 06291. Internationales Begegnungs- und Forschungszen-
trum fuer Informatik (IBFI), Schloss Dagstuhl, Germany (2006)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Unblocking Inductive Miner 15

Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B.F., van der Aalst,
W.M.P.: Measuring precision of modeled behavior. Inf. Syst. E Bus. Manag. 13(1),
37-67 (2015)

Armas-Cervantes, A., van Beest, N.R.T.P., Rosa, M.L., Dumas, M., Garcia-
Baifiuelos, L.: Interactive and incremental business process model repair. In: OTM
Conferences (1). Lecture Notes in Computer Science, vol. 10573, pp. 53-74.
Springer (2017)

Augusto, A., Conforti, R., Dumas, M., Rosa, M.L., Bruno, G.: Automated discovery
of structured process models from event logs:the discover-and-structure approach.
Data Knowl. Eng. 117, 373-392 (2018)

Augusto, A., Conforti, R., Dumas, M., Rosa, M.L., Maggi, F.M., Marrella, A.,
Mecella, M., Soo, A.: Automated discovery of process models from event logs:
Review and benchmark. IEEE Trans. Knowl. Data Eng. 31(4), 686705 (2019)
Augusto, A., Conforti, R., Dumas, M., Rosa, M.L., Polyvyanyy, A.: Split miner:
automated discovery of accurate and simple business process models from event
logs. Knowl. Inf. Syst. 59(2), 251-284 (2019)

Berthelot, G.: Transformations and decompositions of nets. In: Advances in Petri
Nets. Lecture Notes in Computer Science, vol. 254, pp. 359-376. Springer (1986)
Carmona, J., Cortadella, J., Kishinevsky, M.: A region-based algorithm for discov-
ering petri nets from event logs. In: BPM. Lecture Notes in Computer Science,
vol. 5240, pp. 358-373. Springer (2008)

Desel, J., Esparza, J.: Free Choice Petri Nets. No. 40, Cambridge university press
1995

](Dixit,)P.M.: Interactive Process Mining. Ph.D. thesis, Technische Universiteit Eind-
hoven (2019)

Dixit, P.M., Verbeek, HM.W., Buijs, J.C.A.M., van der Aalst, W.M.P.: Interactive
data-driven process model construction. In: ER 2018. vol. 11157, pp. 251-265.
Springer (2018)

van Dongen, B.F., de Medeiros, A.K.A., Wen, L.: Process mining: Overview and
outlook of Petri net discovery algorithms. Trans. Petri Nets Other Model. Concurr.
2, 225-242 (2009)

Fahland, D., van der Aalst, W.M.P.: Model repair - aligning process models to
reality. Inf. Syst. 47, 220-243 (2015)

Garcia-Vallés, F., Colom, J.M.: Implicit places in net systems. In: PNPM. pp.
104-113. IEEE Computer Society (1999)

Huang, T., van der Aalst, W.M.P.: Comparing ordering strategies for process dis-
covery using synthesis rules. In: ICSOC Workshops. Lecture Notes in Computer
Science, vol. 13821, pp. 40-52. Springer (2022)

Huang, T., van der Aalst, W.M.P.: Discovering sound free-choice workflow nets
with non-block structures. In: EDOC. Lecture Notes in Computer Science, vol.
13585, pp. 200-216. Springer (2022)

Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Scalable process discovery
and conformance checking. Softw. Syst. Model. 17(2), 599-631 (2018)

Murata, T.: Petri nets: Properties, analysis and applications. Proc. IEEE 77(4),
541-580 (1989)

Polyvyanyy, A., van der Aalst, W.M.P., ter Hofstede, A.H.M., Wynn, M.T.:
Impact-driven process model repair. ACM Trans. Softw. Eng. Methodol. 25(4),
28:1-28:60 (2017)

Rozinat, A., van der Aalst, W.M.P.: Conformance testing: Measuring the fit and
appropriateness of event logs and process models. In: Business Process Manage-
ment Workshops. vol. 3812, pp. 163-176 (2005)

	Unblocking Inductive Miner

