
How to handle dynamic change and
capture management information?

An approach based on generic workflow models

W.M.P. van der Aalst†
Department of Information and Technology

Faculty of Technology Management
Eindhoven University of Technology

P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands
w.m.p.v.d.aalst@tm.tue.nl

Abstract
Today’s workflow management systems have problems dealing with both ad-hoc
changes and evolutionary changes. As a result, the workflow management system is
not used to support dynamically changing workflow processes or the workflow
process is supported in a rigid manner, i.e., changes are not allowed or handled
outside of the workflow management system. This paper addresses two notorious
problems related to adaptive workflow: (1) providing management information at the
right aggregation level, and (2) supporting dynamic change, i.e., migrating cases from
an old to a new workflow. These two problems are tackled by using generic process
models. A generic process model describes a family of variants of the same workflow
process. To relate members of a family of workflow processes we propose notions of
inheritance. These notions of inheritance are used to address the two problems
mentioned both a design-time and at run-time.

Keywords
Workflow management, adaptive workflow, management information, inheritance,
dynamic change, generic product models.

1 Introduction
Workflow management promises a new solution to an age-old problem: controlling,
monitoring, optimizing and supporting business processes [38,39,51]. What is new
about workflow management is the explicit representation of the business process
logic which allows for computerized support. At the moment, there are more than 200
workflow products commercially available and many organizations are introducing
workflow technology to support their business processes. A critical challenge for
workflow management systems is their ability to respond effectively to changes
[11,12,13,17,20,21,27,30,37,41,43,49]. Changes may range from ad-hoc
modifications of the process for a single customer to a complete restructuring for the
workflow process to improve efficiency. Today’s workflow management systems are
ill suited to dealing with change. They typically support a more or less idealized
version of the preferred process. However, the real run-time process is often much
more variable than the process specified at design-time. The only way to handle

† Part of this work was done at AIFB (University of Karlsruhe, Germany), LSDIS (University of
Georgia, USA), CTRG (University of Colorado, USA) during a sabbatical leave.

changes is to go behind the system’s back. If users are forced to bypass the workflow
management system quite frequently, the system is more a liability than an asset.
Therefore, we take up the challenge to find techniques to add flexibility without
loosing the support provided by today’s systems.

Typically, there are two types of changes: (1) ad-hoc changes and (2) evolutionary
changes. Ad-hoc changes are handled on a case-by-case basis. In order to provide
customer specific solutions or to handle rare events, the process is adapted for a single
case or a limited group of cases. Evolutionary change is often the result of
reengineering efforts. The process is changed to improve responsiveness to the
customer or to improve the efficiency (do more with less). The trend is towards an
increasingly dynamic situation where both ad-hoc and evolutionary changes are
needed to improve customer service and reduce costs.

This paper presents an approach to tackle the problem of change. This approach is
inspired by the techniques used in product configuration [46]. As factories have to
manufacture more and more customer specific products, the trend is to have a very
high number of variants for one product. Products, like a car or a computer, can have
millions of variants (e.g., combinations of color, engine, transmission, and options).
Also product specifications and their components evolve at an increasing pace.
Product configuration deals with these problems and has been a lively area of research
for the last decade. Moreover, some solutions have already been implemented in
today’s enterprise resource planning systems such as SAP and Baan. To deal with
changes the traditional Bill-Of-Material (BOM) is extended with product families. A
product family corresponds to a range of product types and allows for the modeling of
generic product structures. The term generic BOM [23,29,46,47] is used when generic
product structures are described by means of an extension to the traditional BOM. In
this paper, we extend traditional process modeling techniques in a similar manner. We
adopt the notion of process families to construct generic workflow process models.

A generic workflow process model is a process model which can be configured to
accommodate flexibility and enables both ad-hoc and evolutionary changes. Using
generic workflow process models, the workflow management system can support the
design and enactment (i.e., execution) of processes subject to change. Moreover, the
generic process model introduced in this paper allows for the navigation through two
dimensions: (1) the vertical dimension (is-part-of/contains) and (2) the horizontal
dimension (generalizes/specializes). Although the second dimension is absent in
today’s workflow management systems, it is of the utmost importance for the
reusability and adaptability of workflow processes.

The addition of the horizontal dimension allows for the design and enactment of many
variants of a workflow process. However, it is not sufficient to support the design and
enactment. There are two additional issues that need to be dealt with: (1) management
information [49,50], and (2) dynamic change [13,20,21]. In spite of the existence of
many variants of one process, the manager is interested in information at an aggregate
level, i.e., management information which abstracts from small variations. The term
dynamic change refers to the problem of handling old cases in a new process, e.g.,
how to transfer cases to a new, i.e., improved, version of the process.

A

B

C

D

s1

s5

s4

s3

s2

A

B C

D

p1

p6

p3

p4

p2

p5

OK

?

A : prepare shipment
B : send goods
C : send bill
D : record shipment

Figure 1: The dynamic change problem.

Figure 1 illustrates the dynamic change problem1. The left-hand-side process executes
the tasks prepare shipment, send goods, send bill, and record shipment in sequential
order. In the right-hand-side process the sending of the goods and the sending of the
bill can be executed in parallel, i.e., there is no ordering relation between the tasks
send goods and send bill. In the remainder we will use identifiers A, B, C, and D to
denote the four tasks. If the sequential workflow process (left) is changed into the
workflow process where tasks B and C can be executed in parallel (right) there are no
problems, i.e., it is always possible to transfer a case from the left to the right. The
sequential process has five possible states and each of these states corresponds to a
state in the parallel process. For example, the state with a token in s3 is mapped onto
the state with a token in p3 and p4. In both cases, tasks A and B have been executed
and C and D still need to be executed. Now consider the situation where the parallel
process is changed into the sequential one, i.e., a case is moved from the right-hand-
side process to the left-hand-side process. For most of the states of the right-hand-side
process this is no problem, e.g., a token in p1 is moved to s1, a token in p3 and a
token p4 are mapped onto one token in s3, and a token in p4 and a token p5 are
mapped onto one token in s4. However, the state with a token in both p2 and p5 (A
and C have been executed) causes problems because there is no corresponding state in
the sequential process (it is not possible to execute C before B). The example in
Figure 1 shows that it is not straightforward to migrate old cases to the new process
after a change.

1 In this paper, we use Petri nets to illustrate the main concepts. Readers not familiar with Petri nets are
referred to the appendix.

A

B

C

D

s1

s5

s4

s3

s2

A

B C

D

p1

p6

p3

p4

p2

p5

3 4

1

3

2

1

2 4

5 3

7

A

B C

D

m1

m6

m3

m4

m2

m5

7

3 8

10 5

8

+ =

Figure 2: Aggregated management information.

Another problem of change is that it typically leads to multiple variants of the same
process. For evolutionary change the number of variants is limited. Ad-hoc change
may lead to the situation where the number of variants may be of the same order of
magnitude as the number of cases. To manage a workflow process with different
variants it is desirable to have an aggregated view of the work in progress. Note that
in a manufacturing process the manager can get a good impression of the work in
progress by walking through the factory. For a workflow process handling digitized
information this is not possible. Therefore, it is of the utmost importance to supply the
manager with tools to obtain a condensed but accurate view of the workflow
processes. Figure 2 shows a workflow processes with two variants: a sequential one
(left) and a parallel one (middle). The numbers indicate the number of cases in a
specific state, e.g., in the sequential process there are 3 cases in-between task B and
task C, and in the parallel process there are 2 cases in-between A and B. Since the
manager requires an aggregated view rather than a view for every variant of the
workflow process, the cases need to be mapped onto a generalized version of the
different processes. Therefore we need to find the ‘greatest common denominator’ or
the ‘least common multiple’ for the two processes shown. Since all the states of the
sequential process are presented in the parallel process, we choose the parallel process
to present the management information. Figure 2 shows the aggregated view of the
two workflow processes (right). For all places in the right-hand-side process except
m3, is quit straightforward to verify that the numbers are correct. The number of
tokens in place m3 corresponds to the number of cases in-between A and C. In the
sequential process there are 1+3=4 cases in-between A and C. In the parallel process
there are also 4 cases in-between A and C, which brings the total to 8. For this small
example it may seem trivial to obtain this information. However, in general there are

many variants and the processes may have up to 100 tasks and it is far from trivial to
present aggregated information to the manager.

These two issues (dynamic change and management information) cause a lot of
problems which need to be solved. We think that it is possible to tackle these
problems by using the notion of a minimal representative of a generic process. By
mapping states on this minimal representative it may be possible to generate adequate
management information. Moreover, linking states of the members of a process
family to the states of a minimal representative seems to be useful for the automated
support of dynamic change. To support the construction of the minimal representative
and the mapping of cases from members of a process family to states of a minimal
representative and vice versa, we propose an approach based on the inheritance
preserving transformation rules presented in [6,14].

This paper is organized as follows. First we classify the types of changes that we
would like to support. Then, we introduce an approach to specify generic process
models using two types of diagrams: routing diagrams and inheritance diagrams. It is
shown that this approach facilitates dealing with all kinds of changes. In the second
part of the paper, we show that the notion of a minimal representative of a generic
process can be used to tackle the problems involving dynamic change and
management information. To make the approach more concrete, we introduce four
inheritance preserving transformation rules that can be used as a carrier for
dynamically transferring cases and obtaining management information.

2 Adaptive workflow
Workflows are typically case-based, i.e., every piece of work is executed for a
specific case. Examples of cases are a mortgage, an insurance claim, a tax declaration,
an order, or a request for information. Cases are often generated by an external
customer. However, it is also possible that a case is generated by another department
within the same organization (internal customer). The goal of workflow management
is to handle cases as efficient and effective as possible. A workflow process is
designed to handle similar cases. Cases are handled by executing tasks in a specific
order. The routing definition specifies which tasks need to be executed and in what
order. Alternative terms for routing definition are: ‘procedure’, ‘flow diagram’ and
‘workflow process definition’. In the routing definition, routing elements are used to
describe sequential, conditional, parallel and iterative routing thus specifying the
appropriate route of a case (WfMC [39,51]). Many cases can be handled by following
the same workflow process definition. As a result, the same task has to be executed
for many cases. A task which needs to be executed for a specific case is called a work
item. An example of a work item is: execute task ‘send refund form to customer’ for
case ‘complaint sent by customer Baker’. Most work items are executed by a
resource. A resource is either a machine (e.g. a printer or a fax) or a person
(participant, worker, or employee). In office environments where workflow
management systems are typically used, the resources are mainly human. However,
because workflow management is not restricted to offices, we prefer the term
resource. Resources are allowed to deal with specific work items. To facilitate the
allocation of work items to resources, resources are grouped into classes. A resource
class is a group of resources with similar characteristics. There may be many
resources in the same class and a resource may be a member of multiple resource
classes. If a resource class is based on the capabilities (i.e., functional requirements)

of its members, it is called a role. If the classification is based on the structure of the
organization, such a resource class is called an organizational unit (e.g. team, branch
or department). A work item which is being executed by a specific resource is called
an activity. If we take a photograph of a workflow, we see cases, work items and
activities. Work items link cases and tasks. Activities link cases, tasks, and resources.
See [1,3,4,9,10,17,22,33,39,42,51] for more information about workflow concepts and
the modeling of workflow processes.

Adaptive workflow is an area of research which examines concepts, techniques, and
tools to support change. It is widely recognized that workflow management systems
should provide flexibility [13,17,20,21,27,30,43,49]. However, as indicated in the
introduction, today’s workflow management systems have problems dealing with
change. New technology, new laws, and new market requirements lead to
modifications of the workflow process definitions at hand. Last minute changes on a
case-by-case basis lead to all kinds of exceptions. The inability to deal with various
changes limits the application of today’s workflow management systems. The
limitations of today’s workflow management systems and current approaches with
respect to flexibility raise a number of interesting questions. In fact, several
workshops have been organized to discuss the problems related to workflow change
[12,36,52]. In this paper we restrict ourselves to changes with respect to the routing of
cases, i.e., the control flow. We abstract from organizational changes, i.e., we do not
consider adaptations of the resource classification and the mapping of work items
onto resources. We also abstract from the contents of tasks.

The restriction to consider only the routing definition allows us to classify changes as
follows [8]:

Ad-hoc change
Changes occurring on an individual basis: only a single case (or a limited set of
case) is affected. The change is the result of an error, a rare event, or special
demands of the customer. Exceptions often result in ad-hoc changes. A typical
example of ad-hoc change is skipping a task in case of an emergency. This kind of
change is often initiated by some external cause. A typical dilemma is to decide
what kinds of changes are allowed. Another problem related to ad-hoc change is
the fact that it is impossible to foresee all possible changes. For ad-hoc change we
distinguish between the moment of change:

Entry time
The routing definition is frozen the moment the processing of the case starts,
i.e., no changes are allowed during the processing.
On-the-fly
Changes are allowed at any moment, i.e., the process may change while the
case is being handled. Ad-hoc on-the-fly changes allow for self-modifying
routing definitions.

Evolutionary change
Changes of a structural nature: from a certain moment in time, the process
changes for all new cases to arrive at the system. The change is the result of a new
business strategy, reengineering efforts, or a permanent alteration of external
conditions (e.g. a change of law). Evolutionary change is initiated by the
management to improve efficiency or responsiveness, or is forced by legislature or
changing market demands. Evolutionary change always affects new cases but it
may also influence old cases. We identify three ways to deal with existing cases:

Restart
All existing cases are aborted and restarted. At any time, all cases use the same
routing definition. For most workflow applications, it is not acceptable to
restart cases because it is not possible to rollback work or it is too expensive to
flush cases.
Proceed
Each case refers to a specific version of the workflow process. Newer versions
do not affect old cases. Most workflow management systems support such a
versioning mechanism. A drawback of this approach is that old cases cannot
benefit from an improved routing definition.
Transfer
Existing cases are transferred to the new process, i.e., they can directly benefit
from evolutionary changes. The term dynamic change is used to refer to the
problem of transferring cases to a consistent state in the new process.

Both for ad-hoc and evolutionary change, we distinguish three ways in which the
routing of cases along tasks can be changed:

Extend
Adding new tasks which (1) are executed in parallel, (2) offer new alternatives, or
(3) are executed in-between existing tasks.
Replace
A task is replaced by another task or a subprocess (i.e., refinement), or a complete
region is replaced by another region.
Re-order
Changing the order in which tasks are executed without adding new tasks, e.g.,
swapping tasks or making a process more or less parallel.

This concludes our classification of workflow change. Note that the term exception
handling does not appear in the classification [19,26,36,44]. An exception is the
occurrence of some unexpected or abnormal event. In most cases, exceptions are
undesirable because they generate additional complications and work. If a workflow
management system provides an exception handler, it is possible to specify the
actions to be performed in order to respond to certain exceptions. However, often the
humans participating in the process are the “real” exception handlers, because it is not
possible to pre-specify all possible exceptions. Note that an exception is not a change.
Exceptions only trigger changes. Exceptions generated by external actors (e.g. a
customer reporting an emergency) typically lead to ad-hoc changes. Exceptions
generated by internal actors (e.g. the breakdown of an information system) typically
lead to the blocking of parts of the workflow or to (temporary) evolutionary changes.

It is interesting to compare the classification shown in Error! Reference source not
found. with the classification for failures and exceptions given in [18]. In [18], Eder
and Liebhart, describe four types of failures and exceptions:

Basic failures
Failures such as a system crash, connection problems, or the breakdown of the
underlying database system.
Application failures
Failures of an application program launched or managed by the workflow
management system. These errors are typically the result of unexpected input.

Expected exceptions
Workflow executions that do not correspond to the "normal" behavior but still
occur frequent enough to be anticipated, e.g., a customer does not return a form.
The handling of these exceptions can be specified at design time but, if mixed
with the normal flow, typically results in "spaghetti-like" models.
Unexpected exceptions
Exceptions that are so rare that they cannot be anticipated and therefore need to be
handled at run-time.

The first two types are handled at the system or application level and typically do not
result in process changes. The latter two types of failures and exceptions, i.e.,
expected exceptions and unexpected exceptions, may generate process changes.
Unexpected exceptions typically generate on-the-fly ad-hoc changes. Expected
exceptions can be modeled explicitly thus avoiding any changes at run-time.
However, many expected exceptions are handled in an ad-hoc manner to simplify the
process model.

The classification shown in Error! Reference source not found. reveals that there
are many types of changes causing different types of problems. Typically, changes
lead to many variants of the same process. Therefore, a lot of routing definitions need
to be stored and supported by the workflow enactment service. To keep track of these
definitions and to avoid redundancy they should be stored in a structured way. Having
many variants emphasizes the fact that it is important to support automatic
verification: given a set of criteria, all changes should be checked before the routing
definition is put into production. Moreover, it is important to be able to provide the
manager with aggregated information and support dynamic change. To solve some of
these problems, we propose an approach which allows for the formulation of generic
process models.

3 Generic process models
A generic process model is specified by a set of routing diagrams and inheritance
diagrams. Before these two diagram types are presented, we introduce the basic
concepts and the relations between these concepts.

3.1 Concepts
Cases are the objects which need to be handled by the workflow (management
system). The Workflow Management Coalition (WfMC) uses the term "process
instance" to denote a case [39,51]. Examples of cases are tax declarations, complaints,
job applications, credit card payments, and insurance claims. A task, also referred to
as "activity" by the WfMC [39,51], is an atomic piece of work. A task is concrete, i.e.,
it can be specified, but is not specific for a single case. In principle, a task can be
executed for any case. A non-atomic concrete process is similar to a task but it is not
atomic. A non-atomic concrete process is specified by a routing diagram and
corresponds to a case type rather than a specific case. The WfMC [39,51] uses the
terms "process" and "subprocess" to refer to such diagrams. Figure 4 and Figure 5
show non-atomic concrete processes modeled with COSA respectively Staffware. A
concrete process is either a task or a non-atomic concrete process, i.e., it is a pre-
specified piece of work which can be executed for many cases (if needed). A generic
process is not specified, i.e., it is not concrete but refers to a family of processes.
Since it is not concrete, it makes no sense to distinguish between atomic and non-

atomic generic processes. In fact, one generic process may signify both concrete tasks
and non-atomic concrete processes at the same time. One can think of a generic
process as a placeholder for a concrete process. For example a process called
procurement may contain the generic process contact_supplier. This generic process
is not modeled in terms or a routing diagram but refers to the tasks phone_supplier,
fax_supplier, and e-mail_supplier, i.e., contact_supplier is only a placeholder: The
actual processing is handled as specified by one of these tasks. Note that a generic
process may also refer to non-atomic concrete processes and even other generic
processes. A process node is either a concrete process or a generic process, i.e.,
procurement, contact_supplier, phone_supplier, fax_supplier, and e-mail_supplier are
all process nodes. A routing diagram contains process nodes, i.e., a non-atomic
concrete process is specified in terms of both concrete and generic processes. A
process node appears in zero or more routing diagrams. In each routing diagram,
process nodes are connected by routing elements specifying the order in which the
process nodes need to be executed. A process node refers to zero or more generic
processes. If a process node X refers to a generic process Y, then X belongs to the
process family described by Y and we say that X is a child of Y. A concrete process
can be the child of a generic process, a generic process can be the child of another
generic process, but a generic process cannot be the child of a concrete process. Note
that a process node can be the child of many generic processes. Each case refers to
precisely one non-atomic concrete process. Since the routing diagram describing a
non-atomic concrete process may contain generic processes, it is necessary to
instantiate generic processes by concrete processes for specific cases, i.e., for a
specific case, generic processes in the routing diagram are replaced by concrete
processes. Consider for example the procurement process where the generic process
contact_supplier is instantiated by the task phone_supplier.

1..*

1

process
node

routing
element

concrete
process

generic
process

tasknon-atomic
concrete process

case instantiation

1..*

*

* *

**

*

*
11

1

1

1

*

{disjoint,
complete}

{disjoint,
complete}

{key}

is_child_of

min_rep_of

inst_ofinst_by

is_instance_of

has

contains

connects

Figure 3: Class diagram describing the relationships between the main concepts
used in this paper.

Figure 3 shows a class diagram, using the UML notation, relating the essential
concepts used in this paper. The diagram shows that non-atomic concrete processes
and tasks are specializations of concrete processes, i.e., both the class non-atomic
concrete process and the class task are subclasses of the class concrete process. The
two subclasses are mutually disjoint and complete. The class process node is a
generalization of the class concrete process and the class generic process. The
association is_child_of relates process nodes and generic processes. If the association
relates a process node X and generic process Y, then X belongs to the process family
of Y. Since process nodes can be in the process family of generic processes and a
generic process can have many children (but at least one), the cardinality constraints
are as indicated in the class diagram. A generic process has at least one child because
it has a so-called minimal representative as indicated by the association min_rep_of.
The minimal representative of a generic process is a concrete process which captures
the essential characteristics of a process family. The minimal representative is needed
to enable dynamic change and to generate aggregate management information. The
class routing element links process nodes to non-atomic concrete processes. A non-
atomic concrete process consists of process nodes (i.e., tasks, non-atomic concrete
processes, and generic processes) which can be executed in a predefined way. Typical
routing elements are the AND-split, AND-join, OR-split, and OR-join [51]. These
elements can be used to enable sequential, parallel, conditional, alternative, and
iterative routing. In the class diagram, we did not refine the class routing element
because the approach presented in this paper is independent of the process modeling
technique used. The association contains specifies the relation between routing
elements and non-atomic concrete processes. Note that a routing element is contained

in precisely one non-atomic concrete process. The association connects specifies
which process nodes are connected by each routing element. Note that the
associations contains and connects can be used to derive in which non-atomic
concrete processes a process node is used. The class case refers to the objects that are
handled at run-time using a non-atomic concrete process description. The association
is_instance_of relates each case to precisely one non-atomic concrete process. It is not
possible to execute non-atomic concrete processes containing process nodes which are
generic. Before or during the handling of a case, generic processes need to be
instantiated by concrete processes. The class instantiation is used to bind generic
processes to concrete processes for specific cases. Every instantiation corresponds to
one case, one generic process, and one concrete process. Note that per case it is not
allowed to have multiple instantiations for the same generic process.

There are many constraints not represented in the class diagram. Constraints that are
important for the remainder are:
1. The relation given by the association is_child_of is acyclic.
2. The relation derived from the composition of association contains and association

connects is acyclic.
3. The relation derived from the composition of the associations contains, connects

and is_child_of is acyclic, e.g., a non-concrete process X is not allowed to contain
a generic process Y if X is a child of Y.

4. The minimal representative of a generic process is also a child, i.e., the relation
specified by the association min_rep_of is contained in the relation specified by
is_child_of.

5. A generic process can only be instantiated by a concrete process if the concrete
process is (indirectly) a child of the generic process.

6. For a case it is only possible to instantiate generic processes which are actually
contained in the corresponding non-atomic concrete process.

The class diagram shown in Figure 3 contains three types of information:
1. Routing information

The process description of each non-atomic concrete process. It specifies which
tasks, non-atomic concrete processes, and generic processes are used and in what
order they are executed. The classes routing element, process node, and non-
atomic concrete process and the associations contains and connects are involved.

2. Inheritance information
The relation between a generic process and its children. It specifies possible
instantiations of generic processes by concrete processes, and concerns the classes
generic process, process node, and concrete process and the associations
is_child_of and min_rep_of.

3. Dynamic information
Information about the execution of cases and instantiations of generic processes
by concrete processes. It involves the classes case and instantiation and the
associations is_instance_of, has, inst_by, and inst_of. Note that not the
information itself dynamic but the information refers to the run-time dynamics of
the system.

Today’s workflow management systems do not support the definition of generic
processes, i.e., it is only possible to specify concrete processes. In the remainder of

this section we focus on the modeling of generic processes using a combination of
routing and inheritance diagrams.

3.2 Routing diagrams
A routing diagram specifies for a non-atomic concrete process the routing of cases
along process nodes. Any workflow management system allows for the modeling of
such diagrams. Examples of diagramming techniques are Petri-nets (COSA,
INCOME, BaaN/DEM, Leu), Event-driven Process Chains (SAP/Workflow),
Business Process Maps (ActionWorkflow), Staffware Procedures (Staffware), etc.
Figure 4 shows the COSA Network Editor (CONE) while modeling the right-hand-
side workflow process shown in Figure 1. COSA is a full-fledged workflow
management system based on Petri nets. Figure 5 shows the same workflow process
modeled with the workflow definer of Staffware. Staffware is one of the leading
workflow management systems with more than 400.000 users. The two figures
illustrate that although the diagramming techniques appear to be quite different, the
essence is the same: the causal ordering of tasks using constructs such as choice,
iteration, sequential composition, and parallel composition. Since there is no
consensus on the diagramming technique to be used for workflow modeling, we use
Petri nets to represent routing diagrams. Petri nets are a well-known technique for
process modeling which combine formal semantics, expressive power, powerful
analysis techniques, and an intuitive graphical representation [1,2,22].

Figure 4: CONE: the design tool of COSA (COSA Solutions).

Figure 5: The workflow definer of Staffware (Staffware plc).

None of the diagramming techniques/workflow management systems discussed
before supports generic processes. However, each of these diagramming techniques
can be extended with generic processes. In this paper, we extend Petri-net-like routing
diagrams [1,3,4,9,22] with generic processes.

A routing diagram specifies the contents of a non-atomic concrete process and
consists of four types of elements:
1. Tasks

A task is represented by a square and corresponds to a Petri-net transition.
2. Non-atomic concrete processes

A non-atomic concrete process is represented by a double square and corresponds
to a link to another Petri-net (i.e., a subnet).

3. Generic processes
A generic process is represented by a square containing a diamond and
corresponds to a link which can be instantiated by a process node.

4. Routing elements
Routing elements are added to specify which process nodes need to be executed
and in what order. Since we use Petri nets, routing elements correspond to places
and transitions which are added for routing reasons only.

Figure 6 shows the four types of elements.

Task

Non-atomic concrete process

Generic process

Routing elements

And-split

And-join

OR-split

OR-join

Begin

EndAfter

Figure 6: Symbols used in a routing diagram.

To illustrate the construction of routing diagrams we give some examples. Figure 7
shows the specification of the non-atomic concrete process handle_insurance_claim.
This process consists of two tasks (registration and pay_damage), one non-atomic
concrete process (check_policy), three generic processes (check_damage,
evaluate_claim, and reject_claim), and several routing elements. Every insurance
claim is first registered, then the policy and the damage are checked, followed by an
evaluation which either results in a payment or in a rejection. Note that Figure 7
contains sequential, parallel, and conditional routing.

registration
check_damage

check_policy

evaluate_claim
reject_claim

pay_damage

Figure 7: The non-atomic concrete process handle_insurance_claim.

The three generic processes shown in Figure 7 may correspond to several concrete
processes. However, this information is not given in the routing diagram and will be
specified in the corresponding three inheritance diagrams (see Section 3.3). Since
check_policy is a concrete process which is not atomic, there is also a routing diagram
specifying the contents of this process. Figure 8 shows the definition of check_policy.
The process is completely sequential and contains only two tasks: query_policy_data
and query_payments_data.

query_policy_data query_payments_data

Figure 8: The sequential process check_policy.

Figure 9 shows a process with iteration. The definition of the non-atomic concrete
process phone contains five tasks. First the task dial is executed followed by either the
task OK (contact established) or NOK (no contact). If no contact was established there
are two possibilities: either a letter is sent (send_letter) or task dial is executed again.
Note that the only way to complete this process is sending a letter or successfully
establishing contact via the phone.

dial

NOK

OK

send_letter

try_again
Figure 9: The process phone.

In the next subsection we will see that phone is a child of the generic process
reject_claim. For completeness, we also define the non-atomic concrete process
check_car_damage_500+ which is indirectly a child of the generic process
check_damage. Process check_car_damage_500+ is a sequential process containing
two tasks.

m a k e _ a p p o i n t m e n t v i s u a l _ i n s p e c t i o n

Figure 10: The process check_car_damage_500+.

The routing diagram shown in Figure 7 illustrates how a process definition language
can be extended with generic processes. In principle, it is possible to use the
diagramming technique offered by any workflow management system with a
hierarchy concept and extend it with a new type of building block: the generic
process. Note that the concepts presented in this paper do not rely on the Petri-net
formalism. In fact, the results are independent of the process modeling technique. For
simplicity we will assume that in a routing diagram there is one begin routing
element, one end routing element, and that every process node (i.e., a task, a generic
process, or a non-atomic concrete process) has exactly one input arc and one output
arc. It is quite straightforward to extend the results to the situation without these
assumptions.

3.3 Inheritance diagrams
In contrast to routing diagrams, today’s products do not allow for inheritance
diagrams to specify the process family corresponding to a generic process. The lack of
such a concept in today’s workflow management systems has many similarities with
the absence of product variants in the early MRP/ERP-systems. These systems where
based on the traditional Bill-Of-Material (BOM) and where burdened by the growing
number of product types. Therefore, the BOM was extended with constructs allowing
for the specification of variants [23,29,46,47]. Variants of a product type form a
product family of similar but slightly different components or end-products. Consider
for example a car of type X. Such a car may have 16 possible colors, 5 possible
engines, and 10 options which are either present or not, thus yielding 16*5*210=81920
variants. Instead of defining 81920 different BOM’s, one generic BOM is defined.

Inspired by the various ways to define generic BOM’s, we extend process models
with inheritance diagrams allowing for the specification of process families.

tasks non-atomic
concrete processes

generic
processes

children

parent
minimal
representative

constraint
C

Figure 11: Symbols used in an inheritance diagram.

Figure 11 shows an inheritance diagram. The root of an inheritance diagram is a
generic process called the parent. All other process nodes in the diagram are called
the children and are connected to this parent. There are three types of children: tasks,
non-atomic concrete processes, and generic processes. Each non-atomic concrete
process in the inheritance diagram refers to a routing diagram describing the internal
routing structure. Each generic child process in an inheritance diagram refers to
another inheritance diagram specifying the process family which corresponds to this
generic process. Note that the total number of inheritance diagrams equals the total
number of generic processes. Every generic process has a child called the minimal
representative of this task. This child is connected to the parent with a solid arrow.
All the other arrows in an inheritance diagram are dashed. The minimal representative
has all the attributes which are mandatory for the process family. One can think of this
minimal representative as the default choice, as a simplified management version, or
as some template object. The actual interpretation of the minimal representative
depends on its use. The minimal representative can be considered to be the superclass
in an object-oriented sense [6]. All other children in the inheritance diagram should be
subclasses of this superclass. For execution, generic processes are instantiated by
concrete processes using the relations specified in the inheritance diagram. However,
in many cases it is not allowed to instantiate a parent by an arbitrary child. Therefore,
it is possible to specify constraints as indicated in Figure 11. These constraints may
depend on two types of parameters: (1) case variables and (2) configuration
parameters. The case variables are attributes of the case which may change during the
execution of the process (cf. [4]). Configuration parameters are used to specify that
certain combinations of instantiations are not allowed. These parameters can be dealt
with in a way very similar to the parameter concept in [46] for the generic BOM.

reject_claim

send_letter phone send_fax

Figure 12: An inheritance diagram for the generic process reject_claim.

Figure 12 shows an inheritance diagram with parent reject_claim and three children
(the tasks send_letter and send_fax, and the non-atomic concrete process phone). The
task send_letter is the minimal representative of reject_claim. In this case all children
are concrete. Note that the generic process reject_claim was used in the process
handle_insurance_claim (Figure 7). As Figure 12 shows, this generic process can be
instantiated by the tasks send_letter or send_fax, or the non-atomic concrete process
defined in the routing diagram shown in Figure 9.

evaluate_claim

minimal
evaluation

administrative
evaluation

thorough
evaluation

Figure 13: The process family corresponding to the generic process
evaluate_claim.

The process handle_insurance_claim shown in Figure 7 also uses the generic process
evaluate_claim. Figure 13 shows the inheritance diagram of evaluate_claim. Note that
the generic process thorough_evaluation is a subclass of evaluate_claim.

thorough_evaluation

evaluation
by fire
expert

evaluation
by traffic

expert

evaluation
by department

manager
Figure 14: An inheritance diagram for the generic process thorough_evaluation.

Figure 14 shows that there are three ways to evaluate a claim thoroughly. Note that
the process family of evaluate_claim consists of five children. Generic process
evaluate_claim in Figure 7 is instantiated by one of these children, i.e., one of the two
tasks in Figure 13 or one of the three tasks in Figure 14.

check_damage

minimal
damage
check

check
fire

damage

check
car

damage

check
other

types of
damage

Figure 15: An inheritance diagram for the generic process check_damage.

Generic process check_damage is executed in parallel with the non-atomic concrete
process check_policy (see Figure 7). Figure 15 shows the inheritance diagram of
check_damage. The subclass check_car_damage is defined in Figure 16. There are
five ways to check the damage. In case of car damage, there are two possibilities: the
task check_car_damage_500- or the non-atomic concrete process
check_car_damage_500+ defined in Figure 10 is executed.

check_car_damage

check
car

damage
500-

check
car

damage
500+

amount_of_damage ≥ 500amount_of_damage < 500

Figure 16: An inheritance diagram for the generic process check_car_damage.

Inheritance diagrams specify, for each generic process, possible candidates for
instantiation. However, in many cases it is not allowed to instantiate a parent by an
arbitrary child. Therefore, it is possible to specify constraints as indicated before.
These constraints may depend on two types of parameters: (1) case variables and (2)
configuration parameters. The case variables are attributes of the case which may
change during the execution of the process. For example, the choice between the two
children in Figure 16 clearly depends on the case variable. Therefore, we added the

constraint amount_of_damage<500 in Figure 16. This constraint specifies that
generic process check_car_damage may only be instantiated by the non-atomic
concrete process check_car_damage_500- if the case variable amount_of_damage
indicates that the damage is smaller than 500 dollar. Configuration parameters are
used to specify that certain combinations of instantiations are not allowed. For
example, if evaluate_claim in Figure 7 is instantiated by administrative_evaluation,
then reject_claim should be either instantiated by send_letter or send_fax. Figure 17
shows how one can use the configuration parameter config_par_ae to avoid that
reject_claim is instantiated by phone if evaluate_claim is instantiated by
administrative_evaluation. In this paper, we propose a very simple language for
specifying constraints with respect to the instantiation of generic processes: Every arc
in an inheritance diagram may be augmented with a Boolean condition (the default
condition is true) specified by a logical expression using case variables and
configuration parameters. The case variables for a specific case (i.e., process instance)
are set and updated by the actual workflow process. The configuration parameters are
also case-specific. One can think of these variables as free variables that are set while
instantiating generic processes, i.e., they are outside of the scope of the actual
workflow process. The use of configuration parameters can be quite complex.
Fortunately, we can use the concepts defined for the generic BOM. See [46,47] for
more information on the use of configuration parameters. In addition to constraints it
is possible to give suggestions for instantiation. Often there is a trade-off between
several allowed alternatives. Therefore, it is useful to extend inheritance diagrams
with information on the effect of specific instantiations on key performance indicators
(e.g. time, costs, quality of service, and flexibility).

evaluate_claim

minimal
evaluation

administrative
evaluation

thorough
evaluation

config_par_ae=true

reject_claim

send_letter phone send_fax

config_par_ae=false

Figure 17: The process families evaluate_claim and reject_claim extended with

configuration parameter config_par_ae.

Note that, in principle, the construct shown in Figure 16 can be realized using a an
OR-split in traditional routing diagram: simply add an OR-split based on the case

variable amount_of_damage which enables the appropriate task/subprocess. Even the
construct shown in Figure 17 can be handled in traditional routing diagram by adding
a new case variable with a role similar to configuration parameter config_par_ae.
Although it is possible to realize this flexibility without generic processes and
inheritance diagrams, there are some essential differences. First of all, the use of
inheritance diagrams reduces the complexity. Instead of squeezing all variants into a
single very complex routing diagram, the variations are handled in a second
dimension tailored towards handling many variants. Second, by using inheritance
diagrams there is no need to change the routing diagram every time a new variant
pops up. If the intrinsic structure is not changed, it suffices to simply add a new child
to the corresponding process family. Third, the inheritance diagrams can be used in
multiple routing diagrams, i.e., the inheritance diagrams are truly orthogonal to the
routing diagrams thus enabling reuse. Note that this imposes some restrictions on the
use of case variables and configuration parameters in the conditions specified in the
inheritance diagrams. For example, by using a case variable amount_of_damage in
Figure 16 it is required that every routing diagram which uses the generic process
check_car_damage sets the variable to the appropriate value. Note that these
restrictions are quite reasonable because the diagrams are used within a given
organizational context with common concepts. Otherwise, reuse is difficult to achieve
anyway. Moreover, one could also use the principle that a condition evaluates to true
if one of the case variables is not set. This way the conditions only apply to the
relevant processes. A fourth difference between using inheritance diagrams and
traditional routing is the improved ability to support dynamic change and supply
succinct management information: The inheritance diagrams help to localize change
and abstract from individual variations, and the concept of the minimal representative
allows for the correct and automatic migration of instances.

3.4 Navigation
Workflow processes encountered in practice typically contain dozens of tasks. If the
workflow management also allows for the modeling of variants using the notions
described in this paper, it will become difficult not to ‘get lost’. Therefore, the
workflow management system should support navigation tools to find and keep track
of workflow descriptions. Basically, there are two ways to browse through the
workflow processes. First of all, it is possible to use the associations contains and
connects (see the class diagram in Figure 3). These associations show where process
nodes are used. Secondly, it is possible to use the association is_child_of to see
inheritance relationships. The two navigation dimensions are inspired by the work
reported in [40].

The is-part-of and contains arrows correspond to the navigation dimension based on
the routing diagrams. The generalizes and specializes arrows correspond to the
navigation dimension based on the inheritance diagrams. The combination of both
navigation dimensions is particularly powerful. Users of the workflow management
system can browse through the workflow process definitions at various levels of
abstraction, which greatly enhances the ability to combine existing process
descriptions and to build new variants which can be used by others. Figure 18 shows
an overview of all process nodes for the example presented in this paper. Each of the
two navigation dimensions is shown with a different type of arrow.

handle_insurance_claim

registration

check_policy

check_damage

evaluate_claim

pay_damage

reject_claim

query_policy_data

query_payments_data phone

send_fax

send_letter

dial

OK

NOKsend_letter

administrative_evaluation

thorough_evaluation

minimal_evaluation

evaluation_by_traffic_expert

evaluation_by_department_man

evaluation_by_fire_expert

check_fire_damage

check_other_types_of_damage

minimal_damage_check

check_car_damage

check_car_damage_500+

check_car_damage_500-

make_appointment visual_inspection

is_part_of

specializes

try_again

Figure 18: All process nodes with links in two dimensions.

The graph shown in Figure 18 has a tree-like structure. In general this is not the case.
A process node can appear in many routing and inheritance diagrams. In fact, the use
of generic processes will stimulate reuse and typically results in many non-tree-like
interconnections. Note that graphs such as the one shown in Figure 18 have to be
acyclic. This is a direct consequence of the constraints mentioned in Section 3.1.

4 Execution and instantiation
To execute a case according to a non-atomic concrete process which contains generic
processes, the generic processes have to be instantiated. The moment of instantiation
can be at entry-time or at run-time depending on the kind of changes allowed.
Consider for example a case which needs to be executed according to the routing

diagram shown in Figure 7. To handle this case the three generic processes need to be
instantiated by concrete ones. Assume that at entry-time check_damage is instantiated
by check_car_damage_500+ and evaluate_claim is instantiated by
evaluation_by_traffic_expert. This results in the situation shown in Figure 19.

registration
check_car_damage_500+

check_policy

evaluation_by_
traffic_expert reject_claim

pay_damage

query_policy_data query_payments_data

make_appointment visual_inspection

Figure 19: Two of the three generic processes have been instantiated.

In Figure 19, the two tokens show that the policy has been checked and that the
insurance claim is waiting for visual inspection. Generic process reject_claim is not
instantiated yet. The moment of instantiation can be postponed until the tasks
visual_inspection and evaluation_by_traffic_expert have been executed. Figure 20
shows the situation after instantiation of reject_claim by phone. Note that the case is
in the state directly following an unsuccessful phone call.

registration
check_car_damage_500+

check_policy

evaluation_by_
traffic_expert phone

pay_damage

query_policy_data query_payments_data

make_appointment visual_inspection

dial

NOK

OK

send_letter

try_again

Figure 20: The generic process reject_claim has been instantiated by the non-
concrete process phone.

In Section 5, a classification of change was given. Based on this classification we will
describe the enactment of generic workflow process models. First, we consider the
situation of ad-hoc change. For ad-hoc change there are two possibilities: at entry time
the process is fixed or on-the-fly changes are possible. If changes are only allowed at
entry time, all generic processes have to be instantiated by concrete processes before
execution starts. If on-the-fly changes are allowed, instantiation may be postponed.
Note that ad-hoc change may lead to two possible situations: (1) the required
alternative already exists and can be instantiated directly, (2) the desired change is
unique in the sense that it is not encoded in one of the inheritance diagrams. In the
latter case the change region can be a generic process, a task, a non-atomic concrete
process, or a selected part of a routing diagram (i.e., non-atomic concrete process). If
the change region is a generic process, it is quit straightforward to handle the change.
By adding a new alternative in the corresponding inheritance diagram, the change
becomes possible. In all other cases, a new generic process has to be introduced.
Consider for example the concrete process check_policy in Figure 7. If this process
has to be replaced by a new process check_policy_special, then the concrete process
check_policy is replaced by a new generic process check_policy_generic and an
inheritance diagram containing check_policy_generic as a parent and check_policy
and check_policy_special as children is added (see Figure 21). Compared to the
situation where each case has its own private process, this offers several advantages.
First of all, there is no redundancy. There is one generic process model and per case

only the instantiations are stored. Secondly, it is possible to restrict possible changes,
e.g., routing diagrams can be extended with information about which parts may be
subject to ad-hoc changes.

registration
check_damage

check_policy_generic

evaluate_claim
reject_claim

pay_damage

check_policy_generic

check_policy check_policy_special

first_check

NOK

OK

second_check

Figure 21: The effect of an ad-hoc change on the non-atomic concrete process

handle_insurance_claim.

Generic process models can also be used to support evolutionary changes. The only
difference with ad-hoc change is that all new cases are instantiated in the same way.
Compared to the situation where there is just a versioning mechanism, less data needs
to be stored (no redundancy, instantiations can be indexed) and it is easy to keep track
of changes. For example, if a task is replaced by another task in the definition of a
non-atomic concrete process (i.e., a routing diagram) with 100 tasks, it is not
necessary to define a complete new version of the process which is for 99% similar.
Just replace the task by a generic process and create an inheritance diagram
containing the two tasks as children. If the change also effects existing cases, a restart
or a transfer is needed (see Error! Reference source not found.).

5 Dynamic change

Both for ad-hoc and evolutionary change the generic workflow process model, as
defined in this paper, can be applied. The workflow model shown in Figure 7 has 75
possible variants! If all variants had been defined separately, the whole would be
much more difficult to manage. Many workflow processes have thousands of variants.
Today’s workflow management systems are not capable of dealing with such
processes, thus forcing the users to handle the changes outside of the system or
limiting the application of these systems to very specific processes. The generic
workflow process model presented in this paper provides a partial solution for these
problems.

The problem of dynamic change was introduced using Figure 1. If a sequential
process is changed to a parallel one, there are no problems. However, if the degree of
parallelism is reduced, there are states in the old process which do not correspond to

states in the new process. The state with a token in both p2 and p5 (right-hand side of
Figure 1) cannot be mapped onto a state in the sequential process (left-hand side).
Putting a token in s1, s2, or s3 will result in the double execution of task C. Putting a
token in s3, s4, or s5 will result in the skipping of (at least) task B. The problem
identified does not only apply to the situation where the degree of parallelism is
changed. For example swapping tasks or removing parts may lead to similar
problems. This is the reason most workflow management systems do not allow
dynamic change, i.e., if a workflow process is changed, then all existing cases are
handled the old way and the new process only applies to new cases. Every case has a
pointer to a version of the workflow and each version is maintained as long as there
are cases pointing to it. For some applications this solution will do. However, if the
flow time of a case is long, it may be unacceptable to process running cases the old
way. Consider for example the change of a 4-year curriculum at a university to a 5
year one. It is too expensive to offer both curricula for a long time. Sooner or later,
cases (i.e., students) need to be transferred. Other examples are mortgages and
insurances with a typical flow time of decades. Maintaining old versions of a process
is often too expensive and may cause managerial problems. It is also possible that
there are regulations (e.g. new laws) enforcing a dynamic change.

There are many similarities between dynamic change and schema evolution in the
database domain. As the requirements of database applications change over time, the
definition of the schema, i.e., the structure of the data elements stored in the database,
is changed. Schema evolution has been an active field of research in the last decade
(mainly in the field of object-oriented databases, cf. [16]) and has resulted in
techniques and tools that partially support the transformation of data from one
database schema to another. Although dynamic change and schema evolution are
similar, there are some additional complications in case of dynamic change. First, as
was shown in the example, it is not always possible to transfer. Second, it is not
acceptable to shut down the system, transfer all cases, and restart using the new
procedure. Cases should be migrated while the system is running. Finally, dynamic
change may introduce deadlocks and livelocks. The solutions provided by today’s
object-oriented databases do not deal with these complications. Therefore, we need
new concepts and techniques.

The dynamic change problem was first described by Ellis, Keddara and Rozenberg in
1995 [20]. In the same paper, a technique based on so-called “change regions”, is
proposed to avoid the anomaly illustrated by Figure 1. There has been some follow up
work addressing this problem [13,21,34]. In addition there are several papers on
workflow change, not addressing and/or avoiding the problem by a fixed set of
transformation rules [17,27,30,36,41,49,50,52].

Independent of the approach used, the following two issues constitute a policy for
dynamic change:

When to jump from the old process to the new process definition?
Which state to jump to?

A good policy for the example shown in Figure 1 is the following. The right-hand
process will jump in every state except the state with a token in p2 and p5. State p1 is
mapped onto s1, p2+p3 onto s2, p3+p4 onto s3, p4+p5 onto s4, and p6 onto s5. (Note
that a shorthand notation is used to denote states.)

In a generic process model, the dynamic change problem boils down to migrating
instances between different members of the same process family. Note that the
concept of generic processes helps to limit the scope of a change. In a way it is a
predefined “change region” [20]. Recall that if a part is changed which does not
correspond to a generic process, then a generic process is introduced. (See for
example the change illustrated by Figure 21.) The essence of a change always refers
to transferring (parts of) cases between children of a generic process. Although the
concept of generic processes gives a handle to tackle the problem, it does not really
solve it. In fact, if a process family has many members, say n, there are n(n-1)
potential transfers. To limit the problem, we propose to exploit the role of the minimal
representative. Any transfer between two members of the same process family is
executed via the minimal representative, i.e., first the instance is mapped from the old
child onto the minimal representative, and then it is mapped onto the new child. Note
that this results in 2(n-1) possible transfers. If a new variant is added, only the
transformation from the new variant to the minimal representative and vice versa need
to be added and no knowledge of the other variants is needed. A solution with direct
jumps would require knowledge of all other variants. One might argue that only a few
of the potential transfers are relevant. However, to truly support reusability all
possible transfers should be defined. Clearly there are also drawbacks associated with
the indirect transfer via the minimal representative. First of all, if the minimal
representative contains little information, a lot of knowledge is lost during the
transfer. It is clear that a transfer between two children with a state space of thousands
of states via a minimal representative with only a dozen states is not likely to be a
success (because of the loss of information). Secondly, additional problems are
introduced the moment a new minimal representative is introduced. Therefore, it is
vital to carefully define the minimal representative.

gen1

spe1

man1
S1 S0

genn-1

spen-1

mann-1
Sn-1

gen2 spe2

man2

S2

…
child 1

child 2

minimal
representative

(child 0)

child n-1

Figure 22: The relation between the state spaces of the minimal representative

and its fellow children.
Figure 22 illustrates the use of the minimal representative. Each child (including the
minimal representative) has a state space. S0 is the state space of the minimal

representative (child 0). Child i has state space Si. The partial function geni ∈ Si →/ S0
maps selected states of child i onto the minimal representative. The function is partial
because from some states it is desirable to postpone the jump, i.e., state space Si is
partitioned into Si

J = dom(geni), the set of “jump states”, and Si
W = Si \ Si

J , the set of
“wait states”. There is a similar function to map states of the minimal representative
onto the states of a specific child: spei ∈ S0 →/ Si. This function is also partial and
partitions the states of S0 into jump states (S0

J,i = dom(spei)) and wait states (S0
W,i = S0

\ Si
J,i) relative to child i. A transfer from one child (i) to another child (j) typically

involves a generalization step (i.e., geni) and a specialization step (i.e., spej). The
functions of type mani ∈ Si → S0 shown in Figure 22 will be used to generate
management information and should be ignored for the moment.

Suppose a case needs to be transferred from child i to child j and the state of the case
is s ∈ Si. If s ∈ Si

W, no transfer is possible. If s ∈ Si
J and geni(s)∈ S0

J,j, then there is no
reason to postpone the jump to the new process. The new state in the process
corresponding to child j is spej(geni(s)). If s ∈ Si

J and geni(s)∈ S0
W,j, there are two

policies possible: (1) the transfer is postponed (non-eager), or (2) the case is migrated
to the minimal representative and is transferred the moment it reaches a state in S0

J,j
(eager). If the change affects several parts of the workflow process definition and
multiple generic processes are involved, there is a similar choice. Either the transfer is
postponed until all parts are ready (non-eager) or the transfer is executed on a part-by-
part basis (eager). At this moment, the policy to execute the transfer on a part-by-part
basis but postponing parts which cannot go directly to the new corresponding child
seems to be the most attractive policy. However, more empirical data is needed to
substantiate this.

geni

spei

Si S0

geni

A

B

C

D

Z-structure 1:

geni

spei

Si S0

spei

A

B

C

D

Z-structure 2:

Figure 23: Two Z-structures that are not allowed.

Not every set of generalization (geni) and specialization (spei) functions is allowed.
Constructs which have a so-called “Z-structure” are not allowed. A “Z-structure” is
the situation where two distinct states are mapped onto two other distinct states in one
direction (e.g. generalization) but in the reverse direction (e.g. specialization) one of
the states is mapped onto the other one. Figure 23 shows the two possible Z-
structures. In the first Z-structure there are two states A and B which are mapped onto
respectively C and D by the generalization function (geni). However, the
specialization function (spei) maps C onto B instead of A. This structure is not allowed
because by simply moving a case up (2x) and down, the state in both processes has
changed (in the left-hand process it moved from A to B and in the right-hand process
it moved from C to D). Note that it is not possible to strengthen the requirement and
demand that for any state s: spei(geni(s)) = s, because multiple states in the child
process i can be mapped onto one state in the minimal representative. In the second Z-
structure shown in Figure 23, the roles of the generalization (geni) and specialization
(spei) functions have been swapped and similar arguments apply. The absence of
these Z-structures is the minimal requirement any dynamic change should satisfy.
There are generally additional requirements that need to be satisfied. Suppose that the
right-hand-side process in Figure 1 is the minimal representative and the left-hand-
side process is the child 1. Assume that gen1 is defined as follows: s1 is mapped onto
p6, s2 is mapped onto p1, s3 is mapped onto p6, s4 is mapped onto p1, and s5 is
mapped onto p6. Moreover, spe1 is defined as follows: p1 is mapped onto s2, and p6
is mapped onto s1 (the other states are wait states). Clearly, this does not make any
sense. Nevertheless, it does not contain any Z-structures. Stronger notions are context

dependent and are difficult to define for any process modeling technique. (Recall that
the concepts in this paper are modeling technique independent.) Therefore, we refrain
from more advanced constraints that should be satisfied by the set of generalization
(geni) and specialization (spei) functions.

In Section 2, we identified three ways to deal with existing cases: (a) restart, (b)
proceed, and (c) transfer. Thus far, we primarily discussed the problems resulting
from the latter policy (i.e., dynamic change). However, the approach presented in this
section also works for the other two policies. For the restart policy (a), all states of the
old process i are mapped onto the initial state of the minimal representative (i.e., SI

J =
Si and for all s ∈ Si: geni(s) = sinit where sinit is the initial state) and the initial state of
the minimal representative is mapped onto the initial state of the new process j (i.e.,
spej(sinit) = s’init where s’init is the initial state of child j). For the proceed policy (b), all
states are wait states, i.e., Si

J =∅. Clearly, the approach presented is quite general and
can be extended in many ways. For example, it is possible to deal with hierarchical
structures in an efficient way since change is limited to the generic parts of the
process. It is also possible to allow for changes of the minimal representative. Simply
add a generalization function from the old minimal representative to the new one and
a specialization function from the new minimal representative to the old one. By
taking the appropriate function compositions, it is possible to remove or skip the old
minimal representative.

6 Management information
Changes typically lead to multiple variants of the same process. For evolutionary
change the number of variants is limited. In fact, if all cases are transferred directly
after a change, there is just one active variant. However, if the proceed policy is used
or transfers are delayed, there are multiple active variants. If the average flow time of
cases is long and changes occur frequent, there can be dozens of variants. Ad-hoc
change may result in even more variants. In fact, it is possible to end up in the
situation where the number of variants is of the same order of magnitude as the
number of cases. To manage a workflow process with different variants it is desirable
to have an aggregated view of the work in progress. Therefore, as indicated in Section
1, it is of the utmost importance to supply the manager with tools to obtain a
condensed but accurate view of the workflow processes. In Figure 2, it was pointed
out that we need some kind of ‘Greatest Common Denominator’ (GCD) or ‘Least
Common Multiple’ (LCM) for the children in a product family. At the moment, only
intuitive notions exist for the GCD and LCM. However, we can use the same
approach as we used to tackle the dynamic change problem and use the minimal
representative as the aggregated view.

A

B

C

D

m1

m5

m4

m3

m2

A

B C

D

p1

p6

p3

p4

p2

p5

74

3

5

5

8

2 4

5 3

7

+ =

A

B

C

D

s1

s5

s4

s3

s2

3

1

3

2

1

Figure 24: Aggregated management information mapped onto a sequential
minimal representative.

To use the minimal representative as the aggregated view, we need to map all states
from all children of the process family onto the state space of the minimal
representative. The generalization functions (geni) provide such a mapping for the
jump states but not for the wait states. Therefore, we introduce a new function for
each child i (except the minimal representative): mani. The functions of type mani ∈
Si → S0 are total and should satisfy the following requirement: for all s ∈ Si

J we have
mani(s) = geni(s). I.e., the mapping used for dynamic change and the mapping used
for management purposes should agree on the jump states. Again, the solution is
surprisingly simple. However, the applicability heavily depends on the quality of the
minimal representative and the functions of type mani. Figure 24 shows an alternative
to the approach used in Figure 2. In this case, the sequential process is taken as the
minimal representative. The mapping of tokens from the left-hand-side process is
clear (the state with a token in s1 is mapped onto the state with a token in m1, etc.).
In fact, the left-hand-side process and the right-hand-side process are identical and the
places are named different for presentation reasons only. Mapping states from the
process in the middle is more involved. For the jump states the following mapping
seems to be reasonable: p1 is mapped onto m1, p2+p3 is mapped onto m2, p3+p4 is
mapped onto m3, p4+p5 is mapped onto m4, and p6 is mapped onto m5. In the
previous section, state p2+p5 was classified as a wait state because there is no
intuitively corresponding state in the sequential process. Mapping p2+p5 onto m2 will
lead to management information which is too pessimistic: C is already executed but
this information is lost in the aggregated view. Mapping p2+p5 onto m4 will lead to
management information which is too optimistic: B is not executed yet but this
information is lost in the aggregated view. Mapping p2+p5 onto m3 combines the
disadvantages of the previous two choices: it indicates that B has been executed and C

not, while in reality it is the other way around. This example shows that quality of the
management information heavily depends on the minimal representative. The
numbers indicated in Figure 24 are based on the assumption that cases are executed in
a first-in-first-out order. This assumption combined with the numbers indicated for the
parallel process implies that there are no cases in the state p2+p5. In this particular
situation, the aggregated view does not depend upon the choice with respect to
p2+p5. In general, an unfortunately chosen minimal representative will lead to
misleading management information.

7 An approach based on inheritance
The approach presented in the previous sections is very general and makes no
assumptions about the modeling language and the workflow management system to
be used. To make the approach more concrete we show how to come up with the
appropriate generalization (geni), specialization (spei), and management-information
(mani) functions. For this purpose we propose to use the inheritance preserving
transformation rules presented in [6,14].

Inheritance is one of the cornerstones of object-oriented programming and object-
oriented design. The basic idea of inheritance is to provide mechanisms which allow
for constructing subclasses that inherit certain properties of a given superclass. In our
case a class corresponds to a workflow process definition (i.e., a routing diagram) and
objects (i.e., instances of the class) correspond to cases. In most object-oriented
methods a class is characterized by a set of attributes and a set of methods. Attributes
are used to describe properties of an object (i.e., an instance of the class). Methods
symbolize operations on objects (e.g., create, destroy, and change attribute). The
structure of a class is specified by the attributes and methods of that class. Note that
the structure only refers to the static aspects of the interface. The dynamic behavior of
a class is either hidden inside the methods or modeled explicitly (in UML the life-
cycle of a class is modeled in terms of state machines). Although the dynamic
behavior is an intrinsic part of the class description (either explicit or implicit),
inheritance of dynamic behavior is not well-understood. (See [14] for an elaborate
discussion on this topic and pointers to related work.) Given the widespread use of
inheritance concepts/mechanisms for the static aspects, this remarkable. Every object-
oriented programming language supports inheritance with respect to the static
structure of a class (i.e., the interface consisting of attributes and methods). Since
workflow management aims at supporting business processes, these results are not
very useful in this context. To our knowledge, the work presented in [6,14] is the only
work which deals with inheritance of dynamic behavior in a comprehensive manner.
This work is based on a particular class of Petri nets: the so-called sound workflow
nets (see Appendix). This class of Petri nets corresponds to workflow processes
without deadlocks, livelocks, and other anomalies. Other inheritance-based
approaches abstract from the causal relations between tasks/methods. Consider for
example the work by Malone et al. [40] where inheritance is defined for tasks and
processes. Malone et al. [40] also provide tool support for navigating through a space
of processes using specialization and generalization links (see also Section 3.4).
Unfortunately, the control or routing structure is not taken into account, i.e., causal
relations between tasks are not considered. Some of the workflow management
systems available claim to be object-oriented and thus provide some support for
inheritance. For example, the workflow management system InConcert (InConcert

[32]) allows for building workflow class hierarchies. Unfortunately, inheritance is
restricted to the attributes and the structure of the process is not taken into account.
Many workflow management systems have been implemented using object-oriented
programming languages. However, these systems do not offer object-oriented
mechanisms such as inheritance to the workflow designer or the designer has to
program code to benefit from the object-oriented features provided by the host
language. Nevertheless, we think that inheritance is a very useful concept for
workflow management. Therefore, we advocate the use of the inheritance notions
presented in [6,14] and illustrate the usefulness by tackling the problems related to
change. The inheritance notions can be used to construct a minimal representative and
the appropriate generalization (geni), specialization (spei) and management-
information (mani) functions.

First we define four inheritance notions for workflow processes (i.e., processes
defined by routing diagrams). Consider two workflow processes x and y. When is x a
subclass of y? x is a subclass of superclass y if x inherits certain features of y.
Intuitively, one could say that x is a subclass of y if and only if x can do what y can
do. Clearly, all tasks present in y should also be present in x. Moreover, x will
typically add new tasks. Therefore, it is reasonable to demand that x can do what y can
do with respect to the tasks present in y. In fact, the behavior with respect to the
existing tasks should be identical. For distinguishing x and y we only consider the old
tasks (i.e., the tasks already present in y). All other tasks are renamed to τ. One can
think of these tasks as silent, internal, or not observable. Since branching bisimulation
[24] is used as an equivalence notion, we abstract from transitions with a τ label, i.e.,
for deciding whether x is a subclass of y only the tasks with a label different from τ
are considered. The behavior with respect to these tasks is called the observable
behavior. With respect to new tasks (i.e., tasks present in x but not in y) there are
basically two mechanisms which can be used. The first mechanism simply blocks all
new tasks and then compares the observable behavior. This mechanism leads to the
following notion of inheritance.

If it is not possible to distinguish x and y when only tasks of x that are also
present in y are executed, then x is a subclass of y.

Intuitively, this definition conforms to blocking or encapsulating tasks new in x. The
resulting inheritance concept is called protocol inheritance; x inherits the protocol of
y. Another mechanism would be to allow for the execution of new tasks but consider
only the old ones.

If it is not possible to distinguish x and y when arbitrary tasks of x are
executed, but when only the effects of tasks that are also present in y are
considered, then x is a subclass of y.

This inheritance notion is called projection inheritance; x inherits the projection of the
workflow process y onto the old tasks. Projection inheritance conforms to hiding or
abstracting from tasks new in x.

register handle archive
i p2p1 o

(A)

register handle archive
i p2p1 o

check(B)

register handle archive
i p2p1 o

check(C)

register handle archive
i p2p1 o

check

(D)

register handle archive
i p2p1 o

check(E)

p3 p4

p3

Figure 25: Five routing diagrams describing variants of a simple workflow

process.
Figure 25 shows the routing diagrams of five similar workflow processes. We will use
these routing diagrams to explain the difference between protocol inheritance and
projection inheritance. Workflow process (A) consists of three sequential tasks:
register, handle, and archive. Each of the other workflow processes extends this
process with one additional task: check. In workflow process (B) task check can be
executed arbitrarily many times between register and handle. Workflow process (B)
is a subclass of workflow process (A) with respect to protocol inheritance; if task
check is blocked, then the two processes behave equivalently (i.e., are branching
bisimilar [14,24]). Workflow process (B) is also a subclass of workflow process (A)
with respect to projection inheritance; if every execution of task check is abstracted
from, then the observable behaviors are equivalent. Workflow process (C) is a
subclass of workflow process (A) with respect to protocol inheritance but not a
subclass with respect to projection inheritance; blocking task check results in two
equivalent processes but hiding task check introduces the possibility to skip task

handle and thus change the actual behavior. Workflow process (D) is a subclass of
workflow process (A) with respect to projection inheritance but not a subclass with
respect to protocol inheritance; blocking task check introduces a deadlock, but hiding
this task results in two equivalent processes. Workflow process (E) is a subclass of
workflow process (A) with respect to projection inheritance but not a subclass with
respect to protocol inheritance; the detour via task check can be hidden but not
blocked without changing the observable behavior.

The two mechanisms (i.e., blocking and hiding) result in two orthogonal inheritance
notions. Therefore, we also consider combinations of the two mechanisms. A
workflow process is a subclass of another workflow process under protocol/projection
inheritance if by both hiding and blocking one cannot detect any differences, i.e., it is
a subclass under both protocol and projection inheritance. In Figure 25 workflow
process (B) is a subclass of workflow process (A) with respect to protocol/projection
inheritance. The two mechanisms can also be used to obtain a weaker form of
inheritance. A workflow process is a subclass of another workflow process under life-
cycle inheritance if by blocking some newly added tasks and hiding others one cannot
distinguish between them. All workflow processes shown in Figure 25 are subclasses
of workflow process (A) with respect to life-cycle inheritance.

In [6,14] we proposed a number inheritance preserving transformation rules. These
rules correspond to frequently used design constructs and preserve one or more of the
four inheritance notions. A detailed description of these rules is beyond the scope of
this paper. Therefore, we just mention the four inheritance preserving transformation
rules presented in [14]:

PT
Transformation rule PT preserves protocol inheritance and life-cycle inheritance.
PT extends the superclass with new alternatives. In the resulting subclass there are
alternative routes containing new tasks. Workflow process (A) shown in Figure 25
can be extended to workflow process (C) using this rule. However, rule PT allows
for much more complex extensions involving the introduction of new alternative
subflows containing many tasks and routing structures.
PP
Transformation rule PP preserves all four forms of inheritance, i.e.,
protocol/projection, projection, protocol, and life-cycle inheritance. Rule PP
introduces new tasks which only postpone behavior. Workflow process (B) shown
in Figure 25 can be constructed from (A) by applying this rule; task check only
postpones the execution of handle.
PJ
Transformation rule PJ preserves projection inheritance and life-cycle inheritance.
Rule PJ inserts new tasks in-between existing tasks. Workflow process (A) shown
in Figure 25 can be extended to workflow process (E) using this rule. The
extension can be a single task but also a complex subflow containing many tasks
and all kinds of causality relations.
PJ3
Transformation rule PJ3 preserves projection inheritance and life-cycle
inheritance. Rule PJ3 adds parallel behavior. Workflow process (A) shown in
Figure 25 can be extended to workflow process (D) using this rule.

The rules correspond to design constructs that are often used in practice, namely
choice, iteration, sequential composition, and parallel composition. If the designer
sticks to these rules, inheritance is guaranteed!

The reason we introduced the four inheritance preserving transformation rules is the
following:

If all children of a process family are constructed from a minimal
representative by using the four inheritance preserving transformation rules,
then it is possible to generate suitable generalization (geni), specialization
(spei) and management-information (mani) functions automatically.

This means that if the minimal representative is used as a template which is extended
by applying the rules PT, PP, PJ, and PJ3, then the generalization, specialization, and
management-information functions can be constructed automatically. Moreover, these
functions yield a mapping such that the problems indicated before do not occur, i.e.,
every mapping yields a state which is as close to the real state as possible, and
deadlocks, livelocks and other anomalies are avoided. The functions also satisfy the
constraints stated in Section 5 (i.e., no Z-structures). The generalization and
specialization functions are total, i.e., the case is transferred the moment the change
occurs. As a result, the generalization functions (geni) and management-information
functions (mani) are identical.

Consider for example the five workflow processes in Figure 25. Suppose that
workflow process (A) is the minimal representative and each of the five processes
(i.e., including (A)) is a variant, i.e., a member of the process family having (A) as a
minimal representative. Let genD, speD, and manD be the generalization,
specialization, and management-information function corresponding to variant (D)
which are constructed using the inheritance preserving transformation rules. Functions
genD and manD both map the state with a token in p1 and p3 (i.e., only transition
register was executed in workflow process (D)) onto the state with a token in p1.
Function speD maps the state with a token in p2 (i.e., the state just before executing
archive in workflow process (A)) onto the state with a token in p2 and either p3
(conservative approach) or p4 (progressive approach). Let genE, speE, and manE be the
generalization, specialization, and management-information function corresponding to
variant (E). Functions genE and manE both map the state with a token in p3 onto the
state with a token in p2. Function speE maps the state with a token in p2 onto the state
with a token in p2. For the simple extensions shown in Figure 25 the results may seem
trivial. However, note that we can construct these functions for any extension which
can be described as a sequence of the four transformation rules. Since the rules
correspond to design constructs encountered in practice (choice, iteration, sequential
composition, and parallel composition), the results are meaningful and far from
trivial.

If every variant is a subclass of the minimal representative constructed using the four
inheritance preserving transformation rules, then the transfer from one variant to
another does not cause any problems, i.e., every case can be transferred without any
delay and without introducing anomalies such as deadlocks, livelocks, unintended
skipping of tasks, unnecessary multiple executions of common tasks, etc. Consider for
example a transfer from workflow process (E) to workflow process (D). If the case is

in the state corresponding to p3, then the case is first mapped onto the minimal
representative (A) using genE. The transient state of the case in workflow process (A)
is the state with a token in place p2. From this transient state, the case is transferred to
workflow process (D) using speD. The resulting state is a token in place p2 and a
token in either p3 (conservative approach) or p4 (progressive approach). Such
dynamic changes can be handled automatically, e.g., the functions genE and speD can
be computed based on the inheritance preserving transformation rules.

register handle archive
i p2p1 o

(A)

register handle archive
i p2p1 o

check(B)

register handle archive
i p2p1 o

check(C)

register handle archive
i p2p1 o

check

(D)

register handle archive
i p2p1 o

check(E)

p3 p4

p3

0 1 2 1

3 4 5 0

0 7 1 0

1 2 2 0

3 2 1 4

1 3

5

register handle archive
i p2p1 o

(F)
7 16 16 5

+

Figure 26: Aggregated management information mapped onto the minimal

representative of the five variants.

Figure 26 shows five variants as described earlier augmented with numbers indicating
the distribution of in total 44 cases. Workflow process (A) holds 4 cases, (B) holds 12
cases, (C) holds 8 cases, (D) holds 5 cases, and (E) holds 15 cases. Consider for
example the five cases in variant (D). One case is still in the initial state. The
remaining four are in-between register and archive; three of them have been checked
and two of them have been handled. The minimal representative is the purely
sequential process (i.e., workflow process (A)). Using the automatically constructed
functions manA, manB, manC, manD, and manE the 44 cases can be mapped onto the
minimal representative; workflow process (F) shows the aggregated management
information mapped onto this minimal representative. Seven cases are in the initial
state (7=0+3+0+1+3), sixteen are in the state corresponding to p1 (16=1+4+7+2+2),
sixteen are in p2 (16=2+5+1+2+6), and five are in the final state (5=1+0+0+0+4).
Note that six of the fifteen cases in variant (E) are mapped onto p2.

register handle archive
i p2p1 o

checkB
checkD

register handle archive
i s2s1 o

checkE

s3 s4

s5

checkC

GCD

LCM

Figure 27: The GCD and the LCM of the five variants shown in Figure 25.

These examples show that the concept of a minimal representative can be made
operational using the four inheritance preserving transformation rules. In fact, it is
even possible to concretize the notions of GCD and LCM. The Greatest Common
Denominator (GCD) of a set of variants is the "largest" workflow process such that
every variant is a subclass with respect to life-cycle inheritance, i.e., it is the largest
common part where all variant agree on. "Largest" is defined with respect to life-cycle
inheritance, i.e., there is no other process which is a subclass of the GCD and a
superclass of all variants with respect to life-cycle inheritance. Clearly workflow
process (F) is the GCD of the five variants shown in Figure 26. The Least Common
Multiple (LCM) of a set of variants is the "smallest" workflow process such that every
variant is a superclass of this workflow process with respect to life-cycle inheritance,
i.e., it is the smallest workflow process which captures all possible behaviors. The

LCM is the smallest workflow process such that each variant can be constructed by
blocking and hiding the appropriate tasks in the LCM. Note that the LCM is a
subclass of each of the variants and that life-cycle inheritance is used to compare
processes. Figure 27 shows the LCM of the five workflow processes depicted in
Figure 25. Some of the tasks have been renamed to avoid name classes. The mapping
of the cases shown in Figure 26 onto this LCM is straightforward and can be done
automatically, e.g., there are eleven cases in the state corresponding to place s2
(11=2+5+1+2+1). A more detailed discussion of GCD and LCM is outside the scope
of this paper. For a formal definition of GCD and LCM the reader is referred to [7].

registration
check_damage

check_policy

evaluate_claim
reject_claim

pay_damage

Figure 28: The revised non-atomic concrete process handle_insurance_claim.

To illustrate to application of the inheritance-based techniques we return to our
process handle_insurance_claim. Figure 28 shows a version of the
handle_insurance_claim where check_policy is no a concrete process but a generic
one. Figure 29 shows the inheritance diagram for check_policy. Each of the children
is a non-atomic concrete process. The process minimal_policy_check is the minimal
representative and corresponds to the routing diagram given in Section 3.2. The other
three children are augmented with an expression which makes sure that the
configuration parameter config_par_it is set to the proper value. This configuration
parameter can be used when instantiating other generic processes, e.g., the
instantiation of generic process check_damage.

check_policy

minimal
policy
check

check
fire

policy

check
car

policy

check
health
policy

config_par_it = "fire"
config_par_it = "car"

config_par_it = "health"

Figure 29: An inheritance diagram for the generic process check_damage.

Figure 30 shows the definition of each of the four non-atomic concrete processes
mentioned in the inheritance diagram for check_policy. The minimal representative
minimal_policy_check is chosen appropriately since each of the children of
check_policy is a subclass of minimal_policy_check. In fact, minimal_policy_check is
the GCD of the three other members. Since each of the variants is a subclass of
minimal_policy_check, we can automatically construct the generalization,
specialization, and management-information functions. Figure 30 shows the number

of cases in each variant/state combination, e.g., three claims for damage due to fire are
in a state in-between querying the police records and assessing the risk. By using the
automatically derived management-information functions, each case can be mapped
onto the minimal representative. In this case the mapping is rather trivial: as Figure 30
shows 24 cases are in a state in-between querying policy data and querying payments
data, 2 cases are in the beginning of the subprocess, and 3 cases have just completed
both querying tasks.

query_policy_data query_payments_data

(d)

query_policy_data query_payments_data

(c)

check_medical_record

query_policy_data query_payments_data

(b)

light_payments_check

query_traffic_violations assess _relevance

query_policy_data query_payments_data

(a)

query_police_records assess_risk_factor

2

+

3

7

52

2 1

3

6 8

242 3

Figure 30: The four members of the process family check_policy: (a)

check_fire_policy, (b) check_car_policy, (c) check_health_policy, and (d)
minimal_policy_check.

As Figure 30 illustrates the inheritance concepts can be used to derive a minimal
representative and all management information can be mapped onto the common
superclass. The same concepts can be used to support dynamic change. First, based on
the subclass-superclass relationship between the old process and the minimal
representative, a generalization function can be derived which maps the state of a case
in the old process onto the minimal representative. Then, the specialization function,
derived from the superclass-subclass relationship between the minimal representative
and the new process, can be used to migrate the case to the new process.

8 Related work
In the last decade, there have been numerous papers addressing workflow
management and workflow management systems [33,38,39], but relatively little work
is devoted to the problems related to change. A topic related to change is the handling
of exceptions. There are several papers addressing exception handling, in particular in
the context of transactional workflows [18,19,26,36,44]. However, these papers
typically address the handling of failures and other undesirable events rather than the
deliberate change of a workflow process, e.g., evolutionary change, logical anomalies
such as the dynamic change problem, and extracting useful management information
are topics not addressed in these papers. The first paper to address the problems
related to dynamic change was the paper by Ellis, Keddara, and Rozenberg in 1995
[20]. This paper justifies research in this area by providing several examples of
"dynamic bugs", i.e., errors resulting from change, and proposes a solution based on
the notion of "change regions". A change region is the part of the process affected
directly or indirectly by the change, i.e., the segment of the workflow process that
may cause problems. For each change region, two versions are maintained in parallel:
the old one and the new one. New cases, i.e., cases entering the change region, are
handled according to the new version. Cases already populating the change region are
handled the old way. Eventually, the old version of a change region becomes inactive
(because all old cases have been handled) and can be removed. This approach has the
drawback that the process definition can become very complex (the process definition
contains both old and new versions of change regions). However, a more serious
drawback is the fact that the change regions are identified manually and there is little
support for the transfer of cases. In [21,34] the authors improve their approach by
introducing jumpers. A jumper moves a case from the old workflow to the new
workflow and if for a state no jumper is available, the jump is postponed. Again, the
authors do not give a concrete technique for the transfer of cases, i.e., jumpers are
added manually. Agostini and De Michelis [13] propose a technique for the automatic
transfer of cases from the old process to the new process and also give criteria for
determining whether a jump is possible. Unfortunately, the approach only works for a
restricted class of workflows, e.g., the workflow models has to be acyclic (i.e.,
iteration is modeled through linear jumps). The authors claim that these restrictions
are reasonable because one could consisder iteration as an exception. Klingemann et
al. [25,37] propose and mixture of so-called mandatory elements (i.e., typical
constructs such as sequence, OR-split, AND-split, OR-join, AND-join) and flexible
elements. Examples of flexible elements are alternative activities (run-time binding),
non-vital activities (elements that can be skipped), and optional execution orders
(suggested but not enforced ordering). Casati, Ceri and Pernici [17] tackle the
problem of dynamic change via a set of transformation rules and partition the state
space into a part that is aborted, a part that is transferred, a part that is handled the old
way, and parts which are handled by hybrid process definitions (comparable to the
approach using change regions). Reichert and Dadam [41] use a similar approach
without addressing for example the problem identified in Figure 1. Voorhoeve and
Van der Aalst [49,50] also propose a fixed set of transformation rules to support
dynamic change. However, the drawback of using transformation rules is that only
local changes are considered and the rules provided so far are far from being
complete. Moreover, valuable information is lost during the application of a series of
transformation rules. None of the above papers uses a notion of inheritance or generic
processes. Moreover, the issue of extracting management information is only
mentioned in [49,50]. The other papers mentioned do not address this issue.

The approach in this paper is inspired by the work on schema evolution [16] and
generic/variant bills-of-material [23,29,46,47], and builds on previous work
conducted by members of the SMIS group [1,4,6,14]. Preliminary results have been
presented by the author in [5]. Compared to [5] this paper contains much more details,
a classification of change, several examples, and the link with the work on inheritance
of dynamic behavior [6,14]. The inheritance notions, transformation rules, transfer
rules, and the notions of GCD and LCM provide concrete mechanisms for defining a
minimal representative, handling dynamic change, and generating management
information, and are therefore crucial for the applicability of the approach. For a
formalization of the inheritance concepts we refer to two technical reports [7,15]
containing detailed proofs of the statements made in this paper. Moreover, the four
inheritance notions can be verified with Woflan [48]. Woflan is our workflow
verification tool and can interface with several workflow products including COSA,
Staffware, Protos, and Meteor.

9 Conclusion
This paper tackled two notorious problems related to adaptive workflow using generic
process models. The approach is inspired by the work on product configuration
(generic bills-of-material). The generic process model extends the classical workflow
models, primarily based on routing diagrams, with inheritance diagrams. This allows
for the specification of process families composed of variants. It also provides the
designer with two navigation dimensions: (1) the is-part-of/contains dimension and
(2) the generalizes/specializes dimension, and stimulates reuse. Based on this model
the problems related to (1) providing management information at the right
aggregation level and (2) supporting dynamic change (i.e., migrating cases from an
old to a new workflow) have been addressed. As it turns out, the generic process
model with a minimal representative for each process family gives a handle to deal
with these problems. Although the diagrams shown in this paper use a Petri-net-like
notation, the concepts and ideas are independent of the process modeling technique
chosen. Therefore, it is, in principle, possible to add the notions presented in this
paper to most of the workflow management systems available today. However, the
generality of the approach also indicates that many problems are still open. For
example, how to construct a good a minimal representative and the corresponding
specialization (spei), generalization (geni) and management functions (mani)? To
answer these questions, we proposed an approach based on Petri nets and advanced
inheritance concepts. By using recent results on inheritance of dynamic behavior
[6,7,14] we showed that the corresponding specialization, generalization, and
management functions can be obtained automatically if the minimal representative is
a superclass of its fellow children.

References
1. W.M.P. van der Aalst. Verification of Workflow Nets. In P. Azema and G. Balbo, editors,

Application and Theory of Petri Nets 1997, volume 1248 of Lecture Notes in Computer Science,
pages 407-426. Springer-Verlag, Berlin, 1997.

2. W.M.P. van der Aalst. Chapter 10: Three Good reasons for Using a Petri-net-based Workflow
Management System. In T. Wakayama et al., editor, Information and Process Integration in

Enterprises: Rethinking documents, The Kluwer International Series in Engineering and Computer
Science, pages 161-182. Kluwer Academic Publishers, Norwell, 1998.

3. W.M.P. van der Aalst. Finding Errors in the Design of a Workflow Process: A Petri-net-based
Approach. In W.M.P. van der Aalst, G. De Michelis, and C.A. Ellis, editors, Workflow
Management: Net-based Concepts, Models, Techniques and Tools (WFM'98), volume 98/7 of
Computing Science Reports, pages 60-81. Eindhoven University of Technology, Eindhoven, 1998.

4. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management. The Journal of
Circuits, Systems and Computers, 8(1):21-66, 1998.

5. W.M.P. van der Aalst. Generic Workflow Models: How to Handle Dynamic Change and Capture
Management Information. In M. Lenzerini and U. Dayal, editors, Proceedings of the Fourth IFCIS
International Conference on Cooperative Information Systems (CoopIS'99), pages 115-126,
Edinburgh, Scotland, September 1999. IEEE Computer Society Press.

6. W.M.P. van der Aalst and T. Basten. Life-cycle Inheritance: A Petri-net-based approach. In P.
Azema and G. Balbo, editors, Application and Theory of Petri Nets 1997, volume 1248 of Lecture
Notes in Computer Science, pages 62-81. Springer-Verlag, Berlin, 1997.

7. W.M.P. van der Aalst and T. Basten. Inheritance of Workflows: An approach to tackling problems
related to change. Computing Science Reports 99/06, Eindhoven University of Technology,
Eindhoven, 1999. To appear in Theoretical Computer Science.

8. W.M.P. van der Aalst, T. Basten, H.W.M. Verbeek, P.A.C. Verkoulen and M. Voorhoeve. Adaptive
Workflow: On the interplay between flexibility and support. In J. Filipe and J. Cordeiro, editors,
Proceedings of the first International Conference on Enterprise Information Systems, Setubal,
Portugal, pages 353-360, 1998.

9. W.M.P. van der Aalst and K.M. van Hee. Business Process Redesign: A Petri-net-based approach.
Computers in Industry, 29(1-2):15-26, 1996.

10. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Modellen, Methoden en
Systemen (in Dutch). Academic Service, Schoonhoven, 1997.

11. W.M.P. van der Aalst and S. Jablonski, editors. Flexible Workflow Technology Driving the
Networked Economy, Special Issue of the International Journal of Computer Systems, Science, and
Engineering, volume 15, number 5, 2000.

12. W.M.P. van der Aalst, G. De Michelis, and C.A. Ellis, editors. Workflow Management: Net-based
Concepts, Models, Techniques and Tools (WFM'98). UNINOVA, Lisbon, June 1998.

13. A. Agostini and G. De Michelis. Simple Workflow Models. In W.M.P. van der Aalst, G. De
Michelis, and C.A. Ellis, editors, Workflow Management: Net-based Concepts, Models, Techniques
and Tools (WFM'98), volume 98/7 of Computing Science Reports, pages 146-164. Eindhoven
University of Technology, Eindhoven, 1998.

14. T. Basten. In Terms of Nets: System Design with Petri Nets and Process Algebra. PhD Thesis.
Eindhoven University of Technology, Department of Computing Science, Eindhoven, the
Netherlands, 1998.

15. T. Basten and W.M.P. van der Aalst. Inheritance of Behavior. Computing Science Reports 99/17,
Eindhoven University of Technology, Eindhoven, 1999. To appear in the Journal of Logic and
Algebraic Programming.

16. E. Bertino, E. Ferrari, and V. Atluri. Object-Oriented Database Systems: Concepts and
Architecture. Addison-Wesley, 1993.

17. F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Workflow Evolution. Data and Knowledge
Engineering, 24(3):211-238, 1998.

18. J. Eder and W. Leibhart, The Workflow Activity Model WAMO. Proceedings of the Third
International Conference on Cooperative Systems (CoopIS'95), Vienna, Austria, May 1995.

19. J. Eder and W. Leibhart, Contributions to exception handling in workflow management. In O.
Burkes, J. Eder, and S. Salza, editors, Proceedings of the Sixth International Conference on
Extending Database Technology, pages 3-10. Valencia, Spain, March 1998.

20. C.A. Ellis, K. Keddara, and G. Rozenberg. Dynamic change within workflow systems. In N.
Comstock and C. Ellis, editors, Conf. on Organizational Computing Systems, pages 10 - 21. ACM
SIGOIS, ACM, Aug 1995. Milpitas, CA.

21. C.A. Ellis, K. Keddara, and J. Wainer. Modeling Workflow Dynamic Changes Using Timed Hybrid
Flow Nets. In W.M.P. van der Aalst, G. De Michelis, and C.A. Ellis, editors, Workflow
Management: Net-based Concepts, Models, Techniques and Tools (WFM'98), volume 98/7 of
Computing Science Reports, pages 109-128. Eindhoven University of Technology, Eindhoven,
1998.

22. C.A. Ellis and G.J. Nutt. Modeling and Enactment of Workflow Systems. In M. Ajmone Marsan,
editor, Application and Theory of Petri Nets 1993, volume 691 of Lecture Notes in Computer
Science, pages 1-16. Springer-Verlag, Berlin, 1993.

23. F. Erens, A. MacKay, and R. Sulonen. Product modelling using multiple levels of abstraction -
instances as types. Computers in Industry, 24(1):17-28, 1994.

24. R.J. van Glabbeek and W.P. Weijland. Branching Time and Abstraction in Bisimulation Semantics
In G.X. Ritter, editor, Information Processing 89: Proceedings of the IFIP 11th. World Computer
Congress, pages 613-618, San Francisco, CA, USA, August/September 1989. Elsevier Science
Publishers B.V., North-Holland, 1989.

25. P. Grefen, K. Aberer, Y. Hoffner, and H. Ludwig. CrossFlow: Cross-Organizational Workflow
Management in Dynamic Virtual Enterprises. International Journal of Computer Systems, Science,
and Engineering, 15(5):277-290, 2000.

26. C. Hagen and G. Alonso. Flexible Exception Handling in the OPERA Process Support System. In
proceedings of the 18th International Conference on Distributed Computing Systems (ICDCS),
Amsterdam, The Netherlands, 1998.

27. Y. Han and A. Sheth. On Adaptive Workflow Modeling. In Proceedings of the 4th International
Conference on Information Systems Analysis and Synthesis, pages 108-116, Orlando, Florida, July
1998.

28. K. Hayes and K. Lavery. Workflow management software: the business opportunity. Technical
report, Ovum Ltd, London, 1991.

29. H.M.H. Hegge. Intelligent Product Family Descriptions for Business Applications. PhD thesis,
Eindhoven University of Technology, Eindhoven, 1995.

30. P. Heinl, S. Horn, S. Jablonski, J. Neeb, K. Stein, and M. Teschke. A comprehensive approach to
flexibility in workflow management systems. Technical report TR-16-1998-6, University of
Erlangen-Nuremberg, Erlangen, 1998.

31. A.H.M. ter Hofstede, M.E. Orlowska, and J. Rajapakse. Verification Problems in Conceptual
Workflow Specifications. Data and Knowledge Engineering, 24(3):239-256, 1998.

32. InConcert. InConcert Process Designer's Guide. InConcert Inc, Cambridge, Massachusetts, 1997.
33. S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Architecture, and

Implementation International Thomson Computer Press, 1996.
34. K. Keddara. Dynamic Evolution of Workflow Systems. PhD thesis, University of Colorado,

Department of Computer Science, Boulder, USA, 1999.
35. E. Kindler. Database Theory - Petri Net Theory - Workflow Theory. Informatikberichte 102,

Humboldt-Universität zu Berlin, Berlin, 1998.
36. M. Klein, C. Dellarocas, and A. Bernstein, editors. Proceedings of the CSCW-98 Workshop

Towards Adaptive Workflow Systems, Seattle, Nov. 1998.
37. J. Klingemann. Controled Flexibility in Workflow Management. In proceedings of the 12th

International Conference on Advanced Information Systems Engineering (CAiSE'00), Stockholm,
Sweden, pages 126-141, 2000.

38. T.M. Koulopoulos. The Workflow Imperative. Van Nostrand Reinhold, New York, 1995.
39. P. Lawrence, editor. Workflow Handbook 1997, Workflow Management Coalition. John Wiley and

Sons, New York, 1997.
40. T. Malone, W. Crowston, J. Lee, B. Pentland, and et. al. Tools for inventing organizations: Toward

a handbook for organizational processes. Management Science, 1998 (to appear).
41. M. Reichert and P. Dadam. ADEPTflex: Supporting dynamic changes of workflow without loosing

control. Journal of Intelligent Information Systems, 10(2):93-129, 1998.
42. T. Schäl. Workflow Management for Process Organisations, volume 1096 of Lecture Notes in

Computer Science. Springer-Verlag, Berlin, 1996.

43. A. Sheth. From Contemporary Workflow Process Automation to Dynamic Work Activity
Coordination and Collaboration. Siggroup Bulletin, 18(3):17-20, 1997.

44. D.M. Strong and S.M. Miller. Exceptions and exception handling in computerized information
processes. ACM Transactions on Information Systems, 13(2):206-233, 1995.

45. R. Valette. Analysis of Petri Nets by Stepwise Refinements. Journal of Computer and System
Sciences, 18:35-46, 1979.

46. E.A. van Veen and J.C. Wortmann. Generative bill of matarial processing systems. Production
Planning and Control, 3(3):314-326, 1992.

47. E.A. van Veen and J.C. Wortmann. New developments in generative bom processing systems.
Production Planning and Control, 3(3):327-335, 1992.

48. E. Verbeek. Woflan home page. http://www.tm.tue.nl/it/woflan, 1999.
49. M. Voorhoeve and W.M.P. van der Aalst. Conservative Adaptation of Workflow. In M. Wolf and

U. Reimer, editors, Proceedings of the International Conference on Practical Aspects of Knowledge
Management (PAKM'96), Workshop on Adaptive Workflow, pages 1-15, Basel, Switzerland, Oct
1996.

50. M. Voorhoeve and W.M.P. van der Aalst. Ad-hoc Workflow: Problems and Solutions. In R.
Wagner, editor, Proceedings of the 8th DEXA Conference on Database and Expert Systems
Applications, pages 36-41, Toulouse, France, Sept 1997.

51. WFMC. Workflow Management Coalition Terminology and Glossary (WFMC-TC-1011).
Technical report, Workflow Management Coalition, Brussels, 1996.

52. M. Wolf and U. Reimer, editors. Proceedings of the International Conference on Practical Aspects
of Knowledge Management (PAKM'96), Workshop on Adaptive Workflow, Basel, Switzerland, Oct
1996.

Appendix: Petri nets
The results in this paper are not specific for the Petri-net formalism. However, to
understand the diagrams some basic knowledge of Petri nets is required. In this
appendix, we introduce the formalism for readers not familiar with Petri nets. We also
provide some background information with respect to the modeling and verification
of workflows.

Because processes are the dominant factor in workflow management, it is important
to use an established framework for modeling and analyzing workflow processes. In
this paper, we use a framework based on Petri nets to illustrate the concepts. Petri nets
are a well-founded process modeling technique. The classical Petri net was invented
by Carl Adam Petri in the sixties. Since then Petri nets have been used to model and
analyze all kinds of processes with applications ranging from protocols, hardware and
embedded systems to flexible manufacturing systems, user interaction and business
processes. There are several reasons for using Petri nets for workflow modeling: their
formal semantics, graphical nature, expressiveness, analysis techniques, and tools
provide a framework for modeling and analyzing workflow processes [2].

A Petri net is a network composed of squares and circles. The squares are called
transitions and correspond to tasks that need to be executed. The circles are used to
represent the state of a workflow and are called places. The arrows between places
and transitions are used to specify causal relations. A place p is called an input place
of a transition t iff there exists a directed arc from p to t. Place p is called an output
place of transition t iff there exists a directed arc from t to p. At any time a place
contains zero or more tokens, drawn as black dots. The state of the net, often referred

http://www.tm.tue.nl/it/woflan

to as marking, is the distribution of tokens over places. The number of tokens may
change during the execution of the net. Transitions are the active components in a
Petri net: they change the state of the net according to the following firing rule:
1. A transition t is said to be enabled iff each input place p of t contains at least one

token.
2. An enabled transition may fire. If transition t fires, then t consumes one token from

each input place p of t and produces one token for each output place p of t.
By using this rule it is possible to determine which transitions can fire and in what
order.

A

B C

E

p1

p6

p3

p4

p2

p5

A fires D

A

B C

E

p1

p6

p3

p4

p2

p5

D

Figure 31: The result of firing the enabled transition A.

Figure 31 shows a Petri net before (left) and after (right) the firing of a transition. In
the Petri net before the firing, only place p1 contains a token and transition A is the
only enabled transition. Therefore, A will fire and consume one token and produce
two tokens resulting in the state shown in Figure 31. In the resulting state, three
transitions are enabled (B, C, and D). Either B and C fire (in parallel or in any order)
or D fires. Finally, E will fire resulting in the state with just one token in p6.

A Petri net which models the process aspect of a workflow, is called a WorkFlow net
(WF-net). It should be noted that a WF-net specifies the dynamic behavior of a single
case in isolation. A WF-net is a Petri net with one source place (i.e., a place with no
ingoing arcs) and one sink place (i.e., a place with no ingoing arcs), and every node
(i.e., a place or a transition) is on a path from the source place to the sink place [4]. A
WF-net has one input place (source) and one output place (sink) because any case
handled by the procedure represented by the WF-net is created the moment it enters
the workflow management system and is deleted once it is completely handled by the
workflow management system, i.e., the WF-net specifies the life-cycle of a case.
Moreover, any node should be on a path from the input place to the output place. This

requirement has been added to avoid ‘dangling tasks and/or conditions’, i.e., tasks and
conditions which do not contribute to the processing of cases. The Petri net shown in
Figure 31 is clearly a WF-net. A WF-net is sound if and only if it satisfies the
following requirement. For any case, the procedure will terminate eventually and the
moment the procedure terminates there is a token in the output place and all the other
places are empty. Moreover, there should be no dead tasks, i.e., it should be possible
to execute an arbitrary task by following the appropriate route though the WF-net. A
formal definition of soundness is given in [1,4]. It is easy to verify that the WF-net net
shown in Figure 31 is sound. However, for the complex workflow process definitions
encountered in practice (with up to 100 tasks), it is far from trivial to decide
soundness. In [1] a decision procedure is given to decide soundness. This procedure
uses state-of-the-art Petri-net-based analysis techniques. In fact, it uses the fact that
soundness corresponds to two well-known properties: liveness and boundedness.

Acknowledgements
The author would like to thank all (former) the members of the SMIS group, in
particular Twan Basten for his excellent work on inheritance of dynamic behavior and
Eric Verbeek for the development of Woflan. The author would also like to thank the
reviewers for the comments that helped improving this paper.

About the author
Wil van der Aalst is a full professor of Information Systems and head of the
Department of Information and Technology of the Faculty of Technology
Management of Eindhoven University of Technology. He is also a part-time full
professor at the Computing Science department of the same university and has been
working as a part-time consultant for Bakkenist for several years. Wil van der Aalst
also directs the Eindhoven Digital Laboratory for Business Processes (EDL-BP) and
is a fellow and management team member of the research institute BETA. His
research interests are information systems, simulation, Petri nets, process models,
workflow management systems, verification techniques, enterprise resource planning
systems, computer supported cooperative work, and interorganizational business
processes.

	Introduction
	Adaptive workflow
	Generic process models
	Concepts
	Routing diagrams
	Inheritance diagrams
	Navigation

	Execution and instantiation
	Dynamic change
	Management information
	An approach based on inheritance
	Related work
	Conclusion
	References
	Appendix: Petri nets

