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Abstract 
Today’s workflow management systems have problems dealing with both ad-hoc 
changes and evolutionary changes. As a result, the workflow management system is 
not used to support dynamically changing workflow processes or the workflow 
process is supported in a rigid manner, i.e., changes are not allowed or handled 
outside of the workflow management system. This paper addresses two notorious 
problems related to adaptive workflow: (1) providing management information at the 
right aggregation level, and (2) supporting dynamic change, i.e., migrating cases from 
an old to a new workflow. These two problems are tackled by using generic process 
models. A generic process model describes a family of variants of the same workflow 
process. To relate members of a family of workflow processes we propose notions of 
inheritance. These notions of inheritance are used to address the two problems 
mentioned both a design-time and at run-time. 
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1 Introduction 
Workflow management promises a new solution to an age-old problem: controlling, 
monitoring, optimizing and supporting business processes [38,39,51]. What is new 
about workflow management is the explicit representation of the business process 
logic which allows for computerized support. At the moment, there are more than 200 
workflow products commercially available and many organizations are introducing 
workflow technology to support their business processes. A critical challenge for 
workflow management systems is their ability to respond effectively to changes 
[11,12,13,17,20,21,27,30,37,41,43,49]. Changes may range from ad-hoc 
modifications of the process for a single customer to a complete restructuring for the 
workflow process to improve efficiency. Today’s workflow management systems are 
ill suited to dealing with change. They typically support a more or less idealized 
version of the preferred process. However, the real run-time process is often much 
more variable than the process specified at design-time. The only way to handle 
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changes is to go behind the system’s back. If users are forced to bypass the workflow 
management system quite frequently, the system is more a liability than an asset. 
Therefore, we take up the challenge to find techniques to add flexibility without 
loosing the support provided by today’s systems. 
 
Typically, there are two types of changes: (1) ad-hoc changes and (2) evolutionary 
changes. Ad-hoc changes are handled on a case-by-case basis. In order to provide 
customer specific solutions or to handle rare events, the process is adapted for a single 
case or a limited group of cases. Evolutionary change is often the result of 
reengineering efforts. The process is changed to improve responsiveness to the 
customer or to improve the efficiency (do more with less). The trend is towards an 
increasingly dynamic situation where both ad-hoc and evolutionary changes are 
needed to improve customer service and reduce costs. 
 
This paper presents an approach to tackle the problem of change. This approach is 
inspired by the techniques used in product configuration [46]. As factories have to 
manufacture more and more customer specific products, the trend is to have a very 
high number of variants for one product. Products, like a car or a computer, can have 
millions of variants (e.g., combinations of color, engine, transmission, and options). 
Also product specifications and their components evolve at an increasing pace. 
Product configuration deals with these problems and has been a lively area of research 
for the last decade. Moreover, some solutions have already been implemented in 
today’s enterprise resource planning systems such as SAP and Baan. To deal with 
changes the traditional Bill-Of-Material (BOM) is extended with product families. A 
product family corresponds to a range of product types and allows for the modeling of 
generic product structures. The term generic BOM [23,29,46,47] is used when generic 
product structures are described by means of an extension to the traditional BOM. In 
this paper, we extend traditional process modeling techniques in a similar manner. We 
adopt the notion of process families to construct generic workflow process models. 
 
A generic workflow process model is a process model which can be configured to 
accommodate flexibility and enables both ad-hoc and evolutionary changes. Using 
generic workflow process models, the workflow management system can support the 
design and enactment ( i.e., execution) of processes subject to change. Moreover, the 
generic process model introduced in this paper allows for the navigation through two 
dimensions: (1) the vertical dimension (is-part-of/contains) and (2) the horizontal 
dimension (generalizes/specializes). Although the second dimension is absent in 
today’s workflow management systems, it is of the utmost importance for the 
reusability and adaptability of workflow processes. 
 
The addition of the horizontal dimension allows for the design and enactment of many 
variants of a workflow process. However, it is not sufficient to support the design and 
enactment. There are two additional issues that need to be dealt with: (1) management 
information [49,50], and (2) dynamic change [13,20,21]. In spite of the existence of 
many variants of one process, the manager is interested in information at an aggregate 
level, i.e., management information which abstracts from small variations. The term 
dynamic change refers to the problem of handling old cases in a new process, e.g., 
how to transfer cases to a new, i.e., improved, version of the process.  
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Figure 1: The dynamic change problem. 

 
Figure 1 illustrates the dynamic change problem1. The left-hand-side process executes 
the tasks prepare shipment, send goods, send bill, and record shipment in sequential 
order. In the right-hand-side process the sending of the goods and the sending of the 
bill can be executed in parallel, i.e., there is no ordering relation between the tasks 
send goods and send bill. In the remainder we will use identifiers A, B, C, and D to 
denote the four tasks. If the sequential workflow process (left) is changed into the 
workflow process where tasks B and C can be executed in parallel (right) there are no 
problems, i.e., it is always possible to transfer a case from the left to the right. The 
sequential process has five possible states and each of these states corresponds to a 
state in the parallel process. For example, the state with a token in s3 is mapped onto 
the state with a token in p3 and p4. In both cases, tasks A and B have been executed 
and C and D still need to be executed. Now consider the situation where the parallel 
process is changed into the sequential one, i.e., a case is moved from the right-hand-
side process to the left-hand-side process. For most of the states of the right-hand-side 
process this is no problem, e.g., a token in p1 is moved to s1, a token in p3 and a 
token p4 are mapped onto one token in s3, and a token in p4 and a token p5 are 
mapped onto one token in s4. However, the state with a token in both p2 and p5 (A 
and C have been executed) causes problems because there is no corresponding state in 
the sequential process (it is not possible to execute C before B). The example in 
Figure 1 shows that it is not straightforward to migrate old cases to the new process 
after a change. 
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Figure 2: Aggregated management information. 

 
Another problem of change is that it typically leads to multiple variants of the same 
process. For evolutionary change the number of variants is limited. Ad-hoc change 
may lead to the situation where the number of variants may be of the same order of 
magnitude as the number of cases. To manage a workflow process with different 
variants it is desirable to have an aggregated view of the work in progress. Note that 
in a manufacturing process the manager can get a good impression of the work in 
progress by walking through the factory. For a workflow process handling digitized 
information this is not possible. Therefore, it is of the utmost importance to supply the 
manager with tools to obtain a condensed but accurate view of the workflow 
processes. Figure 2 shows a workflow processes with two variants: a sequential one 
(left) and a parallel one (middle). The numbers indicate the number of cases in a 
specific state, e.g., in the sequential process there are 3 cases in-between task B and 
task C, and in the parallel process there are 2 cases in-between A and B. Since the 
manager requires an aggregated view rather than a view for every variant of the 
workflow process, the cases need to be mapped onto a generalized version of the 
different processes. Therefore we need to find the ‘greatest common denominator’ or 
the ‘least common multiple’ for the two processes shown. Since all the states of the 
sequential process are presented in the parallel process, we choose the parallel process 
to present the management information. Figure 2 shows the aggregated view of the 
two workflow processes (right). For all places in the right-hand-side process except 
m3, is quit straightforward to verify that the numbers are correct. The number of 
tokens in place m3 corresponds to the number of cases in-between A and C. In the 
sequential process there are 1+3=4 cases in-between A and C. In the parallel process 
there are also 4 cases in-between A and C, which brings the total to 8. For this small 
example it may seem trivial to obtain this information. However, in general there are 



many variants and the processes may have up to 100 tasks and it is far from trivial to 
present aggregated information to the manager. 
 
These two issues (dynamic change and management information) cause a lot of 
problems which need to be solved. We think that it is possible to tackle these 
problems by using the notion of a minimal representative of a generic process. By 
mapping states on this minimal representative it may be possible to generate adequate 
management information. Moreover, linking states of the members of a process 
family to the states of a minimal representative seems to be useful for the automated 
support of dynamic change. To support the construction of the minimal representative 
and the mapping of cases from members of a process family to states of a minimal 
representative and vice versa, we propose an approach based on the inheritance 
preserving transformation rules presented in [6,14]. 
 
This paper is organized as follows. First we classify the types of changes that we 
would like to support. Then, we introduce an approach to specify generic process 
models using two types of diagrams: routing diagrams and inheritance diagrams. It is 
shown that this approach facilitates dealing with all kinds of changes. In the second 
part of the paper, we show that the notion of a minimal representative of a generic 
process can be used to tackle the problems involving dynamic change and 
management information. To make the approach more concrete, we introduce four 
inheritance preserving transformation rules that can be used as a carrier for 
dynamically transferring cases and obtaining management information. 

2 Adaptive workflow 
Workflows are typically case-based, i.e., every piece of work is executed for a 
specific case. Examples of cases are a mortgage, an insurance claim, a tax declaration, 
an order, or a request for information. Cases are often generated by an external 
customer. However, it is also possible that a case is generated by another department 
within the same organization (internal customer). The goal of workflow management 
is to handle cases as efficient and effective as possible. A workflow process is 
designed to handle similar cases. Cases are handled by executing tasks in a specific 
order. The routing definition specifies which tasks need to be executed and in what 
order. Alternative terms for routing definition are: ‘procedure’, ‘flow diagram’ and 
‘workflow process definition’. In the routing definition, routing elements are used to 
describe sequential, conditional, parallel and iterative routing thus specifying the 
appropriate route of a case (WfMC [39,51]). Many cases can be handled by following 
the same workflow process definition. As a result, the same task has to be executed 
for many cases. A task which needs to be executed for a specific case is called a work 
item. An example of a work item is: execute task ‘send refund form to customer’ for 
case ‘complaint sent by customer Baker’. Most work items are executed by a 
resource. A resource is either a machine (e.g. a printer or a fax) or a person 
(participant, worker, or employee). In office environments where workflow 
management systems are typically used, the resources are mainly human. However, 
because workflow management is not restricted to offices, we prefer the term 
resource. Resources are allowed to deal with specific work items. To facilitate the 
allocation of work items to resources, resources are grouped into classes. A resource 
class is a group of resources with similar characteristics. There may be many 
resources in the same class and a resource may be a member of multiple resource 
classes. If a resource class is based on the capabilities ( i.e., functional requirements) 



of its members, it is called a role. If the classification is based on the structure of the 
organization, such a resource class is called an organizational unit (e.g. team, branch 
or department). A work item which is being executed by a specific resource is called 
an activity. If we take a photograph of a workflow, we see cases, work items and 
activities. Work items link cases and tasks. Activities link cases, tasks, and resources. 
See [1,3,4,9,10,17,22,33,39,42,51] for more information about workflow concepts and 
the modeling of workflow processes. 
 
Adaptive workflow is an area of research which examines concepts, techniques, and 
tools to support change. It is widely recognized that workflow management systems 
should provide flexibility [13,17,20,21,27,30,43,49]. However, as indicated in the 
introduction, today’s workflow management systems have problems dealing with 
change. New technology, new laws, and new market requirements lead to 
modifications of the workflow process definitions at hand. Last minute changes on a 
case-by-case basis lead to all kinds of exceptions. The inability to deal with various 
changes limits the application of today’s workflow management systems. The 
limitations of today’s workflow management systems and current approaches with 
respect to flexibility raise a number of interesting questions. In fact, several 
workshops have been organized to discuss the problems related to workflow change 
[12,36,52]. In this paper we restrict ourselves to changes with respect to the routing of 
cases, i.e., the control flow. We abstract from organizational changes, i.e., we do not 
consider adaptations of the resource classification and the mapping of work items 
onto resources. We also abstract from the contents of tasks. 
 
The restriction to consider only the routing definition allows us to classify changes as 
follows [8]: 

Ad-hoc change 
Changes occurring on an individual basis: only a single case (or a limited set of 
case) is affected. The change is the result of an error, a rare event, or special 
demands of the customer. Exceptions often result in ad-hoc changes. A typical 
example of ad-hoc change is skipping a task in case of an emergency. This kind of 
change is often initiated by some external cause. A typical dilemma is to decide 
what kinds of changes are allowed. Another problem related to ad-hoc change is 
the fact that it is impossible to foresee all possible changes. For ad-hoc change we 
distinguish between the moment of change: 

Entry time 
The routing definition is frozen the moment the processing of the case starts, 
i.e., no changes are allowed during the processing. 
On-the-fly 
Changes are allowed at any moment, i.e., the process may change while the 
case is being handled. Ad-hoc on-the-fly changes allow for self-modifying 
routing definitions. 

Evolutionary change 
Changes of a structural nature: from a certain moment in time, the process 
changes for all new cases to arrive at the system. The change is the result of a new 
business strategy, reengineering efforts, or a permanent alteration of external 
conditions (e.g. a change of law). Evolutionary change is initiated by the 
management to improve efficiency or responsiveness, or is forced by legislature or 
changing market demands. Evolutionary change always affects new cases but it 
may also influence old cases. We identify three ways to deal with existing cases: 



Restart 
All existing cases are aborted and restarted. At any time, all cases use the same 
routing definition. For most workflow applications, it is not acceptable to 
restart cases because it is not possible to rollback work or it is too expensive to 
flush cases. 
Proceed 
Each case refers to a specific version of the workflow process. Newer versions 
do not affect old cases. Most workflow management systems support such a 
versioning mechanism. A drawback of this approach is that old cases cannot 
benefit from an improved routing definition. 
Transfer 
Existing cases are transferred to the new process, i.e., they can directly benefit 
from evolutionary changes. The term dynamic change is used to refer to the 
problem of transferring cases to a consistent state in the new process.  

 
Both for ad-hoc and evolutionary change, we distinguish three ways in which the 
routing of cases along tasks can be changed: 

Extend 
Adding new tasks which (1) are executed in parallel, (2) offer new alternatives, or 
(3) are executed in-between existing tasks.  
Replace 
A task is replaced by another task or a subprocess (i.e., refinement), or a complete 
region is replaced by another region.  
Re-order 
Changing the order in which tasks are executed without adding new tasks, e.g., 
swapping tasks or making a process more or less parallel. 

 
This concludes our classification of workflow change. Note that the term exception 
handling does not appear in the classification [19,26,36,44]. An exception is the 
occurrence of some unexpected or abnormal event. In most cases, exceptions are 
undesirable because they generate additional complications and work. If a workflow 
management system provides an exception handler, it is possible to specify the 
actions to be performed in order to respond to certain exceptions. However, often the 
humans participating in the process are the “real” exception handlers, because it is not 
possible to pre-specify all possible exceptions. Note that an exception is not a change. 
Exceptions only trigger changes. Exceptions generated by external actors (e.g. a 
customer reporting an emergency) typically lead to ad-hoc changes. Exceptions 
generated by internal actors (e.g. the breakdown of an information system) typically 
lead to the blocking of parts of the workflow or to (temporary) evolutionary changes. 
 
It is interesting to compare the classification shown in Error! Reference source not 
found. with the classification for failures and exceptions given in [18]. In [18], Eder 
and Liebhart, describe four types of failures and exceptions:  

Basic failures 
Failures such as a system crash, connection problems, or the breakdown of the 
underlying database system. 
Application failures 
Failures of an application program launched or managed by the workflow 
management system. These errors are typically the result of unexpected input. 



Expected exceptions 
Workflow executions that do not correspond to the "normal" behavior but still 
occur frequent enough to be anticipated, e.g., a customer does not return a form. 
The handling of these exceptions can be specified at design time but, if mixed 
with the normal flow, typically results in "spaghetti-like" models.  
Unexpected exceptions 
Exceptions that are so rare that they cannot be anticipated and therefore need to be 
handled at run-time. 

The first two types are handled at the system or application level and typically do not 
result in process changes. The latter two types of failures and exceptions, i.e., 
expected exceptions and unexpected exceptions, may generate process changes. 
Unexpected exceptions typically generate on-the-fly ad-hoc changes. Expected 
exceptions can be modeled explicitly thus avoiding any changes at run-time. 
However, many expected exceptions are handled in an ad-hoc manner to simplify the 
process model. 
 
The classification shown in Error! Reference source not found. reveals that there 
are many types of changes causing different types of problems. Typically, changes 
lead to many variants of the same process. Therefore, a lot of routing definitions need 
to be stored and supported by the workflow enactment service. To keep track of these 
definitions and to avoid redundancy they should be stored in a structured way. Having 
many variants emphasizes the fact that it is important to support automatic 
verification: given a set of criteria, all changes should be checked before the routing 
definition is put into production. Moreover, it is important to be able to provide the 
manager with aggregated information and support dynamic change. To solve some of 
these problems, we propose an approach which allows for the formulation of generic 
process models. 
 

3 Generic process models 
A generic process model is specified by a set of routing diagrams and inheritance 
diagrams. Before these two diagram types are presented, we introduce the basic 
concepts and the relations between these concepts. 

3.1 Concepts 
Cases are the objects which need to be handled by the workflow (management 
system). The Workflow Management Coalition (WfMC) uses the term "process 
instance" to denote a case [39,51]. Examples of cases are tax declarations, complaints, 
job applications, credit card payments, and insurance claims. A task, also referred to 
as "activity" by the WfMC [39,51], is an atomic piece of work. A task is concrete, i.e., 
it can be specified, but is not specific for a single case. In principle, a task can be 
executed for any case. A non-atomic concrete process is similar to a task but it is not 
atomic. A non-atomic concrete process is specified by a routing diagram and 
corresponds to a case type rather than a specific case. The WfMC [39,51] uses the 
terms "process" and "subprocess" to refer to such diagrams. Figure 4 and Figure 5 
show non-atomic concrete processes modeled with COSA respectively Staffware. A 
concrete process is either a task or a non-atomic concrete process, i.e., it is a pre-
specified piece of work which can be executed for many cases (if needed). A generic 
process is not specified, i.e., it is not concrete but refers to a family of processes. 
Since it is not concrete, it makes no sense to distinguish between atomic and non-



atomic generic processes. In fact, one generic process may signify both concrete tasks 
and non-atomic concrete processes at the same time. One can think of a generic 
process as a placeholder for a concrete process. For example a process called 
procurement may contain the generic process contact_supplier. This generic process 
is not modeled in terms or a routing diagram but refers to the tasks phone_supplier, 
fax_supplier, and e-mail_supplier, i.e., contact_supplier is only a placeholder: The 
actual processing is handled as specified by one of these tasks. Note that a generic 
process may also refer to non-atomic concrete processes and even other generic 
processes. A process node is either a concrete process or a generic process, i.e., 
procurement, contact_supplier, phone_supplier, fax_supplier, and e-mail_supplier are 
all process nodes. A routing diagram contains process nodes, i.e., a non-atomic 
concrete process is specified in terms of both concrete and generic processes. A 
process node appears in zero or more routing diagrams. In each routing diagram, 
process nodes are connected by routing elements specifying the order in which the 
process nodes need to be executed. A process node refers to zero or more generic 
processes. If a process node X refers to a generic process Y, then X belongs to the 
process family described by Y and we say that X is a child of Y. A concrete process 
can be the child of a generic process, a generic process can be the child of another 
generic process, but a generic process cannot be the child of a concrete process. Note 
that a process node can be the child of many generic processes. Each case refers to 
precisely one non-atomic concrete process. Since the routing diagram describing a 
non-atomic concrete process may contain generic processes, it is necessary to 
instantiate generic processes by concrete processes for specific cases, i.e., for a 
specific case, generic processes in the routing diagram are replaced by concrete 
processes. Consider for example the procurement process where the generic process 
contact_supplier is instantiated by the task phone_supplier. 
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Figure 3: Class diagram describing the relationships between the main concepts 
used in this paper. 

 
Figure 3 shows a class diagram, using the UML notation, relating the essential 
concepts used in this paper. The diagram shows that non-atomic concrete processes 
and tasks are specializations of concrete processes, i.e., both the class non-atomic 
concrete process and the class task are subclasses of the class concrete process. The 
two subclasses are mutually disjoint and complete. The class process node is a 
generalization of the class concrete process and the class generic process. The 
association is_child_of relates process nodes and generic processes. If the association 
relates a process node X and generic process Y, then X belongs to the process family 
of Y. Since process nodes can be in the process family of generic processes and a 
generic process can have many children (but at least one), the cardinality constraints 
are as indicated in the class diagram. A generic process has at least one child because 
it has a so-called minimal representative as indicated by the association min_rep_of. 
The minimal representative of a generic process is a concrete process which captures 
the essential characteristics of a process family. The minimal representative is needed 
to enable dynamic change and to generate aggregate management information. The 
class routing element links process nodes to non-atomic concrete processes. A non-
atomic concrete process consists of process nodes ( i.e., tasks, non-atomic concrete 
processes, and generic processes) which can be executed in a predefined way. Typical 
routing elements are the AND-split, AND-join, OR-split, and OR-join [51]. These 
elements can be used to enable sequential, parallel, conditional, alternative, and 
iterative routing. In the class diagram, we did not refine the class routing element 
because the approach presented in this paper is independent of the process modeling 
technique used. The association contains specifies the relation between routing 
elements and non-atomic concrete processes. Note that a routing element is contained 



in precisely one non-atomic concrete process. The association connects specifies 
which process nodes are connected by each routing element. Note that the 
associations contains and connects can be used to derive in which non-atomic 
concrete processes a process node is used. The class case refers to the objects that are 
handled at run-time using a non-atomic concrete process description. The association 
is_instance_of relates each case to precisely one non-atomic concrete process. It is not 
possible to execute non-atomic concrete processes containing process nodes which are 
generic. Before or during the handling of a case, generic processes need to be 
instantiated by concrete processes. The class instantiation is used to bind generic 
processes to concrete processes for specific cases. Every instantiation corresponds to 
one case, one generic process, and one concrete process. Note that per case it is not 
allowed to have multiple instantiations for the same generic process. 
 
There are many constraints not represented in the class diagram. Constraints that are 
important for the remainder are: 
1. The relation given by the association is_child_of is acyclic. 
2. The relation derived from the composition of association contains and association 

connects is acyclic. 
3. The relation derived from the composition of the associations contains, connects 

and is_child_of is acyclic, e.g., a non-concrete process X is not allowed to contain 
a generic process Y if X is a child of Y. 

4. The minimal representative of a generic process is also a child, i.e., the relation 
specified by the association min_rep_of is contained in the relation specified by 
is_child_of. 

5. A generic process can only be instantiated by a concrete process if the concrete 
process is (indirectly) a child of the generic process. 

6. For a case it is only possible to instantiate generic processes which are actually 
contained in the corresponding non-atomic concrete process. 

 
The class diagram shown in Figure 3 contains three types of information: 
1. Routing information 

The process description of each non-atomic concrete process. It specifies which 
tasks, non-atomic concrete processes, and generic processes are used and in what 
order they are executed. The classes routing element, process node, and non-
atomic concrete process and the associations contains and connects are involved. 

2. Inheritance information 
The relation between a generic process and its children. It specifies possible 
instantiations of generic processes by concrete processes, and concerns the classes 
generic process, process node, and concrete process and the associations 
is_child_of and min_rep_of. 

3. Dynamic information 
Information about the execution of cases and instantiations of generic processes 
by concrete processes. It involves the classes case and instantiation and the 
associations is_instance_of, has, inst_by, and inst_of. Note that not the 
information itself dynamic but the information refers to the run-time dynamics of 
the system.  

 
Today’s workflow management systems do not support the definition of generic 
processes, i.e., it is only possible to specify concrete processes. In the remainder of 



this section we focus on the modeling of generic processes using a combination of 
routing and inheritance diagrams. 
 

3.2 Routing diagrams 
A routing diagram specifies for a non-atomic concrete process the routing of cases 
along process nodes. Any workflow management system allows for the modeling of 
such diagrams. Examples of diagramming techniques are Petri-nets (COSA, 
INCOME, BaaN/DEM, Leu), Event-driven Process Chains (SAP/Workflow), 
Business Process Maps (ActionWorkflow), Staffware Procedures (Staffware), etc. 
Figure 4 shows the COSA Network Editor (CONE) while modeling the right-hand-
side workflow process shown in Figure 1. COSA is a full-fledged workflow 
management system based on Petri nets. Figure 5 shows the same workflow process 
modeled with the workflow definer of Staffware. Staffware is one of the leading 
workflow management systems with more than 400.000 users.  The two figures 
illustrate that although the diagramming techniques appear to be quite different, the 
essence is the same: the causal ordering of tasks using constructs such as choice, 
iteration, sequential composition, and parallel composition. Since there is no 
consensus on the diagramming technique to be used for workflow modeling, we use 
Petri nets to represent routing diagrams. Petri nets are a well-known technique for 
process modeling which combine formal semantics, expressive power, powerful 
analysis techniques, and an intuitive graphical representation [1,2,22].  
 

 
Figure 4: CONE: the design tool of COSA (COSA Solutions). 

 
 



 
Figure 5: The workflow definer of Staffware (Staffware plc). 

 
None of the diagramming techniques/workflow management systems discussed 
before supports generic processes. However, each of these diagramming techniques 
can be extended with generic processes. In this paper, we extend Petri-net-like routing 
diagrams [1,3,4,9,22] with generic processes. 
 
A routing diagram specifies the contents of a non-atomic concrete process and 
consists of four types of elements: 
1. Tasks 

A task is represented by a square and corresponds to a Petri-net transition. 
2. Non-atomic concrete processes 

A non-atomic concrete process is represented by a double square and corresponds 
to a link to another Petri-net ( i.e., a subnet). 

3. Generic processes 
A generic process is represented by a square containing a diamond and 
corresponds to a link which can be instantiated by a process node.  

4. Routing elements 
Routing elements are added to specify which process nodes need to be executed 
and in what order. Since we use Petri nets, routing elements correspond to places 
and transitions which are added for routing reasons only.  

 
Figure 6 shows the four types of elements. 
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OR-split
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Figure 6: Symbols used in a routing diagram. 



 
To illustrate the construction of routing diagrams we give some examples. Figure 7 
shows the specification of the non-atomic concrete process handle_insurance_claim. 
This process consists of two tasks (registration and pay_damage), one non-atomic 
concrete process (check_policy), three generic processes (check_damage, 
evaluate_claim, and reject_claim), and several routing elements. Every insurance 
claim is first registered, then the policy and the damage are checked, followed by an 
evaluation which either results in a payment or in a rejection. Note that Figure 7 
contains sequential, parallel, and conditional routing. 
 

registration
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evaluate_claim
reject_claim

pay_damage

 
Figure 7: The non-atomic concrete process handle_insurance_claim. 

 
The three generic processes shown in Figure 7 may correspond to several concrete 
processes. However, this information is not given in the routing diagram and will be 
specified in the corresponding three inheritance diagrams (see Section 3.3). Since 
check_policy is a concrete process which is not atomic, there is also a routing diagram 
specifying the contents of this process. Figure 8 shows the definition of check_policy. 
The process is completely sequential and contains only two tasks: query_policy_data 
and query_payments_data. 
 

query_policy_data query_payments_data
 

Figure 8: The sequential process check_policy. 
 
Figure 9 shows a process with iteration. The definition of the non-atomic concrete 
process phone contains five tasks. First the task dial is executed followed by either the 
task OK (contact established) or NOK (no contact). If no contact was established there 
are two possibilities: either a letter is sent (send_letter) or task dial is executed again. 
Note that the only way to complete this process is sending a letter or successfully 
establishing contact via the phone. 
 



dial

NOK

OK

send_letter

try_again  
Figure 9: The process phone. 

 
In the next subsection we will see that phone is a child of the generic process 
reject_claim. For completeness, we also define the non-atomic concrete process 
check_car_damage_500+ which is indirectly a child of the generic process 
check_damage. Process check_car_damage_500+ is a sequential process containing 
two tasks. 
 

m a k e _ a p p o i n t m e n t v i s u a l _ i n s p e c t i o n

 
Figure 10: The process check_car_damage_500+. 

 
The routing diagram shown in Figure 7 illustrates how a process definition language 
can be extended with generic processes. In principle, it is possible to use the 
diagramming technique offered by any workflow management system with a 
hierarchy concept and extend it with a new type of building block: the generic 
process. Note that the concepts presented in this paper do not rely on the Petri-net 
formalism. In fact, the results are independent of the process modeling technique. For 
simplicity we will assume that in a routing diagram there is one begin routing 
element, one end routing element, and that every process node (i.e., a task, a generic 
process, or a non-atomic concrete process) has exactly one input arc and one output 
arc. It is quite straightforward to extend the results to the situation without these 
assumptions.  
 

3.3 Inheritance diagrams 
In contrast to routing diagrams, today’s products do not allow for inheritance 
diagrams to specify the process family corresponding to a generic process. The lack of 
such a concept in today’s workflow management systems has many similarities with 
the absence of product variants in the early MRP/ERP-systems. These systems where 
based on the traditional Bill-Of-Material (BOM) and where burdened by the growing 
number of product types. Therefore, the BOM was extended with constructs allowing 
for the specification of variants [23,29,46,47]. Variants of a product type form a 
product family of similar but slightly different components or end-products. Consider 
for example a car of type X. Such a car may have 16 possible colors, 5 possible 
engines, and 10 options which are either present or not, thus yielding 16*5*210=81920 
variants. Instead of defining 81920 different BOM’s, one generic BOM is defined. 



Inspired by the various ways to define generic BOM’s, we extend process models 
with inheritance diagrams allowing for the specification of process families. 
 

tasks non-atomic
concrete processes

generic
processes
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parent
minimal
representative

constraint
C

 
Figure 11: Symbols used in an inheritance diagram. 

Figure 11 shows an inheritance diagram. The root of an inheritance diagram is a 
generic process called the parent. All other process nodes in the diagram are called 
the children and are connected to this parent. There are three types of children: tasks, 
non-atomic concrete processes, and generic processes. Each non-atomic concrete 
process in the inheritance diagram refers to a routing diagram describing the internal 
routing structure. Each generic child process in an inheritance diagram refers to 
another inheritance diagram specifying the process family which corresponds to this 
generic process. Note that the total number of inheritance diagrams equals the total 
number of generic processes. Every generic process has a child called the minimal 
representative of this task. This child is connected to the parent with a solid arrow. 
All the other arrows in an inheritance diagram are dashed. The minimal representative 
has all the attributes which are mandatory for the process family. One can think of this 
minimal representative as the default choice, as a simplified management version, or 
as some template object. The actual interpretation of the minimal representative 
depends on its use. The minimal representative can be considered to be the superclass 
in an object-oriented sense [6]. All other children in the inheritance diagram should be 
subclasses of this superclass. For execution, generic processes are instantiated by 
concrete processes using the relations specified in the inheritance diagram. However, 
in many cases it is not allowed to instantiate a parent by an arbitrary child. Therefore, 
it is possible to specify constraints as indicated in Figure 11. These constraints may 
depend on two types of parameters: (1) case variables and (2) configuration 
parameters. The case variables are attributes of the case which may change during the 
execution of the process (cf. [4]). Configuration parameters are used to specify that 
certain combinations of instantiations are not allowed. These parameters can be dealt 
with in a way very similar to the parameter concept in [46] for the generic BOM. 
 



reject_claim

send_letter phone send_fax
 

Figure 12: An inheritance diagram for the generic process reject_claim. 
 
Figure 12 shows an inheritance diagram with parent reject_claim and three children 
(the tasks send_letter and send_fax, and the non-atomic concrete process phone). The 
task send_letter is the minimal representative of reject_claim. In this case all children 
are concrete. Note that the generic process reject_claim was used in the process 
handle_insurance_claim (Figure 7). As Figure 12 shows, this generic process can be 
instantiated by the tasks send_letter or send_fax, or the non-atomic concrete process 
defined in the routing diagram shown in Figure 9. 
 

evaluate_claim

minimal
evaluation

administrative
evaluation

thorough
evaluation  

Figure 13: The process family corresponding to the generic process 
evaluate_claim. 

 
The process handle_insurance_claim shown in Figure 7 also uses the generic process 
evaluate_claim. Figure 13 shows the inheritance diagram of evaluate_claim. Note that 
the generic process thorough_evaluation is a subclass of evaluate_claim.  
 

thorough_evaluation

evaluation
by fire
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by traffic

expert

evaluation
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manager  
Figure 14: An inheritance diagram for the generic process thorough_evaluation. 



 
Figure 14 shows that there are three ways to evaluate a claim thoroughly. Note that 
the process family of evaluate_claim consists of five children. Generic process 
evaluate_claim in Figure 7 is instantiated by one of these children, i.e., one of the two 
tasks in Figure 13 or one of the three tasks in Figure 14. 
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Figure 15: An inheritance diagram for the generic process check_damage. 

 
Generic process check_damage is executed in parallel with the non-atomic concrete 
process check_policy (see Figure 7). Figure 15 shows the inheritance diagram of 
check_damage. The subclass check_car_damage is defined in Figure 16. There are 
five ways to check the damage. In case of car damage, there are two possibilities: the 
task check_car_damage_500- or the non-atomic concrete process 
check_car_damage_500+ defined in Figure 10 is executed. 
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Figure 16: An inheritance diagram for the generic process check_car_damage. 

 
Inheritance diagrams specify, for each generic process, possible candidates for 
instantiation. However, in many cases it is not allowed to instantiate a parent by an 
arbitrary child. Therefore, it is possible to specify constraints as indicated before. 
These constraints may depend on two types of parameters: (1) case variables and (2) 
configuration parameters. The case variables are attributes of the case which may 
change during the execution of the process. For example, the choice between the two 
children in Figure 16 clearly depends on the case variable. Therefore, we added the 



constraint amount_of_damage<500 in Figure 16. This constraint specifies that 
generic process check_car_damage may only be instantiated by the non-atomic 
concrete process  check_car_damage_500- if the case variable amount_of_damage 
indicates that the damage is smaller than 500 dollar. Configuration parameters are 
used to specify that certain combinations of instantiations are not allowed. For 
example, if evaluate_claim in Figure 7 is instantiated by administrative_evaluation, 
then reject_claim should be either instantiated by send_letter or send_fax. Figure 17 
shows how one can use the configuration parameter config_par_ae to avoid that 
reject_claim is instantiated by phone if evaluate_claim is instantiated by 
administrative_evaluation. In this paper, we propose a very simple language for 
specifying constraints with respect to the instantiation of generic processes: Every arc 
in an inheritance diagram may be augmented with a Boolean condition (the default 
condition is true) specified by a logical expression using case variables and 
configuration parameters. The case variables for a specific case (i.e., process instance) 
are set and updated by the actual workflow process. The configuration parameters are 
also case-specific. One can think of these variables as free variables that are set while 
instantiating generic processes, i.e., they are outside of the scope of the actual 
workflow process. The use of configuration parameters can be quite complex. 
Fortunately, we can use the concepts defined for the generic BOM. See [46,47] for 
more information on the use of configuration parameters. In addition to constraints it 
is possible to give suggestions for instantiation. Often there is a trade-off between 
several allowed alternatives. Therefore, it is useful to extend inheritance diagrams 
with information on the effect of specific instantiations on key performance indicators 
(e.g. time, costs, quality of service, and flexibility).  
 

evaluate_claim

minimal
evaluation

administrative
evaluation

thorough
evaluation

config_par_ae=true

reject_claim

send_letter phone send_fax

config_par_ae=false

 
Figure 17: The process families evaluate_claim and reject_claim extended with 

configuration parameter config_par_ae. 
 
Note that, in principle, the construct shown in Figure 16 can be realized using a an 
OR-split in traditional routing diagram: simply add an OR-split based on the case 



variable  amount_of_damage which enables the appropriate task/subprocess. Even the 
construct shown in Figure 17 can be handled in traditional routing diagram by adding 
a new case variable with a role similar to configuration parameter config_par_ae. 
Although it is possible to realize this flexibility without generic processes and 
inheritance diagrams, there are some essential differences. First of all, the use of 
inheritance diagrams reduces the complexity. Instead of squeezing all variants into a 
single very complex routing diagram, the variations are handled in a second 
dimension tailored towards handling many variants. Second, by using inheritance 
diagrams there is no need to change the routing diagram every time a new variant 
pops up. If the intrinsic structure is not changed, it suffices to simply add a new child 
to the corresponding process family. Third, the inheritance diagrams can be used in 
multiple routing diagrams, i.e., the inheritance diagrams are truly orthogonal to the 
routing diagrams thus enabling reuse. Note that this imposes some restrictions on the 
use of case variables and configuration parameters in the conditions specified in the 
inheritance diagrams. For example, by using a case variable amount_of_damage in 
Figure 16 it is required that every routing diagram which uses the generic process 
check_car_damage sets the variable to the appropriate value. Note that these 
restrictions are quite reasonable because the diagrams are used within a given 
organizational context with common concepts. Otherwise, reuse is difficult to achieve 
anyway. Moreover, one could also use the principle that a condition evaluates to true 
if one of the case variables is not set. This way the conditions only apply to the 
relevant processes. A fourth difference between using inheritance diagrams and 
traditional routing is the improved ability to support dynamic change and supply 
succinct management information: The inheritance diagrams help to localize change 
and abstract from individual variations, and the concept of the minimal representative 
allows for the correct and automatic migration of instances. 
  

3.4 Navigation 
Workflow processes encountered in practice typically contain dozens of tasks. If the 
workflow management also allows for the modeling of variants using the notions 
described in this paper, it will become difficult not to ‘get lost’. Therefore, the 
workflow management system should support navigation tools to find and keep track 
of workflow descriptions. Basically, there are two ways to browse through the 
workflow processes. First of all, it is possible to use the associations contains and 
connects (see the class diagram in Figure 3). These associations show where process 
nodes are used. Secondly, it is possible to use the association is_child_of to see 
inheritance relationships. The two navigation dimensions are inspired by the work 
reported in [40]. 
 
The is-part-of and contains arrows correspond to the navigation dimension based on 
the routing diagrams. The generalizes and specializes arrows correspond to the 
navigation dimension based on the inheritance diagrams. The combination of both 
navigation dimensions is particularly powerful. Users of the workflow management 
system can browse through the workflow process definitions at various levels of 
abstraction, which greatly enhances the ability to combine existing process 
descriptions and to build new variants which can be used by others. Figure 18 shows 
an overview of all process nodes for the example presented in this paper. Each of the 
two navigation dimensions is shown with a different type of arrow. 
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Figure 18: All process nodes with links in two dimensions. 
 
The graph shown in Figure 18 has a tree-like structure. In general this is not the case. 
A process node can appear in many routing and inheritance diagrams. In fact, the use 
of generic processes will stimulate reuse and typically results in many non-tree-like 
interconnections. Note that graphs such as the one shown in Figure 18 have to be 
acyclic. This is a direct consequence of the constraints mentioned in Section 3.1. 

4 Execution and instantiation 
To execute a case according to a non-atomic concrete process which contains generic 
processes, the generic processes have to be instantiated. The moment of instantiation 
can be at entry-time or at run-time depending on the kind of changes allowed. 
Consider for example a case which needs to be executed according to the routing 



diagram shown in Figure 7. To handle this case the three generic processes need to be 
instantiated by concrete ones. Assume that at entry-time check_damage is instantiated 
by check_car_damage_500+ and evaluate_claim is instantiated by 
evaluation_by_traffic_expert. This results in the situation shown in Figure 19. 
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Figure 19: Two of the three generic processes have been instantiated. 
 
In Figure 19, the two tokens show that the policy has been checked and that the 
insurance claim is waiting for visual inspection. Generic process reject_claim is not 
instantiated yet. The moment of instantiation can be postponed until the tasks 
visual_inspection and evaluation_by_traffic_expert have been executed. Figure 20 
shows the situation after instantiation of reject_claim by phone. Note that the case is 
in the state directly following an unsuccessful phone call. 
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Figure 20: The generic process reject_claim has been instantiated by the non-
concrete process phone. 

 
In Section 5, a classification of change was given. Based on this classification we will 
describe the enactment of generic workflow process models. First, we consider the 
situation of ad-hoc change. For ad-hoc change there are two possibilities: at entry time 
the process is fixed or on-the-fly changes are possible. If changes are only allowed at 
entry time, all generic processes have to be instantiated by concrete processes before 
execution starts. If on-the-fly changes are allowed, instantiation may be postponed. 
Note that ad-hoc change may lead to two possible situations: (1) the required 
alternative already exists and can be instantiated directly, (2) the desired change is 
unique in the sense that it is not encoded in one of the inheritance diagrams. In the 
latter case the change region can be a generic process, a task, a non-atomic concrete 
process, or a selected part of a routing diagram ( i.e., non-atomic concrete process). If 
the change region is a generic process, it is quit straightforward to handle the change. 
By adding a new alternative in the corresponding inheritance diagram, the change 
becomes possible. In all other cases, a new generic process has to be introduced. 
Consider for example the concrete process check_policy in Figure 7. If this process 
has to be replaced by a new process check_policy_special, then the concrete process 
check_policy is replaced by a new generic process check_policy_generic and an 
inheritance diagram containing check_policy_generic as a parent and check_policy 
and check_policy_special as children is added (see Figure 21). Compared to the 
situation where each case has its own private process, this offers several advantages. 
First of all, there is no redundancy. There is one generic process model and per case 



only the instantiations are stored. Secondly, it is possible to restrict possible changes, 
e.g., routing diagrams can be extended with information about which parts may be 
subject to ad-hoc changes. 
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Figure 21: The effect of an ad-hoc change on the non-atomic concrete process 

handle_insurance_claim. 
 
Generic process models can also be used to support evolutionary changes. The only 
difference with ad-hoc change is that all new cases are instantiated in the same way. 
Compared to the situation where there is just a versioning mechanism, less data needs 
to be stored (no redundancy, instantiations can be indexed) and it is easy to keep track 
of changes. For example, if a task is replaced by another task in the definition of a 
non-atomic concrete process ( i.e., a routing diagram) with 100 tasks, it is not 
necessary to define a complete new version of the process which is for 99% similar. 
Just replace the task by a generic process and create an inheritance diagram 
containing the two tasks as children. If the change also effects existing cases, a restart 
or a transfer is needed (see Error! Reference source not found.). 
 

5 Dynamic change 
 
Both for ad-hoc and evolutionary change the generic workflow process model, as 
defined in this paper, can be applied. The workflow model shown in Figure 7 has 75 
possible variants! If all variants had been defined separately, the whole would be 
much more difficult to manage. Many workflow processes have thousands of variants. 
Today’s workflow management systems are not capable of dealing with such 
processes, thus forcing the users to handle the changes outside of the system or 
limiting the application of these systems to very specific processes. The generic 
workflow process model presented in this paper provides a partial solution for these 
problems. 
 
The problem of dynamic change was introduced using Figure 1. If a sequential 
process is changed to a parallel one, there are no problems. However, if the degree of 
parallelism is reduced, there are states in the old process which do not correspond to 



states in the new process. The state with a token in both p2 and p5 (right-hand side of 
Figure 1) cannot be mapped onto a state in the sequential process (left-hand side). 
Putting a token in s1, s2, or s3 will result in the double execution of task C. Putting a 
token in s3, s4, or s5 will result in the skipping of (at least) task B. The problem 
identified does not only apply to the situation where the degree of parallelism is 
changed. For example swapping tasks or removing parts may lead to similar 
problems. This is the reason most workflow management systems do not allow 
dynamic change, i.e., if a workflow process is changed, then all existing cases are 
handled the old way and the new process only applies to new cases. Every case has a 
pointer to a version of the workflow and each version is maintained as long as there 
are cases pointing to it. For some applications this solution will do. However, if the 
flow time of a case is long, it may be unacceptable to process running cases the old 
way. Consider for example the change of a 4-year curriculum at a university to a 5 
year one. It is too expensive to offer both curricula for a long time. Sooner or later, 
cases ( i.e., students) need to be transferred. Other examples are mortgages and 
insurances with a typical flow time of decades. Maintaining old versions of a process 
is often too expensive and may cause managerial problems. It is also possible that 
there are regulations (e.g. new laws) enforcing a dynamic change. 
 
There are many similarities between dynamic change and schema evolution in the 
database domain. As the requirements of database applications change over time, the 
definition of the schema, i.e., the structure of the data elements stored in the database, 
is changed. Schema evolution has been an active field of research in the last decade 
(mainly in the field of object-oriented databases, cf. [16]) and has resulted in 
techniques and tools that partially support the transformation of data from one 
database schema to another. Although dynamic change and schema evolution are 
similar, there are some additional complications in case of dynamic change. First, as 
was shown in the example, it is not always possible to transfer. Second, it is not 
acceptable to shut down the system, transfer all cases, and restart using the new 
procedure. Cases should be migrated while the system is running. Finally, dynamic 
change may introduce deadlocks and livelocks. The solutions provided by today’s 
object-oriented databases do not deal with these complications. Therefore, we need 
new concepts and techniques. 
 
The dynamic change problem was first described by Ellis, Keddara and Rozenberg in 
1995 [20]. In the same paper, a technique based on so-called “change regions”, is 
proposed to avoid the anomaly illustrated by Figure 1. There has been some follow up 
work addressing this problem [13,21,34]. In addition there are several papers on 
workflow change, not addressing and/or avoiding the problem by a fixed set of 
transformation rules [17,27,30,36,41,49,50,52]. 
 
Independent of the approach used, the following two issues constitute a policy for 
dynamic change: 

When to jump from the old process to the new process definition? 
Which state to jump to? 

A good policy for the example shown in Figure 1 is the following. The right-hand 
process will jump in every state except the state with a token in p2 and p5. State p1 is 
mapped onto s1, p2+p3 onto s2, p3+p4 onto s3, p4+p5 onto s4, and p6 onto s5. (Note 
that a shorthand notation is used to denote states.) 
 



In a generic process model, the dynamic change problem boils down to migrating 
instances between different members of the same process family. Note that the 
concept of generic processes helps to limit the scope of a change. In a way it is a 
predefined “change region” [20]. Recall that if a part is changed which does not 
correspond to a generic process, then a generic process is introduced. (See for 
example the change illustrated by Figure 21.) The essence of a change always refers 
to transferring (parts of ) cases between children of a generic process. Although the 
concept of generic processes gives a handle to tackle the problem, it does not really 
solve it. In fact, if a process family has many members, say n, there are n(n-1) 
potential transfers. To limit the problem, we propose to exploit the role of the minimal 
representative. Any transfer between two members of the same process family is 
executed via the minimal representative, i.e., first the instance is mapped from the old 
child onto the minimal representative, and then it is mapped onto the new child. Note 
that this results in 2(n-1) possible transfers. If a new variant is added, only the 
transformation from the new variant to the minimal representative and vice versa need 
to be added and no knowledge of the other variants is needed. A solution with direct 
jumps would require knowledge of all other variants. One might argue that only a few 
of the potential transfers are relevant. However, to truly support reusability all 
possible transfers should be defined. Clearly there are also drawbacks associated with 
the indirect transfer via the minimal representative. First of all, if the minimal 
representative contains little information, a lot of knowledge is lost during the 
transfer. It is clear that a transfer between two children with a state space of thousands 
of states via a minimal representative with only a dozen states is not likely to be a 
success (because of the loss of information). Secondly, additional problems are 
introduced the moment a new minimal representative is introduced. Therefore, it is 
vital to carefully define the minimal representative. 
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Figure 22: The relation between the state spaces of the minimal representative 

and its fellow children. 
Figure 22 illustrates the use of the minimal representative. Each child (including the 
minimal representative) has a state space. S0 is the state space of the minimal 



representative (child 0). Child i has state space Si. The partial function geni ∈ Si →/   S0 
maps selected states of child i onto the minimal representative. The function is partial 
because from some states it is desirable to postpone the jump, i.e., state space Si is 
partitioned into Si

J = dom(geni), the set of “jump states”, and Si
W = Si \ Si

J , the set of 
“wait states”. There is a similar function to map states of the minimal representative 
onto the states of a specific child: spei ∈ S0 →/   Si. This function is also partial and 
partitions the states of S0 into jump states ( S0

J,i = dom(spei)) and wait states (S0
W,i = S0 

\ Si
J,i) relative to child i. A transfer from one child (i) to another child (j) typically 

involves a generalization step ( i.e., geni) and a specialization step ( i.e., spej). The 
functions of type mani ∈ Si →   S0 shown in Figure 22 will be used to generate 
management information and should be ignored for the moment. 
 
Suppose a case needs to be transferred from child i to child j and the state of the case 
is s ∈ Si. If s ∈ Si

W, no transfer is possible. If s ∈ Si
J and geni(s)∈ S0

J,j, then there is no 
reason to postpone the jump to the new process. The new state in the process 
corresponding to child j is spej(geni( s)). If s ∈ Si

J and geni(s)∈ S0
W,j, there are two 

policies possible: (1) the transfer is postponed (non-eager), or (2) the case is migrated 
to the minimal representative and is transferred the moment it reaches a state in S0

J,j 
(eager). If the change affects several parts of the workflow process definition and 
multiple generic processes are involved, there is a similar choice. Either the transfer is 
postponed until all parts are ready (non-eager) or the transfer is executed on a part-by-
part basis (eager). At this moment, the policy to execute the transfer on a part-by-part 
basis but postponing parts which cannot go directly to the new corresponding child 
seems to be the most attractive policy. However, more empirical data is needed to 
substantiate this.  
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Figure 23: Two Z-structures that are not allowed. 

 
Not every set of generalization (geni) and specialization (spei) functions is allowed. 
Constructs which have a so-called “Z-structure” are not allowed. A “Z-structure” is 
the situation where two distinct states are mapped onto two other distinct states in one 
direction (e.g. generalization) but in the reverse direction (e.g. specialization) one of 
the states is mapped onto the other one. Figure 23 shows the two possible Z-
structures. In the first Z-structure there are two states A and B which are mapped onto 
respectively C and D by the generalization function (geni). However, the 
specialization function (spei) maps C onto B instead of A. This structure is not allowed 
because by simply moving a case up (2x) and down, the state in both processes has 
changed (in the left-hand process it moved from A to B and in the right-hand process 
it moved from C to D). Note that it is not possible to strengthen the requirement and 
demand that for any state s: spei(geni( s)) = s, because multiple states in the child 
process i can be mapped onto one state in the minimal representative. In the second Z-
structure shown in Figure 23, the roles of the generalization (geni) and specialization 
(spei) functions have been swapped and similar arguments apply. The absence of 
these Z-structures is the minimal requirement any dynamic change should satisfy. 
There are generally additional requirements that need to be satisfied. Suppose that the 
right-hand-side process in Figure 1 is the minimal representative and the left-hand-
side process is the child 1. Assume that gen1 is defined as follows: s1 is mapped onto 
p6, s2 is mapped onto p1, s3 is mapped onto p6, s4 is mapped onto p1, and s5 is 
mapped onto p6. Moreover, spe1 is defined as follows: p1 is mapped onto s2, and p6 
is mapped onto s1 (the other states are wait states). Clearly, this does not make any 
sense. Nevertheless, it does not contain any Z-structures. Stronger notions are context 



dependent and are difficult to define for any process modeling technique. (Recall that 
the concepts in this paper are modeling technique independent.) Therefore, we refrain 
from more advanced constraints that should be satisfied by the set of generalization 
(geni) and specialization (spei) functions. 
 
In Section 2, we identified three ways to deal with existing cases: (a) restart, (b) 
proceed, and (c) transfer. Thus far, we primarily discussed the problems resulting 
from the latter policy ( i.e., dynamic change). However, the approach presented in this 
section also works for the other two policies. For the restart policy (a), all states of the 
old process i are mapped onto the initial state of the minimal representative (i.e., SI

J = 
Si and for all s ∈ Si: geni(s) = sinit where sinit is the initial state) and the initial state of 
the minimal representative is mapped onto the initial state of the new process j (i.e., 
spej(sinit) = s’init where s’init is the initial state of child j). For the proceed policy (b), all 
states are wait states, i.e., Si

J =∅. Clearly, the approach presented is quite general and 
can be extended in many ways. For example, it is possible to deal with hierarchical 
structures in an efficient way since change is limited to the generic parts of the 
process. It is also possible to allow for changes of the minimal representative. Simply 
add a generalization function from the old minimal representative to the new one and 
a specialization function from the new minimal representative to the old one. By 
taking the appropriate function compositions, it is possible to remove or skip the old 
minimal representative. 

6 Management information 
Changes typically lead to multiple variants of the same process. For evolutionary 
change the number of variants is limited. In fact, if all cases are transferred directly 
after a change, there is just one active variant. However, if the proceed policy is used 
or transfers are delayed, there are multiple active variants. If the average flow time of 
cases is long and changes occur frequent, there can be dozens of variants. Ad-hoc 
change may result in even more variants. In fact, it is possible to end up in the 
situation where the number of variants is of the same order of magnitude as the 
number of cases. To manage a workflow process with different variants it is desirable 
to have an aggregated view of the work in progress. Therefore, as indicated in Section 
1, it is of the utmost importance to supply the manager with tools to obtain a 
condensed but accurate view of the workflow processes. In Figure 2, it was pointed 
out that we need some kind of ‘Greatest Common Denominator’ (GCD) or ‘Least 
Common Multiple’ (LCM) for the children in a product family. At the moment, only 
intuitive notions exist for the GCD and LCM. However, we can use the same 
approach as we used to tackle the dynamic change problem and use the minimal 
representative as the aggregated view. 
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Figure 24: Aggregated management information mapped onto a sequential 
minimal representative. 

 
To use the minimal representative as the aggregated view, we need to map all states 
from all children of the process family onto the state space of the minimal 
representative. The generalization functions (geni) provide such a mapping for the 
jump states but not for the wait states. Therefore, we introduce a new function for 
each child i (except the minimal representative): mani. The functions of type mani ∈ 
Si →   S0 are total and should satisfy the following requirement: for all s ∈ Si

J we have 
mani(s) = geni(s). I.e., the mapping used for dynamic change and the mapping used 
for management purposes should agree on the jump states. Again, the solution is 
surprisingly simple. However, the applicability heavily depends on the quality of the 
minimal representative and the functions of type mani. Figure 24 shows an alternative 
to the approach used in Figure 2. In this case, the sequential process is taken as the 
minimal representative. The mapping of tokens from the left-hand-side process is 
clear (the state with a token in s1 is mapped onto the state with a token in m1, etc.). 
In fact, the left-hand-side process and the right-hand-side process are identical and the 
places are named different for presentation reasons only. Mapping states from the 
process in the middle is more involved. For the jump states the following mapping 
seems to be reasonable: p1 is mapped onto m1, p2+p3 is mapped onto m2, p3+p4 is 
mapped onto m3, p4+p5 is mapped onto m4, and p6 is mapped onto m5. In the 
previous section, state p2+p5 was classified as a wait state because there is no 
intuitively corresponding state in the sequential process. Mapping p2+p5 onto m2 will 
lead to management information which is too pessimistic: C is already executed but 
this information is lost in the aggregated view. Mapping p2+p5 onto m4 will lead to 
management information which is too optimistic: B is not executed yet but this 
information is lost in the aggregated view. Mapping p2+p5 onto m3 combines the 
disadvantages of the previous two choices: it indicates that B has been executed and C 



not, while in reality it is the other way around. This example shows that quality of the 
management information heavily depends on the minimal representative. The 
numbers indicated in Figure 24 are based on the assumption that cases are executed in 
a first-in-first-out order. This assumption combined with the numbers indicated for the 
parallel process implies that there are no cases in the state p2+p5. In this particular 
situation, the aggregated view does not depend upon the choice with respect to 
p2+p5. In general, an unfortunately chosen minimal representative will lead to 
misleading management information. 
 

7 An approach based on inheritance 
The approach presented in the previous sections is very general and makes no 
assumptions about the modeling language and the workflow management system to 
be used. To make the approach more concrete we show how to come up with the 
appropriate generalization (geni), specialization (spei), and management-information 
(mani) functions. For this purpose we propose to use the inheritance preserving 
transformation rules presented in [6,14].  
 
Inheritance is one of the cornerstones of object-oriented programming and object-
oriented design. The basic idea of inheritance is to provide mechanisms which allow 
for constructing subclasses that inherit certain properties of a given superclass. In our 
case a class corresponds to a workflow process definition (i.e., a routing diagram) and 
objects (i.e., instances of the class) correspond to cases. In most object-oriented 
methods a class is characterized by a set of attributes and a set of methods. Attributes 
are used to describe properties of an object (i.e., an instance of the class). Methods 
symbolize operations on objects (e.g., create, destroy, and change attribute). The 
structure of a class is specified by the attributes and methods of that class. Note that 
the structure only refers to the static aspects of the interface. The dynamic behavior of 
a class is either hidden inside the methods or modeled explicitly (in UML the life-
cycle of a class is modeled in terms of state machines). Although the dynamic 
behavior is an intrinsic part of the class description (either explicit or implicit), 
inheritance of dynamic behavior is not well-understood. (See [14] for an elaborate 
discussion on this topic and pointers to related work.) Given the widespread use of 
inheritance concepts/mechanisms for the static aspects, this remarkable. Every object-
oriented programming language supports inheritance with respect to the static 
structure of a class (i.e., the interface consisting of attributes and methods). Since 
workflow management aims at supporting business processes, these results are not 
very useful in this context. To our knowledge, the work presented in [6,14] is the only 
work which deals with inheritance of dynamic behavior in a comprehensive manner. 
This work is based on a particular class of Petri nets: the so-called sound workflow 
nets (see Appendix). This class of Petri nets corresponds to workflow processes 
without deadlocks, livelocks, and other anomalies. Other inheritance-based 
approaches abstract from the causal relations between tasks/methods. Consider for 
example the work by Malone et al. [40] where inheritance is defined for tasks and 
processes. Malone et al. [40] also provide tool support for navigating through a space 
of processes using specialization and generalization links (see also Section 3.4). 
Unfortunately, the control or routing structure is not taken into account, i.e., causal 
relations between tasks are not considered. Some of the workflow management 
systems available claim to be object-oriented and thus provide some support for 
inheritance. For example, the workflow management system InConcert (InConcert 



[32]) allows for building workflow class hierarchies. Unfortunately, inheritance is 
restricted to the attributes and the structure of the process is not taken into account. 
Many workflow management systems have been implemented using object-oriented 
programming languages. However, these systems do not offer object-oriented 
mechanisms such as inheritance to the workflow designer or the designer has to 
program code to benefit from the object-oriented features provided by the host 
language. Nevertheless, we think that inheritance is a very useful concept for 
workflow management. Therefore, we advocate the use of the inheritance notions 
presented in [6,14] and illustrate the usefulness by tackling the problems related to 
change. The inheritance notions can be used to construct a minimal representative and 
the appropriate generalization (geni), specialization (spei) and management-
information (mani) functions.  
 
First we define four inheritance notions for workflow processes (i.e., processes 
defined by routing diagrams). Consider two workflow processes x and y. When is x a 
subclass of y? x is a subclass of superclass y if x inherits certain features of y. 
Intuitively, one could say that x is a subclass of y if and only if x can do what y can 
do. Clearly, all tasks present in y should also be present in x. Moreover, x will 
typically add new tasks. Therefore, it is reasonable to demand that x can do what y can 
do with respect to the tasks present in y. In fact, the behavior with respect to the 
existing tasks should be identical. For distinguishing x and y we only consider the old 
tasks (i.e., the tasks already present in y). All other tasks are renamed to τ. One can 
think of these tasks as silent, internal, or not observable. Since branching bisimulation 
[24] is used as an equivalence notion, we abstract from transitions with a τ label, i.e., 
for deciding whether x is a subclass of y only the tasks with a label different from τ 
are considered. The behavior with respect to these tasks is called the observable 
behavior. With respect to new tasks (i.e., tasks present in x but not in y) there are 
basically two mechanisms which can be used. The first mechanism simply blocks all 
new tasks and then compares the observable behavior. This mechanism leads to the 
following notion of inheritance. 
 

If it is not possible to distinguish x and y when only tasks of x that are also 
present in y are executed, then x is a subclass of y. 
 

Intuitively, this definition conforms to blocking or encapsulating tasks new in x. The 
resulting inheritance concept is called protocol inheritance; x inherits the protocol of 
y. Another mechanism would be to allow for the execution of new tasks but consider 
only the old ones. 
 

If it is not possible to distinguish x and y when arbitrary tasks of x are 
executed, but when only the effects of tasks that are also present in y are 
considered, then x is a subclass of y. 

 
This inheritance notion is called projection inheritance; x inherits the projection of the 
workflow process y onto the old tasks. Projection inheritance conforms to hiding or 
abstracting from tasks new in x. 
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Figure 25: Five routing diagrams describing variants of a simple workflow 

process. 
Figure 25 shows the routing diagrams of five similar workflow processes. We will use 
these routing diagrams to explain the difference between protocol inheritance and 
projection inheritance. Workflow process (A) consists of three sequential tasks: 
register, handle, and archive. Each of the other workflow processes extends this 
process with one additional task: check. In workflow process (B) task check can be 
executed arbitrarily many times between register and handle. Workflow process (B) 
is a subclass of workflow process (A) with respect to protocol inheritance; if task 
check is blocked, then the two processes behave equivalently (i.e., are branching 
bisimilar [14,24]). Workflow process (B) is also a subclass of workflow process (A) 
with respect to projection inheritance; if every execution of task check is abstracted 
from, then the observable behaviors are equivalent. Workflow process (C) is a 
subclass of workflow process (A) with respect to protocol inheritance but not a 
subclass with respect to projection inheritance; blocking task check results in two 
equivalent processes but hiding task check introduces the possibility to skip task 



handle and thus change the actual behavior. Workflow process (D) is a subclass of 
workflow process (A) with respect to projection inheritance but not a subclass with 
respect to protocol inheritance; blocking task check introduces a deadlock, but hiding 
this task results in two equivalent processes. Workflow process (E) is a subclass of 
workflow process (A) with respect to projection inheritance but not a subclass with 
respect to protocol inheritance; the detour via task check can be hidden but not 
blocked without changing the observable behavior. 
 
The two mechanisms (i.e., blocking and hiding) result in two orthogonal inheritance 
notions. Therefore, we also consider combinations of the two mechanisms. A 
workflow process is a subclass of another workflow process under protocol/projection 
inheritance if by both hiding and blocking one cannot detect any differences, i.e., it is 
a subclass under both protocol and projection inheritance. In Figure 25 workflow 
process (B) is a subclass of workflow process (A) with respect to protocol/projection 
inheritance. The two mechanisms can also be used to obtain a weaker form of 
inheritance. A workflow process is a subclass of another workflow process under life-
cycle inheritance if by blocking some newly added tasks and hiding others one cannot 
distinguish between them. All workflow processes shown in Figure 25 are subclasses 
of workflow process (A) with respect to life-cycle inheritance. 
 
In [6,14] we proposed a number inheritance preserving transformation rules. These 
rules correspond to frequently used design constructs and preserve one or more of the 
four inheritance notions. A detailed description of these rules is beyond the scope of 
this paper. Therefore, we just mention the four inheritance preserving transformation 
rules presented in [14]: 

PT 
Transformation rule PT preserves protocol inheritance and life-cycle inheritance. 
PT extends the superclass with new alternatives. In the resulting subclass there are 
alternative routes containing new tasks. Workflow process (A) shown in Figure 25 
can be extended to workflow process (C) using this rule. However, rule PT allows 
for much more complex extensions involving the introduction of new alternative 
subflows containing many tasks and routing structures. 
PP 
Transformation rule PP preserves all four forms of inheritance, i.e., 
protocol/projection, projection, protocol, and life-cycle inheritance. Rule PP 
introduces new tasks which only postpone behavior. Workflow process (B) shown 
in Figure 25 can be constructed from (A) by applying this rule; task check only 
postpones the execution of handle. 
PJ 
Transformation rule PJ preserves projection inheritance and life-cycle inheritance. 
Rule PJ inserts new tasks in-between existing tasks. Workflow process (A) shown 
in Figure 25 can be extended to workflow process (E) using this rule. The 
extension can be a single task but also a complex subflow containing many tasks 
and all kinds of causality relations. 
PJ3 
Transformation rule PJ3 preserves projection inheritance and life-cycle 
inheritance. Rule PJ3 adds parallel behavior. Workflow process (A) shown in 
Figure 25 can be extended to workflow process (D) using this rule. 



The rules correspond to design constructs that are often used in practice, namely 
choice, iteration, sequential composition, and parallel composition. If the designer 
sticks to these rules, inheritance is guaranteed! 
 
The reason we introduced the four inheritance preserving transformation rules is the 
following: 
 

If all children of a process family are constructed from a minimal 
representative by using the four inheritance preserving transformation rules, 
then it is possible to generate suitable generalization (geni), specialization 
(spei) and management-information (mani) functions automatically. 

 
This means that if the minimal representative is used as a template which is extended 
by applying the rules PT, PP, PJ, and PJ3, then the generalization, specialization, and 
management-information functions can be constructed automatically. Moreover, these 
functions yield a mapping such that the problems indicated before do not occur, i.e., 
every mapping yields a state which is as close to the real state as possible, and 
deadlocks, livelocks and other anomalies are avoided. The functions also satisfy the 
constraints stated in Section 5 (i.e., no Z-structures). The generalization and 
specialization functions are total, i.e., the case is transferred the moment the change 
occurs. As a result, the generalization functions (geni) and management-information 
functions (mani) are identical.  
 
Consider for example the five workflow processes in Figure 25. Suppose that 
workflow process (A) is the minimal representative and each of the five processes 
(i.e., including (A)) is a variant, i.e., a member of the process family having (A) as a 
minimal representative. Let genD, speD, and manD be the generalization, 
specialization, and management-information function corresponding to variant (D) 
which are constructed using the inheritance preserving transformation rules. Functions 
genD and manD both map the state with a token in p1 and p3 (i.e., only transition 
register was executed in workflow process (D)) onto the state with a token in p1. 
Function speD maps the state with a token in p2 (i.e., the state just before executing 
archive in workflow process (A)) onto the state with a token in p2 and either p3 
(conservative approach) or p4 (progressive approach). Let genE, speE, and manE be the 
generalization, specialization, and management-information function corresponding to 
variant (E). Functions genE and manE both map the state with a token in p3 onto the 
state with a token in p2. Function speE maps the state with a token in p2 onto the state 
with a token in p2. For the simple extensions shown in Figure 25 the results may seem 
trivial. However, note that we can construct these functions for any extension which 
can be described as a sequence of the four transformation rules. Since the rules 
correspond to design constructs encountered in practice (choice, iteration, sequential 
composition, and parallel composition), the results are meaningful and far from 
trivial. 
 
If every variant is a subclass of the minimal representative constructed using the four 
inheritance preserving transformation rules, then the transfer from one variant to 
another does not cause any problems, i.e., every case can be transferred without any 
delay and without introducing anomalies such as deadlocks, livelocks, unintended 
skipping of tasks, unnecessary multiple executions of common tasks, etc. Consider for 
example a transfer from workflow process (E)  to workflow process (D). If the case is 



in the state corresponding to p3, then the case is first mapped onto the minimal 
representative (A) using genE.  The transient state of the case in workflow process (A) 
is the state with a token in place p2. From this transient state, the case is transferred to 
workflow process (D) using speD. The resulting state is a token in place p2 and a 
token in either p3 (conservative approach) or p4 (progressive approach). Such 
dynamic changes can be handled automatically, e.g., the functions genE and speD can 
be computed based on the inheritance preserving transformation rules. 
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Figure 26: Aggregated management information mapped onto the minimal 

representative of the five variants. 



 
Figure 26 shows five variants as described earlier augmented with numbers indicating 
the distribution of in total 44 cases. Workflow process (A) holds 4 cases, (B) holds 12 
cases, (C) holds 8 cases, (D) holds 5 cases, and (E) holds 15 cases. Consider for 
example the five cases in variant (D). One case is still in the initial state. The 
remaining four are in-between register and archive; three of them have been checked 
and two of them have been handled. The minimal representative is the purely 
sequential process (i.e., workflow process (A)). Using the automatically constructed 
functions manA, manB, manC, manD, and manE the 44 cases can be mapped onto the 
minimal representative; workflow process (F) shows the aggregated management 
information mapped onto this minimal representative. Seven cases are in the initial 
state ( 7=0+3+0+1+3), sixteen are in the state corresponding to p1 (16=1+4+7+2+2), 
sixteen are in p2 (16=2+5+1+2+6), and five are in the final state (5=1+0+0+0+4). 
Note that six of the fifteen cases in variant (E) are mapped onto p2. 
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Figure 27: The GCD and the LCM of the five variants shown in Figure 25. 

 
These examples show that the concept of a minimal representative can be made 
operational using the four inheritance preserving transformation rules. In fact, it is 
even possible to concretize the notions of GCD and LCM.  The Greatest Common 
Denominator (GCD) of a set of variants is the "largest" workflow process such that 
every variant is a subclass with respect to life-cycle inheritance, i.e., it is the largest 
common part where all variant agree on. "Largest" is defined with respect to life-cycle 
inheritance, i.e., there is no other process which is a subclass of the GCD and a 
superclass of all variants with respect to life-cycle inheritance. Clearly workflow 
process (F) is the GCD of the five variants shown in Figure 26. The Least Common 
Multiple (LCM) of a set of variants is the "smallest" workflow process such that every 
variant is a superclass of this workflow process with respect to life-cycle inheritance, 
i.e., it is the smallest workflow process which captures all possible behaviors. The 



LCM is the smallest workflow process such that each variant can be constructed by 
blocking and hiding the appropriate tasks in the LCM. Note that the LCM is a 
subclass of each of the variants and that life-cycle inheritance is used to compare 
processes. Figure 27 shows the LCM of the five workflow processes depicted in 
Figure 25. Some of the tasks have been renamed to avoid name classes. The mapping 
of the cases shown in Figure 26 onto this LCM is straightforward and can be done 
automatically, e.g., there are eleven cases in the state corresponding to place s2 
(11=2+5+1+2+1).  A more detailed discussion of GCD and LCM is outside the scope 
of this paper. For a formal definition of GCD and LCM the reader is referred to [7].  
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Figure 28: The revised non-atomic concrete process handle_insurance_claim. 

 
To illustrate to application of the inheritance-based techniques we return to our 
process handle_insurance_claim. Figure 28 shows a version of the 
handle_insurance_claim where check_policy is no a concrete process but a generic 
one. Figure 29 shows the inheritance diagram for check_policy. Each of the children 
is a non-atomic concrete process. The process minimal_policy_check is the minimal 
representative and corresponds to the routing diagram given in Section 3.2. The other 
three children are augmented with an expression which makes sure that the 
configuration parameter config_par_it is set to the proper value. This configuration 
parameter can be used when instantiating other generic processes, e.g., the 
instantiation of generic process check_damage. 
 

check_policy

minimal
policy
check

check
fire

policy

check
car

policy

check
health
policy

config_par_it = "fire"
config_par_it = "car"

config_par_it = "health"

 
Figure 29: An inheritance diagram for the generic process check_damage. 

 
Figure 30 shows the definition of each of the four non-atomic concrete processes 
mentioned in the inheritance diagram for check_policy. The minimal representative 
minimal_policy_check is chosen appropriately since each of the children of 
check_policy is a subclass of minimal_policy_check. In fact, minimal_policy_check is 
the GCD of the three other members. Since each of the variants is a subclass of 
minimal_policy_check, we can automatically construct the generalization, 
specialization, and management-information functions. Figure 30 shows the number 



of cases in each variant/state combination, e.g., three claims for damage due to fire are 
in a state in-between querying the police records and assessing the risk. By using the 
automatically derived management-information functions, each case can be mapped 
onto the minimal representative. In this case the mapping is rather trivial: as Figure 30 
shows 24 cases are in a state in-between querying policy data and querying payments 
data, 2 cases are in the beginning of the subprocess, and 3 cases have just completed 
both querying tasks. 
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Figure 30: The four members of the process family check_policy: (a) 

check_fire_policy, (b) check_car_policy, (c) check_health_policy, and (d) 
minimal_policy_check. 

 
As Figure 30 illustrates the inheritance concepts can be used to derive a minimal 
representative and all management information can be mapped onto the common 
superclass. The same concepts can be used to support dynamic change. First, based on 
the subclass-superclass relationship between the old process and the minimal 
representative, a generalization function can be derived which maps the state of a case 
in the old process onto the minimal representative. Then, the specialization function, 
derived from the superclass-subclass relationship between the minimal representative 
and the new process, can be used to migrate the case to the new process. 
 



8 Related work 
In the last decade, there have been numerous papers addressing workflow 
management and workflow management systems [33,38,39], but relatively little work 
is devoted to the problems related to change. A topic related to change is the handling 
of exceptions. There are several papers addressing exception handling, in particular in 
the context of transactional workflows [18,19,26,36,44]. However, these papers 
typically address the handling of failures and other undesirable events rather than the 
deliberate change of a workflow process, e.g., evolutionary change, logical anomalies 
such as the dynamic change problem, and extracting useful management information 
are topics not addressed in these papers. The first paper to address the problems 
related to dynamic change was the paper by Ellis, Keddara, and Rozenberg in 1995 
[20]. This paper justifies research in this area by providing several examples of 
"dynamic bugs", i.e., errors resulting from change, and proposes a solution based on 
the notion of "change regions".  A change region is the part of the process affected 
directly or indirectly by the change, i.e., the segment of the workflow process that 
may cause problems. For each change region, two versions are maintained in parallel: 
the old one and the new one. New cases, i.e., cases entering the change region, are 
handled according to the new version. Cases already populating the change region are 
handled the old way. Eventually, the old version of a change region becomes inactive 
(because all old cases have been handled) and can be removed. This approach has the 
drawback that the process definition can become very complex (the process definition 
contains both old and new versions of change regions). However, a more serious 
drawback is the fact that the change regions are identified manually and there is little 
support for the transfer of cases. In [21,34] the authors improve their approach by 
introducing jumpers. A jumper moves a case from the old workflow to the new 
workflow and if for a state no jumper is available, the jump is postponed. Again, the 
authors do not give a concrete technique for the transfer of cases, i.e., jumpers are 
added manually. Agostini and De Michelis [13] propose a technique for the automatic 
transfer of cases from the old process to the new process and also give criteria for 
determining whether a jump is possible. Unfortunately, the approach only works for a 
restricted class of workflows, e.g., the workflow models has to be acyclic (i.e., 
iteration is modeled through linear jumps). The authors claim that these restrictions 
are reasonable because one could consisder iteration as an exception. Klingemann et 
al. [25,37] propose and mixture of so-called mandatory elements (i.e., typical 
constructs such as sequence, OR-split, AND-split, OR-join, AND-join) and flexible 
elements. Examples of flexible elements are alternative activities (run-time binding), 
non-vital activities (elements that can be skipped), and optional execution orders 
(suggested but not enforced ordering). Casati, Ceri and Pernici [17] tackle the 
problem of dynamic change via a set of transformation rules and partition the state 
space into a part that is aborted, a part that is transferred, a part that is handled the old 
way, and parts which are handled by hybrid process definitions (comparable to the 
approach using change regions). Reichert and Dadam [41] use a similar approach 
without addressing for example the problem identified in Figure 1. Voorhoeve and 
Van der Aalst [49,50] also propose a fixed set of transformation rules to support 
dynamic change. However, the drawback of using transformation rules is that only 
local changes are considered and the rules provided so far are far from being 
complete. Moreover, valuable information is lost during the application of a series of 
transformation rules. None of the above papers uses a notion of inheritance or generic 
processes. Moreover, the issue of extracting management information is only 
mentioned in [49,50]. The other papers mentioned do not address this issue. 



 
The approach in this paper is inspired by the work on schema evolution [16] and 
generic/variant bills-of-material [23,29,46,47], and builds on previous work 
conducted by members of the SMIS group [1,4,6,14]. Preliminary results have been 
presented by the author in [5]. Compared to [5] this paper contains much more details, 
a classification of change, several examples, and the link with the work on inheritance 
of dynamic behavior [6,14]. The inheritance notions, transformation rules, transfer 
rules, and the notions of GCD and LCM provide concrete mechanisms for defining a 
minimal representative, handling dynamic change, and generating management 
information, and are therefore crucial for the applicability of the approach. For a 
formalization of the inheritance concepts we refer to two technical reports [7,15] 
containing detailed proofs of the statements made in this paper. Moreover, the four 
inheritance notions can be verified with Woflan [48]. Woflan is our workflow 
verification tool and can interface with several workflow products including COSA, 
Staffware, Protos, and Meteor. 
 

9 Conclusion 
This paper tackled two notorious problems related to adaptive workflow using generic 
process models. The approach is inspired by the work on product configuration 
(generic bills-of-material). The generic process model extends the classical workflow 
models, primarily based on routing diagrams, with inheritance diagrams. This allows 
for the specification of process families composed of variants. It also provides the 
designer with two navigation dimensions: (1) the is-part-of/contains dimension and 
(2) the generalizes/specializes dimension, and stimulates reuse. Based on this model 
the problems related to (1) providing management information at the right 
aggregation level and (2) supporting dynamic change (i.e., migrating cases from an 
old to a new workflow) have been addressed. As it turns out, the generic process 
model with a minimal representative for each process family gives a handle to deal 
with these problems. Although the diagrams shown in this paper use a Petri-net-like 
notation, the concepts and ideas are independent of the process modeling technique 
chosen. Therefore, it is, in principle, possible to add the notions presented in this 
paper to most of the workflow management systems available today. However, the 
generality of the approach also indicates that many problems are still open. For 
example, how to construct a good a minimal representative and the corresponding 
specialization (spei), generalization (geni) and management functions (mani)? To 
answer these questions, we proposed an approach based on Petri nets and advanced 
inheritance concepts. By using recent results on inheritance of dynamic behavior 
[6,7,14] we showed that the corresponding specialization, generalization, and 
management functions can be obtained automatically if the minimal representative is 
a superclass of its fellow children. 
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Appendix: Petri nets 
The results in this paper are not specific for the Petri-net formalism. However, to 
understand the diagrams some basic knowledge of Petri nets is required. In this 
appendix, we introduce the formalism for readers not familiar with Petri nets. We also 
provide some background information with respect to the modeling and verification 
of workflows. 
 
Because processes are the dominant factor in workflow management, it is important 
to use an established framework for modeling and analyzing workflow processes. In 
this paper, we use a framework based on Petri nets to illustrate the concepts. Petri nets 
are a well-founded process modeling technique. The classical Petri net was invented 
by Carl Adam Petri in the sixties. Since then Petri nets have been used to model and 
analyze all kinds of processes with applications ranging from protocols, hardware and 
embedded systems to flexible manufacturing systems, user interaction and business 
processes. There are several reasons for using Petri nets for workflow modeling: their 
formal semantics, graphical nature, expressiveness, analysis techniques, and tools 
provide a framework for modeling and analyzing workflow processes [2].  
 

A Petri net is a network composed of squares and circles. The squares are called 
transitions and correspond to tasks that need to be executed. The circles are used to 
represent the state of a workflow and are called places. The arrows between places 
and transitions are used to specify causal relations. A place p is called an input place 
of a transition t iff there exists a directed arc from p to t. Place p is called an output 
place of transition t iff there exists a directed arc from t to p. At any time a place 
contains zero or more tokens, drawn as black dots. The state of the net, often referred 

http://www.tm.tue.nl/it/woflan


to as marking, is the distribution of tokens over places. The number of tokens may 
change during the execution of the net. Transitions are the active components in a 
Petri net: they change the state of the net according to the following firing rule: 
1. A transition t is said to be enabled iff each input place p of t contains at least one 

token. 
2. An enabled transition may fire. If transition t fires, then t consumes one token from 

each input place p of t and produces one token for each output place p of t. 
By using this rule it is possible to determine which transitions can fire and in what 
order. 

A

B C

E

p1

p6

p3

p4

p2

p5

A fires D

A

B C

E

p1

p6

p3

p4

p2

p5

D

 
Figure 31: The result of firing the enabled transition A. 

Figure 31 shows a Petri net before (left) and after (right) the firing of a transition. In 
the Petri net before the firing, only place p1 contains a token and transition A is the 
only enabled transition. Therefore, A will fire and consume one token and produce 
two tokens resulting in the state shown in Figure 31. In the resulting state, three 
transitions are enabled (B, C, and D). Either B and C fire (in parallel or in any order) 
or D fires. Finally, E will fire resulting in the state with just one token in p6. 
 
A Petri net which models the process aspect of a workflow, is called a WorkFlow net 
(WF-net). It should be noted that a WF-net specifies the dynamic behavior of a single 
case in isolation. A WF-net is a Petri net with one source place (i.e., a place with no 
ingoing arcs) and one sink place (i.e., a place with no ingoing arcs), and every node 
(i.e., a place or a transition) is on a path from the source place to the sink place [4]. A 
WF-net has one input place (source) and one output place (sink) because any case 
handled by the procedure represented by the WF-net is created the moment it enters 
the workflow management system and is deleted once it is completely handled by the 
workflow management system, i.e., the WF-net specifies the life-cycle of a case. 
Moreover, any node should be on a path from the input place to the output place. This 



requirement has been added to avoid ‘dangling tasks and/or conditions’, i.e., tasks and 
conditions which do not contribute to the processing of cases. The Petri net shown in 
Figure 31 is clearly a WF-net. A WF-net is sound if and only if it satisfies the 
following requirement. For any case, the procedure will terminate eventually and the 
moment the procedure terminates there is a token in the output place and all the other 
places are empty. Moreover, there should be no dead tasks, i.e., it should be possible 
to execute an arbitrary task by following the appropriate route though the WF-net. A 
formal definition of soundness is given in [1,4]. It is easy to verify that the WF-net net 
shown in Figure 31 is sound. However, for the complex workflow process definitions 
encountered in practice (with up to 100 tasks), it is far from trivial to decide 
soundness. In [1] a decision procedure is given to decide soundness. This procedure 
uses state-of-the-art Petri-net-based analysis techniques. In fact, it uses the fact that 
soundness corresponds to two well-known properties: liveness and boundedness. 
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